

2025年臺灣國際科學展覽會

優勝作品專輯

作品編號 190030

參展科別 電腦科學與資訊工程

作品名稱 ChordSeqAI: Generating Chord Sequences

Using Deep Learning

得獎獎項 二等獎

就讀學校 Archbishop Grammar School Kroměříž

作者姓名 Petr Ivan

關鍵詞 Deep Learning; PyTorch; Chord Progression;

Music Composition; Web Application

i

作者照片

Taiwan International Science Fair

Category 19 – Computer Science and Information Engineering

ChordSeqAI: Generating Chord Sequences
Using Deep Learning

Author: Petr Ivan

School: Archbishop Grammar School Kroměřı́ž

Consultant: Bc. Petr Kučera

Acknowledgements
I would like to thank Bc. Petr Kučera for beneϐicial consultations and for leading my project.

Annotation
This report presents a novel AI-driven tool for aiding musical composition through the
generation of chord progressions. Data acquisition and analysis are discussed, uncovering
intriguing patterns in chord progressions across diverse musical genres and periods. We
developed a range of deep learning models, from basic recurrent networks to sophisticated
Transformer architectures, including conditional and style-based Transformers for improved
controllability. Human evaluation indicates that, within the context of our speciϐic data
processing methods, the chord sequences generated by the more advanced models are
practically indistinguishable from real sequences. The models are then integrated into a user-
friendly open-source web application, making advanced music composition tools accessible to a
broader audience.

Keywords
Deep Learning; PyTorch; Chord Progression; Music Composition; Web Application

Contents

1 Introduction ... 4

1.1 Music Theory Background ... 4

1.2 Deep Learning in Music Generation ... 5

2 Data ... 6

2.1 Data Acquisition... 6

2.2 Exploratory Data Analysis ... 6

2.3 Data Tokenization ... 11

3 Model Development .. 12

3.1 Evaluation Metrics .. 12

3.2 Recurrent Network ... 13

3.3 Transformer .. 14

3.4 Conditional Transformer .. 15

3.5 Style Transformer ... 17

3.6 Human Evaluation... 18

3.7 Model Performance Overview .. 20

3.8 Showcase of Generated Samples ... 20

4 Web Application ... 22

4.1 Introduction .. 22

4.2 Web Stack ... 22

4.3 User Interface ... 22

4.4 Other Aspects .. 25

5 Future Work .. 26

6 Conclusion .. 27

7 Additional Resources ... 27

4

1 INTRODUCTION

1.1 Music Theory Background
Music composition is intricately tied to the foundations of music theory, among which chord
progressions play a crucial role. One must ϐirst delve into the musical context to comprehend the
intricacies of chord sequence generation. Contemporary music is comprised of a few vital
elements, including the overall structure, rhythm, melody, harmony, timbre, and dynamics.
Harmony can be conceptualized as multiple melodies creating a polyphonic texture. However,
recent trends in musical composition have seen a shift in this perspective, with harmony often
being treated as an independent entity and the melodies forming them assuming a
comparatively subordinate role than historically.

The fundamental building block of harmony became a chord – a group of notes sounded
together. A basic form, a cornerstone of Western music, is the triad, made from the root, third
and ϐifth. The most common are major, minor, diminished, and augmented triads, differing in the
interval used for them. Beyond these, various other chords exist, formed through diverse
methods such as upper chord extensions (notably seventh, ninth, eleventh, and thirteenth
chords, along with their variants), suspensions (resulting in sus2 and sus4 chords), or slash
chords (that have an added bass tone).

An interesting aspect of chords is their notation. Usually, a chord symbol contains the root
note, the quality of the chord (indicating if it is major, minor, diminished, etc.), any altered or
added notes, and the bass if it differs from the root. Symbolic representation of chords is not
standardized; instead, various notations are employed depending on the context. For instance,
a major seventh chord can be represented by maj7, M7, ∆7, or even just ma7 or ∆. This work
attempts to use an unambiguous chord notation; pitches are described by the Scientiϐic pitch
notation (also known as the American standard pitch notation).

Chord progressions, then, are a series of such chords played in a sequence. The progressions,
also referred to as sequences in certain contexts, are not random; rather, they follow speciϐic
patterns and rules that have evolved over centuries of musical tradition. The beauty of chord
progressions lies in their versatility and expressiveness, where each progression carries its
unique mood and character. One of the key concepts in understanding chord progressions is the
idea of tonality, which refers to the way chords are centered around a tonic, or home key. This
concept gives rise to the notion of diatonic chords, that are built from the notes of a single key.
These chords are typically labeled with Roman numerals, which denote their position in the
tonic (commonly, uppercase numerals represent major chords and lowercase minor). In this
fashion, we can describe some common chord progressions, including ii-V-I, I-IV-V, or I-V-vi-IV
(see section 2.2 for more examples).

Another important aspect of chords is their inversions and voicings when describing the
progressions. Inversions refer to variants of the chord with a different bass but the same notes
(commonly constructed by moving the lowest notes an octave up with triad chords), while
voicings refer to the melodic changes of each voice as in the polyphonic view (usually by using
different chord inversions to minimalize the distance between the notes, or moving the voices
in a certain direction).

5

Less experienced musicians often use melody or harmony-ϐirst approaches to music
composition, while more experienced use a more hybrid approach, often focusing on multiple
aspects of the music at the same time, as the separate creation of the individual aspects has its
limitations (e.g. melody-ϐirst approach often produces too simple harmonies, while harmony-
ϐirst often lacks voice leading and the melodies can be limited). The composition of harmony is
not a primitive task, as the standard methods of ϐinding chords ϐitting into the context produce
a large space of possibilities (such as by the circle of ϐifths, diatonic chords, or secondary
dominants), which is difϐicult to navigate. Furthermore, when we get into more complex chord
progressions with upper chord extensions and other alterations, the space, as well as the rules,
become broader, and experience remains the only means of a sense of direction.

Instead of deriving the general harmony composition rules, we can develop deep learning
models that will learn chord progressions to navigate us. Through this project, we attempted to
help those beginning their journey into music composition by providing a powerful AI-driven
assistant for the creation of chord sequences, helping them explore the space of possibilities and
making the harmony-ϐirst approach more accessible.

1.2 Deep Learning in Music Generation
We can classify the common research areas in a few ways. Based on the representation of the
data used, there are symbolic (e.g. learning from MIDI ϐiles) and sub-symbolic (e.g. given a
spectrogram of an audio ϐile) approaches. Different objectives exist, including generating
melody [1], harmony [2, 3, 4], polyphony [5, 6], accompaniment [7, 8, 9], or synthesizing the raw
audio [10, 11, 12].

Simple Markov chains were quite commonly used until the advent of deep learning. Then
feed-forward neural networks came, followed by (variational) autoencoders, recurrent neural
networks, convolutional neural networks, generative adversarial networks, and reinforcement
learning approaches [13]. Recent works also explore the use of the Transformer architecture
[14, 15, 16, 17].

Our work focuses on raw harmony generation (without a reference melody), which falls
under symbolic music generation. The use of machine learning on this task is not new, for
example, [18] demonstrated a way to recommend chords with a WordToVec approach on a
corpus of chord progressions. [19] presented a way to model chord progressions using the
Transformer, while [4] employed a reinforcement learning technique. Other, non-deep learning
strategies, exist, such as those using evolutionary algorithms [20], artiϐicial immune systems
[21], or rule-based methods [22]. Many of these tools are not easily accessible to the public, are
limited in terms of the number of different chords, or lack controllability. In this project, we
attempted to overcome many of the limitations of these techniques.

For an in-depth overview of deep learning in music generation, you can check out [13].

6

2 DATA

2.1 Data Acquisition
Since the performance of any model strongly correlates with the quality and diversity of the data
it was trained on, acquiring a high-quality dataset is essential. There are not many freely
available large enough datasets of chord sequences, though a few options exist, such as the
McGill Billboard dataset, which contains 700 entries [23]. To get interesting results, we need our
dataset to be signiϐicantly larger.

Instead of merging multiple datasets, we decided to obtain our own from web pages
containing songs annotated with chords. In particular, Ultimate Guitar was chosen for its
enormous collection of over a million songs [24]. In addition to the chords, this website also
contains ways of acquiring additional data about the songs, such as their genre, decade, or style.
Although we cannot directly view this info once a tab is open, we can ϐilter through the songs
and get it this way. The ϐilters applied are speciϐied in the URL allowing us to easily navigate
through them. The notes of each chord are also sent over the network (as a JSON ϐile with MIDI
note numbers) upon opening piano chords in the tab, which will turn out to be useful during
tokenization, as described in section 2.3.

A scraper was written in Python with the Playwright library [25]. Given a limited computing
capacity, only up to the ϐirst 300 entries by rating were scraped for each genre across every
decade, forming a decent dataset of 22,367 samples after cleanup. Some combinations of genres
and decades contained less than 300 entries, while others were vastly larger and could be
scraped further to extend the dataset. This approach gave us data that encompasses even the
less popular genres without requiring much computing power. Scraping was done at a slower
pace, it took a few dozen hours, and rate limitations were not hit. The scraper, as well as all other
code, data, and additional resources, are available on GitHub (see section 7).

Ethical considerations come into play when using the artworks of others for training AI
models. Generally, melodies, as well as the lyrics of a song, are protected as they are considered
unique works of the composer or lyricist, while chord progressions are not typically subject to
copyright. This is because of the limited space of possible progressions ϐitting into the mood and
genre of a song, so many songs use the same ones [26]. Nevertheless, we want to make sure that
the models produce novel sequences and not just blindly replicate the training data.

2.2 Exploratory Data Analysis
Given the raw data, duplicates and incomplete samples were removed. When a song is associated
with more than a single genre, it shows up in multiple entries that can be merged. These genres
in a merged entry were then separated by a vertical bar because spaces, commas, and other
common separation characters were already present in the genre names. To ensure that we have
usable data, we constructed a complete chord map from all of the individual notes per chord
symbol obtained during scraping. Since sometimes not all chords of a song were present in the
data, the map was then transposed into all possible keys using music21 library [27]. Entries that
contained any chords not present in the complete chord map were removed. Such entries had a
generally lower number of ratings as well as the number of stars, which Ultimate Guitar users
use to rate the accuracy of the chords used. Note that it was veriϐied that there are no ambiguous

7

chord symbols (that would be represented with different notes). This processing reduced the
total number of entries from 32,792 to 22,367 (most being duplicates). Low-quality data,
indicated by either a low number of stars or ratings, could also be removed, however, since we
did not have additional measures to ensure that they were not simply unpopular but still
valuable data, they were kept. Consecutive chords were also merged, as we only care about
harmonic changes.

We can plot the distribution of individual genres and decades in the dataset, as visualized in
Figure 1. We seem to get a balanced dataset, with only a few genres being underrepresented.
There are more new songs than old ones, except for the current decade (as it is still ongoing).

Before delving into the chord progressions, we visualized the usage of individual chords –
their root note (without merging enharmonically equivalent notes) and the form of the chord,
called the extension for simplicity here (see Figure 2). Slash chords were normalized to have
relative meaning (represented by Roman numerals), as the function of the slash part strongly
depends on the root. To better see the more subtle details, logarithmically normalized plots were
created. It shows us a strong dark stripe among the different extensions and roots used in Jazz,
while Country and Darkwave show the opposite. Some interesting observations can be made
from the individual forms used, such as that Metal is the only genre that extensively uses power
chords (denoted by a 5).

We then analyzed the chord progressions, starting with complexity. A simple metric for the
complexity of the harmony can be the number of unique chords and their unique roots while
treating enharmonically equivalent roots as different since the speciϐic notation depends on the
context. The overall distribution of this complexity can be found in Figure 3. Similarly, we can
plot these metrics across different genres and decades (Figure 4). A few interesting things can
be seen in the data, such as Jazz dominating in both of these metrics, while Hip Hop is the
simplest. The Experimental genre has the highest variance, suggesting it contains both simple
and complex forms of harmonies. An analysis over the decades shows us that the complexity of
harmonies tends to grow up to around the 1970s and 1980s and decrease afterward, except for
the current decade.

Figure 1 The distribution of genres and decades in the dataset.

8

Figure 2 Top 25 roots and extensions across genres.

Figure 3 Histograms of the number of unique chords and roots.

9

This technique, however, does not take into account the complexity of the individual chords.
Since measures of complexity are not strictly deϐined as they depend mainly on human
interpretation, we attempted to create a custom metric based on the dissonance of the individual
intervals forming a chord. Given the notes forming a chord, all possible pairs were compared,
and the complexity scores of the individual intervals were added together and divided by the
number of notes in the chord, making chords with more notes more complex by the score while
maintaining a balance. The exact implementation is available on the GitHub repository.

The average complexity of the chords used in a song was then obtained from songs across
genres and decades, as depicted in Figure 5. By this new metric Jazz remains the most complex
genre, leaving Metal at the other end. This can be explained from the previous Figure 2, where it
is clear that Jazz uses a variety of different complex chords while Metal mostly limits itself to the
use of major, minor, and power chords. Surprisingly, while Blues is quite simple given the

Figure 4 Number of unique chords and roots across genres and decades

10

number of unique chords and roots, this new metric places it right after Jazz. The plot over the
decades shows us a bit different trend than previously, where chords tend to be less dissonant
over time except for the 2020s.

To better understand the chord progressions, n-gram analysis was performed. Tonality is
assumed, so Roman numerals are used to describe the chords. Note that for practical purposes,
minor chords here are not denoted by lowercase letters, but by appending “m” to the uppercase
variant. Since many songs use repeated chord sequences, a standard method would provide us
with multiple additional n-grams (e.g. the repetition of I IV V will also produce IV V I and V I IV),
therefore, a different approach was used. To treat all those different n-grams as being one, a
notion of cyclic permutations and the root cyclic permutation form was introduced. Given any
n-gram, the cyclic permutations of this n-gram are all the n-grams (of the same length) produced
from the repetition of this n-gram. The root cyclic permutation of an n-gram is then the ϐirst of
the cyclic permutations of this n-gram sorted ascendingly by the Roman numeral order; if there
are multiple n-grams with the same Roman numeral order, lexicographical order is used for the
non-Roman-numeric part of the chord. To focus primarily on the harmonic changes themself
instead of taking into account the broader context, the n-gram is also normalized to make the
lowest Roman numeral always I. Note that this process can produce n-grams starting with I I,
which may look like a mistake since consecutive chords were removed, but it can be explained
by realizing that a sequence like I IV V I gets normalized to the n-gram I I IV V. Although this
procedure may seem complex, it gives us easily interpretable results.

In the Figure 6 and Figure 7, the top 50 bigrams and fourgrams are shown. Frequency
represents the proportional distribution of the n-gram (normalized and converted into the root
cyclic permutation) in the whole dataset. The form of the chord is separated from the Roman
numeral by a space, the chords are then separated by a vertical bar. Similar plots were also
created for the top four genres, Jazz and Metal (as our previous metric puts these into the
opposite ends of the complexity spectrum), they can be found with the full exploratory data
analysis on GitHub.

Figure 5 Custom complexity score across genres and decades.

11

2.3 Data Tokenization
Our dataset contains a large collection of different chords where many synonyms exist, formed
not only by enharmonically equivalent notes but also by different chord notations used. The
music21 library [27] allows us to parse a variety of different chords; however, for our purposes,
this method is very limited as it fails on a signiϐicant portion of the data. There is not a broad
publicly available algorithm for parsing chord symbols, as its creation is not trivial. Thanks to
the way the data was scraped, we have a map of 4,986 chord symbols to note after transposing
them to all possible keys. When merging synonyms by the notes used, we get just 3360 tokens.
However, this number is still too large given the size of our dataset and our available compute to
be usable. Instead, a new method for synonyms had to be developed.

Ideally, we would want to treat the inversions of individual chords as the same chord, since
just changing the inversion of a chord does not make an important change to its function. It
would be important if we also wanted to incorporate chord voicings, but for such purposes, a
different dataset would be more suitable (such as one constructed from MIDI samples), thus we
leave it as a matter of future work. One important aspect of chord inversions and other voicing

Figure 6 Top 50 bigrams.

Figure 7 Top 50 fourgrams.

12

methods is that the pitches used remain the same when they are all transposed to the same
octave. This idea can be used to construct pitch class tokenization, where we process each chord
as a binary vector of twelve elements and assign a token to each new unique representation.
With this approach, the theoretical upper limit of tokens is 2ଵଶ = 4,096 , but for practical
purposes, we will use only representations that are present in the dataset, leaving us with only
1,033 tokens. In practice, another two extra will be used, namely, the start and end of sequence
tokens.

After tokenizing the data in this way, all sequences with more than 256 tokens (including the
start and end of sequence tokens) were dropped. From Figure 8, we can see that this is sufϐicient
to cover most of the sequences. This step is required to train the models efϐiciently since the
lengths of individual sequences inside a mini-batch must be the same (padding will be used to
ϐill in the extra spaces).

3 MODEL DEVELOPMENT

3.1 Evaluation Metrics
Before discussing the architectures used to model the data, we introduce a few metrics to
properly describe their performance, as the evaluation of generative models is not trivial. In
section 3.6, we will discuss human evaluation, as it is often the only way to get a somewhat
objective measure of performance that can be compared with other techniques.

Top-1 Accuracy. Given raw prediction outputs, the portion of the time the top prediction
matches the real token. An easily interpretable metric, limited by ignoring the other predictions,
even though their value is also important. We will also refer to this metric as just the accuracy.

Figure 8 Histogram of sequence lengths.

13

Perplexity. Deϐined as the exponentiation of the entropy of the probability distribution; in
other words, the inverse model-predicted probability of a reference sequence of tokens,
normalized by the number of words. Intuitively can be thought of as a measure of how
“surprised” the model is by the data. We will compute both accuracy and this metric on the
original datasets, without applying augmentation. Lower values indicate better performance.

Fréchet Feature Distance. Fréchet Inception Distance (FID) is a common metric used to
describe the performance of image generative networks. It compares the distributions of the
extracted features (using the InceptionV3 model, hence the name) of real and generated
samples. A similar approach was used for our task, where a classiϐier Transformer network was
trained to predict the genre and decade of a sample to act as a feature extractor. Its architecture
was almost the same as the large variant of our generative Transformer, described in section 3.3,
except for the output layer. The values from the last layer before the output layer were averaged
across the token dimension, leaving us with a 96-dimensional feature vector. The Fréchet
Feature Distance (FFD) was then obtained by comparing the feature vectors of the test samples
with the same number of generated samples. This metric is limited in a few ways, such as that
its value tends to decrease with the number of samples used, but provides a better idea of the
distribution of the samples the model generates. The scores are only reported on the augmented
test set, as we want the generated samples to be of all the possible keys. Lower values indicate
better performance.

We also tried to develop a few other metrics, such as those comparing the distribution of n-
grams across the generated and real sequences using cosine similarity and Fréchet distance, but
they were mostly unsuccessful due to not being descriptive enough or due to memory and
compute limitations.

3.2 Recurrent Network
Since recurrent architecture is the backbone of many popular generative music architectures,
we created a simple gated recurrent network to establish a reference performance for other,
more sophisticated architectures. The hyperparameters are chosen to strike a balance between
performance and compute, training a larger variant with the same overall structure resulted in
insigniϐicant changes to the performance.

The architecture is structured as follows:

 Embedding Layer: Maps the input into a 96-dimensional embedding space.

– Input: A sequence of tokens

– Output: 96-dimensional embeddings

 GRU Layers: A three-layer gated recurrent unit (GRU) with 96 units.

– Input: 96-dimensional embeddings from the previous layer

– Output: 96-dimensional GRU output

 Multilayer Perceptron (MLP): A sequence of afϐine transformations and non-linear

activations.

14

– Layers:

Linear layer (96 to 96 units)

ReLU activation

Linear layer (96 to the size of the vocabulary units)

– Output: Final output of the vocabulary size.

Total number of parameters: 376,683

The dataset was split into a train set and a test set, in an 80/20% split to make the test set
representative of the overall distribution. During training, a batch size of 128 samples was used.
To artiϐicially increase the dataset size, transposition was employed to train on sequences in
random keys. In addition, it also implicitly makes the model equivariant to the key used. Another
common method is to transpose all the sequences into the same key and train the model on it
instead [13]; however, we did not use this approach as obtaining the proper key is non-trivial
(one cannot just pick the tonality of the ϐirst chord) and it would not account for modulation
(possibly treating modulated parts differently and obtaining worse performance on such
samples).

Since we were training on padded data, a masking mechanism was developed for the cross-
entropy loss and top-1 accuracy calculation. The Adam optimizer was used with a 0.001 initial
learning rate (𝛽ଵ = 0.9, 𝛽ଶ = 0.999), with a learning rate scheduler multiplying it by 0.3 every
10 epochs. The model was trained for 50 epochs, allowing convergence to occur. The embedding
layer was trained from scratch, as using popular word embedding techniques for the chords
made the convergence only insigniϐicantly faster.

The model achieved 56.00% top-1 accuracy on the train set and 56.59% on the test set. The
ϐinal perplexity was 4.927 on the train set and 4.851 on the test set. Given our FFD metric, the
model scored 9.290. These metrics suggest that the model is underϐitting the training data;
however, as discussed earlier, increasing the model size did not make signiϐicant changes, so a
different architecture was used to achieve better results.

3.3 Transformer
The Transformer architecture has recently seen massive success in language modeling,
especially with the dawn of large language models [28, 29, 30, 31]. It has been shown that it is
superior to recurrent networks, thanks to relying solely on the attention mechanism, allowing
better parallelization, training efϐiciency, and global dependencies while achieving better
performance [32]. The global attention mechanism can intuitively help in music-related tasks,
as it enables the model to understand complex patterns over long sequences, which is crucial in
music composition. Since we are dealing with discrete sequences of tokens, we can easily apply
the (decoder-only) Transformer architecture for our task.

Three distinct model sizes were developed: TransformerS, TransformerM, and TransformerL,
representing small, medium, and large sizes, respectively. Each model is based on a standard
decoder-only Transformer architecture, with varying speciϐications as detailed in Table 1. The
maximum sequence length is constant at 256 tokens among the models, as described in
section 2.3.

15

Feature TransformerS TransformerM TransformerL

Embedding Dimension (𝑑௠௢ௗ௘௟) 64 80 96

Number of Heads (𝑛௛௘௔ௗ௦) 8 10 12
Number of Transformer Layers (𝑛௟௔௬௘௥௦) 6 12 24

Total Number of Parameters 433,419 1,100,715 2,883,915

Table 1 Speciϐications of Transformer models.

The same data split and training hyperparameters were used as for the recurrent network, as
they were shown to be robust enough.

Model Train Perplexity Test Perplexity Train Accuracy Test Accuracy FFD

TransformerS 3.157 3.123 68.74% 69.05% 3.201

TransformerM 2.682 2.677 73.77% 73.91% 2.814

TransformerL 2.506 2.513 75.98% 76.04% 2.316

Table 2 Performance of Transformer models.

The performance metrics are shown in Table 2. We can see a signiϐicant improvement
compared to the recurrent architecture, even with the small variant. The performance improves
with model size, but it seems to start to plateau with the largest variant. Since we can see
practically the same performance on both the train and test sets, it suggests that we have not
overϐitted and could scale the models further without needing more data.

3.4 Conditional Transformer
One important aspect of generative deep learning is the controllability of the process. Some

standard methods include conditional generation, where a certain condition, such as the genre
of a song, is used in addition to the sequence data; and style-based approaches, which generate
based on an unentangled latent space, which can be easily explored, as is the case with modern
generative adversarial networks (GANs).

Naively, one could think that simply adding an extra “style” token to the start of the sequence
for the Transformer architecture would enable it to generate in regards to that style. However,
empirically it seems that this approach results in the ϐinal model just ignoring the additional
style information, as we have unsuccessfully tried this method. A more sophisticated approach
had to be developed that would enforce the model to use styling nonetheless. We took
inspiration from the StyleGAN architecture [33], which, among others, uses adaptive instance
normalization to control the generative process, and applied a similar technique to our objective.

Since we are dealing with the Transformer architecture that uses layer normalization, we will
modify all of those occurrences into adaptive layer normalization. Let 𝑥 ∈ ℝ௡×ௗ೘೚೏೐೗ be some
hidden representation (where 𝑛 represents sequence length) and 𝑤 ∈ ℝௗ೘೚೏೐೗ a vector denoting
the style of the sequence. Then, we specialize the 𝑤 into 𝜙 = (𝜙௚, 𝜙௕) using a learnable non-
linear transformation (in our case, a ReLU function followed by a linear layer is used), such that
𝜙௚ , 𝜙௕ ∈ ℝௗ೘೚೏೐೗ . We also repeat 𝜙௕ , 𝜙௚ along the ϐirst dimension to get them into shape
𝑛 × 𝑑௠௢ௗ௘௟ . The adaptive layer normalization is then

16

AdaLN(𝑥, 𝜙) = ൫1 + 𝜙௚൯ ⨀ LayerNorm(𝑥) + 𝜙௕ , (1)

where LayerNorm is the layer normalization, as implemented in PyTorch. This results in an
element-wise afϐine transformation of the normalized hidden representation 𝑥.

In the case of the Conditional Transformer, we take the genre and decade of the sequence and
represent it as a vector. Since multiple genres can be associated with a sequence, we equally
distribute the weight among them so that the weights sum to one. The ϐinal conditional vector is
obtained from the concatenation of the genre vector and one-hot decade vector. We then use a
learnable afϐine transformation to get it to the desired shape and use it as the vector 𝑤 in all of
the adaptive layer normalizations.

This approach allows each layer to inϐluence the hidden representation based on the genre
and decade independently and uniquely. 1 + 𝜙௚ is used instead of just 𝜙௚ to approximately
match an identity function, as we expect 𝜙௚ to have a mean of zero. An element-wise
transformation is used instead of a global one to encourage speciϐic aspects of the hidden state,
similarly as some feature maps are boosted relative to each other in the StyleGAN architecture.
A more efϐicient way to drive the styling could be developed, but we leave this for future work.

As with the Transformer architecture, three distinct sizes with the same hyperparameters as
previously were developed. The total number of parameters was 535,115 for the small variant,
1,414,075 for the medium, and 3,780,651 for the large one. Training and data processing were
done in the same way as previously, except that the large variant was trained with a batch size
of 96 samples due to memory constraints.

Figure 9 The Conditional Transformer.

17

To calculate the FFD, the model had to generate sequences based on the genres and decades,
so they were sampled from the train set distribution.

Model Train Perplexity Test Perplexity Train Accuracy Test Accuracy FFD

ConditionalS 3.548 3.521 64.58% 64.81% 2.998

ConditionalM 2.785 2.774 72.75% 72.99% 2.076

ConditionalL 2.551 2.562 75.14% 75.14% 1.848

Table 3 Performance of Conditional Transformer models.

In Table 3, we can see that while the perplexity and accuracy scores are a bit worse than the
Transformer network (especially with the smaller variants), the FFD was improved. This may
suggest that the way we enforce the condition is too strict, as it hurts the prediction capabilities
of the model while improving the diversity of the samples.

3.5 Style Transformer
The improvement of FFD with the Conditional Transformer motivated us to explore ways to
further control the generative process by inserting more style information into it. An adversarial
approach was tried when a new sequence was autoregressively sampled and conditioned on a
random latent style vector. Since the sampling of discrete sequences is inherently non-
differentiable, the generation was treated as a reinforcement learning task, where a sequence of
previous tokens is the state, the probability distribution of the next tokens is the action and the
discriminator produces the reward. However, this method was not effective, primarily due to
computational constraints. Moreover, the adversarial approach is often unstable and takes a lot
of time to train even when using appropriate methods. As of our current knowledge, there has
not been developed a single successful adversarial style-based Transformer for discrete
sequences.

Rather than acquiring the styling directly or naturally, we inserted the outputs of a pre-
trained feature extractor as the new condition. This is not an ideal solution, as it can cause the
model to overϐit the training data and make working with the latent space difϐicult, but we will
leave the other potential methods as a topic of future work. The feature extractor is a
Transformer-based genre and decade classiϐier with 6 layers and the same 𝑑௠௢ௗ௘௟ and 𝑛௛௘௔ as
the size variant of the model it corresponds to. The overall structure of the Style Transformer
remained the same as that of the Conditional Transformer, only the feed-forward layer changed
to adapt to the new style shape, which was the same as 𝑑௠௢ௗ௘௟ .

Again, three different sizes with 541,579, 1,424,715, and 3,796,491 parameters were created
and trained as described previously. The generation of sequences to calculate FFD was a bit
tricky because the style vectors could not be sampled from a normal distribution, as they come
from a feature extractor that produces a complex latent space. Instead, the style vector
distribution was approximated using Gaussian kernel density estimation (Gaussian KDE), and
the style vectors used were sampled from it. One crucial aspect when it comes to KDEs is their
bandwidth, which dictates the spread of the kernel. Higher values produce smoothed-out
distributions, while lower match the original distribution more closely. Since we are dealing with
a machine-learning task, we need to strike a balance to prevent overϐitting while maintaining
the distribution close enough. Visual inspection was used across two random dimensions with

18

the original and resampled sets, the ϐinal value of 0.05 was used during sequence generation
(see Figure 10).

This approach did slightly better than the Conditional Transformer in terms of perplexity
while having a bit worse top-1 accuracy (see Table 4). This however was not the case for the
large variant, as in terms of perplexity and accuracy it even surpassed the performance of the
Transformer model. FFD was improved signiϐicantly even in the case of the small variant, it
beats even the large Conditional Transformer. These results show that inserting more style-
related information is useful, we suppose that it makes the results more diverse, hence
matching the original distribution.

Model Train Perplexity Test Perplexity Train Accuracy Test Accuracy FFD

StyleS 3.495 3.473 62.25% 62.58% 1.728

StyleM 2.581 2.560 72.63% 72.90% 1.139

StyleL 2.252 2.264 76.32% 76.31% 0.824

Table 4 Performance of Style Transformer models.

This architecture is not as easily applicable to a real-world product for sequence generation
because of the problems associated with the way styling is handled. Nevertheless, given a genre
(or any other desired property), a novel sequence could be generated using a style sampled from
a Gaussian KDE weighted by the match to that property (e.g. according to the weight of the
genre). Another way would be sequence conditioning, where we could take several reference
sequences, whose style we want to recreate and use their average style vector acquired by a
feature extractor as the condition. The problem is however that our approach predicts based
only on a single style vector and not on the entire style distribution; in contrast, the Conditional
Transformer uses genre information which spans a larger portion of the style space. Style
interpolation would also be tricky, as the distribution is of a complex shape (traditionally,
spherical linear interpolation is used on GANs with Gaussian latent space, which is not
applicable in our case). This architecture may also be more vulnerable to recreating the training
data sequences. We leave these limitations as a subject of future work.

3.6 Human Evaluation
Since the described metrics are not easily interpretable, we decided to use human evaluation.
Our approach tried to measure how difϐicult it is to trick people into believing a generated
sequence is real. As there are not any available survey apps that would suit our purposes, a
simple web application was created. The user was greeted with an explanation of the project
and the data processing methods used. Then, they ϐilled in a section about themselves – their

Figure 10 Original style distribution compared to resampled distributions.

19

age group, gender, and their experience in music. In the main part, 10 random sequences were
shown to the user, who had to guess whether each sequence was real or fake. There was an
option to play the sequence of chords as an audio ϐile. The sequences shown to the users were
randomly sampled from 1,000 real and 1,000 generated sequences (100 for each model). At the
end of the survey, users had the option to leave their email address to later receive their results
of how successful they were at guessing – to remain rigorous, these results were not sent to them
before ending it. The application also tracked the time it took the users to guess the sequences.

The survey ended a week later after the distribution to a few different groups. A total of 46
valid answers were collected, which is quite a small sample, but we will try to make the most of
the data anyway. 22 respondents were male, 24 female, no one chose “other/prefer not to say”.
5 respondents were in the age group of 10–15 years (upper bounds are exclusive, e.g. 15 years
and 2 months are not in this category), 36 respondents were 15–20 years old, 4 were in the
group 20–30 and a single user selected 50+. The age distribution is not unexpected as this survey
was distributed mostly to high school students. 14 respondents had 0–1 year of music
experience (meaning playing an instrument, composition, or work experience), 2 had 1–3 years,
5 respondents 3–5 years, 13 had 5–10 years, 10 had 10–20 years, and 2 more than 20. The
survey was on average ϐinished in 3 minutes and 18 seconds, with a standard deviation of 2
minutes and 33 seconds.

The ϐinal average accuracy of respondent answers across all sequences (real or generated)
was 50.22%, not any better than random guessing. Surprisingly, there was no signiϐicant
correlation between the time it took to ϐinish and the accuracy of the respondent, and experience
in the ϐield even had a slight negative correlation with the accuracy. The age of the respondents
had a similar tendency as the experience. Even though these effects may disappear with a larger
number of respondents, it is interesting to see nonetheless. Both genders did about equally well.

Given the small number of responses, we can only get a rough idea of the real performance.
Note that while one may think that instead of using numerous real sequences, we could just
divert them to the models, this would destabilize the expected percentage of real and generated
samples. We use the term perceived realness to describe the portion of answers that were
considered real. Since we are dealing with binary data, the standard error was used to
approximate the conϐidence of our ϐindings. A 95% conϐidence margin can be obtained by
multiplying the standard error by roughly 1.96. Generally, the real sequences were considered
slightly more real than fake; however, the generated sequences had about the same value of
perceived realness. The recurrent network got the lowest score. The comparison of different
Transformer networks is difϐicult due to the large uncertainty of about 20% for the 95%
conϐidence margin.

In conclusion, given our data processing methods and other limitations, it seems that the
Transformer models and their variants generated sequences practically indistinguishable from
real ones, although further research should be done with a larger number of participants to
conϐirm these ϐindings.

20

Model Seen Samples Perceived Realness Standard Error

Real (Reference) 233 58% 3%

RecurrentNet 21 38% 11%

TransformerS 23 70% 10%

TransformerM 30 53% 9%

TransformerL 23 61% 10%

ConditionalS 17 65% 12%

ConditionalM 18 61% 11%

ConditionalL 24 54% 10%

StyleS 21 57% 11%

StyleM 23 57% 10%

StyleL 27 63% 9%

Table 5 Human evaluation results.

3.7 Model Performance Overview
The number of parameters as well as the performance of the models can be seen in Table 6.

Perplexity and top-1 accuracy are calculated on the test set, the perceived realness conϐidence
intervals denote 95% conϐidence.

Model Parameters Perplexity Top-1 Accuracy FFD Perceived Realness

RecurrentNet 376,683 4.851 56.59% 9.290 38 ± 21%

TransformerS 433,419 3.123 69.05% 3.201 70 ± 19%

TransformerM 1,100,715 2.677 73.91% 2.814 53 ± 18%

TransformerL 2,883,915 2.513 76.04% 2.316 61 ± 20%

ConditionalS 535,115 3.521 64.81% 2.998 65 ± 23%

ConditionalM 1,414,075 2.774 72.99% 2.076 61 ± 23%

ConditionalL 3,780,651 2.562 75.14% 1.848 54 ± 20%

StyleS 541,579 3.473 62.58% 1.728 57 ± 21%

StyleM 1,424,715 2.560 72.90% 1.139 57 ± 20%

StyleL 3,796,491 2.264 76.31% 0.824 63 ± 18%

Table 6 Comparison of the models.

3.8 Showcase of Generated Samples
Below, there are three non-cherrypicked chord sequences generated by each model. They were
truncated to 24 chords to ϐit into a reasonable space. Various other generated sequences can be
found in the GitHub repository in a tokenized representation.

21

Recurrent Network

 D G D A D G D A D G A D G D G D G D G D G D G D...
 F# G# A#m F# C# G# A#m F# G G# A#m F# G# Fm A#m F# D#m G# C# F# G# C# F# G#...
 D#m7 Badd9 G#m D#m7 C#m7 D#m7 G#m D#m7 Emaj7 D#m7 C#m7 D#m7 Emaj9 D#m7

G#m7 C#m7 Amaj9 D#m7 Badd9 F#m Emaj7 D#m7 Badd9 D#m7...

Transformer S

 B C#m E C#m A C#m E B F#7 B C#m E C#m B G#m C#m E G#m C#m E G#m
 A#m7 D#7 G#maj7 G# A#m7 D#7 G#maj7 A#m D#7 G#maj7 A#m D#7 G#maj7 A#m D#7

G#maj7 A#m D#7 G#maj7 A#m D#7 G#maj7 A#m D#7...
 G C D G Em C D G C G Em C D G C G Em C D G Em Bm G D...

Transformer M

 D# F A# A#maj7 Cm7 F A# A#maj7 Cm7 F A# Gm7 D# A# A#maj7 Cm7 F A# F A# A#maj7
Cm7 F A#...

 C A# C A Dm A7 Gm7 C#aug A7 Dm A# A7 Dm7 A7 Dm C A# C Dm A# C Dm A# A7...
 D#m C#7 F# D#m C#7 F# B F# D#m B F# C# B C# F# D#m C#7 F# B F# C# B F# D#m...

Transformer L

 Bmaj7 D7 Am7 D7 G A#7 Am7 D7 Gmaj7 Em Am7 D7 Gmaj7 Am7 G7 D7 Am7 D7 Gmaj7 C9
Bmaj7 G# Am7 D7...

 Gm Dm Gm Dm Gm Dm Gm Dm Gm Dm Gm Dm Gm Dm Gm Dm Gm
 C# D# G# D# G# D# G# D# G# D#7 G# C# D# G# D# G# D# G# D#7 G# C# D# G# D#...

Conditional Transformer S

 B C#m A B C#m A B C#m A B A B A B C#m A B C#m A B E A B C#m...
 Dm Am A# F Dm Am A# C F Dm Am Gm A# F Dm Am A# F Dm Am A# F Dm Am...
 A A7 D7 G A7 D7 G A7 D7 G A7 D7 G A7 D7 G A7 D7 G A7 D7 G A7 D7...

Conditional Transformer M

 G A D D7 G Gm6 A D G D Em7 A D A D Bm G A D
 C# F# B F# C# F# A#m B F# C# F# G#m B F# C# F# G#m B F# C# F# A#m B F#...
 F#m G#m F#m G#m C#m E F#m G#m F#m G#m C#m E F#m G#m C#m E F#m G#m C#m E

F#m G#m C#m E...

Conditional Transformer L

 B E A B E A B E A B E A B E A B E A B E A B E A...
 A#m D#7 D# C# G# A#m D#7 G# A#m D#7 Cm7 D#7 C# G# A#m D#7 G# A#m D#7 G# Fm

A#m D#7 Cm7...
 G# C# G# C# G# C# G# C# G# C# G# C# G# C# G# C# G# C# G# C# G# C# G# C#...

Style Transformer S

 G D Bm D# C G Em C Dm G A F D# C#m D Gm C F D# F D# A# A D#...
 G# A#m7 G# D# G# D# A#m7 G# D# G# C# A#m7 D# G# C# D# G# D# C# A#m7 D# G# D#

C#...

22

 A# Dm A# Gm Cm A# D# A# Gm Cm A# A7 G# D# A# Gm Cm A# D# A# A7 D#maj7 D#m
D#...

Style Transformer M

 C# G# E F# D# F# G# C# G# E F# C# G# E F# C# G# G#m E F# D#m E F# C#...
 A# Gm Dm C C7 F Dm A# F Dm A# Gm Dm C Dm A# Gm Dm C Dm A# Gm A5 Dm...
 B C# D#m B C# D#m B C# D#m B C# D#m B C# D#m B C# F# C# F# C# F# C# F#...

Style Transformer L

 D G Bm D G Bm D G Bm D Cmaj7 Bm D G D Em Bm D A D Gmaj7 G D Em...
 G#m7 C#m6 A9 F#7 C#m7 F#7 C#m6 Bmaj7 G#m7 C#m6 A9 G#7 C#m7 F#7 C#m6 Bmaj7

G#m7 C#m6 A9 G#7 C#m7 F#7 C#m6 Bmaj7...
 Em A Em D Em A Em Bm C#m F#m Am D Em Bm C#m F#m Am D Em Bm C#m F#m C#m D...

4 WEB APPLICATION

4.1 Introduction
Deep learning models can be only as useful as the context in which they are used, so to make the
result of our work usable for the public, we decided to create a web application centered around
our models. The main idea was to help musicians, especially those starting their journey,
compose beautiful chord progressions by suggesting the next chord in the context of the
previous chords. A user would see their sequence and get suggestions on what to do next,
enabling an effective exploration of the landscape of possibilities.

Similar products already exist, but they are usually paid for, unpractical to use, or limited in
other ways. The creation of an open-source, free-to-use AI-powered tool could therefore allow
anyone to compose chord progressions simply. The app could also serve as a way to learn a part
of music theory, as chord progressions and their notation are quite complex to understand.

4.2 Web Stack
Next.js 14 [34] was chosen as the web development framework. TypeScript was used instead of
JavaScript and Tailwind CSS [35] was used as the library for styling. Zustand [36] served as the
state management library, ONNX runtime [37] was employed to run the AI models, Tone.js [38]
did the job of an audio playback library for the composed chord progressions.

4.3 User Interface
General structure. The UI is comprised of a few components, including the timeline,
suggestions, model/style selection, transpose/import/export menu, and a chord variation pop-
up menu. Keyboard shortcuts, also sometimes called hotkeys, are available for most of the
functions of the app. When you hover over an element of a component, it shows you what
happens on click as well as the shortcut for it. The state of the app, including the chord
progression, selected model and style, signature, tempo, and default variants, are automatically
saved locally in the browser, so the user will not lose progress unless they delete the site data.
We will delve into each of the components in depth, going in a natural order as a user might
explore the app.

23

Timeline. At the heart of the app is the timeline, a component in which the chord progression
is built. The controls are similar to that of video editors, scrolling can be used to zoom in/out,
and dragging the middle mouse moves the view.

A new chord can be added by clicking the plus icon above the timeline, or by the hotkey A. All
newly added chords are blank by default (denoted by a question mark), they can be changed for
a different chord in the suggestions. By clicking on any chord in the timeline, you select it, which
is signalized by appearing in a lighter color. Clicking on an already selected chord deselects it;
alternatively, you can use the hotkey Esc. Arrow keys can be used to navigate the selection of
chords. Every time a chord is selected (either by clicking it or by arrow keys), it is played to make
it easier to comprehend what the user is composing. Adding a new chord either appends it to
the end of the sequence or if any chord is selected, the new chord is inserted right after it. There
can be a maximum of 255 chords after processing them (merging consecutive and ignoring blank
chords).

The selected chord can be deleted by clicking the trash bin icon (hotkey Del). The duration a
chord spans can be changed by resizing it from the right edge (hover over the right edge of a
chord, click, then drag it); the value snaps to the beats. All changes that are made to the sequence,
including the selection and deselection of chords, are recorded (up to 64 steps), you can
undo/redo them by the icons to the left of the trash bin or by hotkeys Ctrl + Z/Ctrl + Y.

Left to the add/delete/undo/redo controls are the playback controls. The middle icon starts
and pauses playback (Space). When the sequence is playing, the current timestep is visualized
by the blue-moving playhead. The position of the playhead can be changed by clicking or
dragging on the time ticks (the top and bottom part of the timeline around the chords) regardless
of whether the sequence is playing. Once the playhead reaches the end of the sequence, the
playback ends and the playhead jumps back to the start of the sequence. The left metronome
icon enables and disables the metronome (M). The tempo of the playback in beats per minute
can be changed from the right settings icon.

Figure 11 The web application.

24

The signature (the number of beats per measure) of the chord progression can be customized
by clicking on the signature in the left part of the timeline. When the signature changes, the chord
durations remain constant, adapting to the new values. The signature is also visualized by the
ticks at the top and bottom of the timeline, where a slightly larger tick denotes the boundary of
two measures.

Suggestions. When any chord is selected, the suggestions for the chord given its preceding
chords are available. You can scroll to see more suggestions. By clicking on any suggested chord,
the selected chord is replaced with the suggestion, and the new chord is played. The suggested
chords are colored from purple to black and sorted by the probability predicted by the model.
The coloring decay can be controlled by the decay slider at the top right corner. Note that
logarithmic coloring is used instead of linear to make less probable chords still visible, which
provides a more natural way to think about the predictions of the model.

Speciϐic chords can also be searched from the top left search bar; if you do not ϐind what you
want, try enabling Include variants, as the chord you are searching for may be a variant of
another base chord (e.g. Am7 and C6 are variants of the same chord, as they are inversions of
each other). You can also ϐilter the chords by the notes used under the piano icon, which opens
a virtual keyboard on which you can enter the notes by clicking on individual keys. When any
search query is applied, an icon to clear the search results is shown (queries are cleared when
clicked on).

Suggestions may take a while to load, as the model runs locally in the browser using ONNX
runtime. Note that once a suggestion is made, it is cached for later use (up to 32 predictions are
cached, after that the ϐirst ones are removed to free the memory).

Model and style selection. From the upper left menu, the users can select the model they
want to use for suggestions by clicking on it and selecting another variant from the dropdown.
A larger model may produce better suggestions at the cost of a longer inference time. When a
conditional model is selected, a style (respectively the condition) menu can be opened by
clicking the right part of this component. Two tabs are included in the style selection, the genre
and the decade. By clicking on any style element from the dropdown, its state changes
(enabling/disabling it). Multiple genres and decades can be selected. Additionally, the relative
weighting of each of the styles can be speciϐied. We suggest using small integer values to make
it easy to think about; behind the scenes, the weights get normalized to sum to one either way.
Since the applied style changes the predictions of the models, the suggestions are updated on
every change. The genres are sorted by their occurrence in the dataset. Style Transformer
models were not added due to the difϐiculties associated with them (see the last paragraph of
section 3.5).

Transpose/Import/Export. The chord sequence can be easily transposed under the left icon
of this menu. Positive integer values transpose by that number of semitones up, while negative
transpose down. The sequence can be exported to a .chseq or .mid format under the icon to the
right, corresponding to a custom format (preferred for saving/loading sequences; it is just JSON
in the background), and MIDI (for use in other music production software), respectively. Imports
are done under the middle icon, again, you can import a .chseq or .mid ϐile. Manually editing the
.chseq ϐile may cause a corrupted state of the app after import, which can be ϐixed by clearing
the site data. Imported MIDI ϐiles should be single track, only with the chords in a condensed

25

format (without arpeggios, strummed chords, and other variants), without other voices (such as
percussion and melodies). If a chord is not recognized or there are no notes in the MIDI ϐile
(corresponding to a rest), it will be replaced by the unknown token (denoted by a question
mark).

Chord variants. Given the data processing methods used, the inversions of chords as well as
other voicings are mapped to the same token. Therefore, to make the app more intuitive, the
user can choose the variant of any chord, both in the timeline and in the suggestions. This menu
can be opened by right-clicking on any chord. A visualization of the notes the chord is comprised
of is shown on a virtual keyboard and other chord variants are under it. Upon clicking on any
other variant, it will be again visualized and played. When this menu is open from the timeline,
the newly selected variant can be either applied once (only to that chord) or to all (replacing all
of the same chords with this variant). When it is open from the suggestions, it can be used once
(replacing the selected chord with this variant) or set as default (which makes it the preferred
variant in the suggestions). You can close this menu from the close icon (alternatively Esc).

Even though it may be tempting to use chord variants to compose chord voicings, this is not
a recommended approach, as variants were only added to make searching for chords more
intuitive and allow multiple possible notations to be used. Instead, this app should only be
utilized for the base chord progressions and the voicings should be made in another music
production software (after exporting it to the MIDI format).

4.4 Other Aspects
Models. Since the models are not that computationally expensive, they were deployed on the

edge. The models were converted to the ONNX format and are run locally in the browser using
ONNX Runtime Web. To make the data the model receives processed in the same way as what it
was trained on, consecutive and unknown chords are ignored. The duration and the variant of
the chord do not inϐluence the predictions. Ensuring that ONNX works in the browser was
problematic due to the need for a web assembly package at a speciϐic static path, which requires
different build and development copy webpack plugin path settings with Next.js 13+.

Progressive Web App. This application can also be installed on desktop devices as a PWA.

Icons. The icons in the app come from Font Awesome Icons V6 [39] and Tabler Icons [40].
The transposition icon is made from two icons. The app logo was created using Inkscape [41]
and should represent a hybrid of a soundwave and a digital brain.

Sounds. The piano sound used for playback as well as the ticking sound of the metronome
are from the Tone.js audio library [42].

Deployment. This app was not deployed online as a part of this project; however, a hosted
version already exists. The URL is provided in section 7.

Support. This app is currently only supported on desktop devices. It was built in a Chromium-
based browser, so this app may be unstable in other browsers.

26

5 FUTURE WORK
Even though this project produced a useful tool, a lot could be improved. In this section, we will
describe some approaches to try in the future.

One of the biggest limitations of this work is that it does not consider chord durations. Now
that there is a decent map to get the symbol of chords just based on the notes, a different dataset
could be leveraged. Given a comprehensive dataset of MIDI ϐiles, their chord progressions could
be extracted and processed in a way to obtain the chords and their durations. A model could
then be trained to accept the durations of chords in a similar way as positional encoding,
prediction of the length of a chord could be done by extending the possible prediction tokens,
one for each duration (a single duration output would not be enough as different chords of
different durations ϐit in each context). In a ϐinal product, the user could then explore the chords
with the duration, or the probabilities of chords regardless of the length by merging all of the
possible durations (constructed by summing them), which would work similarly to our app, just
that the lengths of chords would be considered during inference. A different approach could
embed the duration of a chord as a different token, such that the model oscillates between
predicting the chord and duration token.

Another aspect that is not accounted for is the different variants of chords. A more powerful
tool trained on a larger dataset could predict the probabilities for each of them independently.
A user of such an app could then collapse them to include them under the same token (same as
our app, just that under variants the probabilities would be visible) or see them separately. This
tool could theoretically produce chord voicings in a meaningful way, contrary to our work that
focuses only on the pitch classes used.

If a large enough dataset with descriptions of the songs was obtained, our conditional model
could then be used together with a (possibly pre-trained) language Transformer to enable the
generation of sequences based on text descriptions.

The application of style is still problematic, and a generative style-based adversarial learning
method for discrete sequences with Transformers could be developed. Such a breakthrough
could revolutionize the ϐield of symbolic music generation, as such problems could be then
treated similarly to image generation.

The work on this project still continues, primarily focusing on improving user experience and
creating learning materials for those interested in using this tool. A small user base currently
exists which provides valuable feedback.

27

6 CONCLUSION
In this project, we have presented ChordSeqAI, a tool utilizing deep learning for generating
chord sequences. We undertook a comprehensive approach, starting from data acquisition and
analysis, through the development and training of various models, to the ϐinal use in a web
application.

The exploration and analysis of a large dataset of chord sequences have revealed interesting
patterns in chord progressions across different genres and decades. Our deep learning models
range from a basic recurrent network to more complex Transformer architectures. The
introduction of conditional and style-based Transformers has further enriched our tool’s
capabilities, allowing for a more controllable generation of chord sequences that are
indistinguishable from real samples. The development of a web application has been a crucial
step in making our tool accessible to a broader audience. By integrating our models into an
intuitive interface, we have opened up the possibility for both amateur and professional
musicians to explore and experiment with chord progressions.

In conclusion, ChordSeqAI represents an attempt to make the fusion of artiϐicial intelligence
and music composition available to anyone. By simplifying and enriching chord progression
composition, where the artist is in charge of the generative process, ChordSeqAI aims to be a
supportive tool rather than a replacement, enhancing creativity and offering new perspectives
in musical composition. It is a step towards democratizing music creation, where deep learning
combined with artistry paves the way for uncharted territories in creativity.

7 ADDITIONAL RESOURCES
The code used for this project is available on GitHub under the MIT license, the human
evaluation web application is not included, as it was made as a quick and unpolished alternative
to other survey services.

 Data, models, evaluation: https://github.com/StudentTraineeCenter/chord-seq-ai

 Web application code: https://github.com/PetrIvan/chord-seq-ai-app

 Web application: https://chordseqai.com

28

References
[1] S. Dai, Z. Jin, C. Gomes, and R. B. Dannenberg, “Controllable deep melody generation via

hierarchical music structure representation,” CoRR, vol. abs/2109.00663, 2021, [Online].
Available: https://arxiv.org/abs/2109.00663

[2] C. Garouϐis, A. Zlatintsi, and P. Maragos, “An LSTM-Based Dynamic Chord Progression
Generation System for Interactive Music Performance,” in ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp.
4502–4506. doi: 10.1109/ICASSP40776.2020.9053992.

[3] D. Dalmazzo, K. Déguernel, and B. L. T. Sturm, “The Chordinator: Chord progression
modeling and generation using transformers,” in International Society for Music
Information Retrieval Conference, 2023.

[4] S. Shukla and H. Banka, “An Automatic Chord Progression Generator Based On
Reinforcement Learning,” in 2018 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2018, pp. 55–59. doi:
10.1109/ICACCI.2018.8554901.

[5] S. Lee, U. Hwang, S. Min, and S. Yoon, “A SeqGAN for Polyphonic Music Generation,” CoRR,
vol. abs/1710.11418, 2017, [Online]. Available: http://arxiv.org/abs/1710.11418

[6] H.-W. Dong and Y.-H. Yang, “Convolutional Generative Adversarial Networks with Binary
Neurons for Polyphonic Music Generation,” CoRR, vol. abs/1804.09399, 2018, [Online].
Available: http://arxiv.org/abs/1804.09399

[7] Y. Ren, J. He, X. Tan, T. Qin, Z. Zhao, and T.-Y. Liu, “PopMAG: Pop Music Accompaniment
Generation,” in Proceedings of the 28th ACM International Conference on Multimedia, in MM
’20. New York, NY, USA: Association for Computing Machinery, 2020, pp. 1198–1206. doi:
10.1145/3394171.3413721.

[8] I. Simon, D. Morris, and S. Basu, “MySong: Automatic Accompaniment Generation for Vocal
Melodies,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
in CHI ’08. New York, NY, USA: Association for Computing Machinery, 2008, pp. 725–734.
doi: 10.1145/1357054.1357169.

[9] N. Jiang, S. Jin, Z. Duan, and C. Zhang, “RL-Duet: Online Music Accompaniment Generation
Using Deep Reinforcement Learning,” Proc. AAAI Conf. Artif. Intell., vol. 34, no. 01, pp. 710–
718, Apr. 2020, doi: 10.1609/aaai.v34i01.5413.

[10] Mubert-Inc, “Mubert.” 2022. [Online]. Available: https://mubert.com/,
https://github.com/MubertAI/Mubert-Text-to-Music

[11] S. Forsgren and H. Martiros, “Riffusion - Stable diffusion for real-time music generation.”
2022. [Online]. Available: https://riffusion.com/about

[12] A. Agostinelli et al., “MusicLM: Generating Music From Text.” 2023.

[13] J.-P. Briot, G. Hadjeres, and F. Pachet, “Deep Learning Techniques for Music Generation - A
Survey,” CoRR, vol. abs/1709.01620, 2017, [Online]. Available:
http://arxiv.org/abs/1709.01620

29

[14] C. Jin et al., “A transformer generative adversarial network for multi-track music
generation,” CAAI Trans. Intell. Technol., vol. 7, no. 3, pp. 369–380, 2022, doi:
https://doi.org/10.1049/cit2.12065.

[15] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever, “Jukebox: A Generative
Model for Music.” 2020.

[16] P. Verma and C. Chafe, “A Generative Model for Raw Audio Using Transformer
Architectures,” in 2021 24th International Conference on Digital Audio Effects (DAFx), 2021,
pp. 230–237. doi: 10.23919/DAFx51585.2021.9768298.

[17] A. Muhamed et al., “Symbolic Music Generation with Transformer-GANs,” Proc. AAAI Conf.
Artif. Intell., vol. 35, no. 1, pp. 408–417, May 2021, doi: 10.1609/aaai.v35i1.16117.

[18] C.-Z. A. Huang, D. Duvenaud, and K. Z. Gajos, “ChordRipple: Recommending Chords to Help
Novice Composers Go Beyond the Ordinary,” in Proceedings of the 21st International
Conference on Intelligent User Interfaces, in IUI ’16. New York, NY, USA: ACM, 2016, pp. 241–
250. doi: 10.1145/2856767.2856792.

[19] D. Dalmazzo, K. Déguernel, and B. L. T. Sturm, “The Chordinator: Chord progression
modeling and generation using transformers.” 2023. [Online]. Available:
https://hal.science/hal-04289026

[20] N. Otani, S. Shirakawa, and M. Numao, “Symbiotic Evolution to Generate Chord Progression
Consisting of Four Parts for a Music Composition System,” in PRICAI 2014: Trends in
Artiϔicial Intelligence, D.-N. Pham and S.-B. Park, Eds., Cham: Springer International
Publishing, 2014, pp. 849–855.

[21] M. Navarro-Cáceres, M. Caetano, G. Bernardes, and L. N. de Castro, “ChordAIS: An assistive
system for the generation of chord progressions with an artiϐicial immune system,” Swarm
Evol. Comput., vol. 50, p. 100543, 2019, doi: https://doi.org/10.1016/j.swevo.2019.05.012.

[22] R. P. Whorley and D. Conklin, “Music Generation from Statistical Models of Harmony,” J. New
Music Res., vol. 45, no. 2, pp. 160–183, 2016, doi: 10.1080/09298215.2016.1173708.

[23] J. A. Burgoyne, J. Wild, and I. Fujinaga, “An Expert Ground Truth Set for Audio Chord
Recognition and Music Analysis,” in Proceedings of the 12th International Society for Music
Information Retrieval Conference, A. Klapuri and C. Leider, Eds., Miami, FL, 2011, pp. 633–
638.

[24] Ultimate Guitar, “Ultimate Guitar: Chords, Tabs & Lyrics.” [Online]. Available:
https://www.ultimate-guitar.com

[25] M. Corporation, Playwright. (2023). [Online]. Available: https://playwright.dev/

[26] Easy Song Help Center, “What Parts of Music Can Be Copyrighted? (...and What Can’t?).”
May 23, 2023. [Online]. Available: https://support.easysong.com/hc/en-
us/articles/1500009595681-What-Parts-of-Music-Can-Be-Copyrighted-and-What-Can-t-

[27] M. S. A. Cuthbert, music21. (2023). [Online]. Available: https://web.mit.edu/music21/

[28] T. B. Brown et al., “Language Models are Few-Shot Learners.” 2020.

30

[29] A. Chowdhery et al., “PaLM: Scaling Language Modeling with Pathways,” J. Mach. Learn. Res.,
vol. 24, no. 240, pp. 1–113, 2023.

[30] H. Touvron et al., “Llama 2: Open Foundation and Fine-Tuned Chat Models.” 2023.

[31] B. Workshop et al., “BLOOM: A 176B-Parameter Open-Access Multilingual Language
Model.” 2023.

[32] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, Eds., Curran Associates, Inc., 2017. [Online]. Available:
https://proceedings.neurips.cc/paper_ϐiles/paper/2017/ϐile/3f5ee243547dee91ϐbd053
c1c4a845aa-Paper.pdf

[33] T. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture for Generative
Adversarial Networks.” 2019.

[34] Vercel Inc., Next.js. (2023). [Online]. Available: https://nextjs.org/

[35] Adam Wathan, Jonathan Reinink, David Hemphill, and Steve Schoger, Tailwind CSS. (2023).
[Online]. Available: https://tailwindcss.com/

[36] Poimandres, Zustand. (2023). [Online]. Available: https://github.com/pmndrs/zustand

[37] Microsoft Corporation, ONNX Runtime. (2023). [Online]. Available:
https://onnxruntime.ai/

[38] Yotam Mann, Tone.js. (2023). [Online]. Available: https://tonejs.github.io/

[39] Inc. Fonticons, Font Awesome Icons V6. (2023). [Online]. Available:
https://fontawesome.com

[40] codecalm.net, Tabler Icons. (2023). [Online]. Available: https://tabler.io/icons

[41] The Inkscape Team, Inkscape. (Dec. 09, 2022). [Online]. Available: https://inkscape.org

[42] Tonejs, “Audio ϐiles used in Tone.js examples.” 2023. [Online]. Available:
https://github.com/Tonejs/audio

【評語】190030

The work provides an AI-driven tool for aiding musical

composition by generating chord progressions.

It is a step towards democratizing music creation. Deep

learning combined with artistry opens potential territories in

creativity.

The ChordSeqAI work aims to be a supportive tool that offers

new perspectives on musical composition.

	190030-封面
	190030-作者照片
	190030-本文
	190030-評語

