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ABSTRACT

This study leverages DGE MRI to investigate glucose metabolism connectivity as a
potential biomarker for Huntington's disease (HD) using two mouse models: zQ175 KI and
R6/2 KI. Using Pearson correlation analysis, we calculated glucose connectivity between brain
regions for both HD models and WT controls. Results revealed significant connectivity
alterations in HD models, particularly in regions such as the thalamus, caudate putamen, and
dentate gyrus, which are associated with HD-related pathophysiology.

To further examine metabolic patterns, we employed self-organizing maps (SOM) to
cluster DGE MRI signal curves, identifying brain regions with similar glucose metabolism
dynamics. The clustering analysis revealed discrete glucose metabolism zones, providing
insights into spatial and temporal connectivity variations that might not be apparent in
anatomical imaging alone. While clusters showed distinct temporal patterns—some with rapid
initial signal increases, others with gradual changes—these metabolic shifts highlight SOM’s
utility in assessing brain region-specific metabolic behaviors.

The analysis indicates that glucose metabolism connectivity is notably disrupted in HD
models, aligning with known HD pathology and reflecting both rapid and gradual disease
progression observed in R6/2 and zQ175 KI mice, respectively. These findings underscore
DGE MRI’s potential as a novel imaging biomarker, offering insights into the metabolic
disruptions in HD that may inform early diagnosis and therapeutic interventions. However,
limitations in signal strength and the complexity of SOM clustering warrant further
methodological refinements to enhance biomarker reliability.

In conclusion, our study supports the use of DGE MRI in identifying glucose metabolism
connectivity disruptions as a viable HD biomarker, providing a robust framework for future

studies targeting metabolic dysregulation in neurodegenerative diseases.
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I. INTRODUCTION

Huntington's disease (HD), also known as Huntington's chorea, is a hereditary
neurodegenerative disorder marked by progressive motor dysfunction, cognitive decline, and
psychiatric disturbances (1). This autosomal dominant condition results from a mutation in the
HTT gene, leading to an abnormal expansion of the CAG trinucleotide repeat within the gene
(1, 2). The primary feature of HD is the gradual deterioration of voluntary motor control,
manifesting in choreiform movements and eventually culminating in severe disability.
Cognitive impairments include deficits in executive function, memory disturbances, and
emotional dysregulation, which significantly affect the patient’s quality of life. In addition,
psychiatric symptoms, such as depression and psychosis, further exacerbate the burden of the
disease. HD typically presents in mid-adulthood and progresses relentlessly, resulting in
significant debilitation and a reduced life expectancy. Despite its devastating nature, ongoing
research into the molecular mechanisms of HD holds promise for therapeutic interventions that
may mitigate its clinical manifestations (3).

Recent studies have identified impairments in glucose metabolism in rat striatum cells (4),
integrating metabolic and transcriptomic expression data from rodent models of HD. Beyond
animal models, metabolic alterations have also been observed in the caudate nuclei of adult
HD patients (5). These findings underscore the significance of investigating the relationship
between neurodegenerative disorders and glucose metabolism, with the potential for glucose
metabolism to serve as a clinical biomarker.

Under most conditions, glucose is considered the primary metabolic fuel of the brain,
which enters the brain by facilitated diffusion across the blood-brain barrier, where its transport
may adapt during changes in cerebral glucose metabolism, neural activation and changes in
plasma glucose levels. As glucose metabolism connects with multiple other metabolic

pathways, it generate adequate energy for neuronal cells to carry out their functions (6).



Traditionally, glucose concentration and metabolic rates have been measured using
magnetic resonance (MR) spectroscopy (7, 8), which is known for its relatively slow speed and
low resolution. However, recent advancements have been made in monitoring glucose levels
in the brain and various organs using Magnetic Resonance Imaging (MRI) techniques such as
Chemical Exchange Saturation Transfer (CEST) MRI (9-11). CEST MRI involves the
application of radiofrequency (RF) irradiation to selectively saturate exchangeable protons
found in low-concentration solutes, which are typically only detectable through Magnetic
Resonance Spectroscopy (MRS). The saturated protons then transfer their saturation to water
protons through proton exchange, which is subsequently replaced by non-saturated protons in
a repeating cycle. This process enables CEST MRI to enhance signals from low-concentration
metabolites, making them detectable alongside the more abundant bulk water protons. A
specific configuration of CEST MRI, referred to as glucoCEST MRI, targets the hydroxyl
protons in D-glucose. This method has demonstrated the ability to detect the presence of D-
glucose or its derivatives in live subjects using MRI signals. Additionally, real-time changes in
glucoCEST MRI signals following a bolus intravenous infusion of glucose, known as Dynamic
Glucose-Enhanced (DGE) MRI, allow for the evaluation of alterations in glucose concentration
within biological tissues. This technique provides valuable insights into glucose delivery,
transport, and metabolic kinetics.

Resting-state functional MRI (rs-fMRI), first introduced by Biswal et al. in 1995, is a
neuroimaging technique that elucidates intrinsic brain connectivity patterns by measuring
spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals in subjects at
rest, without the involvement of explicit cognitive tasks. rs-fMRI has been extensively applied
in functional connectivity (FC) analysis of the brain, where correlations between time-series
data from different brain regions allow medical experts to gain a deeper understanding of the
pathophysiology of neurological diseases (12). Although both DGE MRI and rs-fMRI provide

temporal information about brain activity, their temporal resolutions and clinical implications
2



differ significantly. Besides, the correspondence between cerebral glucose metabolism
(indexing energy utilization) and synchronous fluctuations in blood oxygenation (indexing
neuronal activity) is relevant for neuronal specialization and is affected by brain disorders,
which shows the importance to research on cerebral glucose metabolism and its connectivity
(13).

Despite the promise of DGE MRI in assessing glucose metabolism, connectivity analysis
using this method has not yet been explored. Therefore, this study aims to investigate the brain
connectivity of glucose metabolism in the brains of C57BL/6J mice with HD, specifically in
the zQ175 KI and R6/2 KI models, to evaluate the potential of DGE MRI as a clinical

biomarker through its connectivity features.



Il. RELATED WORKS

A.  FC Analysis Using rs-fMRI

rs-fMRI was first introduced in 1995, has demonstrated significant potential in identifying
sensitive biomarkers for neurological diseases by detecting atypical FC within various resting-
state networks (RSNs). This method has been applied to a broad range of neurological and
psychiatric conditions, including schizophrenia (14-19), migraine (20-22), Alzheimer’s disease
(AD) (23-26), and depression (27-30). These disorders predominantly affect cognitive and
mental functions, where detecting structural abnormalities has proven more challenging than
identifying dysfunctions in cognitive processes and FC (31).

One prevalent challenge with rs-fMRI is the presence of noise, which complicates pre-
processing procedures. The relatively small variation in resting-state FC exacerbates the impact
of noise on the signal (32). As a result, numerous studies have focused on refining pre-
processing methods, such as motion-related noise correction, physiological noise correction,
and phase-based noise correction (33). For instance, Chuang et al. explored different nuisance
regression techniques and the impact of motion correction, contributing to ongoing efforts to
enhance the reliability of rs-fMRI and resting-state FC analysis (34).

These advancements continue to improve the robustness of rs-fMRI as a tool for

investigating brain network connectivity in both healthy and diseased states.

B. FC of Huntington s Disease on Mice

rs-fMRI has been extensively employed as the most common method for investigating FC
in cognitive and mental health disorders. It has been widely applied to studies focusing on FC
in HD. The regions exhibiting specific alterations are primarily the connections between the
striatum and other brain regions (35-37). Additionally, several studies have reported

impairments in the dentate gyrus and the M2 cortex in HD mouse models (32, 38-40). The
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regions selected for analysis in these studies are based on areas where previous research has
identified significant alterations.

Seed-based research approaches have primarily focused on examining neural networks
associated with HD phenotypes, particularly those related to motor and cognitive functions.
Moreover, researchers have investigated the default mode network (DMN), a "task-negative"
network that shows heightened activity during periods of rest. While the DMN is not directly
linked to HD pathology, it has been noted to undergo early changes in other neurodegenerative
diseases, particularly Alzheimer’s disease.

One of the first studies involving individuals carrying the HD gene mutation used the
posterior cingulate cortex, a critical component of the DMN, as a region of interest. This study
revealed reduced connectivity between the posterior cingulate cortex and both the ventromedial
and dorsomedial prefrontal cortices. The reduced connectivity with the ventromedial prefrontal
cortex, in particular, was associated with performance on the Stroop test. Furthermore,
diminished connectivity between the posterior cingulate cortex and the inferior parietal cortex
was also observed. All of these regions are integral parts of the DMN, suggesting abnormal
connectivity patterns during resting states in HD patients (41). However, another study using
the posterior cingulate cortex as the seed region for the DMN, alongside the supplementary
motor area as the seed region for the somatosensory network, found a widespread and abnormal
increase in connectivity in HD. This increase in connectivity occurred before any observed
volumetric decline and showed improvement in four patients who received Pridopidine

treatment (42).



C. DGE MRI for Glucose Metabolism Connectivity

Currently, there is a paucity of research on connectivity analysis based on glucose
metabolism utilizing the DGE MRI signal. However, some studies have employed this
technique to examine glucose uptake and metabolism under various disease conditions.

Traditionally, glucose metabolism in the brain has been investigated using positron
emission tomography (PET) with '3F-fluorodeoxyglucose (FDG), a radiolabeled glucose
analog. This method, known as the ['*F]JFDG PET scan, has been validated as an effective tool
for investigating glucose metabolism and uptake in neurodegenerative diseases such as HD (43,
44) and AD (45, 46). As an alternative approach, DGE MRI can detect glucose metabolism
using non-toxic glucose, making it a preferable option over ['SF]JFDG PET (47).

Liu et al. applied the DGE MRI signal to study glucose uptake in HD, combining it with
genetic biomarkers to gain insights into glucose metabolism (48). Similarly, Eleftheriou et al.
introduced a combination of DGE MRI and Forster Resonance Energy Transfer (FRET)-based
fiber photometry, which offers a reliable temporal response while integrating quantitative
photometric techniques with tomographic approaches (49).

Although these studies used DGE MRI to investigate glucose metabolism, they primarily
focused on changes in signal intensity or metabolism rate as the key metrics (50). Investigating
the connectivity of glucose metabolism between different brain regions using correlation
metrics could provide deeper insights into the interregional correlation of glucose uptake.
Consequently, in this study, rather than examining signal intensity, we explore glucose

metabolism connectivity through the use of correlation metrics.



I11. MATERIALS AND METHODS

A.  Animals

All experimental procedures were approved by the Institutional Animal Care and Use
Committee (IACUC) at Academia Sinica (Taipei, Taiwan), and were conducted in strict
accordance with their guidelines. A total of eight male WT mice and four male HD mice,
including zQ175 KI and R6/2 KI strains (C57BL/6J background), were utilized for DGE MRI
experiments. Male mice were specifically chosen to minimize housing-related conflicts, as sex
is not considered a significant variable affecting MRI signal interpretation.

Prior to the MRI scans, the mice were fasted for approximately 8 hours, with unrestricted
access to water. The mice were housed in cages with LIGNOCEL® 3-4 S as the absorbent
bedding material. These cages were maintained in a controlled environment with a 12-hour
light-dark cycle (7 a.m.—7 p.m. light, 7 p.m.—7 a.m. dark), an ambient temperature of 22 + 2 °C,
and a relative humidity of 55 £ 10%. Outside of the fasting period, the mice had free access to
reverse osmosis water containing 0.02% HCIl and were fed a chow diet (5053-PicoLab®
Rodent Diet 20). During the fasting period, the chow was removed, allowing only water access.

Four distinct cohorts of C57BL/6J mice were included in the study: 15-month-old zQ175
KI mice (n = 4), 15-month-old WT mice (n = 4), 12-week-old R6/2 KI mice (n = 4), and 12-

week-old WT mice (n = 4).

B. Imaging Acquisition

In this study, a comprehensive DGE MRI protocol was implemented using a horizontal
bore 7T scanner (Bruker PharmaScan 70/16, Ettlingen, Germany) at the Animal Imaging
Facility of Academia Sinica (Taipei, Taiwan). Signal transmission was achieved using an
89/72-mm volume coil, while signal reception utilized a 4-channel, receive-only mouse head

coil. This setup was employed to investigate C57BL/6J mice. The acquisition protocol involved
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multiple imaging sequences.

First, T2-weighted imaging (T2WI) was conducted for image registration purposes with
the following parameters: repetition time (TR) = 5000 ms, echo time (TE) = 33 ms, field of
view (FOV) = 16x16 mm, slice thickness = 1 mm, matrix size = 256x256, RARE factor = §,
slice number = 5, and one average, resulting in a total scan time of 2 minutes and 40 seconds.
Following this, a BO map shim was acquired prior to glucose injection.

For DGE MRI, the sequence was performed with the following parameters: TR = 65,000
ms, TE = 40.43 ms, FOV = 16x16 mm, slice thickness = 1 mm, matrix size = 128x32, RARE
factor = 23, slice number = 5, RF peak amplitude = 1.6 uT, 90 repetitions, one average, spoiling
at 78.12 cycles, with a duration of 12 ms, and 20% amplitude. The interlaced object ordering
mode was used. Glucose injection commenced 20 minutes into the scan, with 0.15 ml of 50%
glucose administered intravenously via the tail vein over the course of one minute.

During the injection, isoflurane anesthesia was maintained at 2.5%, with breath rate
monitored in two phases: 25-30 breaths per minute during the injection and 30—40 breaths per
minute following the injection, with isoflurane reduced to 2.0%. This comprehensive MRI
protocol facilitated an in-depth investigation of chemical exchange saturation transfer (CEST)

and DGE effects in the C57BL/6J mice model.

C. Data Preprocessing

1) Data Conversion

Bruker’s 2D sequence (2dseq) serves as the standard output format for Bruker MRI data.
However, for preprocessing and connectivity analysis, the NIfTI format is preferred. To address
this, a data format conversion was performed using an in-house developed script in MATLAB
2018b. This process involved extracting T2-weighted imaging (T2WI) data from the binary file

and reshaping the DGE MRI data to reflect the appropriate dimensions and orientation.
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Additionally, the CEST data were processed to generate contrast images.

Following the adjustment of the MRI data, the converted data were saved in the NIfTI
format. The NIfTI format supports a maximum of seven dimensions, with the T2WI and brain
mask requiring three dimensions, and the DGE MRI data necessitating four dimensions for
time-series analysis. The voxel size of the resulting NIfTI file was set to 0.078%0.078x1.000

mm with a left-posterior-inferior (LPI) orientation.

(@) (b) (c)

Figure 1. Example of the mice brain MRI signal. (a) T2WI (b) Masked T2WI (c) DGE MRI
Source: Snapshot of applied data in this study taken by author.

2) Spatial Normalization

In the process of brain MRI spatial normalization, a reference subject was selected from
each group to serve as a standard for alignment. Non-linear registration was subsequently
applied to align each subject’s T2WI data to the selected reference subject within their
respective group. Once the registration was completed, the T2WI images from each group were
averaged to generate group-specific T2WI templates.

Following this, each subject’s T2WI was registered to the group-wise template, ensuring
consistent alignment across all subjects within each group. The final step involved registering
the DGE MRI data to the template using the deformation information derived from the T2WI
registration, achieving comprehensive spatial normalization. This process enabled meaningful
comparisons and analyses within and across the different groups. The entire procedure was

executed using a combination of AFNI software and in-house developed Python scripts.
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3) Label Co-registration

To advance the region of interest (ROI)-based correlation analysis of glucose metabolism,
signal extraction was performed using predefined atlas labels. In this study, the Australian
Mouse Brain Mapping Consortium (AMBMC) atlas was utilized as the reference label. Non-
linear registration was applied to the symmetric AMBMC model, aligning it with the 3D space
of each group-specific template. This alignment was achieved through a combination of AFNI
software and partially in-house developed Python scripts. An example of the co-registered atlas
label is presented in Figure 2, illustrating the successful integration of the atlas with the group-

wise templates.

Figure 2. Registered atlas label from AMBMC.

Source: Snapshot of applied data in this study taken by author.

The labels were split into the following contours: anterior cerebral artery (ACA), dentate

gyrus (DG), hippocampus, retrosplenial cortex (RSP), thalamic, caudate putamen (CPu),
10



insular region (Ins), primary somatosensory cortex (S1), secondary somatosensory cortex (S2),
primary motor cortex (M1), secondary somatosensory cortex (M2), central amygdaloid nucleus
(Ce), temporal association area (TeA), and complete thalamus, while each contour is divided

into left and right hemisphere.

D. Connectivity Analysis of Glucose Metabolism

To evaluate glucose metabolism connectivity, we performed ROI-based connectivity
analysis, focusing on specific ROIs associated with the pathology of HD. The selected regions
are detailed in Table 1.

For each subject and each ROI, we extracted the time series of the region-averaged BOLD
signal. Pearson correlation coefficients were then calculated between the BOLD signal time
series of each pair of ROIs. These correlation values were Fisher Z-transformed to generate
subject-specific connectivity matrices. This process was repeated for each subject across
different age groups, allowing for comprehensive analysis of age-related changes in

connectivity.

E. Statistical Analysis

For ROI-based connectivity analysis, significant connections within each group (One-
sample t-test, p < 0.05, False Discovery Rate (FDR) corrected) were identified, and between-
group connectivity differences were tested for pairs found to be significantly different in at
least one of the groups (two-sample t-test, FDR corrected, p < 0.05). The statistics procedures

above were performed in MATLAB R2018b.
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Table 1. Brain regions and abbreviations

Source: Organized by author.

Region Structure
Cingulate region ACA Anterior cerebral artery (A24a, A24a’, A24b, A24b’)
RSP Retrosplenial cortex (A29a, A29b, A29¢c, A30)

Somatosensory cortex S1

S2
Motor cortex M1

M2
Insular region Ins
Temporal region TeA
Hippocampus DG
Associated structure Ce
Corpus striatum CPu

Diencephalon

Primary somatosensory cortex
Secondary somatosensory cortex
Primary motor cortex

Secondary motor cortex

Insular region, not subdivided
Temporal association area
Dentate gyrus

Central amygdaloid nucleus
Caudate putamen

Thalamus

F. Curve Clustering Analysis

To analyze glucose metabolism connectivity, we employed a self-organizing map (SOM),

an unsupervised neural network model that projects high-dimensional data onto a two-

dimensional grid while preserving topological relationships (51). This technique clusters

similar data points, allowing for a meaningful spatial representation of temporal signal patterns

in DGE MRI images.

For this study, pixel-level time curves from MRI images were extracted, reshaped, and

flattened for SOM input. A 5x6 SOM grid was trained 200 epochs to classify temporal profiles

into distinct clusters, which were subsequently visualized as spatial heatmaps over the brain's

anatomical regions.

The resulting clusters, each representing similar time-series curves, were averaged to

identify dominant glucose uptake patterns. These clusters were also compared across subjects,

allowing to observe variability in metabolic activity and potential markers of dysfunction.
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IV. RESULTS

Pearson correlation matrices were computed from the DGE MRI signal for each ROI
mentioned in the previous chapter, separately for the left and right hemispheres. An example
of the DGE MRI signal is provided in Figure 3. For each group, the average DGE MRI signal
for every region was calculated across all subjects, providing a representative measure of

glucose metabolism connectivity within each hemisphere.
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Figure 3. Averaged DGE MRI signal for the selected ROIs on the left and right hemispheres of zQ175 KI mice.

Source: Illustrated by author.

A. zQI175 KI Mice

The Pearson correlation for each selected ROI of WT mice (15 m.o.) and zQ175 KI mice
(15 m.o.) was calculated in this analysis. The averaged Pearson correlation for both groups is
shown in Figure 4.

To find the alteration of the glucose metabolism connectivity, the two-sample t-test was
done (FDR corrected, p <0.05). Kim et al previously mentioned that the CEST contrast
increases almost constant for glucose over the 30 min period of observation (52). Therefore,
the DGE MRI signal was split into several sections: 21-90 mins (complete data), 21-50 mins
(first section), and 51-90 mins (second section), note that the first 20 minutes of DGE MRI is

considered as the baseline of glucose uptake. The p-value matrix is shown in Figure 5.
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Figure 4. Pearson correlation matrices of 15 m.o. WT and zQ175 KI mice. Source: Illustrated by author.

(a) Average of WT mice Pearson correlation matrix; (b) Average of zQ175 KI mice Pearson correlation matrix.

F
=3
5
3
B
e
8
3
8
e
&
<
.

d/snduesoddTy
q/9TwRTRYL
d/oTweTRyL

09
08
CPu/L
CPu/R | o7
DG/L
DG/R
Hippocampus/L 086
Hippocampus /R
S1/L 05
S1/R
s2/L |
S2/R 0.4
M1/L
M1/R
M2/L 03
M2/R
Ins/L | 02
Ins/R
Ten/L
TeA/R | | | ] 01

Thalamic/L
Thalamic/R

. -
(b) §8 © 5

bR == C R - =

4 23 1 23

i1 23 i 2

: £z : iz

=z aq S3 4488 == aa g8 488

- Ly . . E -

TTTTTTT TS | PUSO— Y LTV LTS | DN

5338503888l loungasani i} 1E88ss80spitonnpaaaniigils

LIRS ERTTER L HE SRR CITE R

SSECEESCBEIEELOLRERRILEENT ST IESCCBEIIELLLERRRAAEENT

09 09
08 08
0.7 07
DG/L
DG/R
Hippocampus/L 06 Hippocampus/L 08
Hippocampus/R Hippocampus/R
S1/L s1/L
S1/R 05 S1/R 05
s2/L s2/L
S2/R 0.4 S2/R 04
Mi/L mi/L
M1/R M1/R
03 M2/L 03
M2/R
02 02
01 04
Thalamic/L Thalamic/L
Thalamic/R o Thalamic/R 0

Figure 5. p-value matrix from two-sample t-test result of WT and zQ175 KI mice (*=p < 0.05, FDR corrected).
(@) Time points: 21-90 mins (b) Time points: 21-50 mins (¢) Time points: 51-90 mins

Source: Illustrated by author.

14



Figure 6. 3D-rendered ROI with significant alteration in two-sample t-test of WT and zQ175 KI mice.

red: dentate gyrus (DQG); green: hippocampus; blue: thalamus; yellow: caudate putamen (CPu)

Source: Illustrated & rendered by author.

B. R6/2 KI Mice

Following the same procedure of zQ175 KI mice, the analysis was done on WT mice (13
weeks old) and R6/2 KI mice (13 weeks old). The average Pearson correlation for both groups
is shown in Figure 7, where the p-value matrix of the two-sample t-test (FDR corrected,
p <0.05) within different sections of the signal is as shown in Figure 8. From the first section
(21-50 mins), several significant alterations were found between different regions of the
thalamus, such as ACA, RSP, hippocampus, and the motor cortex. However, a significant
alternation was found in the correlation between CPu and DG, which aligns with the pathology

of impaired brain regions.
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Figure 9. 3D-rendered ROI with significant alteration in two-sample t-test of WT and R6/2 KI mice.

red: thalamus; green: dentate gyrus (DG); blue: caudate putamen (CPu)

Source: Illustrated & rendered by author.

C. Curve Clustering Analysis

The curve clustering analysis of DGE MRI data was performed using self-organizing
maps (SOM) after 200 training epochs. Figure 10 and Figure 11 presents the discrete clustering
results, where different categories represent distinct regions of metabolic activity. Each color
corresponds to a specific cluster, indicating areas of the brain that share similar glucose
metabolism patterns. These discrete clusters highlight the regions with similar metabolic
connectivity, without reference to anatomical slices. The spatial distribution of these clusters
suggests the presence of distinct metabolic zones, where certain regions demonstrate a cohesive

glucose metabolism behavior.
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Figure 10. SOM clustered voxel DGE MRI signal of 15 m.o. WT and zQ175 KI mice.

Source: Illustrated by author.
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Figure 11. SOM clustered voxel DGE MRI signal of 12 weeks old WT and R6/2 KI mice.

Source: Illustrated by author.

In Figure 12 and Figure 13, the curves represent the averaged signal for each identified
cluster. These curves summarize the glucose metabolism dynamics within the corresponding
clustered regions. Across the clusters, various patterns emerge: some regions show an initial
rapid increase in signal strength, followed by a steady plateau, while others exhibit more
gradual and consistent changes over time. These averaged curves provide a temporal snapshot
of glucose metabolism within each cluster, offering a clearer understanding of the distinct

metabolic characteristics of each region.
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The clustering analysis reveals a clear distinction between the metabolic behaviors of
different brain regions, with discrete categorization helping to identify patterns that may not be
apparent in raw image data. These results demonstrate the efficacy of SOM in clustering and

analyzing DGE MRI data, offering insights into the spatial and temporal diversity of glucose
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Figure 12. Averaged DGE MRI signal of SOM clustered voxel groups of 15 m.o. WT and zQ175 KI mice.

Source: Illustrated by author.

\ 0 w0 \ o
b 10 »
o s
w
o 10
o 05
o
o 0 1 20
] 0. 0 0 r o 50 o0 ] 0 a0 0 50 00 ] % 100
10 10° o
4 10
B 3
3 [ o
N 2
2 o o
o 1 0 05
2 o ” ]
) 50 100 ] 50 o o 50 100 o 50 00 ] 50 00 o 50 00
6 1 ' L to” 30
s
05 05
3 3 2
o o 2
o 05 1
o 1 a o 0 ]
o 50 100 0 50 o o %0 100 o % 0 a 0 00 0 50 00
© 1 18 210 o o 18 10
4 .
e 10 3 ) 10
o 2
05
e 1 o 0 ]
[ 50 100 ) 50 w0 50 100 0 50 00 ] 50 0 ] 50 00
10 10 0 0 o
5 5 5
2 10
6
15 10 10
4 1
5 5
2 05
o o o o 0 o
] 0 00 o o 00 o 0 T [ 50 00 a 50 00 o % 00

Figure 13. Averaged DGE MRI signal of SOM clustered voxel groups of 12 weeks old WT and R6/2 KI mice.

Source: Illustrated by author.

19



V. DISCUSSION

This study explores the potential of DGE MRI as a novel approach to assess glucose
metabolism connectivity in HD, using two commonly employed mouse models, zQ175 KI and
R6/2 KI. While HD is widely associated with motor, cognitive, and psychiatric symptoms,
there is an increasing interest in examining its metabolic disturbances, which may serve as
valuable clinical biomarkers (4, 5). Traditional methods for assessing glucose metabolism, such
as MRS, have been supplemented by advancements in DGE MRI, which allows for more
precise and efficient monitoring of brain glucose levels (8-11).

Our findings indicate that zQ175 KI mice exhibit significant alterations in glucose
metabolism connectivity. Using Pearson correlation analysis, we identified brain regions with
notably distinct connectivity profiles in DGE MRI signals compared to WT mice. This suggests
certain brain areas may be more susceptible to metabolic changes, offering key insights into
HD pathophysiology. Affected regions included the thalamus, caudate putamen, central
amygdaloid nucleus, and dentate gyrus, all associated with HD-related volume loss and
functional impairments (see Figure 4 and Figure 5) (39, 40, 53-55).

Similarly, analysis of R6/2 KI mice revealed altered glucose metabolism connectivity.
Here, Pearson correlation analysis highlighted distinct connectivity patterns in multiple brain
regions compared to WT mice, with these differences manifesting across various time points
in the DGE MRI signal. The connectivity patterns in R6/2 KI mice showed similarities to those
of zQ175 KI mice, except for the thalamus, which displayed more prominent connectivity
variations with cortical regions, such as the M1 and M2 cortices (see Figure 7 and Figure 8).

The thalamus, which transmits sensory information to different cerebral cortex areas, is
fundamental in regulating consciousness, alertness, and sensory input processing (56). The
caudate putamen, part of the striatum, plays a critical role in movement control and is also

involved in cognitive functions such as decision-making and reward processing. The central
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amygdaloid nucleus, part of the amygdala, is deeply connected to emotional processing,
especially fear and anxiety (57). The dentate gyrus, a hippocampal structure, contributes
primarily to memory formation and spatial navigation. Each of these brain regions is thus
associated with cognitive, sensory, or memory-related functions (58).

Our study utilized the R6/2 KI and zQ175 KI models of HD. The R6/2 model is
distinguished by pronounced HD-related pathology, including motor dysfunction, inclusion
body formation, and premature mortality. Given the disease's rapid progression, R6/2 mice are
often used as models for juvenile-onset HD, with a life expectancy of around 15 weeks due to
the aggressive onset of symptoms. In contrast, zQ175 KI mice show mHTT nuclear staining
and aggregates in the striatum and cortex, which become significant by four months of age (59).
By comparing these models, we observed more pronounced alterations in thalamus-cortex
connectivity in R6/2 mice, which may arise earlier and with greater severity due to their
accelerated disease progression. In contrast, the slower disease progression in zQ175 KI mice
may reflect different patterns of thalamus-cortex connectivity changes over time (60).

While multiple approaches, such as amplitude of low-frequency fluctuation (ALFF) (61)
and nuisance regression (62), can be applied to resting-state FC analysis, limitations inherent
to DGE MRI restrict their use in this study. Nuisance regression, typically used for noise
reduction, motion correction, and signal detrending, is incompatible with DGE MRI, where
signals reflect glucose chemical exchange trends. Future studies should focus on DGE MRI
pre-processing methods for glucose metabolism and FC analysis to further evaluate DGE
MRT’s utility as an HD biomarker.

The application of SOM in clustering DGE MRI data offers a unique framework for
identifying distinct metabolic connectivity patterns across brain regions. The clustering
analysis, highlighted in Figure 10 to Figure 13, emphasizes SOM's potential in distinguishing
brain areas that share similar glucose metabolism dynamics. By organizing these regions into

discrete clusters, this method goes beyond traditional anatomical mapping, enabling a fresh
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perspective on glucose metabolic zones and their cohesive behaviors. The averaged curves in
Figures 12 and 13 bring to light the unique temporal patterns of each cluster, revealing
metabolic behaviors that could be overlooked in raw DGE MRI data. Some clusters display
sharp initial increases followed by stable plateaus, while others show more gradual changes in
signal over time. This clustering analysis thus uncovers subtle spatial and temporal variations
in glucose metabolism, offering new insights into metabolic shifts that may be relevant to the
progression of neurodegenerative diseases such as HD.

However, the complexity of SOM mapping within DGE MRI data presents substantial
analytical challenges. Although SOM effectively clusters regions with similar glucose
dynamics, interpreting these clusters is not straightforward. The resulting features often lack
clear definitions, partly due to the inherently low signal strength in the small structures of the
mice brain. This limitation in signal-to-noise ratio (SNR) makes it difficult to delineate specific
metabolic characteristics within each cluster accurately, introducing ambiguity in the spatial
and temporal trends identified.

Further, the promise of identifying diagnostic biomarkers based on glucose metabolism
patterns in specific brain regions is still largely aspirational. The observed curve patterns—
whether they exhibit rapid initial increases, gradual changes, or other dynamics—highlight
potential, but the variability in these signals requires rigorous study. To fully understand
whether these patterns could serve as reliable biomarkers, further investigation is needed into
both metabolic processes and neural network training methods. Such efforts would enhance the
precision of SOM-based clustering and help clarify whether these distinct glucose metabolism
zones are genuinely reflective of underlying disease mechanisms, particularly in
neurodegenerative disorders like HD. Thus, while SOM clustering offers intriguing insights,
its potential as a diagnostic tool is contingent on deeper, methodical research into both the

biological significance and analytical robustness of these metabolic patterns.
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VI. CONCLUSION

While DGE MRI has been widely utilized for assessing glucose metabolism, its
application in connectivity analysis as an index of energy utilization in HD patients remains
unexplored and requires proof of concept from various perspectives. This study leverages the
zQ175 KI and R6/2 KI mouse models to investigate glucose metabolism connectivity in HD,
revealing potential disruptions within specific brain regions. Notably, our analysis highlights
distinct connectivity disruptions, particularly between the striatum and dentate gyrus and in
thalamic-cortical pathways, where the findings are consistent with established HD pathology
and suggest that DGE MRI could be sensitive to early metabolic connectivity changes.

However, validating these findings requires additional studies, including isotopically
labeled (2-deoxy-D-glucose) 2DG, which is an established method for measuring glucose
metabolism. Unlike glucose, 2DG enters cells via the same transporters as glucose and is
phosphorylated but minimally metabolized further, allowing it to act as a stable tracer of
glucose uptake. By comparing results of glucose with 2DG, we can more accurately determine
how well DGE MRI reflects actual glucose metabolism and clarify its sensitivity to metabolic
connectivity changes. Additionally, fiber photometry could enable real-time recording of neural
activity through calcium or neurotransmitter signaling, offers a complementary approach to
assess FC and neuronal dynamics in HD. Together, these methods provide a more robust
framework to evaluate and validate DGE MRI's reliability and specificity as a tool for mapping
metabolic connectivity changes, potentially solidifying its role in HD diagnosis and monitoring.

By linking metabolic alterations to specific connectivity patterns in HD, our study
proposes DGE MRI as a promising approach to enhance our understanding of HD pathogenesis
and as a potential biomarker for early diagnosis and disease monitoring. This research
establishes a foundational framework for further exploration, advancing prospects for targeted

therapies that address metabolic dysregulation in HD.
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1. Novelty and Significance:

This study introduces a novel approach to investigating
Huntington’ s disease (HD) by utilizing Dynamic
Glucose-Enhanced (DGE) MRI to examine glucose metabolism
connectivity as a potential biomarker. The research is
innovative in 1ts application of advanced imaging techniques
to explore metabolic disruptions in HD, a devastating
neurodegenerative disorder. By employing two distinct mouse
models, zQ175 KI and R6/2 KI, the study provides a
comprehensive view of HD progression, from gradual to rapid
disease development. This approach is significant as it
offers a non-invasive method to potentially detect early
metabolic changes in HD, which could be crucial for early
diagnosis and intervention strategies. The use of
self-organizing maps (SOM) to cluster DGE MRI signal curves
further enhances the study’ s innovative aspect, revealing
spatial and temporal connectivity variations that might be

overlooked in conventional anatomical 1maging.

2. Strength:



The study demonstrates several notable strengths. Firstly,
1t successfully identifies significant connectivity
alterations in HD models, particularly in brain regions known
to be associated with HD pathophysiology, such as the thalamus,
caudate putamen, and dentate gyrus. This alignment with known
HD pathology validates the approach and strengthens the
potential of DGE MRI as a biomarker. Secondly, the use of two
different mouse models allows for a more comprehensive
understanding of HD progression, capturing both rapid (R6/2)
and gradual (zQ175 KI) disease development. This dual-model
approach enhances the study’ s relevance to various stages of
HD. Additionally, the application of SOM clustering reveals
distinct temporal patterns in glucose metabolism, providing
insights into region-specific metabolic behaviors that may
be crucial for understanding HD pathogenesis. The study’ s
methodology offers a robust framework for future research
1into metabolic dysregulation in neurodegenerative diseases,

potentially extending beyond HD.

. Weakness:

While the clustering analysis reveals unique temporal
patterns in glucose metabolism, the biological significance

of these patterns remains unclear. Further research is needed



to establish a direct 1ink between these metabolic behaviors
and HD pathological mechanisms. Secondly, the study’ s
potential for early HD diagnosis, while promising, requires
additional validation. The variability in metabolic signals
may impact their reliability as biomarkers, necessitating
more extensive studies to confirm their accuracy in
reflecting HD progression. To enhance the study’ s relevance,
future work should include a more detailed introduction of
the zQ175 KI and R6/2 KI mouse models, explaining their
origins and the differences in disease severity, cognitive,
behavioral, and motor symptoms between these strains.
Additionally, the discussion should explore how the
experimental results might explain these differences,
providing deeper insights into HD pathogenesis. Lastly,
methodological refinements to improve signal strength and
address the complexity of SOM clustering could enhance the

reliability of DGE MRI as a biomarker for HD.
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