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Forming Polygons with Broken Pick-up

Chocolate Bars and Spaghetti Noodles
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Abstract

"The broken pick-up sticks problem” is proposed by T. Kyle Petersen and Bridget Eileen Tenner
in 2020. We solve the problem by considering the discrete version using random variables, and
the limit behaviour of the discrete version gives us a combinatorial solution to the original
problem. We also evaluate the probabilities of the triangles formed by the broken/pick-up
sticks satisfying some specific geometric conditions with various techniques, including calculus

and elementary number theory.

1 Introduction

Below is the problem proposed by T. Kyle Petersen and Bridget Eileen Tenner in their article.

Problem 1 (The broken pick-up sticks problem). Stick (\). Consider a partition A =
Ay A) with Ay > A9 > -+ > N\, > 1, with >_ )\, = k. Pick up m sticks chosen from
a uniform distribution of stick lengths. For each i, break the ith stick into \; pieces by choosing
A; — 1 cut points independently at random. What is the probability that the resulting k pieces

form a k-gon?

The stick in the problem is also sometimes referred to as "spaghetti”. In this article, we call the
problem as "spaghetti problem”. In order to solve the spaghetti problem, we follow the way of

the two authors and take a discrete approach to the problem, which brings us to 1-dimensional



chocolate bars, which is also referred to as "brick”. For a chocolate bar with the length of [ € N,

the [ — 1 integer points are the only available cut points.

Problem 2 (The broken pick-up chocolate bars problem). Chocolate bar (A\). Consider a
partition A = (Aq, ..., Apy) with Ay > Ao > -+ > A\, > 1, with > \; = k. Pick up m chocolate
bars chosen from a uniform distribution of bar lengths on {1,2,...,n}. For each i, break the
ith bar into \A; picces by choosing \; — 1 cut points (integer points) independently at random.

What is the probability that the resulting k£ pieces form a k-gon?

In order to obtain the result of spaghetti, we wanted to consider the limit as n — oo of the
result of chocolate bar. However, when the chocolate bar with length of 1 is picked, it cannot
be further divided since there are no integer points in it, and that makes it different from
spaghetti noodle. Therefore we introduce our new product Premium Chocolate Bar. For a
Premium Chocolate Bar of length [, 1/(2s),2/(2s),...,2l —1/(2s) are the only available cut
points, i.e. there are 2s/—1 available cut points evenly distributed on it, where s is a sufficiently

large integer.

Problem 3 (The broken pick-up premium chocolate bars problem). Premium chocolate bar
(A). Consider a partition A = (A1, ..., \py) With Ay > Ag > -+ > \,;, > 1, with Y \; = k. Pick up
m premium chocolate bars chosen from a uniform distribution of bar lengths on {1,2,... n}.
For each i, break the i¢th bar into \; pieces by choosing \; — 1 cut points independently at

random. What is the probability that the resulting k pieces form a k-gon?

We call the solutions to these three problems P(A), P,()), and P, (), respectively.



2 Prerequisites

k .
k+1
Proposition 1. E <n+z) = (n ++Ir ) — ( ZJ for r < n.
r r r

i=0
(i (n—i n+1
P ition 2. = fi b <n.
roposition ;(CL)( b ) (a—l—b—l—l) ora+o<n
Proposition 3. Fix a positive integer £ > 3 and a k-clement multiset S of positive numbers.

There exists a (convex) polygon whose side lengths are the elements of S if and only if z <

||S|| — x for each x € S. (||S]| denotes the sum of the elements of S.)

Proposition 4. Given n,k,p € N, where n > k and n — (k — 1) > p > n/2, then there are

k (Z B ]1)) natural solution to

n=a +ay+---+a, and dis.t. a; > p.

1 .
Proposition 5. For a super big m and a given j, <m) can be approximated by 7m].
J J:

Proposition 6. On a plane, a point P with barycentric coordinate (a, b, c) with respect to

the triangle ABC where A = (0,1/3), B = (—1,0),C = (1,0) has Cartesian coordinate

(c+ b)?
( c—b

(0,v/3a) if b= c.

V3a) ifb#ec,




3 A simple case of chocolate bars problem

First we take a look at the "chocolate bars problem”. We start off our adventure by picking up
2 chocolate bars, then we will break them into 2,1 pieces, respectively. Then we will see if we
can get something out of it.

Let X and Y be the random variables representing the lengths of the two bars that we pick,
respectively. We choose a uniform random integer point on the first bar where we break the
bar into two picces. Let X; and X, be the random variables representing the lengths of the
two pieces, so X = X; + Xs. Notice that X must be greater than 1 or it cannot be broken into
two pieces with integer lengths, and there is at most one piece among X, X5, Y whose length

is greater or equal to (X +Y')/2. By one of our propositions,

X+YorX22X+YorY2X+Y

Pn(2,1):1—IP(X:1)—IP((X12 )andXZQ).

The probability that X; > (X 4 Y)/2 under the condition that X # 1 is

X+v X+Y
P, > 2o and X >2) = 3 P(X; > 2" and X —a,Y = b)
z 2<a<n z
1<b<n
b
- (P(Xlz“; |X:a,Y:b)-P(X:a,Y:b)).

2<a<n
1<b<n

We evaluate P(X; > (X +Y)/2and X > 2). Since we are choosing bars from an uniform

distribution on {1,2,... ,n}, foralla € {1,2,... ,n},

1
P(X =a)=—
(X=a)=
also for all a,b € {1,2,...,n},
1
P(X =a,Y =0) = por
We choose an integer point X; on the first bar, uniformly at random. For all a; € {1,2,...,a—

1},
1

IP)(X1:G,1|X:(I7£1):G_1.




Subsequently, given h € N,

a—h .
if h < a,
PX;>h|X=a#1)=a—1
0 if h > a.

a—+

b
Notice that means a < 3 or b > a — 2 implies P(X; > | X =a#1)=0, since

b
aglga;b(g [a—2|— 1<X))<a—-1<«= 3<a<nand1<b<a-2.

Therefore

3 P, > a;bandX:a,Y:b)

2<a<n
1<b<n

3 (P(Xl a+b|X—aY—b) P(X:a,Y:b))

2<a<n
1<b<n

:—ZZ S P > a+b}|X— Y =)
3<a<n 1<b<a—2
— [(a+10)/2]
Z Z a—1

3<a<n 1<b<a—2

a—b 2 a—b 2
Sy Yy Aty y s

3<a<n 1<b<a—2 3<a<n 1<b<a—1
n a—1 a—1
1 (a—1b)/2 1/2
prEp ) D i i D
a=3 b=1 b=1,
2ta—b
1 /1, 1 1 ,
= (7" g0~ gttt + H0)
1 1 1
oy (Ha + H ),
s gn gttt i)

since

L (a—b)/2 a1,
> Ay L= § o)

a—1 n— 1 n—1 ;
1/2 n H,.+H _, 3 . (—1)i+!
a_lzz—l—T—Z,WhereHnl—E n :' .




Similarly,

a+b

Z P(X, >

2<a<n
1<b<n

sy y o

3<a<n1<b<a 2

b
SRzt ad X =a Y =0)=

2<a<n
1<b<n

To sum up,

X+Y

P2 1) =1—P(X =1)— p<(X12

P(X
1 1
4n + 5 Har + Hé—l)-

1
4 4n?

and X =a,Y =b)

OT_XEQZ

X+Y

LSS

2<b<n 2<a<b




4 Solving the problems in general

Let’s solve the chocolate bars problem in generall

Theorem 1. Chocolate bar (A). Consider a partition A = (A, ..., Ay,) with Ay > Ag > -+ >
Am > 1, with Y A\; = k. Pick up m chocolate bars chosen from a uniform distribution on
{1,2,...,n} of chocolate lengths. For each i, break the ith bar into \; pieces by choosing \; — 1

cut points independently at random. Then the probability that the resulting k pieces form a

k-gon is
m [(a—1)/2]
- )\z 1 m n a—2\;
P(A)—"Zl(n + )_ A 2“2( A— 1 (t—k+>\i+m—2)
n™ el a=k+Ai—2 t=k—X\; a—1 m—2
A — 1

Proof. For 1 = 1,2,...,m, let X; be the random variable representing the length of the ith
chocolate bar that we pick. Notice that for ¢« = 1,2,...,m, X; must be greater or equal \;
in order to be broken \; pieces with integer lengths. For ¢ = 1,2,... . mand 7 = 1,2,..., A\,
let X, ; be the random variable representing the length of the jth pieces broken from the ith

chocolate bar, so X; = X;1 + X2+ -+ X 5,

m A\ n
1 1
P\ =1-PFist. X;<X)—=> Y P(X;;> 5Z){l andVu=1,2....mX,>\)
i=1 j=1 I=1
H(n_)\l+1) mo A 1 n
= — _Z IP’(sz§ZX1and‘v’u:l,Q,...,m,XuZAu).
i=1 j=1 =1

1 n
Given aq,as,...,a, and p = a3 + -+ + a,,. WLOG, let’s take P(X;; > > ZX; and V u =
=1
1,2,...,m, X, > \,) for example.

1 n
P(X11 > 52)@ andVu=1,2...mX,>\)

=1

= Y PXuzZandVji=12...mX;=q).

, -2
Ai<a;i<n V 1

Let t; = ag +ag+ - - - + a,,. Notice that a3 < k+ X\ —2or t > a; — 2\ + 2 implies X;; < p/2



since

a1+)\2+...)\m<a1+a2+---+am ap +as + -+ ay

(<7 1<Xi1)<ap— (M —1)

2 - 2 2
<— aq>k+X M —2andt <a; — 2\ +2.
And we are choosing bars from an uniform distributionon {1,2,... ,n},sogivena; € {1,2,...,n}

andt16{k—)\l,k—)\l,...,al—2)\1+2},

1

]P)(Xl = ay and ZX[ = tl) = n—m(
=2

tl—k+)\1+m—2
m— 2 ’

We randomly choose A; — 1 integer point on X, given a1; € {1,2,...,a1 — (A —1)},

“ CL1—CL11—1 CL1—1>
P(Xi1=a X; =a; and X, =t)= ’ .
( 1,1 1,1| 1 1 lz_; 1 1) < )\1_2 )/()\1_1

Subsequently, given h € N,

—h —1
m <a1 >/<a1 ) fh<a— (1),

P(X13>h| Xy =ajand Y X, =t > \j) = M—1)7 -1
- 0 it h>a;— (A —1).



Now we evaluate

1 ¢ .
Z IP’(XM25;)(1ande:ajV]zl,Q,...,m)

Ai<ai<n V 1

= Z P <X171 Z g and (X1 = a1 and ZX[ = t1)>

AM<ai<n =2
k=A1<t1<(m—1)n

- ¥ (IP’(XM > g |(Xi=arand Y X, =t)) P(X,=a and Y X, = t1)>

AM<ai<n =2 =2

k—)\1<t1<(m 1)
A e ti—k+X+m—2
m— 2

— Z S|P > 5 | (X1 =arand Y X;=t))-

ar1=k+A1—2 t1=k—X\1 =2

L

nm

. a1 — [p/2]

_ Z Z* A -1 .i<t1—k+xl+m-2
oAl <CL1—1) nm

ar1=k+X\1—2 t1=
A —1

1 - At <|_(a1)\1__t1i/2J) k—l—)\1+m 2
= 2 ;Al <a1—1> < )

a1=k+X\1—2 t1=k—
AM—1

By the generality, we obtain

P = ﬁl(n e ) ) \i n ai_iif (L(ag\:_tli/%) (ti —k+XN+m-— 2)'

B nm a; — 1 m— 2
’ A — 1

nm . n
i=1 =k+X;—2 t;



Below are the two original problems. We apply our formula on them. As expected, the results

are identical to the T. Kyle Petersen and Bridget Eileen Tenners’.

Corollary 1 (Pick-up bricks problem). Let n > 1,k > 3 be positive integers. Select k sticks,
each of which has length chosen from the uniform distribution on {1,2,...,n}. The probability

that the resulting k sticks form a k-gon is

i=1 a=k—1t=k—1
k n
1 a
g5
k _
i:lna:k—lk 1
L R |
—1-y =
o)
B k (n+1
N nk k)

Corollary 2 (Broken bricks problem). Let n > k > 3 be positive integers, and consider a
stick of length n. Pick k—1 distinct interior integer points on the stick, independently and at

random, and cut the stick at these k—1 points. The probability that the resulting £ pieces form

_ksey @ t-1 :1_ﬁ@ -1
() b

L)
(o))

a k-gon is



Theorem 2 (Premium chocolate bar). Premium chocolate bar (\). Consider a partition

A= (A1, Ap) with Ay > Ao > -+ >\, > 1, with Y \; = k. Pick up m premium chocolate

bars chosen from a uniform distribution on {1,2,...,n} of premium chocolate bar lengths. For
1 2

a Premium Chocolate Bar of length [, {2—, 55’ col = 2—} are the only available cut points,
s 2s s

i.e. there are 2sl — 1 available cut points evenly distributed on it, where s is a sufficiently large
integer. For each ¢, break the ith bar into \; pieces by choosing \; — 1 available cut points

independently at random. Then the probability that the resulting k pieces form a k-gon is

—1 S(al - t)

ixi SRS (Al)(tl)

nm 2sa; — 1 m — 2
=1 a;=1 t=1
A—1

Proof. For 1 = 1,2,...,m, let X; be the random variable representing the length of the ¢th

chocolate bar that we pick. For i = 1,2,...,m and j = 1,2,..., A, let X;; be the random
variable representing the length of the jth pieces broken from the ith chocolate bar, so X; =

Xig+ Xig + -+ Xix,-

~
3
=
I
—
|
™
N
'ﬁ
l\DI»—\

>33

1 n
Given ay, ag, ..., am and p = a1+ - -+a,,. Let’s take P(X; ; > 3 ZXl and Vu=1,2,...,m, X,
=1
A) for example.

1 o P ,
P(Xl,lzélZXl): > P(X1; > SandVj=12. mX;=a)

1<ai,....,am<n

Since we're choosing bars from an uniform distribution on {1,2,...,n}, givena; € {1,2,...,n},
1
]P(Xl = al) = —
n
1 2 A —1
We randomly choose A\; — 1 breakable point on X, given a;; € {2 1 ogr ,a, — 5 }
s

2s(a; — a —1 2sa; — 1
P(X1,1:a171|X1:a1):( <1)\ 121> )/( A 1 1)
1— 1—

A%



Subsequently, given h € N,

A1 A —1

P(X11>h| X, =a) =

0 if h>a — (A —1)/(29).

Let t; = p — a;. Now we evaluate

1 o .
> IP’(XLlZﬁ;Xl and X; =a; ¥V j=1,2,...,m)

1<aq,..., am<n

> 3 ; P (Xm > g and (X, = a; and Y X, = t1)>

1<a1<n m—1<t; <(m-—1 =2

=2 =2

Z Z . (P(Xl,l Z g | (X1 = a1 and ZX[ = tl)) : ]P)(Xl = and ZX[ = tl)

1<a1<n m—1<t; <(m—1

n a1—(A1—1)/(2s) P 1 [t —1
:Z Z P(X1,125|(X1—a1 and ZXl—tl) < ))

2
a1=1 ti=m—1 1=2 nTAm —

o { (2= 12D
sl s .

A —1
s(a1 - tl)
] ) ( A1 ) -1
T pm — tl:zm:_l (25&1 - 1) ' (m — 2)
A —1

By the generality, we obtain

<2s<a1_—1h>) /<28a1 - 1) it h < ay— (A — 1)/(25),

)



Note when n — oo and s — oo, P, () is exactly P(M).

Theorem 3.

B o) = 1= 20 4 v, 2

i=1

Proof. Consider

- )\z 1 m n a— ot
. L =A1) A 22 (17 (t kN m— 2)
1 m - Z m a—1 2
e n L W S (/\1—1) m=

—1 —t
Claim. VTJ can be replaced by aT with same limits.

Proof. Firstly, we prove the following two lemmas.

Lemma. If two polynomial f(z),g(x) with positive leading coefficients, and there exist a

positive constant M such that f(xz) > g(x) V & > M > then deg f(x) > deg g(z).

Proof. Let h(z) = f(x) — g(x), and h(x) > 0V = > M. If deg f(x) < deg g(x), then the

leading coefficient of h(z) is negative. However, a polynomial P(x) = Y a;x’ with negative
i=0

leading coefficient is negative when
n—1
> lail
i=0

|an|

xr >

Y

contradiction. O

Lemma.

_on, at
‘ %*2 (L)) (t—k:+A,-+m—2)
a—1
t=k—\; (A¢—1> m=2
is a function of a single indeterminate a with degree m — 1. And only the coefficient of the

term ™! affects lim P,(\).
n—oo

Proof. Notice that after summation, a polynomial of a single indeterminate a with degree «
becomes a polynomial of a single indeterminate n with degree o + 1. Therefore when n — oo,
as the first term is the only one that matters, only the coefficient of the term o™~ ! affects

lm P, (). O



Back to the claim,

T2 ( (t—k:+>\ +m—2)
-2
t=k—\;
can be divided into
. a—t a—t—1
a— 2)\1—4-2 2 <t —k + )\ +m — 2) 0—22)\Z:+2 (A¢2—1) - ( )\1'2—1 ) (t —k + )\z +m — 2) (*)
a—1

t=k—X\; B 2 t:k—)\i,Q’[a—t ()\i_l) m= 2

aat()\i —1-a) =2

Notice that the highest order term of a,t is , sum up by ¢ will get the degree of

a)\i—l

aisa+ XN —1—a+m—2+1— (N —1)=m — 1.The backward term can be regarded as

o () - GE) =k x+m—2
t:k—;,?(a—t (;:1) ( m—2 )
< a_iﬁz (/\ile) __1( :75—712) (t —k+XN+m-— 2)
t=k—\;,2fa—t (;i—1) m—2
_ HZW (35) <t kA 2)
—t:k Ai,2ta—t (Aai_—11) m—2

From the lemma, the degree of

a—2X;+2 (“‘;‘2)

z : Ai—2

t=k—X\;,2ta—t (;\Ii_—ll)

(@)

(t—l{:+)\z—l—m—2>

m— 2

must be not less than the second term of (x). However, the deg of (V) is m — 2, since the deg of

the second term of (%) is at most m — 2. According to the lemma, we can omit this term. []

Hence




Proof.

ot 1 a—t a—t—2 a—1t—2(\—2)
= X X X e X
N—1) " On—Dl " 2 2 2
a—t
()\i_l): 1 xa_txa_t_lx---xa_t_()\i_z)
Pl (1) 2 2 2

We view both equations as the polynomial of (a — t), and get the coefficient of (a — t)*~! are
the same * the following term don’t have deg with A; — 1. By lemma, the term of deg which is

less than a2 won’t affect the limits of P,()).

Back to the problem,

n

m a—2X;+2
. . 1 A 1 - a—t t—k+XN+m-—2
nh_)rgopn()\) - nll_{l;.lo (1 - n_m 2Ai—1 Z (a—_l) Z ()\Z _ 1)( m— 2 )) .

1=1 a=k+A;—2

Using the combinatorial identity mentioned above,

_ _ 1 &\ - I fa—1+m+XN—k
,}:fgopn@)—,}%(l—n—m TP (a—1)< mot A =2 >>

i=1 a=k+X;—2 \\;j—1

and by proposition 5

. . I & N —~ (-1 amthe?
)= g (-3 S G )

Eventually




Theorem 4 (The broken pick-up sticks problem).

1 & Ai!
PO) = i i Pea) = 1= 500 5t a, oy

=1

Proof. Consider the result of premium chocolate bar when n — oo and s — oo.

P(A\) = lim lim P, (\)

n—00 §—00

m )\ n la— Z2 S(['l t)) F—1
= fim lim 1_;72_: Z 2Sa_11)( —2>
. R e R Y Z I
=Jim Jim | 1-3 20> 0 Y S, o
i=1 a=1 t=1
m A n \_a_)\igi;lj (a—t) + 1
= lim lim [1-) = A ( a )
e s ;n a=1  t=1 (}\12_1) m—2
U P 1 a
— lim lim | 1— :
SR () Wy )
o TN o= (N 1) a2
=t i {1-2 e 2 S -2

m

1 Al
=1 - —
m ; 2’\i—1(m + )\z — 2)‘




5 Comparing different P()\)

Theorem 5. Consider all partitions while fixing m and k. P()) has the largest value while

Proof. Suppose there’s a partition A = (A, Ao, ..., Ap) With Ay > A >0 A, A — 1< A+ 1.

Let N'= (A1 — 1L, A+ 1,...,\,). Let’s prove P(\) — P(\) > 0.

PN)—=P(\) >0

(A —1)! (A +1)! - ! n As!
2M2(m 4+ A = 3) 22 (m+ A — 1)1 287 (m 4+ A —2)! 2% (m 4 Ay — 2)!
s QMo 1 Aol(m 4+ A — 3)! (m+ X —1)2m+ Ay —4)

= Dlm+ =2 @m+r—3)m+h—2)
<m+>\1—|—>\2—3)
Mo A —1 (m+)\2—1)(2m—|—>\1—4)
2)\1 Ao—1 1
= <m+>\1+>\2—3> Z@mthe —3)m N —2)
A

(m + )\1 + )\2 - 3)
— 2)\1_)\2_1 )\1 -1 (m—l— )\2 — 1)(2m+ )\1 — 4)
<m+)\1+>\2—3> _(2m+)\2—3)(m+)\1—2)
A2

For the inequality on the right side, it can be done by expanding. For the one on the left, we

check the following two cases.

. m—l—)\1;->\2—3>)\1_1

Since \; — 1 > A9, we have (

m+)\1+)\2—3 > m+)\1+)\2—3
A —1 A2 '

m+>\1+)\2—3<>\ 1
9 =~ A1

Since m+X2—2 > Ay, we have™ (

m+)\1+)\2—3 . m+)\2—2 N m+)\1+>\2—3
A —1 B A2 A2 '

]

Theorem 6. Consider all partitions while fixing &, P(1,1,...,1) has the largest value.

Proof. Suppose there’s a partition A = (A, Ao, ..., A\p). Let X = (Ae+1,... A + 1, A5 Ae)

where Ag+14---+A.+1+A. -+ -+ A = k. From the previous theorem, P(A) < P()\). Suppose



there are a (Ae + 1)s and 5 (\.), where 8 > 1, then o 4+ 5 = m, and

1
(a(Ae +1) +B(A) =DV

PL,1,...,1)=1—

Fora>lora=0,6>1\ >1,

. 1 (e +1)! BA!
PX)=1-277 <2A6(a+5+>\e—1)! " 2Ae—1<a+ﬁ+ke—2>!>

1 Ad(a(Ae +1) +28(a+ B+ A — 1))
22 (a+ B)(a+ B+ A — 1)!

o Ad(a+ B)(Ae +1)

- 2(a+B)(a+ B+ A — 1)

(et
Qe(a+ B+ A —1)!
1
S1_(04+B+A6—1)!
e (e vEs: w e A (LSO
For a=0,6=1,
P(A’):1—2ie_1 1 (Aeiw—P(l,l, )

Fora =0\, =1,

]
Theorem 7. Consider all partitions while fixing k, P(k — 1,1) has minimum. While k& = 3,
1
P(2,1)=P(3) = 1 get minimum.
Proof. We prove the following first.

Lemma. For k,t € Nwhere k >t+1, P(k—t,1,1,...,1) < Plk—t—1,1,1,...,1)°
—— S———

t t+1



Proof.

Pk—t—1,1,1,...,1) = P(k—t,1,1,...,1) > 0
h\,l_/ h\t/_/
t+

DR S G ) LA WS S A o W A At
tr1 A\ Rk —1) ) T2 \(t+ D) 2F2(k—1)]

24+t—1 (k—t—=D!((k—=t)(t+2)=2(t+1))

>0
(t+2)! 2k=t=1(k — DIt + 1)(t + 2)
O
By the previous theorem, we have P(k—m+1,1,1,...,1) has minimum under fixed m and k.
-1
Then by the lemma
P(1,1,...,1)> P(2,1,1,...,1) >---> P(k—1,1).
N—— S——

k k—1

Lastly we compare P(k —1,1) and P(k).

) = k<1422

N | —

1
(F+

N | —

k
Pk)—Pk—-1,1) >0 << FS

which can be verified with induction on k. And equality holds when k£ = 3. ]



6 Geometric properties of the triangles

Remark 6.1 (Notation). Denote I, O, H as incenter, circumcenter, orthocenter of triangle.

Theorem 8. Pick 3 sticks chosen from the uniform distribution of length on {1,2,... n}.
1
When n — oo, the probability of these three sticks forming an obtuse triangle is % — 3 while

the probability of them forming an acute triangle is 1 — %

Proof. We prove several lemmas first.

Claim 6.1. Denote
1 ifz=1 (mod4),

X(@)=9q-1 ifz=3 (mod4),

0 ifz=0 (mod?2).

Then the number of integer solutions to z? + % = n is

43 " x(d)
din

Proof. Since Z[i] is a unique factorization domain (UFD), we can get (z + yi)(z — yi) = n. Let

the unique factorization in Z of
m n
n=2% Hp?s Hqtﬁt’
s=1 t=1

where p, are primes 4k + 1-like and ¢; are primes 4k + 3-like. By the unique factorization,
r+yi =u(l+1) ”H T+ iys)"( —iys)as_%HQEtﬂ-
s=1 t=1

Notice that cach 3, is even if only if 22 + y*> = n has integer solutions, and if so, there arc

4 1] (s + 1) pairs of (z,y). However, we find it equivalent to
s=1

(e(L) + X(2) + x(4) + NI+ + -+ x) T (1+ x(@) + -+ x(a™)) -

t=1

According to the definition, we can easily get x(z) is multiplicative, and we get our desired

result. ]



The number of solutions of 2% + y? < n is

>4 X =4Y 15 Ix0)

Note that if (z,y) is a solution, then (+z,+y) are also solutions. Hence we focus on the
solutions in quadrant I, and the number of solutions in quadrant I (excluding x and y-axis) is
n n .
S 12X ~ v
i=1

For convenience, we introduce big O notation to describe the limiting behavior of a function.

Claim 6.2. The number of Pythagorean triples in {1,2,3,...,n}? is at most O(n?).

Proof. We estimate the quantity of Pythagorean triples in {1,2,3,...,n}3. We have (z,y, 2) =
(k(u? — v?), 2kuv, k(u? + v?)). Since u? + v* < n, there are at most \/n X \/n = n pairs of
(u,v). Meanwhile, k ranges from 1 to n. In addition, there are 3! arrangements of z, y, z, which

implies that there are at most 6n2 solution. ]

The way to pick up three pieces is n®, hence the probability of forming a right triangle is 0 as

n — Q.

Claim 6.3. lim P, (22 +9° < 2%) = -

n—o0 12

The number of solutions to 2% + y? < 22 is

z ranges from {1,2,3,...,n}, hence

#{(zy.2) |2+’ <27 =) (ZLZ;JX@) —z) .

z=1
n 22
Lemma. Denote z — |z| by {z}. > {—} <n
z=1 ?

2 — 1 n 2 — 1
Proof. 1t’s trivial that for all z, {Z—} < ! —. Therefore {Z—} < (i - )n < n. L]
1 ) = L 1




2 2
Lemma. We can replaced LZ—J by Z—,, and the difference between them will be at most O(n?).
i i

Proof.

]

N

Lemma. We can replace (Z

Z
z=1 \ 1 Z
).

n n 2
x(1) — z) with > (Z Z—x(z) - z), and the difference

z=1 \i=1 !
between them will be at most O(n?

Proof. Compare the two terms. We can see that the difference between them is

n Vil o n n
X_;Z_;ZT Z J+12J+1) Z_;\/@\[ )(3V/1) Z\/_<n\/_

Lemma. lim 3 (i 2 ) - z) = T3 4 0(n?)

n00 =1 \i=1 ?

Proof.

nh_{goZ; (Z; ZTX(Z) _ z) ~ lim (n(n + 1)6(2n +1) Z XEZ) B n(n2— 1)) ‘
Notice that

- "L x(4) - 1 1 1
1 =) =1 l——4=-——+4...] =
é%(; Z) nl—>Holo< sty 77t

e



3

2
The coefficient of the term n” is % i %, hence the result. O

To sum up,

2,2 < 2
lim P, (22 +¢? < 22) = lim P, (2% +¢* < 2%) = lim #{(r,y,2) [ 2" +y" <z }

n—o00 n—o0 n—o00 n3
And
. #{(xaya Z) | $2+y2 < 22} . 7’L3 2 3 ™
5, = =\ | O ) =1
Likewise,

lim P, (y2 + 22 < xz) = lim P, (1:2 + 22 < yz) -

n—r00 n—00 12

Also, we can easily find that if
i Tl T N e e R e T
then z,y, z must form a triangle. Therefore

2 2

lim P, (2% + 9% > 2> A 2 + 22> 2% A 22+ 22 > 4?)
n—oo

=1 — lim P, (a:2 +y? < 22) — lim P, (y2 + 22 < 932) — lim P, (22 +2% < y2)
n—oo n—oo n—oo

—1-T
4

]

1 1
Besides, we have P,(1,1,1) = 59 50 the probability of forming obtuse triangle is % ~ 3

Corollary 3. Pick up 3 sticks chosen from a uniform distribution of stick lengths,. Then the

1
probability for the three pieces forming the three medians of a triangle is equal to P(1,1,1) = 5

Theorem 9. Pick up 2 sticks chosen from a uniform distribution of stick lengths, and break
one of them into two pieces. Then the probability of existing a triangle AABC' with incenter

I such that the lengths of AI, BI, CT are the chosen three pieces is equal to 1.

Proof. Here we provides another approaching method. Let DEF be I-cevian triangle.

Lemma 1. AD = AB x AC — BD x DC



Proof. We find a point X on AC such that AABD ~ AADX. Then

AB:AD = AD : AX — AD = AB x AX.

Also,
ACDX = ABDA+ LADX = ADXA+ LAADX = LADX,

so we have ACDX ~ ACAD, which implies

CX:CD=CD:CA=BD:BA=— CX x AB=CD x BD.

Sum up the two equations above to get the desired result. ]
Back to the problem, let BC = a,CA = b, AB = c. It’s well known that A" = chiZ—lZ.
Let

AT = z,ﬁz = m,wz =n,s= %m,

b
then bc =l =ca—m =ab—n = e _ k, implying that
s

_\/(k+m)(k+n)b_\/(k+n)(k+l) _\/(k+l)(k:+m)
B A A U e A R .

Plug the above into the equation a?bc = k, we have
f(k) =k — (mn +nl + Im)k — 2lmn.

Notice that f(0) < 0. And when £ is sufficiently large, f(k) > 0. So f(k) = 0 has positive
root. Since the product of three roots is positive, and sum of them is negative, there can be

only one positive root, which implies its uniqueness. ]

Theorem 10. Pick up 2 sticks chosen from a uniform distribution of stick lengths, and break
one of them into two pieces. Then the probability of existing a triangle AABC' with orthocenter

H such that the lengths of AH, BH,CH are the chosen three pieces is equal to 1.

Proof. Note that if (I,m,n) describe the lengths we want, then (kl, km, kn) also satisfies the



condition. Since if two triangle are similar, the length of corresponding side can be any multiple.
By the previous theorem, for any (I,m,n), (I, m,n) can form AI, BI, CI. Meanwhile, there
must be a triangle such that (%, e E) form AI, BI,CI as well. Then take an inversion with
power 1 and center I. It’s well-known that the incenter of triangle will become orthocenter,
and so A/H =1, B'H = m,C'"H = n . Hence, for any [, m,n, there must be a triangle such that

the distance between orthocenter and three vertices is [, m, n. [

Theorem 11. Pick up 2 sticks chosen from a uniform distribution of stick lengths, and break
one of them into two pieces. Then the probability of existing a triangle AABC and circumcenter

O such that the distance of O to the sidelines are the chosen three pieces is equal to 1.

Proof. Since the distance of O to BC'is half of AH, so from the previous theorem and lemma

we can get the results. ]

Theorem 12. A stick is broken into three pieces with length «, 8, at random. The prob-
ability of existing a triangle ABC such that AH = o, BH = 3,CH = ~ and the angles of
ANABC are all larger than 45° is

[7+4v2 — 8(10 + 7v/2) In 2 4 4(10 + 7v/2) In(2 + V/2)] ~ 0.21

o
=] w

Proof. To get the probability, we prove the condition is equivalent to

m? 4+ n? +V2mn > 12, 0% + 12 + V20l > m?, 12 + m? + V2lm > n®

Notice that all interior angles is less than 90°, hence AH = 2R cos A < 2Rsin A = BC. Also,

/BHC > 135° — BH + CH? + v2BH x CH > BH + CH? + 2BH x CH cos /BHC =
BC® > AM". Likewise, if ZA < 45°, all the signs of inequalities will be inverted.

First of all, we consider the graph of these inequalities. We draw a equilateral triangle, and we
consider P with its trilinear coordinate is [m : n : [] (We normalize the coordinate such that
m +n+ 1 =+/3). The inequalities are hyperbolas, and we are only concerned about the area
between three functions.

We can use coordinate transformation to change into Cartesian coordinate (Proposition 6). We



place the three vertices on (0,+/3), (—1,0), (1,0). We use the following transformation

V3(1+x)—y l V3(1—2)—y

2 T 2

m:y”n’:

(2 —V2)y* + 6y

Then 12 +m? +V2lm > n? = z < , we can get the proportion of area

6 + /6y — 21/3y

between three hyperbolas is

oIS

V3 y  (2—V2)y*+ 6y
R A B v

— 274 4v2 = 8(10 + 7v2) In 2 + 4(10 + 7v/2) In(2 + v/2)]

[

—
w
%'w

]

Theorem 13. A stick is broken into three pieces with length «, 3, at random. The proba-

BH = l CH = l and AABC is acute

— 1
bility of existing a triangle ABC such that AH = —, 5
Q Y

is

— Z[74+4v2 - 8(10 4+ 7V2) In2 + 4(10 + 7V2) In(2 + V2)] =~ 0.21.

A>I>—‘
»bloo

Proof. Consider a triangle AABC' with three interior angles exceed 45°, let orthocenter be
H. Perform an inversion centering H. Notice that inversion is conformal and H will become
incenter! of AA’B'C’. Since /B'IC" = /BHC < 135°, ZB'A'C" = 2(4LB'IC" —90°) < 90°,

which implies this probability is equivalent to former one. [



7 Applications

A company is planning to share part of its profit with the employees at the end of the year.
The committee held a meeting to discuss the matter. They would like to share the profit with
a fancy entertainment show. Our work provides a solution. In the annual event where all &
employees are present, there are m rooms, each with a random sum of money and a number
A representing the number of people it must hold. The employees are then randomly sent into
the rooms so every room are filled with exactly as many as the room must hold. Lastly, the
sum of money are randomly distributed to the employees in the room. Our work suggests that,
for example, by adjusting the value of m or A, we can tweak the probability that no one gets
more than half of the profit. By randomly separating the employees into groups and randomly

sharing the profit, the entertainment value is high, while a subtle balance is kept.

8 Conclusions
In this project, we solved the chocolate bars/bricks problem using random variables.

[(a—1)/2]
PN = (n AZH)_’” _— “f:”( -1 (t—k+)\i+m—2)
" nm — n™m a—1 m — 2 ’
i=1 a=k+X\;—2 t=k—X\; ( )
A—1

m
=1

And by considering premium chocolate bars and the limit behaviour, we obtained

m

1 Al
PAN)=1-— .
) m Z 281 (m + A\ —2)!

i=1

Through comparing different P(\), we get the maximum and minimum of P(\) under fixed k,
and the maximum of P(\) under fixed m and k.

When forming a triangle with picked sticks, the probability of them sticks forming an obtuse
triangle is % ~ 3 while the probability of them forming an acute triangle is 1 — %

Several specific segments in a triangle are also studied.

Future research will look into several more variations of the spaghetti problem, as given below.



9 Open Problems

Problem 4. Stick (A). Consider a partition A = (A,...; \y,) with Ay > Ag > -+ > A\, > 1,
with >~ A; = k. Pick up m sticks chosen from a uniform distribution of stick lengths. For each
1, break the ith stick into \; pieces by choosing A; — 1 cut points independently at random.

What is the probability that any &’ pieces from the resulting & pieces form a k’-gon?

Problem 5. Stick (A). Consider a partition A = (A,...; \y,) with Ay > Ag > --- > A\, > 1,
with >~ \; = k. Pick up m sticks chosen from a uniform distribution of stick lengths. For each
7, break the ith stick into \; pieces by choosing A; — 1 cut points independently at random.
What is the probability that there exist &’ pieces from the resulting k pieces such that they

form a k-gon?

Problem 6. Stick (A). Consider a partition A = (Ay,...; \y,) with Ay > Ag > -+ > A\, > 1,
with Y~ \; = 6. Pick up m sticks chosen from a uniform distribution of stick lengths. For each i,
break the ith stick into \; pieces by choosing \; — 1 cut points independently at random. What

is the probability that the resulting 6 pieces such that they form the six sides of a tetrahedron?
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Appendix

k .
kE+1
Proposition 1. E (nJﬂ) = (n ++—1F ) — ( j—l) for r < n.
T T T

1=0

Proof. Pascal’s Rule tells us
n—1 n n—1
k k—1 ’
n+k—r . n+k—r .
r+i r+1 r+1 n+k+1
E = + E = s
— r r+1 — T r+1

()00

n—>b . .
— 1
Proposition 2. E <Z) (n b 2) = ( ZZ—F 1) for a +b <n.
a a

i=a

I
P
> 3

SO

therefore

Proof. In a class with n + 1 students, in how many ways can a team of a + b 4 1 students be

n+1
a+b+1/)

We can give each student a number from {1,2,3,...,n+1}, and any two of them have different

formed? The answer is

number. The answer is also the sum over all possible values of i, of the number of team

consisting of a students with number < i+ 1, b students with number > 7 4+ 1 and the student

X))

i=a

with number 7 + 1:

We call the student with number i + 1 is "special”. If there exists two choices with different ”
special 7 students but the same student set. Let the number of "special” student of choice 1 is
s; choice 2 is t. Since the definition of ”"special”, s is the a + 1-th less number of the student
set of choice 1; t is the a + 1-th less number of the student set of choice 2. If they are the same
set, the arrangement should be the same, which implies s = ¢, contradiction. Hence any two of

the choices are distinct. ]

Proposition 3. Fix a positive integer k£ > 3 and a k-element multiset S of positive numbers.



There exists a (convex) polygon whose side lengths are the elements of S if and only if = <

|S]| — « for each € S. (||| denotes the sum of the elements of S.)

Proof. First we prove that if x < ||S|| — z for each = € S, then there exists a (convex) polygon
whose side lengths are the elements of S. We apply induction on k. The case where k = 3 is
trivial. Suppose for all j-gon where 3 < j < k, the statement holds. Let the elements of the
k-element multiset S bijectively correspond to the side lengths of k-gon P. Any diagonal of P
divides P into two smaller polygon whose numbers of sides are less than k. Collect the two
polygons’ side lengths and make them into sets, called S} and Ss, respectively. Let d be the
length of the diagonal that cuts P in two. S; and Sy both contain d and part of S. By our

assumption, for any element a € Sy,
a<||Si—a and d<|S,| —d.

which leads to
Il

150l _ ISl ISell ol

2 2 ( 2

d) =

So it’s proved.
Now for the other direction. k& = 3 is trivial. Suppose for all j-element set where 3 < j < k,

the statement holds. Then let’s take a look at the k-element set

{0,1,&2, e ,ak}.

By our assumption, once we find a segment of length d such that {a;, as,d} describe a triangle
and {d, a3, ay,...,a;} describe a k — 1-gon, a k-gon can be described by the set S. WLOG let
a; > ay and ay be the largest element in {as,ay4,...,ar}. We need to solve the two following

inequalities:

a; — Qs <d<a1+a2,

ak—(a3+a4+---+ak_1) <d<ak+(a3+a4+---+ak_1).



Except when

a1+a2Sak—(a3+a4+---+ak_1)

or

ap + (a3 +ag+ -+ ap_1) < a; — a,

d has a real solution. Yet the former inequality leads to
ak > (a1 +az + -+ ap_1),
the latter leads to
a; > (ag+az+ -+ ag),
which both contradicts our assumption a < ||S|| —a, ¥V a € S. So the result is proved. O
Proposition 4. Given n,k,p € N, where n > k and n — (k — 1) > p > n/2, then there are
k (Z B ]19) natural solution to

n=a,+ay+---+a, and dist. a >p.

n
Proof. Since p > > there exists at most one ¢ such that a; > p. WLOG let a; > p. Let
ay =a; —p+1, then

ajt+ay+--+a=n—p+1

n —
has < i 219) natural solutions, each of which bijectively corresponds to the natural solutions

to the original equation. ]

1 .
Proposition 5. For a super big m and a given j, (m) can be approximated by f'm].
J J:

Proof.

(”7) — —mlm = 1)...(m—j+ 1) = = + O ™),
]

Proposition 6. On a plane, a point P with Cartesian coordinate (x, i) where A = (0,/3), B =



(—1,0),C = (1,0) has trilinear coordinate [p : ¢ : r] with respect to the triangle ABC

P=1Y

V3(1+2)—y
q = 9 )
L_V3(l-2)—y
\ 2

Proof. Denoted(P, BC') represents the distance from P to BC'. It’s obvious that p = d(P, BC) =
Ve
V3—y’
Hence CD : BD = v/3(1 —x) —y : v/3(1 — x) —y. Because AB = AC, CD : BD = Sxacp :

AC x AB x
SAABP = 5 4 : 5 - q:r. Duetop+q+r = \/3, we can get the transformation. [

y. Let AP and BC intersect at D, then the coordinate of D is (

0).
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