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ABSTRACT 

This study leverages DGE MRI to investigate glucose metabolism connectivity as a 

potential biomarker for Huntington's disease (HD) using two mouse models: zQ175 KI and 

R6/2 KI. Using Pearson correlation analysis, we calculated glucose connectivity between brain 

regions for both HD models and WT controls. Results revealed significant connectivity 

alterations in HD models, particularly in regions such as the thalamus, caudate putamen, and 

dentate gyrus, which are associated with HD-related pathophysiology.  

To further examine metabolic patterns, we employed self-organizing maps (SOM) to 

cluster DGE MRI signal curves, identifying brain regions with similar glucose metabolism 

dynamics. The clustering analysis revealed discrete glucose metabolism zones, providing 

insights into spatial and temporal connectivity variations that might not be apparent in 

anatomical imaging alone. While clusters showed distinct temporal patterns—some with rapid 

initial signal increases, others with gradual changes—these metabolic shifts highlight SOM’s 

utility in assessing brain region-specific metabolic behaviors.  

The analysis indicates that glucose metabolism connectivity is notably disrupted in HD 

models, aligning with known HD pathology and reflecting both rapid and gradual disease 

progression observed in R6/2 and zQ175 KI mice, respectively. These findings underscore 

DGE MRI’s potential as a novel imaging biomarker, offering insights into the metabolic 

disruptions in HD that may inform early diagnosis and therapeutic interventions. However, 

limitations in signal strength and the complexity of SOM clustering warrant further 

methodological refinements to enhance biomarker reliability.  

In conclusion, our study supports the use of DGE MRI in identifying glucose metabolism 

connectivity disruptions as a viable HD biomarker, providing a robust framework for future 

studies targeting metabolic dysregulation in neurodegenerative diseases.  
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中文摘要 

亨丁頓舞蹈症為與認知功能障礙密切相關的神經退行性疾病。本研究首次應用動態

葡萄糖強化磁振造影（DGE MRI）以了解葡萄糖代謝作為亨丁頓舞蹈症神經影像生物標

記的可行性，以分析大腦中不同區域之間的代謝關係。 

本研究對腦區間葡萄糖代謝關聯性進行分析，並針對訊號進行自動化分群，觀察特

定訊號樣態之特徵。於 zQ175 KI和 R6/2 KI小鼠中不同的連接性變化模式中，發現紋

狀體和齒狀回之間葡萄糖代謝連接性具顯著變化，與已知病理一致，顯示 DGE MRI作

為臨床生物標記之潛力，以利及時診斷和監測該疾病。 

這項開創性的研究探索了使用 DGE MRI作為亨丁頓舞蹈症影像標記可行性，並詳

細分析腦區間葡萄糖代謝相關性，不僅進一步對該疾病之病理更加深入了解，同時提高

早期診斷、疾病監測和精準醫療應用發展，說明可能有針對代謝紊亂的潛在治療策略。 
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I.  INTRODUCTION 

Huntington's disease (HD), also known as Huntington's chorea, is a hereditary 

neurodegenerative disorder marked by progressive motor dysfunction, cognitive decline, and 

psychiatric disturbances (1). This autosomal dominant condition results from a mutation in the 

HTT gene, leading to an abnormal expansion of the CAG trinucleotide repeat within the gene 

(1, 2). The primary feature of HD is the gradual deterioration of voluntary motor control, 

manifesting in choreiform movements and eventually culminating in severe disability. 

Cognitive impairments include deficits in executive function, memory disturbances, and 

emotional dysregulation, which significantly affect the patient’s quality of life. In addition, 

psychiatric symptoms, such as depression and psychosis, further exacerbate the burden of the 

disease. HD typically presents in mid-adulthood and progresses relentlessly, resulting in 

significant debilitation and a reduced life expectancy. Despite its devastating nature, ongoing 

research into the molecular mechanisms of HD holds promise for therapeutic interventions that 

may mitigate its clinical manifestations (3).  

Recent studies have identified impairments in glucose metabolism in rat striatum cells (4), 

integrating metabolic and transcriptomic expression data from rodent models of HD. Beyond 

animal models, metabolic alterations have also been observed in the caudate nuclei of adult 

HD patients (5). These findings underscore the significance of investigating the relationship 

between neurodegenerative disorders and glucose metabolism, with the potential for glucose 

metabolism to serve as a clinical biomarker.  

Under most conditions, glucose is considered the primary metabolic fuel of the brain, 

which enters the brain by facilitated diffusion across the blood-brain barrier, where its transport 

may adapt during changes in cerebral glucose metabolism, neural activation and changes in 

plasma glucose levels. As glucose metabolism connects with multiple other metabolic 

pathways, it generate adequate energy for neuronal cells to carry out their functions (6).  
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Traditionally, glucose concentration and metabolic rates have been measured using 

magnetic resonance (MR) spectroscopy (7, 8), which is known for its relatively slow speed and 

low resolution. However, recent advancements have been made in monitoring glucose levels 

in the brain and various organs using Magnetic Resonance Imaging (MRI) techniques such as 

Chemical Exchange Saturation Transfer (CEST) MRI (9-11). CEST MRI involves the 

application of radiofrequency (RF) irradiation to selectively saturate exchangeable protons 

found in low-concentration solutes, which are typically only detectable through Magnetic 

Resonance Spectroscopy (MRS). The saturated protons then transfer their saturation to water 

protons through proton exchange, which is subsequently replaced by non-saturated protons in 

a repeating cycle. This process enables CEST MRI to enhance signals from low-concentration 

metabolites, making them detectable alongside the more abundant bulk water protons. A 

specific configuration of CEST MRI, referred to as glucoCEST MRI, targets the hydroxyl 

protons in D-glucose. This method has demonstrated the ability to detect the presence of D-

glucose or its derivatives in live subjects using MRI signals. Additionally, real-time changes in 

glucoCEST MRI signals following a bolus intravenous infusion of glucose, known as Dynamic 

Glucose-Enhanced (DGE) MRI, allow for the evaluation of alterations in glucose concentration 

within biological tissues. This technique provides valuable insights into glucose delivery, 

transport, and metabolic kinetics.  

Resting-state functional MRI (rs-fMRI), first introduced by Biswal et al. in 1995, is a 

neuroimaging technique that elucidates intrinsic brain connectivity patterns by measuring 

spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals in subjects at 

rest, without the involvement of explicit cognitive tasks. rs-fMRI has been extensively applied 

in functional connectivity (FC) analysis of the brain, where correlations between time-series 

data from different brain regions allow medical experts to gain a deeper understanding of the 

pathophysiology of neurological diseases (12). Although both DGE MRI and rs-fMRI provide 

temporal information about brain activity, their temporal resolutions and clinical implications 
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differ significantly. Besides, the correspondence between cerebral glucose metabolism 

(indexing energy utilization) and synchronous fluctuations in blood oxygenation (indexing 

neuronal activity) is relevant for neuronal specialization and is affected by brain disorders, 

which shows the importance to research on cerebral glucose metabolism and its connectivity 

(13).  

Despite the promise of DGE MRI in assessing glucose metabolism, connectivity analysis 

using this method has not yet been explored. Therefore, this study aims to investigate the brain 

connectivity of glucose metabolism in the brains of C57BL/6J mice with HD, specifically in 

the zQ175 KI and R6/2 KI models, to evaluate the potential of DGE MRI as a clinical 

biomarker through its connectivity features.  
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II.  RELATED WORKS 

A.  FC Analysis Using rs-fMRI 

rs-fMRI was first introduced in 1995, has demonstrated significant potential in identifying 

sensitive biomarkers for neurological diseases by detecting atypical FC within various resting-

state networks (RSNs). This method has been applied to a broad range of neurological and 

psychiatric conditions, including schizophrenia (14-19), migraine (20-22), Alzheimer’s disease 

(AD) (23-26), and depression (27-30). These disorders predominantly affect cognitive and 

mental functions, where detecting structural abnormalities has proven more challenging than 

identifying dysfunctions in cognitive processes and FC (31). 

One prevalent challenge with rs-fMRI is the presence of noise, which complicates pre-

processing procedures. The relatively small variation in resting-state FC exacerbates the impact 

of noise on the signal (32). As a result, numerous studies have focused on refining pre-

processing methods, such as motion-related noise correction, physiological noise correction, 

and phase-based noise correction (33). For instance, Chuang et al. explored different nuisance 

regression techniques and the impact of motion correction, contributing to ongoing efforts to 

enhance the reliability of rs-fMRI and resting-state FC analysis (34).  

These advancements continue to improve the robustness of rs-fMRI as a tool for 

investigating brain network connectivity in both healthy and diseased states.  

 

B.  FC of Huntington’s Disease on Mice 

rs-fMRI has been extensively employed as the most common method for investigating FC 

in cognitive and mental health disorders. It has been widely applied to studies focusing on FC 

in HD. The regions exhibiting specific alterations are primarily the connections between the 

striatum and other brain regions (35-37). Additionally, several studies have reported 

impairments in the dentate gyrus and the M2 cortex in HD mouse models (32, 38-40). The 
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regions selected for analysis in these studies are based on areas where previous research has 

identified significant alterations.  

Seed-based research approaches have primarily focused on examining neural networks 

associated with HD phenotypes, particularly those related to motor and cognitive functions. 

Moreover, researchers have investigated the default mode network (DMN), a "task-negative" 

network that shows heightened activity during periods of rest. While the DMN is not directly 

linked to HD pathology, it has been noted to undergo early changes in other neurodegenerative 

diseases, particularly Alzheimer’s disease.  

One of the first studies involving individuals carrying the HD gene mutation used the 

posterior cingulate cortex, a critical component of the DMN, as a region of interest. This study 

revealed reduced connectivity between the posterior cingulate cortex and both the ventromedial 

and dorsomedial prefrontal cortices. The reduced connectivity with the ventromedial prefrontal 

cortex, in particular, was associated with performance on the Stroop test. Furthermore, 

diminished connectivity between the posterior cingulate cortex and the inferior parietal cortex 

was also observed. All of these regions are integral parts of the DMN, suggesting abnormal 

connectivity patterns during resting states in HD patients (41). However, another study using 

the posterior cingulate cortex as the seed region for the DMN, alongside the supplementary 

motor area as the seed region for the somatosensory network, found a widespread and abnormal 

increase in connectivity in HD. This increase in connectivity occurred before any observed 

volumetric decline and showed improvement in four patients who received Pridopidine 

treatment (42).  
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C.  DGE MRI for Glucose Metabolism Connectivity 

Currently, there is a paucity of research on connectivity analysis based on glucose 

metabolism utilizing the DGE MRI signal. However, some studies have employed this 

technique to examine glucose uptake and metabolism under various disease conditions. 

Traditionally, glucose metabolism in the brain has been investigated using positron 

emission tomography (PET) with 18F-fluorodeoxyglucose (FDG), a radiolabeled glucose 

analog. This method, known as the [18F]FDG PET scan, has been validated as an effective tool 

for investigating glucose metabolism and uptake in neurodegenerative diseases such as HD (43, 

44) and AD (45, 46). As an alternative approach, DGE MRI can detect glucose metabolism 

using non-toxic glucose, making it a preferable option over [18F]FDG PET (47). 

Liu et al. applied the DGE MRI signal to study glucose uptake in HD, combining it with 

genetic biomarkers to gain insights into glucose metabolism (48). Similarly, Eleftheriou et al. 

introduced a combination of DGE MRI and Förster Resonance Energy Transfer (FRET)-based 

fiber photometry, which offers a reliable temporal response while integrating quantitative 

photometric techniques with tomographic approaches (49).  

Although these studies used DGE MRI to investigate glucose metabolism, they primarily 

focused on changes in signal intensity or metabolism rate as the key metrics (50). Investigating 

the connectivity of glucose metabolism between different brain regions using correlation 

metrics could provide deeper insights into the interregional correlation of glucose uptake. 

Consequently, in this study, rather than examining signal intensity, we explore glucose 

metabolism connectivity through the use of correlation metrics.  
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III.  MATERIALS AND METHODS 

A.  Animals 

All experimental procedures were approved by the Institutional Animal Care and Use 

Committee (IACUC) at Academia Sinica (Taipei, Taiwan), and were conducted in strict 

accordance with their guidelines. A total of eight male WT mice and four male HD mice, 

including zQ175 KI and R6/2 KI strains (C57BL/6J background), were utilized for DGE MRI 

experiments. Male mice were specifically chosen to minimize housing-related conflicts, as sex 

is not considered a significant variable affecting MRI signal interpretation.  

Prior to the MRI scans, the mice were fasted for approximately 8 hours, with unrestricted 

access to water. The mice were housed in cages with LIGNOCEL® 3–4 S as the absorbent 

bedding material. These cages were maintained in a controlled environment with a 12-hour 

light-dark cycle (7 a.m.–7 p.m. light, 7 p.m.–7 a.m. dark), an ambient temperature of 22 ± 2 °C, 

and a relative humidity of 55 ± 10%. Outside of the fasting period, the mice had free access to 

reverse osmosis water containing 0.02% HCl and were fed a chow diet (5053-PicoLab® 

Rodent Diet 20). During the fasting period, the chow was removed, allowing only water access.  

Four distinct cohorts of C57BL/6J mice were included in the study: 15-month-old zQ175 

KI mice (n = 4), 15-month-old WT mice (n = 4), 12-week-old R6/2 KI mice (n = 4), and 12-

week-old WT mice (n = 4).  

 

B.  Imaging Acquisition 

In this study, a comprehensive DGE MRI protocol was implemented using a horizontal 

bore 7T scanner (Bruker PharmaScan 70/16, Ettlingen, Germany) at the Animal Imaging 

Facility of Academia Sinica (Taipei, Taiwan). Signal transmission was achieved using an 

89/72-mm volume coil, while signal reception utilized a 4-channel, receive-only mouse head 

coil. This setup was employed to investigate C57BL/6J mice. The acquisition protocol involved 
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multiple imaging sequences.  

First, T2-weighted imaging (T2WI) was conducted for image registration purposes with 

the following parameters: repetition time (TR) = 5000 ms, echo time (TE) = 33 ms, field of 

view (FOV) = 16x16 mm, slice thickness = 1 mm, matrix size = 256x256, RARE factor = 8, 

slice number = 5, and one average, resulting in a total scan time of 2 minutes and 40 seconds. 

Following this, a B0 map shim was acquired prior to glucose injection.  

For DGE MRI, the sequence was performed with the following parameters: TR = 65,000 

ms, TE = 40.43 ms, FOV = 16x16 mm, slice thickness = 1 mm, matrix size = 128x32, RARE 

factor = 23, slice number = 5, RF peak amplitude = 1.6 μT, 90 repetitions, one average, spoiling 

at 78.12 cycles, with a duration of 12 ms, and 20% amplitude. The interlaced object ordering 

mode was used. Glucose injection commenced 20 minutes into the scan, with 0.15 ml of 50% 

glucose administered intravenously via the tail vein over the course of one minute.  

During the injection, isoflurane anesthesia was maintained at 2.5%, with breath rate 

monitored in two phases: 25–30 breaths per minute during the injection and 30–40 breaths per 

minute following the injection, with isoflurane reduced to 2.0%. This comprehensive MRI 

protocol facilitated an in-depth investigation of chemical exchange saturation transfer (CEST) 

and DGE effects in the C57BL/6J mice model.  

 

C.  Data Preprocessing 

1)  Data Conversion 

Bruker’s 2D sequence (2dseq) serves as the standard output format for Bruker MRI data. 

However, for preprocessing and connectivity analysis, the NIfTI format is preferred. To address 

this, a data format conversion was performed using an in-house developed script in MATLAB 

2018b. This process involved extracting T2-weighted imaging (T2WI) data from the binary file 

and reshaping the DGE MRI data to reflect the appropriate dimensions and orientation. 
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Additionally, the CEST data were processed to generate contrast images.  

Following the adjustment of the MRI data, the converted data were saved in the NIfTI 

format. The NIfTI format supports a maximum of seven dimensions, with the T2WI and brain 

mask requiring three dimensions, and the DGE MRI data necessitating four dimensions for 

time-series analysis. The voxel size of the resulting NIfTI file was set to 0.078×0.078×1.000 

mm with a left-posterior-inferior (LPI) orientation.  

 

 

Figure 1. Example of the mice brain MRI signal. (a) T2WI (b) Masked T2WI (c) DGE MRI 

Source: Snapshot of applied data in this study taken by author.  

 

2)  Spatial Normalization 

In the process of brain MRI spatial normalization, a reference subject was selected from 

each group to serve as a standard for alignment. Non-linear registration was subsequently 

applied to align each subject’s T2WI data to the selected reference subject within their 

respective group. Once the registration was completed, the T2WI images from each group were 

averaged to generate group-specific T2WI templates.  

Following this, each subject’s T2WI was registered to the group-wise template, ensuring 

consistent alignment across all subjects within each group. The final step involved registering 

the DGE MRI data to the template using the deformation information derived from the T2WI 

registration, achieving comprehensive spatial normalization. This process enabled meaningful 

comparisons and analyses within and across the different groups. The entire procedure was 

executed using a combination of AFNI software and in-house developed Python scripts.  
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3)  Label Co-registration 

To advance the region of interest (ROI)-based correlation analysis of glucose metabolism, 

signal extraction was performed using predefined atlas labels. In this study, the Australian 

Mouse Brain Mapping Consortium (AMBMC) atlas was utilized as the reference label. Non-

linear registration was applied to the symmetric AMBMC model, aligning it with the 3D space 

of each group-specific template. This alignment was achieved through a combination of AFNI 

software and partially in-house developed Python scripts. An example of the co-registered atlas 

label is presented in Figure 2, illustrating the successful integration of the atlas with the group-

wise templates.  

 

 

Figure 2. Registered atlas label from AMBMC. 

Source: Snapshot of applied data in this study taken by author.  

 

The labels were split into the following contours: anterior cerebral artery (ACA), dentate 

gyrus (DG), hippocampus, retrosplenial cortex (RSP), thalamic, caudate putamen (CPu), 
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insular region (Ins), primary somatosensory cortex (S1), secondary somatosensory cortex (S2), 

primary motor cortex (M1), secondary somatosensory cortex (M2), central amygdaloid nucleus 

(Ce), temporal association area (TeA), and complete thalamus, while each contour is divided 

into left and right hemisphere.  

 

D.  Connectivity Analysis of Glucose Metabolism 

To evaluate glucose metabolism connectivity, we performed ROI-based connectivity 

analysis, focusing on specific ROIs associated with the pathology of HD. The selected regions 

are detailed in Table 1.  

For each subject and each ROI, we extracted the time series of the region-averaged BOLD 

signal. Pearson correlation coefficients were then calculated between the BOLD signal time 

series of each pair of ROIs. These correlation values were Fisher Z-transformed to generate 

subject-specific connectivity matrices. This process was repeated for each subject across 

different age groups, allowing for comprehensive analysis of age-related changes in 

connectivity.  

 

E.  Statistical Analysis 

For ROI-based connectivity analysis, significant connections within each group (One-

sample t-test, p ≤ 0.05, False Discovery Rate (FDR) corrected) were identified, and between-

group connectivity differences were tested for pairs found to be significantly different in at 

least one of the groups (two-sample t-test, FDR corrected, p ≤ 0.05). The statistics procedures 

above were performed in MATLAB R2018b.  
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Table 1. Brain regions and abbreviations 

Source: Organized by author. 

Region Structure  

Cingulate region ACA Anterior cerebral artery (A24a, A24a’, A24b, A24b’) 

 RSP Retrosplenial cortex (A29a, A29b, A29c, A30) 

Somatosensory cortex S1 Primary somatosensory cortex 

 S2 Secondary somatosensory cortex 

Motor cortex M1 Primary motor cortex 

 M2 Secondary motor cortex 

Insular region Ins Insular region, not subdivided 

Temporal region TeA Temporal association area 

Hippocampus DG Dentate gyrus 

Associated structure Ce Central amygdaloid nucleus 

Corpus striatum CPu Caudate putamen 

Diencephalon  Thalamus 

 

F.  Curve Clustering Analysis 

To analyze glucose metabolism connectivity, we employed a self-organizing map (SOM), 

an unsupervised neural network model that projects high-dimensional data onto a two-

dimensional grid while preserving topological relationships (51). This technique clusters 

similar data points, allowing for a meaningful spatial representation of temporal signal patterns 

in DGE MRI images.  

For this study, pixel-level time curves from MRI images were extracted, reshaped, and 

flattened for SOM input. A 5x6 SOM grid was trained 200 epochs to classify temporal profiles 

into distinct clusters, which were subsequently visualized as spatial heatmaps over the brain's 

anatomical regions.  

The resulting clusters, each representing similar time-series curves, were averaged to 

identify dominant glucose uptake patterns. These clusters were also compared across subjects, 

allowing to observe variability in metabolic activity and potential markers of dysfunction.  
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IV.  RESULTS 

Pearson correlation matrices were computed from the DGE MRI signal for each ROI 

mentioned in the previous chapter, separately for the left and right hemispheres. An example 

of the DGE MRI signal is provided in Figure 3. For each group, the average DGE MRI signal 

for every region was calculated across all subjects, providing a representative measure of 

glucose metabolism connectivity within each hemisphere.  

 

Figure 3. Averaged DGE MRI signal for the selected ROIs on the left and right hemispheres of zQ175 KI mice. 

Source: Illustrated by author. 

A.  zQ175 KI Mice 

The Pearson correlation for each selected ROI of WT mice (15 m.o.) and zQ175 KI mice 

(15 m.o.) was calculated in this analysis. The averaged Pearson correlation for both groups is 

shown in Figure 4.  

To find the alteration of the glucose metabolism connectivity, the two-sample t-test was 

done (FDR corrected, p ≤ 0.05). Kim et al previously mentioned that the CEST contrast 

increases almost constant for glucose over the 30 min period of observation (52). Therefore, 

the DGE MRI signal was split into several sections: 21-90 mins (complete data), 21-50 mins 

(first section), and 51-90 mins (second section), note that the first 20 minutes of DGE MRI is 

considered as the baseline of glucose uptake. The p-value matrix is shown in Figure 5.  
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Figure 4. Pearson correlation matrices of 15 m.o. WT and zQ175 KI mice. Source: Illustrated by author. 

(a) Average of WT mice Pearson correlation matrix; (b) Average of zQ175 KI mice Pearson correlation matrix.  

 
Figure 5. p-value matrix from two-sample t-test result of WT and zQ175 KI mice (*=p ≤ 0.05, FDR corrected). 

(a) Time points: 21-90 mins (b) Time points: 21-50 mins (c) Time points: 51-90 mins 

Source: Illustrated by author.  
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Figure 6. 3D-rendered ROI with significant alteration in two-sample t-test of WT and zQ175 KI mice.  

red: dentate gyrus (DG); green: hippocampus; blue: thalamus; yellow: caudate putamen (CPu) 

Source: Illustrated & rendered by author.  

 

B.  R6/2 KI Mice 

Following the same procedure of zQ175 KI mice, the analysis was done on WT mice (13 

weeks old) and R6/2 KI mice (13 weeks old). The average Pearson correlation for both groups 

is shown in Figure 7, where the p-value matrix of the two-sample t-test (FDR corrected, 

p ≤ 0.05) within different sections of the signal is as shown in Figure 8. From the first section 

(21-50 mins), several significant alterations were found between different regions of the 

thalamus, such as ACA, RSP, hippocampus, and the motor cortex. However, a significant 

alternation was found in the correlation between CPu and DG, which aligns with the pathology 

of impaired brain regions.  
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Figure 7. Pearson correlation matrices of 13-week-old WT and R6/2 KI mice. Source: Illustrated by author. 

(a) Average of WT mice Pearson correlation; (b) Average of R6/2 mice Pearson correlation.  

 

Figure 8. p-value matrix from two-sample t-test result of WT and R6/2 mice (*=p ≤ 0.05, FDR corrected).  

(a) Time points: 21-90 mins (b) Time points: 21-50 mins (c) Time points: 51-90 mins 

Source: Illustrated by author. 
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Figure 9. 3D-rendered ROI with significant alteration in two-sample t-test of WT and R6/2 KI mice.  

red: thalamus; green: dentate gyrus (DG); blue: caudate putamen (CPu) 

Source: Illustrated & rendered by author. 

 

C.  Curve Clustering Analysis 

The curve clustering analysis of DGE MRI data was performed using self-organizing 

maps (SOM) after 200 training epochs. Figure 10 and Figure 11 presents the discrete clustering 

results, where different categories represent distinct regions of metabolic activity. Each color 

corresponds to a specific cluster, indicating areas of the brain that share similar glucose 

metabolism patterns. These discrete clusters highlight the regions with similar metabolic 

connectivity, without reference to anatomical slices. The spatial distribution of these clusters 

suggests the presence of distinct metabolic zones, where certain regions demonstrate a cohesive 

glucose metabolism behavior.  
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Figure 10. SOM clustered voxel DGE MRI signal of 15 m.o. WT and zQ175 KI mice.  

Source: Illustrated by author. 

 

Figure 11. SOM clustered voxel DGE MRI signal of 12 weeks old WT and R6/2 KI mice.  

Source: Illustrated by author. 

 

In Figure 12 and Figure 13, the curves represent the averaged signal for each identified 

cluster. These curves summarize the glucose metabolism dynamics within the corresponding 

clustered regions. Across the clusters, various patterns emerge: some regions show an initial 

rapid increase in signal strength, followed by a steady plateau, while others exhibit more 

gradual and consistent changes over time. These averaged curves provide a temporal snapshot 

of glucose metabolism within each cluster, offering a clearer understanding of the distinct 

metabolic characteristics of each region.  
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The clustering analysis reveals a clear distinction between the metabolic behaviors of 

different brain regions, with discrete categorization helping to identify patterns that may not be 

apparent in raw image data. These results demonstrate the efficacy of SOM in clustering and 

analyzing DGE MRI data, offering insights into the spatial and temporal diversity of glucose 

metabolism.  

 

 
Figure 12. Averaged DGE MRI signal of SOM clustered voxel groups of 15 m.o. WT and zQ175 KI mice.  

Source: Illustrated by author. 

 

Figure 13. Averaged DGE MRI signal of SOM clustered voxel groups of 12 weeks old WT and R6/2 KI mice.  

Source: Illustrated by author. 
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V.  DISCUSSION 

This study explores the potential of DGE MRI as a novel approach to assess glucose 

metabolism connectivity in HD, using two commonly employed mouse models, zQ175 KI and 

R6/2 KI. While HD is widely associated with motor, cognitive, and psychiatric symptoms, 

there is an increasing interest in examining its metabolic disturbances, which may serve as 

valuable clinical biomarkers (4, 5). Traditional methods for assessing glucose metabolism, such 

as MRS, have been supplemented by advancements in DGE MRI, which allows for more 

precise and efficient monitoring of brain glucose levels (8-11).  

Our findings indicate that zQ175 KI mice exhibit significant alterations in glucose 

metabolism connectivity. Using Pearson correlation analysis, we identified brain regions with 

notably distinct connectivity profiles in DGE MRI signals compared to WT mice. This suggests 

certain brain areas may be more susceptible to metabolic changes, offering key insights into 

HD pathophysiology. Affected regions included the thalamus, caudate putamen, central 

amygdaloid nucleus, and dentate gyrus, all associated with HD-related volume loss and 

functional impairments (see Figure 4 and Figure 5) (39, 40, 53-55).  

Similarly, analysis of R6/2 KI mice revealed altered glucose metabolism connectivity. 

Here, Pearson correlation analysis highlighted distinct connectivity patterns in multiple brain 

regions compared to WT mice, with these differences manifesting across various time points 

in the DGE MRI signal. The connectivity patterns in R6/2 KI mice showed similarities to those 

of zQ175 KI mice, except for the thalamus, which displayed more prominent connectivity 

variations with cortical regions, such as the M1 and M2 cortices (see Figure 7 and Figure 8).  

The thalamus, which transmits sensory information to different cerebral cortex areas, is 

fundamental in regulating consciousness, alertness, and sensory input processing (56). The 

caudate putamen, part of the striatum, plays a critical role in movement control and is also 

involved in cognitive functions such as decision-making and reward processing. The central 
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amygdaloid nucleus, part of the amygdala, is deeply connected to emotional processing, 

especially fear and anxiety (57). The dentate gyrus, a hippocampal structure, contributes 

primarily to memory formation and spatial navigation. Each of these brain regions is thus 

associated with cognitive, sensory, or memory-related functions (58).  

Our study utilized the R6/2 KI and zQ175 KI models of HD. The R6/2 model is 

distinguished by pronounced HD-related pathology, including motor dysfunction, inclusion 

body formation, and premature mortality. Given the disease's rapid progression, R6/2 mice are 

often used as models for juvenile-onset HD, with a life expectancy of around 15 weeks due to 

the aggressive onset of symptoms. In contrast, zQ175 KI mice show mHTT nuclear staining 

and aggregates in the striatum and cortex, which become significant by four months of age (59). 

By comparing these models, we observed more pronounced alterations in thalamus-cortex 

connectivity in R6/2 mice, which may arise earlier and with greater severity due to their 

accelerated disease progression. In contrast, the slower disease progression in zQ175 KI mice 

may reflect different patterns of thalamus-cortex connectivity changes over time (60).  

While multiple approaches, such as amplitude of low-frequency fluctuation (ALFF) (61) 

and nuisance regression (62), can be applied to resting-state FC analysis, limitations inherent 

to DGE MRI restrict their use in this study. Nuisance regression, typically used for noise 

reduction, motion correction, and signal detrending, is incompatible with DGE MRI, where 

signals reflect glucose chemical exchange trends. Future studies should focus on DGE MRI 

pre-processing methods for glucose metabolism and FC analysis to further evaluate DGE 

MRI’s utility as an HD biomarker.  

The application of SOM in clustering DGE MRI data offers a unique framework for 

identifying distinct metabolic connectivity patterns across brain regions. The clustering 

analysis, highlighted in Figure 10 to Figure 13, emphasizes SOM's potential in distinguishing 

brain areas that share similar glucose metabolism dynamics. By organizing these regions into 

discrete clusters, this method goes beyond traditional anatomical mapping, enabling a fresh 
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perspective on glucose metabolic zones and their cohesive behaviors. The averaged curves in 

Figures 12 and 13 bring to light the unique temporal patterns of each cluster, revealing 

metabolic behaviors that could be overlooked in raw DGE MRI data. Some clusters display 

sharp initial increases followed by stable plateaus, while others show more gradual changes in 

signal over time. This clustering analysis thus uncovers subtle spatial and temporal variations 

in glucose metabolism, offering new insights into metabolic shifts that may be relevant to the 

progression of neurodegenerative diseases such as HD.  

However, the complexity of SOM mapping within DGE MRI data presents substantial 

analytical challenges. Although SOM effectively clusters regions with similar glucose 

dynamics, interpreting these clusters is not straightforward. The resulting features often lack 

clear definitions, partly due to the inherently low signal strength in the small structures of the 

mice brain. This limitation in signal-to-noise ratio (SNR) makes it difficult to delineate specific 

metabolic characteristics within each cluster accurately, introducing ambiguity in the spatial 

and temporal trends identified.  

Further, the promise of identifying diagnostic biomarkers based on glucose metabolism 

patterns in specific brain regions is still largely aspirational. The observed curve patterns—

whether they exhibit rapid initial increases, gradual changes, or other dynamics—highlight 

potential, but the variability in these signals requires rigorous study. To fully understand 

whether these patterns could serve as reliable biomarkers, further investigation is needed into 

both metabolic processes and neural network training methods. Such efforts would enhance the 

precision of SOM-based clustering and help clarify whether these distinct glucose metabolism 

zones are genuinely reflective of underlying disease mechanisms, particularly in 

neurodegenerative disorders like HD. Thus, while SOM clustering offers intriguing insights, 

its potential as a diagnostic tool is contingent on deeper, methodical research into both the 

biological significance and analytical robustness of these metabolic patterns.  
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VI.  CONCLUSION 

While DGE MRI has been widely utilized for assessing glucose metabolism, its 

application in connectivity analysis as an index of energy utilization in HD patients remains 

unexplored and requires proof of concept from various perspectives. This study leverages the 

zQ175 KI and R6/2 KI mouse models to investigate glucose metabolism connectivity in HD, 

revealing potential disruptions within specific brain regions. Notably, our analysis highlights 

distinct connectivity disruptions, particularly between the striatum and dentate gyrus and in 

thalamic-cortical pathways, where the findings are consistent with established HD pathology 

and suggest that DGE MRI could be sensitive to early metabolic connectivity changes.  

However, validating these findings requires additional studies, including isotopically 

labeled (2-deoxy-D-glucose) 2DG, which is an established method for measuring glucose 

metabolism. Unlike glucose, 2DG enters cells via the same transporters as glucose and is 

phosphorylated but minimally metabolized further, allowing it to act as a stable tracer of 

glucose uptake. By comparing results of glucose with 2DG, we can more accurately determine 

how well DGE MRI reflects actual glucose metabolism and clarify its sensitivity to metabolic 

connectivity changes. Additionally, fiber photometry could enable real-time recording of neural 

activity through calcium or neurotransmitter signaling, offers a complementary approach to 

assess FC and neuronal dynamics in HD. Together, these methods provide a more robust 

framework to evaluate and validate DGE MRI's reliability and specificity as a tool for mapping 

metabolic connectivity changes, potentially solidifying its role in HD diagnosis and monitoring.  

By linking metabolic alterations to specific connectivity patterns in HD, our study 

proposes DGE MRI as a promising approach to enhance our understanding of HD pathogenesis 

and as a potential biomarker for early diagnosis and disease monitoring. This research 

establishes a foundational framework for further exploration, advancing prospects for targeted 

therapies that address metabolic dysregulation in HD.  
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1. Novelty and Significance: 

This study introduces a novel approach to investigating 

Huntington's disease (HD) by utilizing Dynamic 

Glucose-Enhanced (DGE) MRI to examine glucose metabolism 

connectivity as a potential biomarker. The research is 

innovative in its application of advanced imaging techniques 

to explore metabolic disruptions in HD, a devastating 

neurodegenerative disorder. By employing two distinct mouse 

models, zQ175 KI and R6/2 KI, the study provides a 

comprehensive view of HD progression, from gradual to rapid 

disease development. This approach is significant as it 

offers a non-invasive method to potentially detect early 

metabolic changes in HD, which could be crucial for early 

diagnosis and intervention strategies. The use of 

self-organizing maps (SOM) to cluster DGE MRI signal curves 

further enhances the study's innovative aspect, revealing 

spatial and temporal connectivity variations that might be 

overlooked in conventional anatomical imaging. 

2. Strength: 



The study demonstrates several notable strengths. Firstly, 

it successfully identifies significant connectivity 

alterations in HD models, particularly in brain regions known 

to be associated with HD pathophysiology, such as the thalamus, 

caudate putamen, and dentate gyrus. This alignment with known 

HD pathology validates the approach and strengthens the 

potential of DGE MRI as a biomarker. Secondly, the use of two 

different mouse models allows for a more comprehensive 

understanding of HD progression, capturing both rapid (R6/2) 

and gradual (zQ175 KI) disease development. This dual-model 

approach enhances the study's relevance to various stages of 

HD. Additionally, the application of SOM clustering reveals 

distinct temporal patterns in glucose metabolism, providing 

insights into region-specific metabolic behaviors that may 

be crucial for understanding HD pathogenesis. The study's 

methodology offers a robust framework for future research 

into metabolic dysregulation in neurodegenerative diseases, 

potentially extending beyond HD. 

3. Weakness: 

While the clustering analysis reveals unique temporal 

patterns in glucose metabolism, the biological significance 

of these patterns remains unclear. Further research is needed 



to establish a direct link between these metabolic behaviors 

and HD pathological mechanisms. Secondly, the study's 

potential for early HD diagnosis, while promising, requires 

additional validation. The variability in metabolic signals 

may impact their reliability as biomarkers, necessitating 

more extensive studies to confirm their accuracy in 

reflecting HD progression. To enhance the study's relevance, 

future work should include a more detailed introduction of 

the zQ175 KI and R6/2 KI mouse models, explaining their 

origins and the differences in disease severity, cognitive, 

behavioral, and motor symptoms between these strains. 

Additionally, the discussion should explore how the 

experimental results might explain these differences, 

providing deeper insights into HD pathogenesis. Lastly, 

methodological refinements to improve signal strength and 

address the complexity of SOM clustering could enhance the 

reliability of DGE MRI as a biomarker for HD. 
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