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Abstract

This study presents a real-time dynamic gesture recognition technique with millimeter-wave
radar, which operates the application by several simple dynamic gestures instead of keyboard and
mouse, thus providing a more friendly and intuitive Human-computer Interaction (HCI). We
conducted gesture attribute analysis, sensor data representation evaluation, learning model
efficiency evaluation, and system live testing performance analysis to improve the usability and
maneuverability of the gesture control human-machine interface. Our learning model is based on a
hybrid model (1IDCNN+LSTM) of size 415 KB for four dynamic gestures and runs gesture
recognition at a sampling rate of 30 FPS on a Texas Instruments FMCW radar evaluation board. We
achieved 94.5% accuracy for media player application among seven users, including five right-
handers and two left-handers. In addition, our approach enables interoperable applications in

complex spaces outside the controlled laboratory environment without significant misidentification.
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1. Introduction

Human-computer Interaction (HCI) has progressed from keyboards, mice, and touch to more
diverse and intuitive control methods, while gesture interactions have been studied in the HCI
community by many researchers. Millimeter-wave radar sensor uses radio waves, which is not
interfered by sound and light sources, to achieve excellent sensing capabilities to measure the distance,
speed and direction of moving objects. With advancements in machine learning, incorporating gesture
recognition and gesture tracking technology with millimeter-wave frequency modulated continuous
wave (FMCW) radar has extremely important application value in the HCI community.

We consider the following design requirements to design a gestural interaction system for
selected applications, making the application easier to use in all environments.
®  Usability

How easy is it to perform the gesture. Users feel natural and easy to pick up on with a short
learning curve.
®  Accessibility

Ensure users can interact with devices easily without any difficulty.
® Comfortability

Consider the human body ergonomics, if a gesture is uncomfortable or too repetitive, the
experience will not be great for users.
® Intuitiveness

Avoid using complex gestures which are hard to learn, instead, choose gestures that allow users

understand them instinctively.

Through millimeter-wave radar detection and real-time dynamic gesture recognition technology,

a more user-friendly and intuitive human-machine interface is provided, thereby making the



communication between humans and machines more barrier-free. Our main contributions are
summarized as follows:

® A qualitative analysis approach based on quantity, function support, complexity and attributes
is proposed to design a user-friendly gesture set to interact with the selected application.

® Discussing strategies for selecting sampling rates and sensor data representations during the data
acquisition phase to improve model efficiency and performance.

® Discussing strategies for model layer construction and sliding window selection to achieve high
recognition accuracy and performance.

® Real-time and power-saving implementation on a 60GHz FWCW radar solution to evaluate the
proposed gestural interaction system efficiency and readiness.

® Measuring the reliability of millimeter-wave radar sensors to external environmental
interferences, including four different types of interference: Bluetooth, electromagnetic waves (hair

dryer), fan swiping and millimeter-wave radar.

The rest of this paper is organized as follows. In Section 2, we present the study of gesture
recognition technology in the HCI community. In Section 3, we demonstrate an efficient millimeter-
wave radar dynamic gesture control system for the selected application. The design flow and its
performance evaluation are described in Section 4. The interaction with the selected application

snapshots is presented in Section 5. The conclusions of this study are described in Section 6.

2. Related Work

Existing gesture interaction methods use image sensors [1, 2, 3] to capture the gesture movement
and there is significant breakthrough among them. However, image sensor suffers from several
difficulties such as sensitive to light and atmospheric conditions, which resulting in insufficient

sensing capabilities. By overcoming many of the problems with camera-based approaches,



millimeter-wave radar has the potential to become the basis for gesture recognition. Most gesture-
sensing work uses millimeter-wave FMCW radar, builds training datasets using spectrograms of
range-Doppler images generated from raw data, and captures features from images using machine
learning models capable of recognizing gestures [4, 5, 6]. Furthermore, since dynamic gestures are
time-series data, a sliding-window preprocessing layer needs to be added to the learning model to
trade off accuracy and inference time [7]. A qualitative and quantitative analysis of novel radar-based

recognition solutions relevant to HCI applications are reviewed in [8].

In this paper, we used Cartesian coordinates instead of the spectrogram of the range Doppler
image as the inference basis for the learning model. Our learning model performs gesture detection
and classification based on a hybrid model consisting of four 1D-CNNs and one LSTM network.
Furthermore, we evaluated model performance through live system testing on real-world applications

in complex spaces outside the controlled laboratory environment.

3. Proposed Method

Gestures are quite primitive and natural expressions in daily life. It has become a trend for
wearables to incorporate dynamic gestures to make them easier to use. Dynamic gestures are the
changes of gestures in continuous time, including the changes in gesture shape and trajectory. Using
FMCW technology to detect the position, speed and direction of moving objects ahead through

millimeter-wave is the most popular short-range gesture recognition method today.

3.1 Overview of gesture interaction system

The FMCW radar gesture recognition system first converts the complex dynamic gesture
information from three-dimensional space into one-dimensional data points to reduce the computing
time, and calculates the features of each gesture through a learning algorithm, which is used as a
recognition basis to identify different gestures to achieve real-time human-computer interaction effect.
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3.2 Design flow and system performance metrics

First, we proposed a systematic design flow for the selected applications, including gesture design
(number of gestures, gesture attribute analysis and the function mappings between gestures and the
application, etc.) and model design (gesture recognition rate, inference time, model size and window
size, etc.), as shown in Figure 1. Next, we deployed the model with best performance on the
IWR6843A0OPEVM board for system live testing efficiency evaluation. Then, users with different
dominant hand tested the board to measure several performances: (1) Is the interaction between the
gestures and application conforms to human natural habits? (2) Is the gesture easy to perform and
remember? (3) How fast is the response time? Finally, according to the evaluation results of the

system, we refined the gesture and the model iteratively to achieve better performance.

G Gesture System Performance

esture s 4 5 S

Desi » Qualitative »1 Design and *I  Quantitative
gn Analysis Evaluation Analysis

Figure 1: Dynamic gesture control system design flow.

3.3 Toolchains and hardware setup

This study uses TI IWR6843AOPEVM (Table 1), and the relevant hardware parameter settings

are shown in Table 2. The software tools and firmware versions used are listed in Table 3.

Table 1: TIIWR6843AOPEVM specifications.

Number of transmit antennas 3

Number of receiving antennas 4




Transmit power 12 dbm

Frequency 60 ~ 64 GHz

Peripheral communication interface 12C ~ LVDS ~ QSPI ~ SPI ~ UART

Table 2: TI IWR6843AOPEVM millimeter wave radar settings.

Number of transmit antennas 3
Number of receiving antennas 4
Frequency 60 GHz

Table 3: Software tools and TI IWR6843AOPEVM firmware versions.

Imagimob Studio Version 3.3.480
Python Version 3.6.7
Autolt Version 3.3.16.0
IWR6843AOPEVM Firmware SDK 16.9.6.LTS

4. Finding

Based on the user experience design principles, this study divides the design flow of the gestural
interaction system into six stages: gesture design, gesture attribute analysis, data collection and pre-
processing, model design and efficiency evaluation, system design, and system performance metrics

and analysis.



4.1 Gesture design

Taking a gesture-controlled multimedia player application as an example, the control functions
are divided into three categories, play/pause, track control, and volume control. Here we design two
sets of gesture A and B. Group A has three gestures, one-tap, double-tap and triple-tap. Group B
(Figure 2) has four gestures, double-clockwise, right-swipe, left-swipe and push. Based on the
simplified gestures for common interactions mechanism, the gestures and control function mappings

of Group A and Group B are shown in Table 4.

A Double-clockwise A Push

A Left-swipe A Right-swipe

Figure 2: Group B gestures.



Table 4: Mapping table between gestures and multimedia player functions.

One-tap Play / Pause Low (825)

Double-tap Next track Middle (970)
Triple-tap Previous track High (1683)
Double-clockwise Mode switch Middle (1223)
. . Next track /
RlER Volume increase 1 ()
. Previous track /
CESTIEE Volume decrease 1o (778
Push Play / Pause Low (675)

4.2 Gesture attribute analysis

Gesture design should strive to be intuitive, easy to use, and ergonomic. More complex and
excessive gestures, in addition to increasing the complexity and computing time of the machine
learning model, not only make it difficult for users to get started, but also reduce usability. This study
proposes four gesture attributes to evaluate the strengths and weaknesses of the gesture sets, as shown
below.
® Uniqueness

The similarity between gestures is low. Taking one-tap and double-tap as an example, double-
tap is unique in that a one-tap is not mistaken for a double-tap.
® [Logical

The mapping between gestures and functions is intuitive and easy to remember. For example,
the functions of previous track and next track are logically opposite, and their mapping gestures also
need to have opposite semantics like right-swipe and left-swipe.
® (alibration

Gestures need to be pre-calibrated. For example, the long and short swiping in the same direction
are different for radar detection, and this must be taken into account during data collection phase to

capture data at different speeds.



® Prefix code
A gesture is a subset of another gesture. For example, one-tap is the prefix code of double-tap,

which increase the likelihood that double-tap will be recognized as one-tap twice.

Figure 3 shows the Cartesian waveforms and durations of Group A gestures. Gesture durations
in Group A range from 0.5s to 1.7s, with triple-tap having the longest duration. The y-axis (yellow
line) waveform of one-tap shows one peak, the y-axis (yellow line) waveform of double-tap shows
two peaks, and the y-axis (yellow line) waveform of triple-tap shows three peaks. From the waveform
point of view, there is also a prefix code relationship between this group of gestures, which increases
the possibility that double-tap is recognized as one-tap and triple-tap is recognized as double-tap.
Although this group of gestures is simple, it does not have any logicality and semantics, and users

need to spend more time remembering the mapping between gestures and functions.

Figure 3: Cartesian waveforms and gesture durations of Group A. There is a prefix-code relationship

between this group of gestures, which increases the possibility of misidentifications.
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Figure 4 shows the Cartesian waveforms and durations of Group B gestures. Gesture durations
in Group B range from 0.4s to 1.5s, with double-clockwise having the longest duration. Right-swipe
and left-swipe have their x-axis (green line) as the main feature, push has their z-axis (red line) as
their main feature. In double-clockwise, the x, y, and z axes are all changed, and is more unique to
distinguish from others. In addition, right-swipe and left-swipe in this group have opposite meanings,
and it is not only intuitive but also easy to remember to use them to do track control and volume
control. However, here we use millimeter-wave to detect gestures, both right-swipe and left-swipe
require more data captured by different dominant hands at different speeds to make the model more

robust.

double_clockwise
100%

Figure 4: Cartesian waveforms and gesture durations of Group B. Swiping left and right are
characterized by the x-axis, while push is characterized by the z-axis. Also, swiping left and right

have opposite meanings, making them intuitive for track and volume control.

Table 5 shows the qualitative analyzing results of Groups A and B based on the above proposed

gesture attributes. From the results, From the results, there is a prefix code relationship in group A,
10
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which increases the possibility of misidentification. Group B has good logic, and there is no subset
relationship between gestures, which is better than group A. We will use Group B to control the media

player.

Table 5: Qualitative analysis results of gesture attributes for Group A and Group B.

One-tap No No No No
Double-tap Yes No No No
Triple-tap Yes No Yes No
Double-clockwise No No Yes No
Right-swipe No Yes No Yes
Left-swipe No Yes No Yes
Push No No No No

4.3 Gesture data collection and pre-processing

Data collection is one of the most time-consuming processes in machine learning stages. We
used the Imagimob studio tool to capture the radar signals of TI IWR6843AOPEVM as training data.
The toolchain provides four kinds of captured information: Cartesian coordinate, polar coordinate,
velocity and noise, where Cartesian and polar coordinates are the positions of moving objects,
expressed in different coordinate systems under the same origin, velocity is the speed of the moving
object, and noise is the interference data. In addition, the detection range is centered on the radar,
with a plane of 30cm and a depth of 30cm. It can detect up to four moving objects and offers the
closest and fastest options. In data collection phase, we need to consider the sensor data format,

sampling rate, and label strategy.
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® Data representation

In the beginning, we used four data types and four closest objects, but the motion trajectories of
the 4 closest objects are similar, as shown in Figure 5, one closest object data point is sufficient for
model training. Figure 6 is the waveform of the push gesture captured at different speeds. The velocity
waveform is in a state of high variation, and adding velocity data limits the user to test the system at
the same speed during the data collection phase. In Figure 7, the range data (blue line) in polar
coordinate is almost unchanged, one less feature than in Cartesian coordinate. Table 6 shows that
adding noise does not improve F1 score or miss rate. Based on the results of the above analysis and
discussion, we chose the Cartesian coordinates of the closest object as the features of our training

data.

Figure 5: Cartesian coordinate waveform of left-swipe and right-swipe, the left side is one object and

the right side is four objects. The finger movements for left-swipe and right-swipe are similar.
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Figure 6: Cartesian coordinate and velocity (blue line) waveform of push gesture at different speeds.

Velocity waveform is not a key feature.

Figure 7: Gesture waveform of left-swipe and right-swipe, the left side is Cartesian coordinate and

the right side is polar coordinate. The range data (blue line) in polar coordinate shows little change.
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Table 6: F1-score and miss rate comparisons between Cartesian and Cartesian + noise. Adding

noise does not improve F1 score or miss rate.

Data type Cartesian Cartesian + Noise
F1 Score Miss Rate F1 Score Miss Rate
Double Clockwise 97.04% 1.88% 97.93% 1.98%
Left 96.20% 3.63% 94.08% 4.49%
Push 93.62% 2.81% 95.27% 2.98%
Right 96.28% 3.80% 96.98% 2.01%

® Sampling rate

In our first attempt, we captured data at a sampling rate of 10 FPS, but some important features
are lost if the gesture moves too fast, as shown in Figure 8. Furthermore, by comparing the F1 scores
for 10 FPS and 30 FPS sampling rates, high data sampling rates can improve model performance by
6.7%, especially for left-swipe and right-swipe, as shown in Figure 9. Here, all training datasets are

captured at a sampling rate of 30 FPS by three testers at slightly different speeds.

Figure 8: The waveform of left-swipe at 10 FPS sampling rate. The left side is normal and the right

side shows that some key features are lost at high-speed hand motion.
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100.00%
98.00%
96.00%
94.00%
92.00%
90.00%
88.00%
86.00%
84.00%
82.00%
80.00%

o

10 FPS and 30 FPS Comparison (F1 Score)

@ 10 FPS
m 30 FPS

Double Clockwise Left Push Right

J

Figure 9: F1-score comparisons between 10 FPS and 30 FPS sampling rate. 6.7% improvement at 30

FPS, especially for left-swipe and right-swipe.

® Data labeling

At the end of the data collection phase, we annotate a label to each waveform with a gesture

category in the data track. With the help of video, the captured data points are labeled as gesture

categories by human inspection for each data track, as shown in Figure 10. Unlabeled data points in

the data track are treated as unknown gestures. Also, if there is an ambiguous waveform in the data

track, this data track will be discarded.
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Figure 10: Data labeling, the left is the video track and the right is the waveform track. Labels are

annotated by human inspection with the aid of video to avoid mislabeling.

4.4 Model design

Since dynamic gestures are a series of motion data points, we use a hybrid model consisting of
Convolutional Neural Network (CNN) layers and Long Short-Term Memory (LSTM) layers. CNN
helps to extract the features of the gesture data, while LSTM helps to memorize the long sequence of

the data. The model design is divided into the following three steps:

® Model building

According to the gesture data points of Group B, Imagimob tool provides multiple simple models
based on CNN, and then determines the best model structure by comparing the F1-score performance
of each gesture under different models. However, due to the time-series data of dynamic gestures, we
added an LSTM layer and turned on its bi-direction option for comparison. As shown in Table 7,
CNN-LSTM performs best in terms of F1 score and miss rate compared to CNN and CNN-BiLSTM.
We choose CNN-LSTM model for the final system performance metrics and evaluation. Figure 11

shows the number of layers of the final CNN-LSTM model and the parameters of each layer.
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Table 7: F1 score and miss rate comparisons among CNN, CNN-LSTM and CNN-BiLSTM. CNN-

LSTM performs best in terms of F1 score and miss rate.

Model CNN CNN-LSTM CNN-BiLSTM
F1 Score Miss Rate F1 Score Miss Rate F1 Score Miss Rate
Double Clockwise 96.03% 2.74% 97.04% 1.88% 96.23% 1.88%
Left 96.39% 4.72% 96.20% 3.63% 96.26% 4.96%
Push 92.56% 7.63% 93.62% 2.81% 94.19% 2.41%
Right 96.37% 3.63% 96.28% 3.80% 95.96% 3.63%

Model summary:
Model: "Model@"

Layer (type) Output Shape Param #
layer_@ (BatchNormalization) (None, 15, 3) 12
layer_1 (ConvilD) (None, 15, 8) 72
layer_2 (BatchNormalization) (None, 15, 8) 32
layer_3 (Activation) (None, 15, 8) 0
layer_4 (ConvilD) (None, 15, 6) 144
layer_5 (BatchNormalization) (None, 15, 6) 24
layer_6 (Activation) (None, 15, 6) 0
layer_7 (Convi1D) (None, 15, 4) 72
layer_8 (BatchNormalization) (None, 15, 4) 16
layer_9 (Activation) (None, 15, 4) 0
layer_10 (ConvilD) (None, 15, 4) 48
layer_11 (BatchNormalization) (None, 15, 4) 16
layer_12 (Activation) (None, 15, 4) 0
layer_13 (MaxPoolinglD) (None, 5, 4) 0
layer_14 (LSTM) (None, 22) 2376
layer_15 (Dropout) (None, 22) 0
layer_16 (Dense) (None, 5) 110
layer_17 (BatchNormalization) (None, 5) 20
layer_18 (Activation) (None, 5) 0

Total params: 2,942
Trainable params: 2,882
Non-trainable params: 60

Figure 11: A hybrid model consisting of four 1D-CNNs and one LSTM network for gesture
recognition. Since the gesture durations in group B range from 0.4s to 1.5s, a multi 1D-CNN is used

to filter key features.

® Sliding window

Since the gesture durations in Group B range from 0.4s to 1.5s, a sliding window preprocessing
layer needs to be added to trade off accuracy and inference time. We measured both F1 score and
miss rate of CNN-LSTM model under different window sizes to determine the most suitable window

17



size. According to the comparison results in Table 8, the most appropriate window size is 15 in terms
of F1 score and miss rate. In addition, the inference time of window size 15 is less than 2ms during

system live test.

Table 8: F1 score (left) and miss rate (right) comparisons between different window sizes. A window

size of 15 (0.5s) is in terms of F1 score and miss rate, and also accommodates the shortest gesture

duration.
Window size 10 15 20
F1 Score Miss Rate F1 Score Miss Rate F1 Score Miss Rate
Double Clockwise 96.12% 1.27% 97.04% 1.88% 96.15% 1.96%
Left 96.51% 4.89% 96.20% 3.63% 93.35% 4.62%
Push 96.09% 2.41% 93.62% 2.81% 80.68% 22.83%
Right 96.81% 4.62% 96.28% 3.80% 92.34% 9.21%

® Dataset distribution

We trained the model using the distribution ratios (60%, 20%, 20%) of the training, validation,
and test sets, as shown in Table 9, and the dataset is automatically distributed. Furthermore, after
finding the best model, we fixed the dataset distribution for all other performance evaluations to
achieve a fair result.

Table 10 is the confusion matrix of the final CNN-LSTM model, the accuracy of each gesture
can achieve higher than 96%. According to the convergence plot in Figure 12, 2191 pieces of data are
enough to train the model without underfitting. In addition, the validation loss is greater than or equal

to the training loss during the training process and there is no overfitting situation.
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Table 9: Redistribute training, validation, and test datasets by 60, 20, 20 for model performance

optimization. Swipe left and right are mainly characterized by the x-axis, requiring more datasets to

improve accuracy.

Class Unassigned Train (60%) Validation (20%) Test (20%) Weight Total

double_clockwise % (0) 55% (228)' 30% 15%: (64) 1
left 0% (0) % (537) % (183 19% (172) 1
push 3| 0% (257)

right : %

Total Annotated 6 (0)

Unlabeled Data % (00:00)

Total Data % (00:00)

Table 10: Confusion matrix for CNN-LSTM model. Each gesture is more than 96% accurate.

Actual

(unlabelled) double_clockwise left push right
(unlabelled) 99.00 % 1.88 % 339% 281 % 3.80 %
double_clockwise 0.22 % 98.12 % 0.24 % 0.00 % 0.00 %

left 032 % 0.00 % 96.37 % 0.00 % 0.00 %

Predicted

push 0.26 % 0.00 % 0.00 % 97.19% 0.00 %
right 021% 0.00 % 0.00 % 0.00 % 96.20 %
Total 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %

Train Loss
Validation Loss

Figure 12: Convergence plot for CNN-LSTM model.
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4.5 System design

The prototype of the proposed gesture recognition system is shown in Figure 13. First, we
deployed the model on the IWR6843AOPEVM board through the TI UniFlash tool. The millimeter-
wave radar sensor device will output its gesture recognition results to the teraterm terminal through
UART interface, then use the python script to parse the UART output to obtain the gesture ID. Finally,

run the Autolt script to operate the mapping function according to the gesture ID.

Gesture VaRTTE o Python Autolt o
.o Gesture ID . . . Application
Recognition (NB) » String Parsing » Control Script > (NB)
(TD I (NB) (NB)

Figure 13: The proposed gesture recognition system prototype.

Figure 14 is the firmware flow chart. The device is initially in sleep power saving mode. To enter
wake-up mode, simply perform a random gesture within the detection range. Next, the model will
calculate the current window data every 0.75s and perform gesture prediction, and finally output the
recognition results to the teraterm terminal through the UART interface. In addition, if no gesture
appears within the detection range for more than 10s, the device will enter sleep mode again.
Furthermore, we found that the delay gap between gesture detection and gesture prediction must be
set to be greater than 0.75s, otherwise the double-clockwise may be recognized twice since its

duration is greater than 1.0s.
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Figure 14: Firmware flow. From the system point of view, the interval between two consecutive

gestures is at least 1s, we simply use a delay strategy for gesture spotting.

4.6 System performance metrics and analysis

The actual performance of the trained model is measured by counting the correct manipulation
of VLC multimedia player. By arranging seven testers, five of whom are first-time users, explain and
demonstrate the operation to the testers for ten minutes before the test, and let the testers practice for
five minutes after the explanation, and finally let the users operate each gesture 10 times and count
the number of correct manipulations. The gesture control status of Group B is shown in Figure 15.
The average accuracy rate is 94.5%. Since the two first-time users are left-handed persons, the
accuracy rate is about 2% lower than that of other users.

In order to further measure the robustness of millimeter-wave radar to external environmental
interference as shown in Figure 16, we test it under four different types of disturbance, Bluetooth
(headset), electromagnetic waves (hair dryer) and fan swiping. As shown in Figure 17, the recognition

accuracy drops by less than 5%. If there is electromagnetic wave or millimeter wave interference
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around, the recognition accuracy will be reduced within 5%. Left-swipe and right-swipe are a bit

sensitive to environmental disturbances.

/ N
Live Testing Results
100.00%
98.00%
26.00% @ Userl
94.00% @ User2
92.00% OUser3
@ Userd
90.00% I User5
88.00% @ User6(L-H)
86.00% | OUser7(L-H)
Double Left Push Right
Clockwise
- J

Figure 15: Group B live testing recognition accuracy results among seven users for media player

application. The average accuracy rate is 94.5%.

Figure 16: Four types environmental interference scenarios. From left to right are Bluetooth (headset),

electromagnetic waves (hair dryer), fan swiping and millimeter-wave radar.
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100.0%
99.0%
98.0%
97.0% @ Normal Test
96.0% m Bluetooth
95.0% O Hair Dryer
94.0% [ Fan Swiping
93.0% E Mmwave Radar
92.0%
91.0%
90.0%

Double Left Push Right
Clockwise
- J

Figure 17: Recognition accuracy of different environmental interference scenarios. Accuracy drops

by up to 5% in complex spaces.

5. Demo

Figure 18 is the snapshots of the gesture interaction with VLC media player and the gesture
manipulation of the PDF presentation. In PDF presentation operation, we assigned left-swipe for
previous slide control, right-swipe for next slide control and double-clockwise for presentation mode
switching. According to the live testing results, compared with other gesture recognition accuracy in
Group B, left-swipe is a bit sensitive to gesture actions, such as the hand position is lower than the

radar, the gesture movement is too fast, etc.
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WATERMELON SUGAR HIGH -

WATERMELON SUGAR HIGH

NOTD, Shy Martin - Keep You Mine (Lyric Video).mp4

Hand gesture control system
Control a computer system without direct physical contact
Camera-based and radar-based

Millimeter-wave radar
Capture motion even with very small amplitude changes
Provide better privacy

Mode Switch

Can be applied to wearable device!

Figure 18: Snapshots of interaction with VLC media player (top) and PDF presentation manipulation
(bottom).

6. Conclusion

We proposed an efficient millimeter-wave radar dynamic gesture control system for the selected
application based on the user experience design principle. Through iterative gesture qualitative
analysis and performance quantitative evaluation, which improved gesture usability and learning
model efficiency, respectively, the algorithm achieved high accuracy (94.5% on average) on 4 hand
gestures across 7 users. Additionally, we provided a real-time and power-saving radar-based gesture
recognition solution to interoperate applications in complex space without significant
misidentification. This work can also be extended to control car multimedia systems, wearables and

smart home devices by extending the gesture set to support continuous finger gesture recognition.
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