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1 Introduction

The quantum mechanical description of the four fundamental forces of nature is very important for the
decryption of the rules which underlie our world. While Quantum Electrodynamics (QED) describes
the electromagnetic force in great detail, it also uses complex mathematical techniques and advanced
physical concepts.

In the following, I will analyze to what extent a quantum mechanical two-state model can be used to
describe the Coulomb interaction between two charged particles. To do so, I will exclusively focus on
the electrostatic interaction, leaving dynamics aside. Furthermore, the analysis is nonrelativistic and
does not consider the spin of the particles. Finally, using discrete state theory allows to explore the
strength of the basic concepts of early quantum mechanics.

In this sense, I will try to develop a simpli�ed model for the quantum mechanical description of the
electrostatic force. However, the analysis is not simplistic, since the traditional formalism of quantum
mechanics will be used, including Dirac's Bra-ket notation, probability amplitudes, the Hamiltonian
matrix as well as the Schrödinger equation.

To understand the framework of my project, it may be helpful to take a look at the source of inspiration
for my analysis: In Chapter 10 of the third volume of the well-known textbook series The Feynman

Lectures on Physics [4], the force holding the hydrogen molecular ion together is explained in terms
of a two-state system. The electron of the molecular ion can be either at the �rst proton or at the
second one. The exchange of the electron between both protons leads to an attractive force between
them.

It is known from QED that the electrostatic interaction between two charged particles is due to the
exchange of a virtual photon which acts as force carrier. The idea of my work is to explore whether
the electrostatic force can be described by a very similar model, replacing the electron acting as force
carrier in the molecular ion by a virtual photon for the description of the electrostatic force between
two charged particles.

To describe a system consisting of charged particles, I will make the assumption that a charged particle
can appear in two states. Either it is in state e where it can emit a photon or it is in state a which
enables it to absorb a photon. Upon emission or absorption of a photon the charged particle transitions
to the respective other state. This makes the approach analyzed in my work an element of discrete
state theory, since two di�erent states of the particle are used to store information about it.

Of course such a model cannot be compared to the sophisticated theory of Quantum Electrodynamics.
The point is, however, that it is interesting to explore the power of the most fundamental concepts of
quantum mechanics and to show that such an analysis can lead to inspiring results.
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2 Remarks on Notation and Introduction to the Formalism of Quan-

tum Mechanics

In quantum mechanics, all the information about the current con�guration of a system is contained in
its state. The state of a system has to be represented in terms of a linear combination of base states.
The base states represent a certain basis which the state of the system is projected onto in order to be
able to work with it.

In the following, we will use the possible combinations of a and e states as basis for describing a
system made up of multiple charged particles. In this basis, a system consisting of two equally charged
particles, for instance, has then 4 di�erent possible base states. One in which both particles are in
state e, one in which both are in state a and two in which they are in opposite states. One has to be
careful not to confuse the two states of a single charged particle with the states of a system of multiple
charged particles.

In particular, the information contained in the state of a system is the probability that a measurement
in a certain basis of the state of the system yields a particular base state as result. Since the assumed
a and e property of a charged particle is rather a theoretical tool than a measurable physical quantity,
they represent a kind of pseudo-states, in the sense that they are treated in this analysis as real
characteristics of charged particles while they don't seem to be measurable quantities. Treating them
as real states allows, however, to use the formalism of quantum mechanics to calculate the properties
of the system.

The probability for the system in state |ψ⟩ to be found in a state |1⟩ upon measurement is the square of
the modulus of the probability amplitude ⟨1|ψ⟩. The probability amplitude is a complex quantity found
by taking the inner product of the state of interest |1⟩ with the current state |ψ⟩ of the system.

The time evolution of the state of a system is determined by Schrödinger's equation which involves
its Hamiltonian. This mathematical operator contains all is needed to know about the system by
describing the energy properties of the system. Solving Schrödinger's equation gives the possible
states of the system and provides thus the answer to a particular question about the behaviour of the
system.

3



3 Model of the Electrostatic Force

3.1 The Mathematical Description of Two-State Systems

The main point of the model should be introduced by using a quantum mechanical two-state system,
which can be described in the following way:

The two base states |1⟩ and |2⟩ initially represent the system. The Hamiltonian, which is in this
case a 2-by-2 matrix, describes the energy properties of the system and is given by

Hij =

(
H11 H12

H21 H22

)
(1)

Knowing the matrix elements of the Hamiltonian allows to solve the system and to get a description
of its properties by applying Schrödinger's equation:

iℏ
dCi(t)

dt
=
∑
j

Hij(t)Cj(t) (2)

Ci(t) and Cj(t) are the amplitudes ⟨i|ψ⟩ and ⟨j|ψ⟩ for the system in state |ψ⟩ to be in states |i⟩ and
|j⟩ respectively, where i and j can take the values 1 and 2 in a two-state system.[3]

3.2 Electron - Electron Interaction

According to the Standard Model of particle physics, the electrostatic interaction between charged
particles is due to the exchange of a virtual photon.

The particles may be given a special property which determines whether they can absorb (a) or
emit (e) a virtual photon. Suppose there are two electrons, one in state a and the other in state e.
When the second one emits a virtual photon, it turns into state a while the other one, which absorbs
it, turns into state e. This system can be described in terms of a two-state system with the following
base states, where the �rst letter stands for the state of the �rst electron and the second for the other
one:

|1⟩ = |a; e⟩
|2⟩ = |e; a⟩

(3)

The elements of the Hamiltonian can be found as follows: If no exchange of a virtual photon were
possible, both H21 and H12 would be 0 and H11 and H22 would correspond to the stationary state
energies E1 and E2 respectively. Since the system is symmetric, E1 = E2 = E0.

However, the possibility of a particle exchange is given and so, H21 and H12 di�er from 0. Again
by symmetry, H21 and H12 are both equal to the same value A which is the amplitude to make a
transition. The Hamiltonian is then given by:

Hij =

(
E0 A
A E0

)
(4)
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Applying Eq.(2) leads to a system of two di�erential equations describing the time variation of C1(t)
and C2(t):


iℏ
dC1

dt
= E0C1 +AC2

iℏ
dC2

dt
= E0C2 +AC1

(5)

By adding and subtracting both equations, one �nds:

{
C1 + C2 = ae−(i/ℏ)(E0+A)t

C1 − C2 = be−(i/ℏ)(E0−A)t
(6)

Where a and b are constants. C1(t) and C2(t) then become:


C1(t) =

a

2
e−(i/ℏ)(E0+A)t +

b

2
e−(i/ℏ)(E0−A)t

C2(t) =
a

2
e−(i/ℏ)(E0+A)t − b

2
e−(i/ℏ)(E0−A)t

(7)

The expressions for C1(t) and C2(t) show that a system which is initially in state |1⟩ (a = b = 1), for
instance, starts oscillating between states |1⟩ and |2⟩, which means that virtual photons are exchanged

in this model.[3]

The study of the repulsive force between both negatively charged particles requires, however, to de-
termine the allowed energy states for the system. These correspond to the energies of its stationary
states |I⟩ and |II⟩. From Eq.(6), it follows that taking the sum and the di�erence of C1 and C2

gives stationary states because the absolute squares of these linear combinations, which represent the
probability for being in these states, are independent of time since the absolute square of the pure
imaginary exponential function is equal to 1.

Let |I⟩ = 1√
2
(|1⟩ + |2⟩) and |II⟩ = 1√

2
(|1⟩ − |2⟩) where the 1√

2
factors are necessary for reasons of

normalization. The energies of |I⟩ and |II⟩ are then equal to EI = E0 + A and EII = E0 − A. By
taking into account that photons have no rest mass, it can be shown that the exchange amplitude A
is inversely proportional to the distance r which separates both particles, without referring to classical
physics (see Appendix A):

A ∝ 1

|r|
(8)

The force between the two electrons is equal to the negative derivative of the potential energy of the
system with respect to their separation r. Since E0 doesn't change as a function of r, there is only
the A term left, whose derivative is proportional to 1/r2. This is as it should be because the Coulomb

force has the same r-dependence as well.[4]
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However, the model makes two predictions, one with positive and one with negative sign of A. Obvi-
ously, since A is positive, only the energy of state |I⟩ can �t the observation that two electrons repel
each other, because EI = E0 +A goes to in�nity for r → 0, while it approaches E0 for a large r.

In fact, by comparing EI to the expression derived from Coulomb's law, it turns out that the co-
e�cient of proportionality has to be equal to |q1q2|

4πϵ0
= ke|q1q2| ≈ 9 · 109|q1q2|Nm2

C2 (q1 and q2 are the
charges of the particles)

4 Interaction between Three Electrons

4.1 Equilateral Triangle

As a �rst application of the model, a system consisting of three electrons put at equal distances of each
other so that they form an equilateral triangle may be studied.

r

r r

− −

−

A

AA

Figure 1: Three electrons at equal distances r from each other; A is the amplitude for the exchange of a
virtual photon

Excluding the stationary states in which the three electrons are all either in state a or e leaves six
di�erent system states of the system consisting of the three electrons:

|1⟩ = |a; e; e⟩
|2⟩ = |e; a; e⟩
|3⟩ = |e; e; a⟩
|4⟩ = |e; a; a⟩
|5⟩ = |a; e; a⟩
|6⟩ = |a; a; e⟩

(9)

Generally a 6-by-6 matrix is necessary to describe such a system. However, it should be noticed that,
according to the model, there is no possibility for the system to go from one of the �rst three states
into one of the three other states because an electron can absorb or emit no more than one single
virtual photon at once.
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Therefore, the system can be described in terms of two independent three-state systems. Both sub-
systems obey the following Hamiltonian, which can be derived using the fact that by symmetry, the
di�erent transitions between the states of each subsystem have the same amplitude A:

Hij =

E0 A A
A E0 A
A A E0

 (10)

The stationary states describing the di�erent energy levels of the system are of the form Ci(t) =

aie
−(i/ℏ)Et.[5] Putting these into Eq.(2) together with the Hamiltonian and cancelling out the common

exponential factors leads to the following set of equations:


aIE = aIE0 + aIIA+ aIIIA

aIIE = aIIE0 + aIA+ aIIIA

aIIIE = aIIIE0 + aIA+ aIIA

(11)

The allowed energy states are E = E0 + 2A for aI = aII = aIII = 1 and E = E0 − A for aI = 1,
aII = 0 and aIII = −1, for instance. As it has already been explained in the previous section, only
the solution E = E0 + 2A makes sense, since the electrons repel each other.

There is, however, a discrepancy between the prediction of this model and the classical expression
derived from Coulomb's law. As there are three pairs of electrons interacting with each other, one
would expect the energy to be equal to Ec = E0 + 3A.

Nonetheless, the energy predicted by the model has the right r-dependence (r has the right expo-
nent) and varies more rapidly than in the case of two electrons repelling each other, as one would
expect.

4.2 Electrons on a Straight Line

In order to further check to which extent the model can be applied, a situation should be studied in
which symmetry is broken. Three electrons on a straight line as shown in Fig.(2) represent such a
system.

x−

x = 0

−

x = r

−

x = d

A′′

A A′

Figure 2: Three electrons on a straight line; A, A′ and A′′ are the amplitudes for the exchange of a virtual
photon

Let A be the amplitude for a virtual photon to be exchanged between the �rst and the second electron,
A′ the amplitude for an exchange between the second and the third one and �nally A′′ the amplitude
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for the exchange between the �rst and the third electron. These amplitudes are proportional to the
distance which separates the particles:

A ∝ 1

|r|
, A′ ∝ 1

|d− r|
, A′′ ∝ 1

|d|
(12)

The base states of the system are the same as those in the case of the equilateral triangle (excluding
again the stationary states in which the three electrons are all either in state a or e). The letters
represent the electrons in the same order as they are drawn in Fig.(2):

|1⟩ = |a; e; e⟩
|2⟩ = |e; a; e⟩
|3⟩ = |e; e; a⟩
|4⟩ = |e; a; a⟩
|5⟩ = |a; e; a⟩
|6⟩ = |a; a; e⟩

(13)

However, the amplitudes have changed and so, the Hamiltonian has to be changed as well. Following
the same arguments as those used in the previous section, it becomes clear that the system can again
be described by a three-state subsystem with a Hamiltonian as follows:

Hij =

E0 A A′′

A E0 A′

A′′ A′ E0

 (14)

The set of equations which describes the system is given by applying Eq.(2) and letting Ci(t) =

aie
−(i/ℏ)Et be the amplitudes for the stationary states:[5]


aIE = aIE0 + aIIA+ aIIIA

′′ (L1)

aIIE = aIIE0 + aIA+ aIIIA
′ (L2)

aIIIE = aIIIE0 + aIA
′′ + aIIA

′ (L3)

(15)

Solving these equation requires some mathematics. One approach is to �nd aI and aII in terms of aIII
using (L1) and (L2) and putting the results into (L3). Since the E0 term only represents a shift in
the de�nition of the 0-energy level, it can be taken to be equal to 0. Rearranging the terms allows to
write (L1) and (L2) as follows:

{
aIE − aIIA = aIIIA

′′

−aIA+ aIIE = aIIIA
′ (16)
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Using Cramer's Rule to solve this system requires the following determinants:

∆ =

∣∣∣∣ E −A
−A E

∣∣∣∣ = E2 −A2

∆aI =

∣∣∣∣aIIIA′′ −A
aIIIA

′ E

∣∣∣∣ = aIII(EA
′′ +AA′) (17)

∆aII =

∣∣∣∣ E aIIIA
′′

−A aIIIA
′

∣∣∣∣ = aIII(EA
′ +AA′′)

aI and aII can then be found to be given by:

aI =
∆aI
∆

= aIII
EA′′ +AA′

E2 −A2

aII =
∆aII
∆

= aIII
EA′ +AA′′

E2 −A2

(18)

Putting these into (L3) leads to the following equation (with E0 = 0):

E = A′′EA
′′ +AA′

E2 −A2
+A′EA

′ +AA′′

E2 −A2

⇔ E(E2 −A2) = EA′2 + EA′′2 + 2AA′A′′
(19)

It can be shown that this equation is coherent with the results in section 3.1 (see Appendix B).

For small values of A, A′ and A′′, 2AA′A′′ can be neglected compared to the squared terms. Then
Eq.(19) reads:

E2 = A2 +A′2 +A′′2

⇔ E = ±
√
A2 +A′2 +A′′2

(20)

Again, repulsion implies that the positive solution is the right one for the description of the interaction.
Written in terms of position and with c standing for the coe�cient of proportionality of the amplitudes,
Eq.(20) gives the following result:

E = c

√
1

r2
+

1

(d− r)2
+

1

d2
(21)
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Classically, one would expect the potential to be as follows:

Ec = c

(
1

|r|
+

1

|d− r|
+

1

|d|

)
(22)

Both E and Ec go to in�nity when r tends to 0 or to d and they approach c
|d| for large values of r.

However, in between there is some discrepancy with a relative error of f = E/Ec − 1. Fig.(3) shows
the potenial energy of the system as well as the discrepancy between both predictions. c is taken to
be equal to 1. The c cancels out in the expression for the relative error, whose maxima seem to be at
−0.4 regardless of the spacing between both �xed electrons. At in�nity, the relative error approaches
zero.

−2 −1 1 2 3

4

8

12

16

0
0

r

E

−6 −4 −2 2 4 6 8

−0.5

−0.4

−0.3

−0.2

−0.1

0.1

0
0

r
f

Figure 3: The �rst graph shows the potential energy of the system E (green) computed quantum mechanically
in terms of the a-e-model and Ec (red) computed from the classical Coulomb potential as a function of the
position r of the middle electron of Fig.(2) while the other electrons are �xed at x = 0 and x = 1 respectively.
The second graph shows the error of E with respect to Ec. The constant c is taken to be equal to 1.
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The force acting on the particles is the negative derivative of the potential energy with respect to
position. The force calculated from the quantum mechanical model can be determined as follows:

F = −c d

dr

√
1

r2
+

1

(d− r)2
+

1

d2

= −c 1

2

(
1

r2
+

1

(d− r)2
+

1

d2

)− 1
2
(
− 2

r3
− 2

(d− r)3
(−1)

)
= c

1
r3

− 1
(d−r)3√

1
r2

+ 1
(d−r)2

+ 1
d2

(23)

Using (x2)
1
2 = |x|, the classically derived force turns out to be:

Fc = −c d

dr

(
1

|r|
+

1

|d− r|
+

1

|d|

)
= −c

[
d

dr

(
r2
)− 1

2 +
d

dr

(
(d− r)2

)− 1
2

]
= −c

[
−1

2

(
r2
)− 3

2 2r − 1

2

(
(d− r)2

)− 3
2 2(d− r)(−1)

]
= c

(
r

|r|3
− d− r

|d− r|3

)
(24)

Fig.(4) shows F and Fc as well as the relative error of F with respect to Fc de�ned by f = F/Fc − 1.
Interestingly enough, f is equal to 0 between both �xed electrons (0 < r < d) while it tends to 1 for
large absolute values of r. For every d, f seems to be equal to −0.4, for instance, at r = 2d or at
r = −d. As before, f is independent of c.

−2 −1 1 2 3

−16

−12

−8

−4

4

8

12

16

0
0

r

F
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−2 −1 1 2 3

−1

−0.5

0
0

rf

Figure 4: The �rst graph shows the force on the middle electron of Fig.(2) F (green) computed quantum
mechanically in terms of the a-e-model and Fc (red) computed from the classical Coulomb potential as a function
of its position r while the other electrons are �xed at x = 0 and x = 1 respectively. The second graph shows the
error of F with respect to Fc. The constant c is taken to be equal to 1.

5 Interaction between Particles of Opposite Charges

To include the interaction between particles of opposite charges, the model has to be extended.

One may assume that each particle has two sets of a and e properties. There is one set for at-
tractive interaction and one set for repulsive interaction. The sign of the amplitudes for an exchange
of a virtual photon between oppositely charged particles is opposite to the case of repulsive interaction
as well. Systems including particles which are either negatively or positively charged can then be
described in terms of the superposition of both e�ects.

x−

x = 0

−

x = r

+

x = d

−A′′

A −A′

Figure 5: Two electrons and a proton on a straight line; A, −A′ and −A′′ are the amplitudes for an exchange
of a virtual photon.

The system in Fig.(5) consists of two electrons and a proton on a straight line. The amplitudes for an
exchange of a virtual photon between the electrons and the proton are negative while the amplitude for
an exchange between both electrons is positive. A, A′ and A′′ are still given by the following relations,
where c is again a constant of proportionality:

A =
c

|r|
, A′ =

c

|d− r|
, A′′ =

c

|d|
(25)

There are di�erent subsystems which give the same (or other, for this purpose irrelevant) solutions,
as discussed earlier. One of these subsystems can be described in terms of the following nine base
states:
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|1⟩ = |(a, e, e); (a, e, e)⟩
|2⟩ = |(a, e, e); (e, a, e)⟩
|3⟩ = |(a, e, e); (e, e, a)⟩
|4⟩ = |(e, a, e); (a, e, e)⟩
|5⟩ = |(e, a, e); (e, a, e)⟩
|6⟩ = |(e, a, e); (e, e, a)⟩
|7⟩ = |(e, e, a); (a, e, e)⟩
|8⟩ = |(e, e, a); (e, a, e)⟩
|9⟩ = |(e, e, a); (e, e, a)⟩

(26)

The three letters between the �rst brackets represent attractive interaction while those between the
second set of brackets stand for repulsive interaction.

To describe such a system, a 9-by-9 Hamiltonian is required. However, quite a number of its ele-
ments are equal to 0 because some transitions like |1⟩ to |3⟩ are impossible. Such a transition would
describe the exchange of a virtual photon due to repulsive interaction while an electron and a proton
are involved. The total amplitude for a transition in which the two types of interactions are involved
is the product of the amplitudes for both exchanges considered separately. Applying these principles
gives the following Hamiltonian:

Hij =



E0 A 0 0 0 0 −A′′ −A′′A 0
A E0 0 0 0 0 −A′′A −A′′ 0
0 0 E0 0 0 0 0 0 −A′′

0 0 0 E0 A 0 −A′ −A′A 0
0 0 0 A E0 0 −A′A −A′ 0
0 0 0 0 0 E0 0 0 −A′

−A′′ −A′′A 0 −A′ −A′A 0 E0 A 0
−A′′A −A′′ 0 −A′A −A′ 0 A E0 0

0 0 −A′′ 0 0 −A′ 0 0 E0


(27)

The set of equations which describe the system is given by applying Eq.(2) and letting Ci(t) =

aie
−(i/ℏ)Et be the amplitudes for the stationary states (E0 is taken to be equal to 0):[5]



a1E = a2A− a7A
′′ − a8A

′′A (L1)

a2E = a1A− a7A
′′A− a8A

′′ (L2)

a3E = −a9A′′ (L3)

a4E = a5A− a7A
′ − a8A

′A (L4)

a5E = a4A− a7A
′A− a8A

′ (L5)

a6E = −a9A′ (L6)

a7E = −a1A′′ − a2A
′′A− a4A

′ − a5A
′A+ a8A (L7)

a8E = −a1A′′A− a2A
′′ − a4A

′A− a5A
′ + a7A (L8)

a9E = −a3A′′ − a6A
′ (L9)

(28)
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There are multiple solutions which �t those equations, but which don't give the right potential. How-
ever, at least one solution does. It can be found by taking the values of ai as follows:

a1 = a2 = a′

a4 = a5 = a′′

a7 = a8 = a′′′

a3 = a6 = a9 = 0

(29)

Putting these coe�cients into Eq.(28) gives a set of three equations:


a′E = a′A− a′′′A′′(1 +A) (L′)

a′′E = a′′A− a′′′A′(1 +A) (L′′)

a′′′E = −a′A′′(1 +A)− a′′A′(1 +A) + a′′′A (L′′′)

(30)

(L′) is equivalent to a′ = −a′′′A
′′(1+A)
E−A while (L′′) is equivalent to a′′ = −a′′′A

′(1+A)
E−A . (L′′′) then gives

the following equation:

E =
A′′(1 +A)

E −A
A′′(1 +A) +

A′(1 +A)

E −A
A′(1 +A) +A

⇔ E2 − EA = (A′′(1 +A))2 + (A′(1 +A))2 + EA−A2

⇔ 0 = E2 − 2EA−
[
(1 +A)2(A′2 +A′′2)−A2

] (31)

This is an equation of the second degree which has two solutions. For some reason, the solution with
the negative sign describes the system in this case:

E =
2A−

√
4A2 + 4 [(1 +A)2(A′2 +A′′2)−A2]

2

⇔ E = A−
√

(1 +A)2(A′2 +A′′2)

⇔ E = A− |1 +A|
√
A′2 +A′′2

(32)

Replacing the amplitudes in Eq.(32) by Eq.(25) gives the solution for the potential energy of the
system:

E =
c

|r|
−
∣∣∣∣1 + c

|r|

∣∣∣∣
√(

c

d− r

)2

+
( c
d

)2
(33)
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Classically, one would expect the following expression:

Ec = c

(
1

|r|
− 1

|d− r|
− 1

|d|

)
(34)

For values of c higher than 1, the second term of Eq.(33) becomes predominant, which doesn't �t

the classical solution. However, as already described, c is equal to 9 · 109|q1q2|Nm2

C2 with q1 = q2 =
1.602 · 10−19C in this case so that it becomes very small. Fig.(6) shows E and Ec for d = 1 and
c = 0.1. The energy goes to −∞ at x = 1 where the proton is located, which is sensible since the
proton attracts the electron.

−2 −1 1 2 3

−1.5

−1

−0.5

0.5

1

1.5

0
0

r

E

Figure 6: The graph shows the potential energy of the system E (green) computed quantum mechanically
in terms of the a-e-model and Ec (red) computed from the classical Coulomb potential as a function of the
position r of the middle electron of Fig.(5) while the other electron and the proton are �xed at x = 0 and x = 1
respectively. The constant c is taken to be equal to 0.1.

In analogy to Eq.(24), the classical expectation for the force reads as follows:

Fc = c

(
r

|r|3
+

d− r

|d− r|3

)
(35)
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Since c is very small
∣∣∣1 + c

|r|

∣∣∣ may be taken equal to 1 in Eq.(33). Then the force predicted by the

quantum mechanical model can be calculated in the following way:

F = − d

dr

 c

|r|
−

√(
c

d− r

)2

+
( c
d

)2
= c

− d

dr

1

|r|
+

d

dr

√(
1

d− r

)2

+

(
1

d

)2


= c

(
r

|r|3
+

1

2

(
1

(d− r)2
+

1

d2

)− 1
2
(
− 2

(d− r)3
(−1)

))

= c

 r

|r|3
+

1

(d− r)3
√

1
(d−r)2

+ 1
d2



(36)

Fig.(7) shows F and Fc again for d = 1 and c = 0.1. The relative error between both predictions is very
small between r = 0 and r = d and takes on large values when the force goes to 0. It is independent
of the constant c.
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0
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Figure 7: The graph shows the force on the middle electron of Fig.(5) F (green) computed quantum mechan-
ically in terms of the a-e-model and Fc (red) computed from the classical Coulomb potential as a function of its
position r while the other electron and the proton are �xed at x = 0 and x = 1 respectively. The constant c is
taken to be equal to 0.1.
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6 Conclusion

On the whole, the model describing the electrostatic force developed in the course of this work allows
to �nd the right dependence of the potential energies of the systems which were studied and of the
forces acting on one of their particles. Compared to classical physics, however, the predictions are
accurate only for some ranges of values of r.

One reason for these inaccuracies might be the fact that E0 is considered to be the same for every state
of the system, which might not be entirely true because of asymmetry of the location of the particles.
Futhermore this simpli�ed model assumes that the amplitude for the exchange of a virtual photon only
depends on the separation between the involved pair of particles, while it might be in�uenced by the
current states of the other particles which are part of the system. So the model works with a kind of
"Independent Particle Approximation".[6]

To conclude, it is interesting to see that basic discrete-state theory can be used to get at least a
qualitative description of the electrostatic force between charged particles. The two state model based
on the assumption of the a and e characteristics of charged particles allows therefore to describe the
electrostatic interaction of charged particles in an inspiringly fundamental manner.

Even if this model can by no means be compared to the sophisticated theory of Quantum Electrody-
namics, it is interesting to see and to explore how much is already contained in the basics of early
quantum mechanics.
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8 Appendix A: Inverse Proportionality of A to the Separation be-

tween the Particles

In section 2.2, it is stated that it can be shown that the amplitude A for the exchange of a virtual
photon is inversely proportional to 1

r . Following arguments very similar to those presented in section

10.2 of Volume III of The Feynman Lectures on Physics leads to the result stated above[4]:

The exchange of a virtual photon between two electrons can be described by the following equa-
tions:

e− → e− + γ

e− + γ → e−
(37)

The energy of the electrons stays constant during this process. This means that the virtual photon is
given no energy (E = 0). Since photons have no rest mass (mγ = 0), the equation for the energy of a
particle therefore implies that the momentum of the photon is zero:

E2 = p2c2 +m2
γc

4

⇔ p = 0
(38)

The amplitude to reach position r2 from position r1 for a free particle of de�nite energy follows the
relation below:[2]

A = ⟨r2|r1⟩ ∝
eip·r12/ℏ

r12
(39)

Putting p = 0 into this expression for A �nally leads to:

A ∝ 1

r12
(r12 positive) (40)

9 Appendix B: Coherence of the Model

Even if a system of three electrons on a straight line was analyzed in section 3.2, this arrangement does
not directly a�ect the equations. In fact, only the amplitudes, which depend on the separation between
the particles, change them. Taking the equations of section 3.2 and assuming that the separation
between each pair of particles is the same (the amplitudes for the exchange of a virtual photon are
then equal) leads therefore again to the system of electrons located on the corners of an equilateral
triangle.
Putting A = A′ = A′′ into Eq.(19) leads to the following expression:

E(E2 −A2) = 2EA2 + 2A3

⇔ E3 − 3EA2 − 2A3 = 0
(41)
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The mathematical solutions for the system of the equilateral triangle found in section 3.1 are E =
E0 + 2A and E = E0 − A. With the adjustment of the zero-energy-level E0 = 0 in section 3.2, the
solutions become E = 2A and E = −A.

Putting these into Eq.(41) shows that the solutions of section 3.1 verify the equations of section 3.2
for the case of equal separation:

(−A)3 − 3(−A)A2 − 2A3 !
= 0

(2A)3 − 3(2A)A2 − 2A3 !
= 0

(42)

This shows that the calculations of both sections are coherent.
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【評語】160035  

This theoretical project aims to examine whether the 

classical electric forces between two or three stationary 

charges could be derived. By assuming a virtual photon is 

exchanged between charges oscillating between two degenerate 

single particle states, the author has derived a good 

approximated result. It provides a simple way to understand the 

effect of virtual photon. Maybe the author could think about the 

relationship of his virtual photon coupling with the gauge field. 
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