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[ am a twelfth-grade student from Kaohsiung Municipal Kaohsiung
Senior High School, and I’ m thrilled to present my research on the
curling and uncurling behavior of tracing paper when exposed to water.
This study combines theoretical analysis and hands-on experiments,
revealing that while Fick’ s diffusion model effectively explains the
uncurling phase under steady water content, i1t underestimates the
dynamic changes in diffusivity during the initial curling stage. To
address this, [ applied Richards’ equation to capture capillary
action within the paper’ s porous structure, incorporating a finite
difference approximation with Robin boundary conditions. By validating
experimental data, [ discovered key factors affecting curling behavior,
including paper thickness, temperature, and salt concentration. I am
deeply grateful to my teacher, Mr. Lu-Cheng Liang, for his unwavering
guidance, and to my discussion partner, Jun-Yi Lin from Taipei
Municipal Chien Kuo High School. I hope to inspire others to explore
everyday phenomena through the lens of science.
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Abstract

This research presents a novel approach to understanding the curling and
uncurling behavior of tracing paper when exposed to water, identifying
limitations in traditional diffusion-based models like Fick’s second law. While
Fick's model adequately represents the uncurling phase, where water content is
stable, it falls short during the curling phase due to its inability to account for
dynamic changes in diffusivity. Our study identifies capillary action, modeled
through Richards' equation, as the primary mechanism in the curling phase,
where diffusivity varies with water content due to capillary-driven water
movement through the paper's porous structure. Experimental data align well
with the Richards' equation model, highlighting a saturation point where
curvature peaks, governed by evaporation's impact on moisture balance.

To simulate this phenomenon, we developed a finite difference approximation
scheme based on Richards' equation, discretizing the spatial domain for detailed
control over moisture dynamics and incorporating the Robin boundary condition
with virtual points. This approach, combined with evaporation considerations,
produces simulation results consistent with observed data, emphasizing
evaporation’s role in steady-state moisture gradients and the subsequent
deformation mechanics.

Our findings further reveal that factors like paper thickness, temperature, and
salt concentration significantly influence curling behavior. We established linear
correlations between peak time and thickness reciprocal, as well as between peak
curvature and thickness squared, supporting theoretical models. Temperature
affects both peak curvature and curling rate due to changes in viscosity and
surface tension, and higher temperatures prevent full uncurling due to sustained
evaporation effects. Increased salt concentration heightens peak curvature
without altering expansion ratio, suggesting additional variables in play.
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I. Introduction

Motivation and Research Purpose

When a tracing paper is gently placed on the surface of water, it rapidly curls into a scroll
and then slowly uncurls. This phenomenon is significant as it provides insights into the
wetting mechanism of fiber porous materials, particularly tracing paper. This investiga-
tion is crucial for designing bio-inspired systems, such as adaptive grippers that mimic
natural movements, and for developing soft materials with, moisture-responsive behaviors
ideal for applications in soft robotics. Tracing paper, like other fibrous materials, is mainly
made of cellulose fibers and has a porous structure. The wetting mechanism in such ma-
terials typically involves two key processes: pore sorption and fiber sorption. However
in previous studies, tracing paper is hydrophobic, so fiber sorption is not the main pro-
cess here. Moreover, due to its low porosity, the pore sorption mechanism becomes the
dominant factor.

In our literature review, we referenced two key studies on the curling behavior of
tracing paper. The first study by [7] used the Washburn equation and molecular diffusion
models, but both showed deviations on mechanisms and both partially fitted data. Despite
these limitations, the study provided valuable insight, particularly in showing that Fick’s
law applies during the uncurling phase, assuming constant diffusivity. The second study
[6] used Richard’s Equation to model capillary action, fully fitting the data for both
curling and uncurling phases, as assuming diffusivity changes according to water content.
However. In our case, this doesn’t exist and only fitted the curling phase. Thus in
this investigation, we aim to understand the complete mechanism and to better explain

quantitative and qualitative. Thus, moreover we prospect to explain the deviations of the

paper.



Two Referenced Paper Discussed the Phenomenon
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Figure 1: Comparative Analysis of Models Describing Wetting-Induced Curling
in Tracing Paper

The schematic presents a comparative analysis of models describing the wetting-induced curl-
ing behavior of tracing paper, underscoring specific limitations that call for a more integrated
approach. Previous studies have utilized the Washburn equation, Fick’s law, and Richards’ equa-
tion to model different phases of this phenomenon, each with varying levels of applicability.
From the first paper, the Washburn equation, which describes capillary-driven fluid movement,
aligns with approximately 40% of our data, capturing an intermediate phase where the curvature
approaches its peak and transitions to the uncurling phase. Although it partially describes
this transition, its assumptions, such as binary distribution, introduce deviations, limiting its
relevance to the complete curling and uncurling dynamics.

Fick’s law, although limited in explaining the initial curling mechanism due to its incorrect
diffusion-based assumptions, effectively models the uncurling phase. This observation is math-
ematically valid, as Fick’s law applies to diffusion dynamics in the uncurling process. Initially,
the presence of surfactants suggested that Fick’s law might govern the uncurling mechanism, as
substituting water with soapy water showed no change in curvature. However, since surfactant
molecules cannot penetrate cellulose surfaces in aqueous solutions (Penfold et al., 2007), they
do not affect the water entering the paper. Thus, capillary effects remain significant and should
not be disregarded. Fick’s law is applied to the uncurling phase, effectively modeling diffusion
dynamics under the assumption of constant diffusivity.

In the second paper, Richards’ equation is shown to comprehensively fit the entire curling pro-
cess, effectively modeling a gradual water-air transition and capturing the non-sharp boundary
observed. However, our experiments reveal that changing temperature impacts the final cur-
vature, indicating that the system eventually reaches a steady state with saturated diffusivity,
leading to a stable peak curvature. At this steady state, Richards’ equation essentially becomes
a special case of Fick’s law with constant, saturated diffusivity. Thus, Richards’ equation is best
suited to model the curling phase but requires consideration of a saturated diffusivity for full
accuracy in describing the transition into a steady state.

By addressing these mechanistic gaps, our study aims to provide a more comprehensive under-
standing of wetting-induced curling in fibrous materials.



Research Framework

This research paper focuses on two insights. First, we clarify the mechanism of wetting-
induced curling behavior in tracing paper both qualitatively and quantitatively, providing
our own explanations. Second, we discuss the dependencies of various relevant parameters,
offering key insights based on our findings. Specifically, we explore the linear relationship
between thickness and two crucial parameters—"Peak Time" and "Peak Curvature." For
temperature dependence, we clarify deviations in the pore distribution fitting results, con-
tradicted to cylindrical pores approximation, and address the observed linear relationship
between maximum diffusivity and saturated diffusivity to the surface tension-viscosity
ratio as temperature increases. Additionally, we discuss how temperature influences peak
curvature, curling speed, and final curvature, highlighting the evaporation factor in the
latter. Finally, we examine the impact of salt concentration on diffusivity and surface
tension-viscosity ratio, identifying a linear relationship between these factors. We also
find that increasing salt concentration leads to a rise in peak curvature under constant
thickness, while the expansion ratio remains unchanged. Since peak curvature is theoret-
ically related only to these two parameters, this observation suggests that other factors

might influence peak curvature, warranting further investigation.

II. Research Methodology

(I.) Experimental Setup
(EAMHR)

Tracing
Paper

Nylon

Figure 2: Here we use a container to hold the water. We suspend a nylon string directly
on the surface of water to pin the tracing paper in place. When putting tracing paper,
we lift the nylon string above the water and use tweezers to place the tracing paper under
the string.



Preliminary Observation:

When the tracing paper was placed on the water’s surface, it was observed that the paper
initially curled into a cylindrical shape before gradually and slowly uncurling. To better
understand this phenomenon, the curvature of the tracing paper was analyzed over time.

Curvature vs. Time
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The curvature of tracing paper interacting with water was analyzed using a slow-
motion camera positioned parallel to the cylindrical shapes formed during curling. Gaus-
sian curvature (K = ki - k2) was used to describe the surface’s curvature, where k; and
ko are the principal curvatures. As the paper curled into a cylindrical shape, it exhibited
Zero Gauss Curvature because one curvature was non-zero (k; # 0), while the perpendic-
ular curvature was zero (k2 = 0). This results in a developable surface, characteristic of
cylindrical shapes

(II.)Cylinders Formation

Depending on different initial conditions, the geometry the tracing paper will produce
vary. If the CD length is less than the circumference produced by the peak curvature
reached, then the two ends of tracing paper will not touch, which we call the 0-scroll.
This case is the main phenomenon of study, since it is minimally affected by factors such
as friction. If the CD length is bigger than the threshold, then it will curl into a cylindrical
shape, dubbed 1-scroll. Whether it sinks at the peak curvature or not depends on whether
the gravity exceeds surface surface tension, and they are in turn related to the ratio of MD
and CD length and the peak curvature. If the paper is not released perfectly flat, then
the two ends will curl at a different time and amount, thus one end will curl and touch the

water, producing a scroll in opposite direction, and finally sink and uncurl underwater. If



the paper is released flat enough such that the two ends collide and force each other into

cylinders, it will form two cylinders, which we call the 2-scroll.

Boundary Condition

CD length < 2nr Reason : MD Length

]
Zero Cylinder Two Cylinders : One Cylinder

Main Case we study

(FAER)

Zero Cylinder One Cylinder Two Cylinders

Figure 3: Cylinder Formaiton (AL

[Failure Case (Sinking) ]
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Figure 4: Failure case

(IT1.) Curling Direction-Fiber Orientation

In order to use a string to put the paper in place, we shall first predict in what axis the
paper will curl; otherwise, the string may affect its curling motion.We define the curling
direction as the axis of the cylinder formed by the tracing paper. It is seen by cutting
the piece of paper at different angles that the axis of scrolling is always parallel to one of
the original edges. (observation, Side A,B C will describe in Figure Two) By observing



the expansion of a piece of fully wet paper, we see that it displays an apparent anisotropy
in two perpendicular directions parallel to its original edges. The direction with higher
expansion corresponds to the Cross Direction (CD), which is perpendicular to the fiber
orientation direction, Machine Direction (MD) DeRuvo1973.) These terms originate
from the manufacture of paper. As intuition would suggest, the height of the cylindrical
shape produced by scrolling is perpendicular to CD, indicating that the direction with
higher expansion dominates the scrolling.

+——— Side A —— —

Tracing Paper

Side B

(FABR)

Figure 5: Cut an unaltered piece of paper direct from manufacture in different angles.
Their axis of curling are all the same, parallel to the Side B. In this case, Side A corre-
sponds to CD, Side B is MD

Curvature vs. Time
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Curvature vs. Time
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Figure 6: The three graphs are that we tracking curvature of tracing paper in AB,C
directions under different thickness which in Fig.6 mentioned. From the experimental
result of curvature to time we can found out two key insights. Firstly, from the three
graph we all can found out that when thickness increases peak curvature decreases, peak
time increases, which will be qualitatively explained in parameters discussion further.
Secondly, from the three graphs we can also find that curvature with same thickness in

different angle(A,B,C) is different, since tracing paper have been cut in different angle,
the MD/CD length differs.
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Experimental Hygroexpapsion
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Figure 7: The saturated expansion rate (strain) of a 10x10mm piece of paper is found. It
differs greatly in two perpendicular directions.

(IV.) Pore and Fiber Sorption Aspect-Droplet Experiment

Since tracing paper is a fibrous and porous material(celluouse fiber, we concern that the
mechanism of capillary of capillary imbibition in two aspects:

To clarify that the capillary mechanism is in the result of whether pore or fiber con-
cerns, we initially did an experiment(Droplet Experiment). Here, we use a pipetmen in
10pm amount of water(We chose such a small amount of water specifically to minimize
the influence of gravity) then drop on tracing paper, forming a droplet. Then use a digital
microscope to observe the droplet on hydrophobic and hydrophilic concerns.

When a water droplet comes into contact with tracing paper, the contact angle pro-
vides critical insight into the interaction between the water and the paper’s fiber network.
If the fibers are hydrophobic, the capillary action within the fiber web of the tracing paper
is significantly reduced. This occurs because hydrophobic fibers repel water, preventing
the liquid from infiltrating the microstructures of the paper. As a result, the typical cap-
illary forces that would otherwise draw water into the fiber network are absent, leading
to minimal or no swelling and a lack of observable wrinkling. Conversely, if the fibers are
hydrophilic, the capillary action is more pronounced, allowing water to be absorbed into
the fiber network. This absorption induces swelling as the water infiltrates and expands

the cellulose fibers, leading to noticeable wrinkling and deformation of the paper.

12
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Tracing Paper wrinkles
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Figure 10: From fig(a) we can see that the 10 um droplet under digital microscope is
hydrophobic. However, we still can see tracing paper swell after a period of time, in
fig(b) below is a 10 ml of droplet on tracing paper after time, which can better show the
description that mentioned. Also, we found out the curling direction of tracing paper
when placed on water surface is always perpendicular to the direction of the wrinkle,
which recalling to that curling direction is CD Direction that discussed further.

(FARRER)
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Figure 11: Here we use sandpaper to rub tracing paper then again drop a water droplet
diffuse after time

According to out experimental result, we qualitatively says that tracing paper is hy-
drophobic on the outer layer and hydrophilic in the inner layer.

Swelling Mechanism
Introduction

The swelling mechanism of tracing paper is a complex interplay between its hydrophobic
outer layer and hydrophilic inner layers. Initial water resistance is overcome through cap-

14



illary action, allowing water to reach the absorbent cellulose fibers beneath the surface.
This process is primarily driven by pore sorption, suggesting that while the outer layer re-
pels water, the inner structure’s hydrophilicity leads to eventual swelling. Understanding
this mechanism, particularly the role of coatings and the dual-layer structure, is essential
for applications where the moisture resistance and swelling behavior of tracing paper are
critical factors.

Observations and Hydrophobic Nature of Tracing Paper

In recent droplet experiments conducted on tracing paper, a unique swelling mechanism
was observed that did not align with typical water absorption behaviors seen in other
cellulose-based papers. Both vertical and perpendicular applications of water droplets
revealed that the water front did not diffuse after a prolonged period, indicating a distinct
interaction between the tracing paper’s surface and water. This behavior highlights the
hydrophobic characteristics of the outer layer of tracing paper, which plays a crucial role
in its initial resistance to swelling.

The hydrophobicity of tracing paper is primarily due to its outer layer, which has
been treated or coated to repel water. Hydrophobic surfaces typically resist water pene-
tration, leading to delayed or minimal swelling. This behavior can be explained through
the mechanism of hydrogen bonding, which governs the interaction between water and
cellulose fibers. According to Klemm et al. (1998), the hydrogen bonds within cellulose
fibers are crucial in determining water absorption properties. In cellulose, the hydroxyl
groups form hydrogen bonds with water molecules, facilitating water absorption and sub-
sequent swelling. However, when a hydrophobic coating is applied to the surface, these
interactions are significantly hindered, preventing immediate swelling upon contact with

water.

Inner Hydrophilic Layer and Capillary Action

Despite the initial resistance due to hydrophobicity, tracing paper does eventually swell
over time, indicating that its inner layers are hydrophilic. This delayed swelling suggests
that water penetration is not primarily due to the fibers themselves but rather through
capillary action within the pores of the paper.

This capillary action, driven by the pore sorption mechanism described by the Richard-
son equation, allows water to be drawn into the microscopic pores of the paper, bypassing
the hydrophobic barrier. Initially, it was assumed that the swelling mechanism was dom-
inated by fiber sorption, where water enters the fiber through parallel cylindrical capil-

laries, leading to swelling. However, since tracing paper exhibits hydrophobic properties,

15



this fiber sorption mechanism appears insufficient. The hydrophobic nature suggests that
while the outer layer of the paper repels water, the inner layers may possess hydrophilic
characteristics. As water penetrates through capillary action into these inner layers, it

causes the cellulose fibers to absorb water, resulting in swelling.

Coating and Hydrophobicity Considerations

The hydrophobic nature of the outer layer in tracing paper is often a result of specific
treatments or coatings applied during its manufacturing. According to Kjellgren (2007),
the barrier properties of greaseproof paper, including tracing paper, are significantly in-
fluenced by polymer coatings applied to enhance their resistance to moisture and grease.
These coatings contribute to the paper’s hydrophobic characteristics, preventing water
from penetrating the surface and thus delaying swelling. However, once the water over-
comes this barrier, likely through capillary action into the pores, it reaches the inner,

hydrophilic layers, where it can cause swelling.

ITI. Qualitative and Quantitative

(I.)Mechanism Explanation
Diffusion Model Discussion

It is argued that capillary effect is not involved by showing that surfactants does not affect
the curvature (Reyssat and Mahadevan 2011). However, it should be noted that surfactant
molecules cannot penetrate cellulose surfaces in aqueous solutions (Penfold et al. 2007).
Since surfactant molecules cannot affect the water that goes into the paper, the capillary
effects must not be ruled out. Moreover, we could see later (9) that the mathematical
representation of Fick’s law is merely a limiting case of the Richards equation. This
suggests a broader view be obtained when capillary effect is considered, rather than

assuming a limiting case.

Capillary Model Discussion

The capillary model proposed by (Washburn 1921) is well-known and is applicable to
many cases of porous materials. However, (Reyssat and Mahadevan 2011) proposed that
this model failed to account for the whole phenomenon. Literature (Huinink, Ruijten,
and Arends 2016; Perez-Cruz, Stiharu, and Dominguez-Gonzalez 2017) shows that a key
assumption of the Washburn law is the binary distribution of water content in a porous

media, and we think this is why the model fails to explain the results. To improve on

16



this, (Huinink, Ruijten, and Arends 2016) proposed a model that accounts for the gradual

transition of water and air regime, allowing non-sharp boundary of water and air.

To begin the discussion of capillary model, describing how water moves in paper is
critical. To quantitatively describe how much water is in the paper at a specific location
z and time t, we follow (Huinink, Ruijten, and Arends 2016)volumetric water content as
the ratio of water and the total volume,

We define the volumetric water content as the ratio of water and the total volume

thebibliography.

= 0 )
VHZO + V;:ellulose

(EAER)

Figure 12: The coordinate axis of the paper. The origin of z axis is set at the water
surface, and the direction is perpendicular to local tangent plane of paper.

Here, Fig. shows that the water content is dependent of z, but not in the x and y axis
of paper because of symmetry. Water content is seen to linearly increase the strain of
paper without producing recovering stress. According to Nissan1976, Young’s modulus
decreases exponentially with volumetric water content. The decay coefficient may be

different for various materials, and it is fitted in our case to be -24.32.

E(0) = Elge—24320 (2)

By capillary reasoning, Richards equation can be used to model water penetration through

porous media Huinink2016.

do d ([, df
azma@aﬂ 3)

in which Dy is called “diffusivity” for convenience. It should be noted that D, is of

17



capillary nature, and there is no diffusion involved. The exponent n takes a value of,

2\
n=1—+—7 (4)

Where A is the pore distribution index Huinink2016, which is smaller when the pore

sizes are near, we arrive that,

1
D:DOH”, n:2+x (5)

Dy can also be written explicitly,when cylendrical pores is assumed

__ ycosar
Do="15 (6)

When trying to fit the experimental data, (Perez-Cruz, Stiharu, and Dominguez-Gonzalez

2017) uses an exponential value of 1.1, which is contradictory against what (Huinink,
Ruijten, and Arends 2016) had proposed. We think it may illuminate the fact that the

assumption of cylindrical pore does not apply.

Richard’s Derivation

The path of Huinink2016 would be followed to derive Richards equation. The law of

mass conservation is well-known,

00  Oq
%= oz (7)
Since paper is a porous media, Darcy’s law applies,
0 _ 0 (KO (90) , .
ot Oz ( 7 ( oz | P9 (®)

Where k is the permeability involved in Darcy’s law, p is the liquid viscosity, p is the
pressure in the pore, p is the liquid density, g is the gravitational acceleration, 2 is the

unit vector in the direction of gravity. It is known that the pressure can be written as

p=po — pe(0) 9)

Where pg is the equilibrium pressure of liquid and air, p. is the pressure provided by

capillary action. Rewriting the equation and ignoring gravity,

18



Packing the coefficients,

00 0 00
With the value of D given by,
k Op.
D=—— 12
00 (12)

Given the simplified Brooks-Corey relationship,
Pe(0) = P>,  k(0) = Emaxd>*3 (13)

Mere Limiting Case-Diffusive Mathematical Formula

It is seen now that the diffusive mathematical formula(Fick’s law) can be seen as a mere
limiting case of the Richards equation (10) at late time, when the water content is close
to saturation everywhere.
a0 D 0%6
E - satﬁa

The boundary condition at the bottom (z=0) states that paper remain saturated in con-

Dy, = Dobr, (14)

sat

tact with water; at the top there may be effects of evaporation, which is not considered
significant given the time duration of the problem. However, we consider it critical as it

can account for the deviation for the uncurling phase.

db q
0(0,t) = 0,0, ——(h,t) = 15
0,1) = Ous - (h18) = 55 (15)
Ot = 0.33 is the saturated volumetric water content, h is the paper thickness, g is the
volumetric evaporation rate, A is the surface area of paper. 6y, is measured by weighing
the paper before and after dipping in water, and converted to volumetric ratio by density

of water and paper, both measured in a short enough duration of time.
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Figure 13: The geometry of curling paper. (RAER)

For quantitative prediction of curvature, we consider the net strain (¢) and stress (o)
produced by curvature being canceled by the strain introduced by water penetration
Reyssat2011.

€ = K(z — 2,) (16)
60

€p = Gsatfat (17)

o= E(e; — €) (18)

Where & is the curvature, z is the position in the axis of paper thickness, z, is the position
of neutral layer, F is the Young’s modulus. Assuming quasi-static process, we arrive at
the prediction Reyssat2011.

L4 — Iyl
= e 1
I} — Il (19)
h h h
Iy = / Edz, I =/ Ezdz, I =/ EzZ*dz (20)
0 0 0
h h
I¢() =/ E'e¢dz, I¢1 =/ EZ€¢dZ (21)
0 0

Under this model, curvature is dictated by water content. Richards equation can only
be used to predict normalized curvature Perez-Cruz2017. We follow the path and use
only maximum curvature to adjust this. It is seen that Richards equation fits the curling
phase really well, but cannot predict the uncurling phase (Fig. 2). Since at late time

20



the diffusivity approaches a constant, we can use Fick’s law to approximate late time
behavior. We will use exponential function to approximate Fick’s law Reyssat2011,

K(t) ~ cie-%‘? (22)

Where C =~ 1.33, D is the late time diffusivity. It is seen that it fit the data nicely.
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Figure 14: Fitting of Data (FADHELHRER)

(II.) Finite Difference Method - Richards Simulation

In this work, we apply the forward difference method to calculate the solution at the next
time step. For the linear diffusion equation, the solution is considered stable when the

following condition holds:
D2At <

1
Az2 — 2
Although it is uncertain whether this stability criterion applies in the nonlinear scenario,

(23)

it serves as a useful reference point.
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Figure 15: Finite Difference Method-Forward Difference

Moving forward, we consider the Robin boundary condition. Unlike Dirichlet boundary
conditions, which are typically applied at n + 1 = N, the Robin boundary condition
requires an extension to n = N, where virtual points are introduced to simulate the

boundary condition. The Robin boundary condition can be expressed as:

00

E - = —Cg (24)

When discretized, the above boundary condition becomes:

07\["-1 - 91;\'—1 - gk (25)

2Az N

which leads to the following expression for 6%,

0% .1 = —2cAz0% + 0% _, (26)
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Figure 16: Finite Difference Method-Robin Boundary Condition(Robin BC)

This method is derived from the reference material. Now, we present the derivation of

the equation for our case, based on Richards’ equation:

00 00\* 9%

Using the forward difference scheme to approximate the time derivative % and the central

difference scheme for the spatial derivatives, we obtain:

gr+1 — gk - ok, — 0k \* 0%, — 205 + 6%
oy (n(Bpt) v (B E)) e

Rearranging this expression, for all n < N — 1 we get:

o+t = 05+ 240, (05" (

m
Az2 _(

(050 —05,) 4 05 (05, +05,) —2(6)°)  (29)

We impose the Dirichlet boundary condition at n = 0 as:

0F = 0,5 = 0.25 (30)

For the Robin boundary condition, using the virtual point relation derived earlier, we

have:
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0% ., = —2cAz0% + 0% _, (31)

Thus, at n = N, we have the following equation:

A -
05 = 05 + a0 (03)™ (

m

- (—2c028%)" + 0 (268, — 2020%) 2 (953)2)

(32)
If ¢ = 0, the Robin boundary condition reduces to a Neumann boundary condition, and

the equation simplifies to:

At m
ok = 0% + Az Do (O%)™ (205 _, — 26%) (33)
The issue with the original approximating scheme arises when the initial condition (IC)

is applied, leading to zero results. Specifically, the imposed initial condition is:

9(0, 0) = Hsat, Vz = 0,
6(z,0) =0, Vz#0.

IC:

This problem occurs due to the form of the discretized equation:

o+t = g%+ 2L p, ()™ (

m
Az2 u (

(05— 05,) 05 (O, +05) —2(6)7)  (39)

At the first time step £ = 0 and for n = 1, the stencil fails to propagate the boundary
condition outwards. Specifically, for 61, the resulting value is zero due to the initial zero
conditions at n = 1, and this pattern persists for all t > 0, leading to a failure to propagate
the boundary condition properly. To resolve this, we assume that the variation at the
boundary is small enough so that the following approximations hold:

kN
0, ~

(05, +65.,), and Oy ~6k_, (35)

DN | =

Using these assumptions, we reformulate the forward finite difference approximating
scheme for alln < N — 1 as:
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At 1 ml
on*! _ek'*'FD ( (-1 + 65 +1)) ( (e 91’:—1)2+9k (61 +605y) — 2(9ﬁ)2)

(36)
At the boundary point n = N, we have the following modified equation for n = N:
ki1 _ gk, At k \™ (onk k 27,2
Oy =0n + A_z'*’DO (6%)" (205_, + 0% (mc Az —2cAz -2)), (37)
The boundary condition remains:
05 = Ugat (38)

The initial condition is:

08 e 058'.1 Vn = O,
00 =0, Vn#0

IC:
This reformulated scheme resolves the issue of zero propagation by allowing the boundary
condition to propagate correctly into the interior points, ensuring that the boundary

effects are transmitted throughout the domain as time progresses.
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Figure 17: Richard’s Simulation-Without Evaporation
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(IV.)Parameters Discussion

From raw From analysis From fitting of From experience formula
data of raw data raw data or predetermined values Not measured
. Diffusivity of
Thickness Peak time | o ﬂintgy
Contact angle
curvature- Decay ”~ Diffusivity of
time curve coefficient uncurling
Pore size
Maximum Peak Processing flow chart for
strain curvature a data observed :
Evaporation
Pore size rate
distribution Temperature
|____factor | Surface
. tension
Final Salt
curvature concentration
Viscosity

(FARR)

Paper dimension is fixed to be 10x10mm in length and width, and 87.15um in thickness
if not specified. Paper thickness. By normalization of Richards equation, we see the time
scale is (Perez-Cruz, Stiharu, and Dominguez-Gonzalez 2017),

h2
T = 39
D0¢sat ( )
and the curvature scale is,
_ Esat
K=y (40)

By simulation methods, we can deduce that the peak time and curvature is directly

proportional to the scales,

tmaz = 0.627, K = 11K (41)
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Figure 20: Linear relationship with peak curvature and reciprocal of thickness.

100 ¢

80 |

Peak Time t,, [s]
3

40 |

20 y=0.0054x - 1.3438

4

(RADHTER L HEER)

2500 5000 7500 10000 12500 15000 17500 20000
h? [um?]

Figure 21: Linear relationship between peak time and thickness squared.

(V.)Temperature and Evaporation

Temperature itself affects a lot of factors, including Young’s modulus, surface tension,

viscosity, and evaporation rate. The absolute value of Young’s modulus does not matter,
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since we assumed a quasi-static process. For surface tension and viscosity, it is mentioned
that their ratio affects the diffusivity linearly. It is previously measured that temperature

dependence of surface tension and viscosity of water can be described by the following

) e

a=0.2358, b=1256, c=0.625, T,=647.15K, 273.01K <7 <647K

formulae:

p= Ae?/T + CT + DT?, (43)
A=186x10"" B =4209, C=0.04527, D= -3.38x10"°, 273K <T <643K

Therefore we can plot diffusivity at different temperatures against their corresponding
ratios. The linear relationship is again seen, yet an apparent transition appears in the
middle. The uncurling speed, which is approximated by Fick’s law, also has a similar
linear trend, but with no transition involved. Rising temperature also increases peak
curvature, which indicates yet another limitation of the theory. Curling speed is also

increased at high temperature, indicating the softening of paper.
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Figure 22: Linear relationship of maximum diffusivity, obtained by peak time, between
ratio of surface tension and viscosity, with a transition.
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Figure 24: Relationship between peak curvature and temperature, measured in Kelvins.
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Figure 25: Relationship between curling speed and temperature. Curling speed obtained
by averaging the derivative of curvature from start to peak time.

Moreover, it is observed that at high temperatures (50 degrees Celsius) the tracing
paper will not uncurl to zero curvature. By setting a flux boundary condition on top in
the simulation, it is seen that a constant water content difference in the top and bottom
half layer of paper is reached at late time, and therefore curvature approaches a constant.
The precise value of the evaporation rate is measured and fitted with an exponential
function. It is well-known that the steady-state solution of Fick’s law with flux boundary
conditions is linear in space, and by this distribution, the final value of curvature can be
proven to be:

€satq

Kfinal =
na, BsatADO,

which shows a linear dependence on evaporation rate. However, the experimental

(44)

results show a clear transition. We think, along with the transition previously seen, that
it is related to the pore depth viewed from the top. The evaporation rate needs to be
high enough for the water molecules to escape the deep pores. This fact is supported by
comparing the slope of the two lines. In high evaporation rates, the slope is closer to the

theory prediction, indicating less obstruction.
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Derivation of Final Curvature from Fick’s Second Law with Flux Boundary

Conditions

Fick’s Second Law in one dimension describes the diffusion of moisture through the paper:

00 020
o = Dog

where 6(z,t) is the volumetric water content at position z and time ¢, Dy is the diffusion

(45)

coefficient of water in the paper, and z is the coordinate across the paper’s thickness.
Under steady-state conditions, the moisture content does not change with time (06/0t =
0), simplifying the equation to:

@
0dz2

Integrating this equation twice with respect to z yields a linear moisture profile:

~0. (46)

0(z) = az +b, (47)

where a and b are constants determined by the boundary conditions. To solve for a and
b, we apply the following boundary conditions:
1. Saturation at the Bottom Surface (z = 0)

The bottom surface of the paper is in contact with water, so it remains saturated:

0(0) = Usat, (48)

where 6, is the saturated volumetric water content. This condition implies:

b - gsat- (49)

2.Evaporation at the Top Surface (z = h) The top surface experiences evaporation,

introducing a flux boundary condition based on Fick’s First Law:

dé q
—Dn — ——
Cdz|,_, A

where ¢ is the volumetric evaporation rate and A is the surface area of the paper. The

(50)

derivative % at z = h is equal to a, leading to:

_4a ___9
Doa—A = a ADy (51)

Substituting a and b back into the moisture profile gives:
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0(z) = — A(ll)oz + O (52)

This linear profile indicates that the moisture content decreases from the saturated value

at the bottom to a lower value at the top due to evaporation. The variation in moisture
content induces strain within the paper, as different layers swell to different extents. The
strain due to moisture content at any position z is proportional to the local moisture

content relative to saturation:

€o(2) = esat%, (53)

where €, is the strain at full saturation.
The total strain in the paper combines the mechanical strain due to bending, €.(z), and

the hygroscopic strain due to moisture, €(z):

€(2) = ex(2) — €5(2)- (54)

According to beam theory, the mechanical strain from bending is:

ex(2) = —K(z — 2zn), (55)

where k is the curvature and z, is the position of the neutral axis, assumed to be at the
mid-thickness for symmetry.

For mechanical equilibrium, the net strain gradient across the thickness must be zero:

de deg deg

EZ—KJ—E—O:KJ:—E. (56)
Differentiating the moisture-induced strain with respect to z yields:
d69 1 do 1 q
E = €satg E = _esatE_ADO . (57)
Substituting this back into the expression for curvature gives:
I ¢ q
e (_Esat asat ADO) Gt esatADO' (58)

The final expression reveals that the curvature kg, is directly proportional to the
evaporation rate ¢ and the saturated strain €, while inversely proportional to the satu-

rated water content 0., the surface area A, and the diffusion coefficient D:

_ €satq
Kfinal = gsat A DO . (59)
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Figure 28: Relationship of final curvature under different temperatures and their corres-
ponding ratio of surface tension and viscosity.

(VI.)Discussion-Salt Concentration

Salt concentration changes both viscosity and surface tension, and by assuming cylindrical
pores, formula (5), we see that the diffusivity is linearly related to the ratio % The
experimental data also supports this fact. Further investigations in contact angle may
reveal more about the average pore size and pore distribution, and how they can fix the
cylindrical pore formula, which is clearly not the case for n = 1.1. It should be noted
that the model only predicts the peak curvature is determined by expansion and thickness
alone. Nevertheless, increasing salt concentration also increases the peak curvature. This
cannot be explained by our theory alone, since salt concentration does not affect the
maximum expansion, and thickness is controlled throughout the experiment.
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37



S

® &wo
A Ecp
=8
=
o6l b
o6t A
pe)
©
| =
=
Sal
0
| ==
©
<
mz'{
o
DE . "
0 5

10 15 20 25

Concentration C,, [%]

Figure 31: Peak curvature change in salt concentration case is not due to expansion, since

(A e L #8EX)

saturated expansion rate does not change with salt concentration.

V. Conclusion

(I.) Own Mechanism Explanation
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Our research introduces a new understanding of the curling and uncurling behavior of
tracing paper when interacting with water, resolving limitations in prior models based
on Fick’s second law of diffusion. While Fick’s model adequately described the uncurling
phase, it failed to accurately capture the curling phase due to significant deviations in the
underlying mechanism. Through our investigation, we identified capillary action, more
accurately represented by Richard’s equation, as the fundamental process governing the
curling phenomenon.

During the curling phase, we observed that diffusivity is not constant but changes
dynamically in relation to the water content within the paper. This dynamic diffusivity
aligns with the capillary-driven nature of water movement through the porous structure
of tracing paper. Our experimental results demonstrated a precise fit with the theoretical
model based on Richard’s equation, confirming that diffusivity reaches a peak as the water
content becomes saturated.

As the system transitions to the uncurling phase, the water content remains saturated,
and the diffusivity stabilizes to a constant value. Under these conditions, Fick’s law
becomes mathematically applicable, and the observed exponential decay in curvature
aligns with previous literature modeling this phase using diffusion principles.

Our contribution lies in bridging the gap between observed experimental data and
the theoretical modeling of the curling phase. By incorporating the capillary mechanism
and accounting for the variable diffusivity dependent on water content, we provided a
more accurate and comprehensive model, resolving discrepancies found in prior studies
and enhancing the fundamental understanding of moisture-induced deformation in porous
materials.

At the peak curvature, it is crucial to note that saturated water content does not imply
complete pore saturation within the tracing paper. Instead, saturation signifies that water
penetration has reached a steady state where no additional water can infiltrate the pores.
This steady state is achieved even if some pores remain unfilled, primarily due to water

evaporation processes that prevent complete saturation of all available pores.

(II.) Our Simulation-Finite Difference Approximating Scheme

In this work, we have developed a novel finite difference approximation scheme to simu-
late the wetting and curling of paper, grounded in the Richards equation. By explicitly
expanding the Richards equation using the product rule, we set the foundation for a de-
tailed and controllable simulation process without reliance on commercial software. Our
approach begins with discretizing the spatial domain into N + 1 intervals and N points,
each separated by Az, allowing for precise control over spatial resolution.

For computational simplicity and efficiency, we employed a forward difference scheme.
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While recognizing that convergence criteria for linear diffusion (as described by Fick’s law)
may not directly apply to our nonlinear case, we used these criteria as a guiding reference
for selecting appropriate time and spatial steps. A significant challenge we addressed was
the implementation of the Robin boundary condition. We introduced a column of virtual
points to extend the iteration to n = N, enabling the application of central difference
approximations for spatial derivatives alongside forward differences for time steps.

An initial obstacle arose due to the imposed initial condition where the paper, except
at the water surface, was devoid of water. This led to zero propagation of moisture in the
simulation, as the approximation scheme multiplied the current water content, resulting
in a static solution over time. To overcome this, we introduced the assumption that the
spatial variation of water content is small. This critical insight allowed us to approximate
the water content at any given point using adjacent points (or a single point at the
boundary), facilitating the propagation of moisture through the paper in the simulation.

Our methodology successfully integrates the Richards equation with tailored boundary
and initial conditions to model the complex phenomena of paper wetting and curling.
The finite difference approximation scheme we developed is, to the best of our knowledge,
unprecedented in existing literature. I wrote them here. I used no commercial software to
do the simulation. Thus, this work providing a clear and controlled simulation framework
that advances the understanding of moisture dynamics in porous materials like paper.
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Qualitative analysis of water penetration into tracing paper—supported by simulations
of Richards’ equation—highlights the critical role of evaporation in the curling behavior
observed. Initially, when the tracing paper is placed on the water surface, the water
content difference between the top and bottom layers increases. This gradient leads to
differential swelling, causing the paper to curl rapidly during the initial phase.

By employing simulations of Richards’ equation both with and without the consid-
eration of evaporation, we elucidated the critical role that evaporation plays in accurately
modeling moisture dynamics and the resulting mechanical deformation of porous materi-
als.

In the simulation without evaporation, placing the tracing paper on the water
surface led to an increasing water content difference between the bottom (in contact with
water) and the top layers. This gradient induced differential swelling, causing the paper
to curl rapidly—a phase identified as the curling phase. Over time, this model predicted
that the water content difference would diminish to zero, implying full saturation of the
tracing paper and the cessation of curvature changes. However, this outcome did not
align with experimental observations, indicating that the model lacked essential factors
influencing the actual behavior.

Introducing evaporation into the Richards’ equation simulation yielded results
that more accurately reflected experimental findings. Initially, the water content differ-
ence increased similarly to the non-evaporation model, leading to rapid curling due to
differential swelling. After reaching a maximum, the water content difference began to
decrease and eventually stabilized at a constant value rather than reducing to zero. This
steady state occurred because the evaporation rate from the top layer balanced
the diffusion rate of water moving upward through the paper. The continuous
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removal of moisture from the top layer was compensated by water diffusing from the
wetter bottom layers, maintaining a constant water content difference across the paper’s
thickness.

At this late stage, Fick’s law became applicable due to the establishment of a steady-
state moisture gradient. The maintained water content difference resulted in a uniform
diffusion flux, satisfying the conditions where Fick’s law accurately describes the system’s
behavior. The tracing paper reached a form of saturated water content—not imply-
ing that all pores were fully saturated, but that the moisture distribution had reached
equilibrium given the ongoing evaporation. This mechanism explained why the curvature
decreased after reaching a maximum and then remained constant; the differential swelling
stabilized because the water content difference no longer changed significantly over time.

Our findings underscore the critical importance of considering evaporation when
modeling the moisture-induced deformation of porous materials like tracing paper. The
simulation incorporating evaporation aligned closely with experimental observations and

validated the theoretical model of curvature previously discussed.

(III.) Own Contribution-Key Parameters Discussion

Moreover, our research elucidates how key parameters depend on thickness, temperature,
and salt concentration in the wetting-induced curling behavior of tracing paper. The
geometry of curling—including the curling direction, the number of cylinders formed, and
whether the paper sinks—is influenced by factors such as anisotropy of expansion, release
angle, and the dimensions of the paper. We established a linear relationship between peak
time and the reciprocal of thickness, as well as between peak curvature and the square of
thickness, confirming theoretical predictions.

In exploring temperature dependence, an area not previously examined, we discovered
that varying temperature affects both viscosity and surface tension, thereby influencing
the diffusivity of water into the paper. Temperature also impacts peak curvature and
curling speed, both of which increase as the paper softens with rising temperatures. At
higher temperatures, the paper does not fully uncurl after reaching peak curvature due to
evaporation effects, leading to a non-zero final curvature. This underscores the significant
role of evaporation in the long-term behavior of curling, which previous studies have not
considered.

Regarding salt concentration, our experiments yielded unexpected results. While sur-
factant molecules cannot penetrate the cellulose surface and were anticipated to have
minimal effect, increasing salt concentration led to a rise in peak curvature even though

the expansion ratio remained unchanged. This suggests that factors beyond thickness
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and maximum strain influence peak curvature, indicating the need for theoretical amend-

ments.

By establishing linear relationships and identifying previously unconsidered factors

like evaporation, we contribute significant insights to the understanding of fluid dynamics

in thin porous materials, enhancing theoretical models and opening avenues for future

investigation.
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Appendix 1: Simulation Code

The following pseudocode was used to simulate the Richards’ prediction with Dirichlet

and Robin boundary conditions:

dx = 0.9
x_real = np.arange(0, length + dx, dx)

x_vec = np.arange(0, len(x_real))

dt = 0.001
t_real = np.arange(0, total_time + dt, dt)
t_vec = np.arange(0, len(t_real) - 1) # Richards’ Prediction

ul:, 0] = phi_sat
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for t in t_vec:

for x in x_vec:

if x == x_vec[0]:
continue
if x == x_vec[-1]:

ult+l, x] = ult, x] + r*xDOx(ult, x-1])**m *

(2%ult, x-1] + ult, x] * (m*c**2%dx**2 - 2%c*xdx - 2))

continue
ult+1, x] = ult, x] + r*Do*((ult, x-1] + ult, x+1]1)/2)**x(m-1) *
((m/4)*(ult, x+1] - ult, x-1])**2 +
ult, x]*(ult, x+1] + ult, x-1]) - 2*xul[t, x]**2)

# Dirichlet Boundary, Robin(n=N) Boundary, Normal iteration

r =dt / dx~2
=0.01
u = np.zeros([len(t_real), len(x_real)]) # Visualization

phi_richards = u

for t in t_vec:
phi_richards_bottom[t] = np.average(phi_richards([t, :len(x_real)//2])
phi_richards_top[t] = np.average(phi_richards[t, len(x_real)//2+1:])

Appendix 2: Finite Difference Approximation for Fick’s

Second Law

Applying the finite difference method to Eq.(14), we discretize the time and space domains

similarly as before. The time derivative is approximated using a forward difference:

00" _ ok+ — gk
|, At

and the second spatial derivative is approximated using a central difference:

(60)
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0%0(° 0k, — 205 46k
22| ~ Az? ’

n

(61)

Substituting these approximations into Eq.(14), we obtain the update formula for each
interior node (1 <n < N —1):

DAt
Az?

The boundary conditions remain the same as in the Richards’ equation simulation. At

Ortt =6k + (97I§+1 —20F + 9712—1) . (62)

n = 0, we apply the Dirichlet boundary condition:

a(l)c — Usat, (63)
and at n = N, we implement the Robin boundary condition to model evaporation:

00

il — —ch*
oz, cly. (64)

Discretizing the Robin boundary condition using a backward difference for the derivative

yields:
ok — 6% _
S AZN L= —cly, (65)
which can be rearranged to solve for 6%_;:
0%, = 0% (1 + cAz). (66)

Substituting this into the update formula for n = N:

DAt
A

Since 6%, is beyond our domain, we can assume that the flux at n = N + 1 is governed

orrt = ok + O, — 205 +65_)). (67)

by the boundary condition, or we can adjust the finite difference stencil at the boundary

to use a one-sided difference.

Listing 1: Fick’s Law Prediction

# Fick’s prediction

r = dt / dx**2

C = 0.01

ul:, 0] = phi_sat # u(t, 0) = 0.25

for t in t_vec:
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for x in x_vec:
if x == x_vec
continue
if x == x_vec
ult+1, x]
2 xr
- 2 %
) + ult,
continue
ult+1, x] =D
r *x ult,

) + ult, x]

phi_ficks = u

for t in t_vec:
phi_ficks_bottom[
phi_ficks[t,
)
phi_ficks_top[t]
phi_ficks[t,

[0]:
[-1]:
= DO * (
* ult, x-1] - 2 * r * ul[t, x]
r * C * dx * ult, x]
x]
0 * (
x+1] - 2 * r *x u[t, x] + r * u[t, x-1]

t] = np.average(
:len(x_real)//2]

= np.average (
len(x_real)//2+1:]
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Figure 32: Fick’s Simulation of water content-without evaporation
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Figure 33: Fick’s Simulation of water content

Alternate Approach Using Fick’s Second Law

As an alternative to Richards’ equation, we consider modeling the moisture diffusion in
paper using Fick’s second law of diffusion. Fick’s second law in one dimension is expressed
as:

% = D%, (68)
where 6(z,t) represents the moisture content (analogous to concentration), and D is the
constant diffusion coefficient.

Finite Difference Approximation for Fick’s Second Law

Applying the finite difference method to Eq. (68), we discretize the time and space domains
similarly as before.For the explicit finite difference scheme applied to Fick’s second law,
the stability criterion is well-known and given by:

DAt 1
=Dr < —. 69
Az? =3 (69)
This criterion guides the selection of At and Az to ensure stable and accurate simulations.

The time derivative is approximated using a forward difference:
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80" gEt — gk
il O S—— (70)
ot |, At
and the second spatial derivative is approximated using a central difference:
629 k ~ 01Ii+1 _ 26’2 + 95—1 (71)
022, - Az? '

Substituting these approximations into Eq. (68), we obtain the update formula for each
interior node (1 <n < N —1):

DAt
Az?

Defining the diffusion number r as:

oEtl = oF 4 (0F,, — 208 +65_). (72)

At
r= A_Z2, (73)
we can rewrite the update formula as:
Okt = 0% + Dr (6%, —20% +65_)). (74)

Boundary and Initial Conditions

The boundary conditions remain the same as in the Richards’ equation simulation. At

n = 0, we apply the Dirichlet boundary condition:

og - Hsat, (75)
and at n = N, we implement the Robin boundary condition to model evaporation:

fﬁ
0z|,

where c is the evaporation coefficient.

= —chk, (76)
—h

Discretizing the Robin boundary condition using a backward difference yields:

O — On-s

X, - —ch%,, (77)

which rearranges to:

0%, = 0% (1 + cAz). (78)

Substituting Eq. (78) into the update formula for n = N:
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05+ = 05 + Dr (6%, — 20% + 6%(1 + cAz2)) . (79)

Since 6% , lies outside our domain, we can assume 6% _, = 0% (assuming zero flux beyond
the boundary). Thus, Eq. (79) simplifies to:

O = 0% + Dr (0% — 205 + 0% (1 + cAz)) (80)
= 0% + Dr (cAz0%,) . (81)

Alternatively, from our code implementation, the update formula at n = NN is given by:

Okl = D (2r6%_, — 2r6 — 2rcA265) + 0%, (82)

Substituting 0%_, = 6% (1 + cAz) into Eq. (82):

Ot = D [2r0% (1 + cAz) — 26§, — 2reAz0f] + 0% (83)
=05, (84)

This indicates that the net change at n = N is zero, suggesting that the moisture con-
tent remains constant at the boundary node when using this approximation. Comparing
Egs. (81) and (82), we observe that both formulations aim to incorporate the Robin
boundary condition into the finite difference scheme, although they arrive at different
conclusions due to the assumptions made about 6% _,. To reconcile these, we can adjust
the finite difference scheme to account for the boundary condition more accurately. By
using a one-sided difference at the boundary or modifying the assumption about 6%,

we can ensure consistency between the equations.

Numerical Implementation

The algorithm proceeds as follows:
1. Initialize the moisture content at ¢ = 0 with 82 = 0 for n > 1 and 6 = 6.
2. For each time step k:

(a) For n = 0 (Dirichlet boundary), set 65*! = .
or n = obin boundary), update using Eq. (81).
b) F N (Robin bound date 051! using Eq. (8
c¢) For interior nodes (1 <n < N — 1), update 6;;"" using Eq. .
For i i d N date 0%+ using Eq. (74
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Averaging Moisture Content

To analyze the moisture distribution and its impact on paper curling, we calculate the
average moisture content in the bottom and top halves of the paper:

N/2

2
¢§ottom = N Z_:O 95,? (85)
2 N
¢§op = N Z H'rk;, (86)
n=N/2+1

These averages provide insight into the moisture gradients that drive the curling behavior
of the paper.

By applying the finite difference method to Fick’s second law, we model the moisture
diffusion in paper under the assumption of constant diffusivity. This approach simplifies
the computational process and allows for direct implementation of standard finite differ-
ence schemes without the complexities introduced by the nonlinear terms in Richards’
equation. Our method provides an alternative framework for simulating paper wetting,

especially when the moisture transport can be approximated as linear diffusion.
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