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Abstract: Low-field (LF) MRI scanners have the power to revolutionize medical imaging by provid-  

ing a portable and cheaper alternative to high-field MRI scanners. However, such scanners are usu-  

ally significantly noisier and lower quality than their high-field counterparts. This prevents them  

from appealing to global markets. The aim of this paper is to improve the SNR and overall image  

quality of low-field MRI scans (called super-resolution) to improve diagnostic capability and, as a  

result, make it more accessible. To address this issue, we propose a Nested U-Net neural network  

architecture super-resolution algorithm that outperforms previously suggested super-resolution  

deep learning methods with an average PSNR of 78.83 ± 0.01 and SSIM of 0.9551 ± 0.01. Our ANOVA  

paired t-test and Post-Hoc Tukey test demonstrate significance with a p-value < 0.0001 and no other  

network demonstrating significance higher than 0.1. We tested our network on artificial noisy  

downsampled synthetic data from 1500 T1 weighted MRI images through the dataset called the T1-  

mix. Four board-certified radiologists scored 25 images (100 image ratings total) on the Likert scale  

(1-5) assessing overall image quality, anatomical structure, and diagnostic confidence across our  

architecture and other published works (SR DenseNet, Generator Block, SRCNN, etc.). Our algo-  

rithm outperformed all other works with the highest MOS, 4.4 ± 0.3. We also introduce a new type  

of loss function called natural log mean squared error (NLMSE), outperforming MSE, MAE, and  

MSLE on this specific SR task. Additionally, we ran inference on actual Hyperfine scan images with  

successful qualitative results using a Generator RRDB block. In conclusion, we present a more ac-  

curate deep learning method for single image super-resolution applied to low-field MRI via a  

Nested U-Net architecture.  
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Introduction  

Magnetic resonance imaging (MRI) has revolutionized healthcare by providing a  

non-invasive diagnostic tool that can output high-resolution images of various anatomical  

structures. Although traditional MRI scanners operating at high magnetic field strengths  

(1.5T-3T) provide high sub-millimeter resolution scans, it is very cost-prohibitive and  

time-intensive due to the high magnetic field strength, installation costs, and operation of  

the machinery. As of 2021, there are approximately seven high-field MRI scanners per  

million inhabitants, and over 90% of such scanners are concentrated in high-income coun-  

tries [3]. In 2020, the FDA approved the world’s first portable low-field (LF) human MRI  

scanner that operates at a significantly lower magnetic field strength (of 64 mT) - the Hy-  

perfine® scanner. Apart from being the most affordable scanners worldwide, specially to  

developing countries (around $50K/scanner) [4], LF scanners have enabled ICU patient  

scanning at bedside while being surrounded by ventilators and other metallic medical  

devices. However, lowering the magnetic field strength comes with its own challenges.  

Mainly, there is a significant drop in the signal-to-noise ratio (SNR) and overall image  

quality. In this paper, we focus on increasing the SNR and resolution of synthetic LF MRI  

scans via a Nested U-Net deep learning architecture. This neural network architecture has  

the base U-Net as the blueprint but utilizes redesigned skip connections [18].   

While high-field (HF) MRI scanners provide high resolution (HR) to display anatom-  

ical structures, which is a requisite for diagnosis of many pathologies such as multiple  

sclerosis, smaller brain injuries, and neurocognitive diseases (Alzheimer’s, Parkinson’s). ,  

there are medical specialties like emergency medicine where high resolution scans are not  

an immediate necessity and are therefore not cost-effective for local hospitals and clinics.  

Instead, a portable LF MRI scanner can be more appealing to such institutions provided  

the scanners output high enough spatial resolution and with sufficient diagnostic capabil-  

ities. One option for approaching this is improving the reconstruction method from the k-  

space to the image domain, however, this has only limited SNR improvement as k-space  

has very limited data input [5]. Another option would be to increase the low-field MRI  

acquisition time and magnetic strength; however, this makes the scan longer for the pa-  

tient and makes it less suitable for portable bedside imaging [6].   

Among the super-resolution (SR) deep learning approaches used to improve spatial  

resolution of images, single image super-resolution (SISR) has the capability to improve  
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the SNR and overall image quality without altering any physical MRI properties. Previ-

ously, substantial work has been done on 3D low-field MRI super-resolution (or multi-

image super-resolution (MISR)) [7]. In this paper, we focus on SISR because it requires 

less computational power and usually reports higher accuracy (due to greater dataset 

availability). Furthermore, very often radiologists analyze 2D MRI images to make a di-

agnosis, especially in emergency situations. 3D scans, even though they provide more in-

formation, take a great amount of time to analyze. In that way, 2D LF MRI SISR is more 

appropriate for emergency care imaging.  

Current state-of-the-art SR methods involve three types of methods: interpolation-

based, reconstruction-based, and learning-based techniques with the first two being ana-

lytical reconstruction methods, and the last one being a machine learning based approach 

[8-10]. Bilinear/bicubic interpolation techniques, while very computationally efficient,  

tend to over-smooth and provide granulated outputs, and tend to report small SNR im-  

provements [11]. Reconstruction-based methods solve the blurred edges and granulation  

produced by interpolation by using a gradient and spatial extraction approach but lack  

finer details [9]. Learning-based techniques often utilize machine learning to bridge the  

resolution gap. These techniques report the highest SNR and overall image quality be-  

cause they usually learn from a large dataset of paired degraded and HR images [10].  

Andrew et al. reported using a lightweight autoencoder that leverages skip connections  

to sufficiently super-resolve downsampled high resolution MRI data [12]. M.L. de Leeuw  

den Bouter et al. trained an SR DenseNet and were able to inference on a low-field MRI  

scan to bridge the resolution gap [1]. Laguna et al. implemented a pipeline involving a  

domain adaptation network, a denoiser, and an SR block to adequately super-resolve 3D  

MRI scans [13]. The authors’ network involved a Residual Dense Block in the ESRGAN  

generator to reconstruct LF MR images. Their work is focused on the domain adaptation  

portion of the network as bridging the gap between the low-field image domain and the  

high-field image domain, which is quite difficult. For simplicity, we assume domain ad-  

aptation will be sufficiently close to high-field MRI data so that our SR block can recon-  

struct properly. In this paper, we propose using a SR U-Net++ architecture (Nested U-Net)  

to reconstruct HR images from synthetically downsampled LF images. We trained the  

network to output the difference between the high-field and synthetic low-field data as  

shown in Figure 2. We compared our technique to state-of-the-art methods that included  

SRCNN, VDSR, and a variation of the SRGAN generator [13].   
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The major contributions of this work are as follows:  

• A down sampling pipeline that accurately transfers HF MRI images to LF MRI images.  

• A trained U-Net++ architecture for synthetic LF MRI scans to achieve SISR through em-
ploying residual learning  

• Comparison of the U-Net++ architecture against state-of-the-art algorithms to evaluate 
performance through PSNR, SSIM, and a board-certified radiologist 

• Evaluation of a varied network on Hyperfine scanners with rigorous domain adaptation 
and data augmentation  

 

2. Materials and Methods 

2.1 Dataset Preparation 

In this study, a total of 1,500 T1-weighted 3T MR human brain images and 20 Hyperfine 

scans were used. The datasets were primarily the 1,500 3T scans from the T1-Mix dataset.  

The T1-Mix dataset contained a mix of the following datasets: ABIDE (Di Martino et al.,  

2014), ADHD200 (Consortium, 2012), GSP (Holmes et al., 2015), HABS (Dagley et al.,  

2017), MCIC (Gollub et al., 2013), OASIS (Marcus et al., 2007), and PPMI (Marek et al.,  

2011). Though all the brain images in the training set had a T1-weighted contrast, there  

were various head positionings and different sequence parameters (like slice thickness).  

These differences within the training dataset made our U-Net more robust to different  

types of T1 scans. We then classified T1-Mix as Dataset I. Additionally, all the scans in  

Dataset I are in the coronal view. The different datasets listed above contained various  

disorders (such as epilepsy, ADHD, Alzheimer’s, Parkinson’s, autism) but no pathological  

lesions were included, contributing to the robustness of our U-Net++ trained model.   

All 1,500 MRI scans were acquired using a GE 3T MR750 scanner with an 8-channel  

head coil at the UCSD Center for Functional MRI [14]. The HR scan sequences were ac-

quired from FSPGR T1-weighted sequence (TR: 11.08ms; TE: 4.3ms; flip angle: 45°; FOV: 

256mm; 256 x 256 matrix; 180 slices; 1mm3 in-plane resolution) [14]. Foam pillows were 

put around the patients’ heads to minimize movement [14].  

20 low-field MRI inference scans were acquired from a 64 mT Hyperfine Swoop scan-

ner for a separate segmentation study from Yale Medical School (. A 100 total 3D scans 

were taken for that study, however, only 20 of these scans didn’t present any significant 
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lesions or brain altercations (T1, D: 12 x 138 x 36, T1, ND: 138 x 112 x 36, T2 AXI, ND: 112 

x 136 x 36, T2 AXI, D: 120 x 146 x 36, FLAIR: 102 x 122 x 36).  

2.2 Implementation Details  

All our training experiments were carried out with 2 datasets: T1-mix and ABIDE 

and in total 1,500 3T High Field MRI scans were used to train our model. The database 

was split into 3:1 for the training set and the validation set. The synthetic 64 mT LF MRI 

scans, being the input to the architecture were generated by our downsampling pipeline 

from the ground truth HF scans. The ground truth were identified as the regular 3T scans 

(256 x 256) and the residual image (Synthetic LF image – HF image) were used as the 

corresponding target of the architecture. The main SR algorithm was based on our pro-

posed U-Net++ with VGG blocks and without batch normalization. Both input and output 

images had only one channel (not RGB) to increase computational efficiency. Six different 

state-of-the-art algorithms--VDSR, SR-CNN, SR-GAN, DenseNet, SR U-Net, U-Net++--  

were trained with the same parameters as specified below and evaluated.   

The network was trained with the Adam optimizer with a learning rate of 1e-4.  

Weight decay or L2 regularization was also employed in the network with a value of 5e-  

4 which helped prevent the network from overfitting. The entire pipeline was trained us-  

ing PyTorch 1.9.2 with a NVIDIA Quadro RTX 6000 GPU and 24 GB RAM. All 6 neural  

networks were trained with both the ABIDE and T1-mix, for 60,000 epochs with a batch  

size of 1 (no batch normalization was employed for consistency and comparison pur-  

poses). Each network’s performance was evaluated using the image metrics PSNR and 

SSIM. 

2.3 Downsampling and Training Pipeline 

Data collection for training an SR network usually requires paired HF and LF scans of the 

same patient. However, this method involves non-linear distortions, as well as patient 

registration for a perfect match. Here, to attain LF MRI quality from HF MRI scans, a 

unique and more efficient downsampling approach was used as described in Figure 2. 

Usually, scans are downsampled by the same factor vertically and horizontally. However, 

at LF, the images are distorted in a unique way.  

In an empirical manner, applying an asymmetric downsampling factor in the hori-

zontal and vertical directions of 1.5 and 5 respectively resulted in a less distorted 
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downsampled image compared to a symmetrical downsampled image. We downsample  

it this way because the low-field MRI T1-Axial resolution is 120 x 52 x 172. This accurately  

reflects low-field MRI. This elongated downsampled MRI scan of 52 pixels x 172 pixels  

was then rescaled using the bilinear interpolation to 256 pixels x 256 pixels resolution to  

make for an adequate comparison for high-field scans. This final interpolated image was  

the input to the U-Net++ architecture. This process produced a cleaner and more efficient  

downsampling method and training pipeline.  

Algorithm 1 Super-Resolution Pipeline  
Data: 2D High-Field MRI scans after standardization 
Step (1) Compression:  
   Downsample 256 x 256 scans 1.5 times horizontally and 5 times vertically to output a 
distorted scan of 52 x 172.  
Step (2) Bilinear Interpolation:  
   Resolve scans up to 256 x 256 resolution using bilinear interpolation filling technique 
(in order to inaccurately improve pixel quality to reflect LF MRI quality).  
Step (3) SR U-Net++ 
   Input 256 x 256 scans (from step 2) into the U-Net++ with the target being the residual 
image (difference between HF scan and synthetic LF image).  
Step (4) Final Reconstruction  
   Combine output (from step 3) with the output from step 2 to produce HR looking im-
ages 

 192 

 193 

 194 

Figure 1: SR pipeline network with downsampling process shown, taking a 256 x 256 scan, downsampling it, and 

applying the U-Net++ algorithm (bottom right).  
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To improve the performance of the training, all images of the Dataset I were normalized  

from -0.5 to +0.5. Rigorous data augmentation was performed like random affine, blur,  

crop, and random rotation, improving the robustness of the neural network and reducing  

overfitting in the training process. Furthermore, to reduce the computational time, we  

used a technique called residual learning. As shown in Figure 2 the output/target of the  

neural network was the difference between the 256 x 256 HF image and the 256 x 256  

bilinear interpolated LF image. To reproduce the final SR image, the output was then  

overlaid onto the bilinear interpolated LF image. This residual learning approach im-  

proved the performance of the training since less pixel information is required to be  

learned by the U-Net++ architecture.  

  

  

D. Network Architecture   

This section introduces the U-Net++ architecture which is the primary super-resolution  

algorithm used to reconstruct our synthetic LF brain images. As a well-known architec-  

ture in the literature, the standard U-Net involves a symmetric “U” shaped architecture  

that has a contrastive and expansive path (similar to the variational autoencoder). Each  

downsampling and upsampling layer involves two convolutional layers with padding.  

The bottom layer (bottleneck) also has two convolutional layers, but no max pooling.  

Transposed convolutions are used to upsample from the bottleneck layer to the final im-  

age size. The benefit of using a U-Net over other architectures is that it is able to localize  

Figure 2: Proposed U-Net++ architecture as the primary SR algorithm for this study. This architecture removes the original skip 

connections as proposed by Zhou Z et al to accurately reconstruct LF MRI images to HF.  
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and distinguish borders better (due to the classification on each pixel layer) which is suit-  

able for biomedical applications (such as segmentation tasks).   

Like the U-Net, the U-Net++ described by Zhou Z et al, involved an encoder and  

decode to bridge the semantic gap between feature maps prior to diffusion [15]. As shown  

in Figure 3, the standard U-Net is represented in black circles and the additional skip con-  

nections are represented in green and blue dotted arrows. The main distinction between  

the two networks was the redesigned skip connections (denoted in green and blue dotted  

arrows). In the standard U-Net, the feature maps of the encoder are directly fed into the  

decoder, and, our U-Net++ were composed with multiple dense convolutions to improve  

accuracy of the feature maps before being fed into the decoder. For instance, the skip con-  

nection pathway between X(1,0) to X(1,3) is composed of three convolutional layers with one  

dense block where each convolutional layer is preceded by a concatenation layer that  

fuses the output from the previous convolutional layer [14]   

The dense convolutional layers bring the encoder feature maps closer to the decoder  

feature maps so the accuracy of the overall network is improved. The skip pathway (for-  

mulated by Z. Zhou et al.) was created as follows: letting x(i,j) denote the output node X(i,j)  

where i indexes the down-sampling layer along the encoder and j indexes the convolu-  

tional layer of the dense block along the skip pathway [15]. Z. Zhou et al. also proposed  

deep supervision on top of the U-Net++ architecture, however, there was no apparent  

benefit in using deep supervision as that was primarily for segmentation purposes. In-  

stead of using single traditional convolutional layers, visual geometry group blocks  

(VGGs) were used. VGG blocks are generally composed of multiple convolutional and  

max pooling layers. Traditional U-Net++ architectures with VGG consist of 1 ReLU acti-  

vation unit, 2 convolutional layers, and 2 batch normalization layers. Hu et al. proposed  

a U-Net for image super-resolution without batch normalization and reported a signifi-  

cant increase in overall image quality and resolution [16]. Hence, batch normalization was  

not used in our proposed U-Net++ architecture as well, improving our architecture by 0.05 

in SSIM and 1.34 in PSNR. 
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E. Loss Function Customization 

In most super-resolution image reconstruction tasks, the loss function employed is the 

mean squared error loss function as shown in Equation 1, 

																																																																		𝑴𝑺𝑬	 = 	 𝟏
𝒏
∑(𝒀𝒊	 − 𝒀𝒋)𝟐                          (1)                               

where n represents total image size, Yi represents the output of the network, and Yj repre-

sents the residual target (synthetic LF – HF). Minimizing such errors produced satisfac-

tory results for random natural images (such as dog, cat, person), but it failed to recon-

struct the precise anatomical structures in MRI and CT scans [16]. In this study, we exper-

imented with several different loss functions including: MSE, VGG, and abs-MSE. All of 

these loss functions produced grainy results, particularly due to the general nature of the 

functions. Each function can be used for a wide variety of tasks. Thus, we decided to cus-

tomize our own loss function called Natural Log Mean Squared Error (NLMSE). This  

function includes a natural log term (or log base e) in front of the entire equation and then  

squares it. In doing so, each pixel is penalized greater, which improves the accuracy of the  

overall network. Equation 2 outlines our new proposed loss function in comparison to  

MSE:  

																																																											𝑵𝑳𝑴𝑺𝑬	 = 	 𝟏
𝒏
𝒍𝒐𝒈𝒆(∑(𝒀𝒊	 − 𝒀𝒋)𝟐)                     (2)  

3. Results  

3.1 Comparison Against State-of-the-Art Algorithms  

To rigorously test the proposed SR U-Net++ architecture, we compared the algorithm  

against five other state of the art networks which include VDSR, SR-CNN, SR-GAN,  

DenseNet, SR U-Net. We evaluated all six networks using PSNR and SSIM to get a  

quantitative evaluation of our networks. We tried to limit our state-of-the-art architectures  

to SR algorithms that have been applied to MRI super-resolution. Table 2 shows the  

comparison against state-of-the-art algorithms and the U-Net++ outperforms all networks  

in terms of both PSNR and SSIM. Comparable to other networks, there isn’t marginal  

improvement. The performance of our proposed network demonstrated the largest  

increase in PSNR and SSIM performance (+0.29 in PSNR/+0.124 in SSIM).   
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Table 1: PSNR and SSIM Comparison 

Network Type PSNR SSIM  
Low-Field Scan 75.52 0.9159 

VDSR 
SR U-Net++ (ours) 

SR GAN 
SR DenseNet 

SR U-Net 
SR CNN 

78.10 
78.83 
75.52 
78.54 
78.06 
78.83 

0.9481 
0.9551 
0.9159 
0.9519 
0.9477 
0.9551 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

  

  

3.2 Mean Opinion Score Testing  

Four board-certified radiologists were given 5 scans per network (100 total images) to  

assess. This was a blinded study where the radiologist had no information on which 

 

neural network was used to reconstruct to prevent any bias. The radiologists were asked  

to rate each subsequent image on a scale from 1-5, with 1 being very close to LF and 5  

being very close to HF (the Likert scale). Initially, the radiologist was calibrated by  

observing 5 LF MRI scans and 5 HF MRI scans to learn the scale. They weren’t allowed to  

Figure 3: Qualitative observations of LF MRI scans vs super-resolved scans via 5 other networks and the U-Net++ for 

comparison. The GT/High Field being the reference point. 
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rank in between numbers (such as 3.5). These scores were then averaged and standard  

deviations were calculated to assess significance (F1 score: 7.037, p-value: 0.0008)  

Table :2 Radiologist Evaluation  

Network Type Mean Opinion Score 
Low-Field Scan 1.0 ± 0.0 

VDSR 
SR CNN 
SR GAN 

SR DenseNet 
SR U-Net 

SR U-Net++ 

3 ± 0.70 
3.2 ±  0.44 

1.0 ± 0.0 
3.6 ± 0.55 
3.4 ± 0.89 
4.4 ± 0.30 

  

  

  

The mean opinion score study corroborated well with our PSNR and SSIM studies. In the  

blind study, all four radiologists chose the U-Net++ architecture as the highest performing  

network. The U-Net++ outperformed all other networks by at least 0.3 MOS. The  

radiologist noted improved reconstruction in the hippocampal and skull regions where  

other networks exhibited artifacting in those regions such as the zebra stripe pattern and  

bigger hippocampal volume. This study was completed to verify that the U-Net++  

reconstructed clinically relevant details. The second best performance was the SR  

DenseNet proposed by M.L. de Leeuw den Bouter. It is important to note that the SR-  

GAN had very little reconstruction capabilities, especially with LF MRI super-resolution,  

potentially due to its volumetric specifications. There was practically no improvement in  

the the visual or quantitative performance. The synthetic low-field MRI scan was  

1
0

1

2

3

4

5

6

Radiologist Evaluation Comparison

Figure 4: A box and whisker plot analysis shows the U-Net++ performing significantly compared 

to the other networks (even within the confidence interval 4.4 + 0.54). The SR-GAN (blue line 

with strikethrough) performed the weakest with no deviation (virtually no reconstruction).  

SR U-Net++ 

VDSR 

SR GAN 

U-Net SR CNN SR DenseNet 
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compared to ground truth when evaluating the PSNR and SSIM which yielded very low 

values.  

3.3 Inference on Hyperfine scans 

We tested our network on actual low-field MRI scans taken from the Hyperfine scanners. 

We also altered the network to tailor it Hyperfine scans using a Generator Residual 

Residual Dense Block (RRDB) block to improve performance, altering the U-Net++. The 

Generator RRDB block is an alteration of the Generator block used for generative 

adversarial networks (GANs). Additionally, there was a substantial domain gap which 

prevented the SR network from producing significant results. To account for this gap, we 

included a cycleGAN network to bridge the domains and then apply the Generator RRDB 

block to bridge the resolution.  

  

  

The domain adaptation also acted as the denoiser network. Laguna et al proposed a  

separate denoiser block, however, in our studies, that did not improve the noise issue at  

all. It caused separate distorations. Without the cycleGAN, all the neural networks tested  

failed at bridging the gap due to the domain issue.   

  

Figure 5: Hyperfine super-resolution pipeline. Second portion is the cycleGAN block followed by the Generator RRDB block (U-Net++ 

altercation) outputting the super-resolved and denoised Hyperfine scan.  
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4. Discussion   

In this study, we demonstrated accurate low-field MRI super-resolution to 3T MRI using  

a U-Net++ architecture. Our network outperformed current state-of-the-art networks by a  

substantial amount. This work demonstrates the promise of fully connected U-Nets for  

medical image super-resolution tasks, especially when filling a larger resolution gap. Pre-  

viously MRI super-resolution papers aimed to bridge a smaller resolution gap which mar-  

ginally improves the scanner. However, in this study, we show that a U-Net++ can sub-  

stantially improve the anatomical resolution of MRI scans with high PSNR and SSIM val-  

ues.   

From Figure 7, there is a substantial improvement in resolution from the other net-  

works and the SR U-Net and SR U-Net++, especially in the inner regions of the brain. The  

difference between the SR U-Net and the SR U-Net++ is the slight contrast improvement.  

The redesigned skip connections allow for greater improvement within those areas where  

the traditional SR U-Net fails. In Table 1, the PSNR and SSIM of the SR U-Net++  

Figure 6: Qualitative observations of Hyperfine scans running through the cycleGAN + RRDB block to demon-

strate super-resolution significance. Quantitative observations yielded a 37.01 ± 4.12 PSNR and 0.93 ± 0.12, 

which improved non-resolved scans by 45%.    
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outperforms all other state of the art. The U-Net comes in a close second but again hinders  

due to the contrast difference. A similar SR-DenseNet architecture proposed by M.L. de  

Leeuw den Bouter was also tested in this study which closed around a 78.08 PSNR and  

0.9477 [1]. From Figure 7, this network exhibits some artifacts in the two brain cavities  

magnified. U-Nets specialize in localization which enables them to smooth out these re-  

gions and obtain substantially higher PSNR and SSIM values.   

We tested this methodology on actual Hyperfine scans (granted IRB approval). La-  

guna et. al emphasized the importance of domain adaptation in realistic LF MRI super-  

resolution as the domain shift turns out to be quite substantial [13]. Our Generator RRDB  

block and novel cycleGAN improved the quality of the Hyperfine scans substantially (as  

denoted by Figure 5). Quantitative observations weren’t completed as only one method  

was tested (Generator RRDB block + cycleGAN). These proved to outperform all the other  

networks visually.   

Transformers have seen recent news in NLP and visual machine learning tasks. Ap-

plying such algorithms to medical image super-resolution could also yield improvement 

in results. Future studies could involve concatenation of a strong domain adaptation net-

work, a denoiser, and an SR block (like the one we proposed in this study) to corroborate 

strong LF MRI super-resolution directly from the scanner itself. Here, we seek to improve 

one part of that pipeline. Also, although we have extensively applied the SR U-Net++ to 

brain MRI super-resolution, applying it to other organs at LF (especially cardiac imaging) 

could show the robustness of the SR U-Net++ even further. Additionally, in machine learn-

ing terms, we had a relatively small dataset of approximately 2,000 images. Increasing this 

dataset and performing rigorous augmentation could potentially improve results.  

5. Conclusion  

In this paper, we propose a SR U-Net++, previously used for medical image segmentation,  

to the task of medical image super-resolution. Specifically, we apply this to LF MRI SISR.  

From a dataset of about 2,000 images taken from healthy patients and autistic patients, we  

create synthetic LF MRI images using a unique downsampling pipeline designed for 64  

LF MRI reconstruction. For the primary reconstruction pipeline, we used a U-Net++ which  

takes on the original U-Net architecture but redesigns the skip connections instead of just  

directly feeding the features maps from the encoder to the decoder. The skip connections  

are VGG convolutional blocks stripped of batch normalization to improve decoder  
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accuracy. We also propose a new SR loss function called NLMSE which improves 

accuracy substantially. From PSNR and SSIM studies, the U-Net++ outperforms all tested 

state-of-the-art algorithms. For the qualitative inspection, the U-Net and U-Net++ recover 

local pixel details at greater detail than any other tested network. The U-Net++ is 

speculated to have improved contrast, however with a PSNR of 78.83 and SSIM and 

0.9551.  

We also completed MOS testing to verify the clinic relevance of the reconstructed 

areas from the U-Net++. In this blind study, the U-Net++ was chosen as the highest 

performing network. Overall, the U-Net++ is a strong contender for LF MRI super-

resolution. We also ran inference on 20 Hyperfine scans using a generator RRDB block 

and cycleGAN domain adaptation and this proved to yield strong visual results, showing 

promise for neural networks in future LF MRI super-resolution tasks.  
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Supplementary Figures (Not Included in Peer-Review) 

 

 
Supp. Figure 1: This shows a ANOVA Post-HOC Tukey Analysis of each network (T1-T5, named sequentially in the fig-

ures, T-3 = U-Net++). The U-Net++ didn’t present any statistical correlation to any other network (outperformed; p-value  

< 0.001), besides the U-Net architecture (T4, p-value 0.111).  
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100043-評語 

【評語】100043 

1. The work presents a UNET++ architecture to provide 

super-resolution of low-field MRI images.  

2. The approach appears to achieve some performance 

improvement in comparison with some existing 

approaches. More precisely，the proposed work is applied 

to low field MRI. From a dataset of about 2,000 images 

taken from healthy patients and autistic patients，Low filed 

MRI images are synthesized using a downsampling 

pipeline designed for the purposed of super-resolution 

reconstruction. 

3. Some potential applications are also highlighted in the 

presentation as the work is collaborated with a celebrated 

medical school.    

4. A fair assessment of the proposed approach is 

recommended. Also ， a framework that describes the 

acquisition of low-field MRI images， inference of the 

images based on the proposed method，and suggestions for 

diagnosis is helpful. 
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