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Abstract—This research proposed and built the first integrated
Al-based honeybee health assessment system called BeeMind Al
The BeeMind Al system had eight sensors including a microphone,
temperature and humidity, carbon dioxide, atmospheric pressure,
and camera, which enabled BeeMind Al to monitor both in-hive
and external conditions. BeeMind AI has several diverse
applications due to its ability to analyze honeybee movement and
behavioral patterns to determine honeybee health, and it was used
to evaluate the effects of four nutrients on honeybee health
through video analysis in two experimental settings, one in a newly
designed tri-chambered maze based on a Delayed Matching-to-
Sample procedure, and another in a free-flying homing paradigm.
The free-flying experiment was conducted to study the effect of
nutrients on return rates of honeybees at distances of 300 m, 500
m, and 800 m, and it was found that the base return rates of the
control group even at 800 m was close to 75%. It was observed for
the first time that C60 nanoparticles had significant positive effects
on learning, memory, and flying capabilities, improving return
rates by around 9% at 300 m, 16% at 500 m, and 20% at 800 m,
while neonicotinoid pesticides had negative effects on return rates,
reducing them significantly by up to 30%. The developed BeeMind
Al system has a significant impact on honeybee-related research,
especially in the evaluation of honeybee learning and memory.

Keywords—Artificial Intelligence, Beehive, Honeybee System,
C60 Nanoparticles, Neonicotinoids, Free-Flying, T-Maze

I. INTRODUCTION

Due to their pollination services, honeybees are one of the
most ecologically vital animals, being singlehandedly
responsible for nearly 80% of global agricultural pollination [1].
However, in recent years, they have experienced large declines
in populations, and as a survey reported roughly 50% of
beekeepers in the US lost their honeybee colonies [2]. These
losses are experienced globally due to a combination of many
factors, including but not limited to habitat loss, pesticides,
climate change, and other invasive species [3, 4].

One of the biggest factors attributed to the decline of
honeybee colonies is the usage of pesticides, specifically
neonicotinoids [3-6]. Neonicotinoid compounds have been used
globally since their introduction in the early 1990s [4]. Studies
have shown that neonicotinoids can have both sublethal and
lethal effects on honeybees, depending on the dosages that they
are exposed to, as neonicotinoids bind to nervous system
receptors of honeybees [7]. These effects can range from
behavior changes to altered motor functions [7-9].

Among the reported effects, one of the more significant ones
is the effect of neonicotinoids on honeybee learning and memory
[10, 11]. Additionally, there is a lack of availability for methods
of monitoring of honeybee hives, essentially meaning that the
only methods to track honeybee health are through obtrusive
physical methods of inspection.

This paper aims to develop a novel Al-based honeybee
health assessment system, able to monitor beehives using the
following functions: continuous temperature and humidity
monitoring both inside and outside the hive, as well as video and
audio recording to assess honeybee health as well as population.
In addition, this system can be used for honeybee-related studies
such as nutrition effects and evaluation on health, learning, and
memory. To do this, four types of nutrition have been studied
and their effects have been analyzed by a deep learning
approach.

Fig. 1. Diagram of BeeMind Al system design consisting of 5 modules.

II. EXPERIMENTAL CONDITIONS AND SYSTEM SETUP

A. BeeMind Al System Design and Build Up

An artificial intelligence-based system (BeeMind Al) was
designed to assess honeybee health and behaviors when
implemented directly into a beehive. The beehives used in this
study were three 8 frame deep box hives with approximately
20,000 honeybees (Apis mellifera) each. As shown in Figure 1,
BeeMind AI’s system design consists of 5 separate modules.
Module 1 is data collection of both in-hive and external
conditions, and contains 8 integrated sensors, capable of
collecting visual data, audio data, and numerical data. Different
sensors were placed both in-hive, mounted externally, or placed
inside the BeeMind Al terminal, such as sound (MAONO USB
Lavalier Microphone) and COz, temperature, and humidity
(Adafruit SCD-41) placed inside of the hive, as well as a camera
(Raspberry Pi Camera Module 3) contained in the terminal to
track the entering and exiting of honeybees, and the ShillehTek



BME280 mounted externally for temperature, humidity, and
pressure data collection. Data was transmitted to a Raspberry Pi
Board (Raspberry Pi 4 Model B 2019 Quad Core 64 Bit WiFi
Bluetooth 4GB) as shown in Figure 2 containing a storage card
(Lexar E-Series 32 GB Micro SD Card, microSDHC UHS-I
Flash Memory) for processing using a deep learning model.
Module 2 is the storage of data in the BeeMind Al database.
Module 3 is the BeeMind Al deep-learning development,
including a YOLOVS deep-learning model for honeybee flight
path tracking and honeybee counting at the entrance. Module 4
shows BeeMind Al different function outputs, including a health
and behavior assessment, a learning and memory evaluation, as
well as nutrient effect and stress analysis. Module 5 shows
applications of BeeMind Al, with remote access capabilities
through an app.
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Fig. 2. BeeMind Al system hardware diagram with central Raspberry Pi board
integrating 8 different sensors including camera and audio recording.

The BeeMind Al terminal gate also consisted of multiple
different components and was where the Raspberry Pi Board as
well as the camera module were located as shown in Figure 3.

Fig. 3. BeeMind Al system design and implementaton. (A) BeeMind Al
configuration, (B) BeeMind Al terminal gate diagram with (1) Raspberry Pi,
(2) Camera Module, and (3) Entrance Divider, (C) Honeybees flying onto the
landing board at the entrance of the hive and crawling in to the entrance divider
(D) Monitoring in-hive conditions using BeeMind Al display.

B. BeeMind Al Deep Learning Architecture

The deep learning model used in this research was YOLOVS
as shown in Figure 4. The selection was based on YOLOvVS8’s
higher accuracy and speed as well as fewer parameters, making
it efficient and suitable for hardware such as the Raspberry Pi
4B model used in BeeMind Al. The parameters used in the Al
model were epochs= 100, image size (imgsz)= 640, and
learning rate (Ir)= 0.01, with all other parameters being default
settings. This approach allowed BeeMind Al to monitor inflow
and outflow of honeybees at the entrance divider as well as track
honeybee flight paths.
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Fig. 4. YOLOVS architecture diagram of Al-based video analysis for the
BeeMind Al system.

C. Two-Level Tri-Chamber Maze Design

To test honeybee learning and memory, two experiments
were designed and conducted based on a previously proposed
procedure known as Delayed Matching-to-Sample (DMTS)
[12]. The first design to test honeybee learning and memory was
a maze consisting of two levels and three chambers, as shown
in Figure 5. Each level of the maze was 32 x 32 x 34 inches and
was made from cardboard and acrylic. Every level had 3 exits
with a unique pattern disc above each exit that was 2 inches in
diameter. Figure SA shows the pattern disc hierarchy used in
the tri-chamber maze. The first level consisted of 3 patterns that
were clearly distinct from each other, meaning that the bees
would have an easier time making the correct selection. If the
bees made the incorrect choice in the first level, they would fly
into the next chamber where they would be faced with the exact
same 3 patterns to see if they would make the correct selection
if given a chance to retake the test. If the bees successfully
passed the first level, they were faced with a second level with
3 much more similar patterns. Additionally, a scoring system
was implemented to compare the performances of different
honeybees. Honeybees that selected the correct pattern at both
Level 1 and Level 2 received 3 points, while the ones that
selected the correct pattern at Level 1 but not Level 2 received
2 points. The honeybees that selected the incorrect pattern at
Level 1 but selected the correct pattern at the retake received 1
point, and the rest of the honeybees that made all incorrect
selections received 0 points.
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Fig. 5. Maze design: (A) shows different pattern disc hierarchy. The left-most
column disc was displayed outside chamber 1 at the entrance, the middle
column discs (Level 1) were mounted inside chamber 1 on the way into chamber
2 and 3, and the right-most column discs (Level 2 and Level 1 Retake) were
placed inside chamber 2 and 3 while (B) shows 3D design of two-level tri-
chamber maze.

D. Nutrition and Concentration Selection

To ensure a comprehensive study of nutrients with a wide
range of effects, two positive and two negative nutrients were
selected and are listed in Table 1. The two negative nutrients
were neonicotinoid pesticides, one being thiamethoxam and
another being acetamiprid, and they were both purchased
from Sigma-Aldrich, USA. Dosages for neonicotinoids were
based on previous literature for calibration purposes. The two
positive nutrients chitosan and water soluble C60 were both
nanoparticles. C60 was purchased from Sigma-Aldrich, USA,
while chitosan was purchased from Nanochemazone,
Canada. C60 is a powerful antioxidant that has shown anti-
aging effects [13]. Additionally, Baati et al. discovered that
C60 could in fact nearly double the lifespan of rats when
dissolved into olive oil [14]. Chitosan also has similar
reported health benefits [15, 16]. All nutrients were diluted in
series in a 1:1 sucrose solution of sugar and water. To prepare
chitosan, 5 grams of chitosan were diluted in the sucrose
solution into a final solution of 1.2 ng. C60 was diluted so that
each bee received 5 ug. Thiamethoxam was diluted to a final
1 ng per bee, and acetamiprid was diluted to a final 1 ug per

bee. All bees were fed 10 uL of sugar water with the added
nutrient, and the control group received pure sugar water.

TABLE 1. NUTRIENTS AND CHEMICAL FORMULAS
. Molecular
Nutrient Formula Structure Weight (g/mol)
Acetamiprid CioH11CINg N 22267
o O
N0,
N N
Thiamethoxam CsHi0CINsO3S HSC‘NJ‘\N/_Q»\C‘ 291.71
()
CH,0H
H o o
Chitosan
Nanoparticles (CeHINO4) & ! 161n
H NH,
n
‘Water Soluble Ceo(OH)n 720.66
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E. Method Development of Honeybee Feeding

There are two methods of feeding honeybees: group feeding
and individual feeding. Group feeding simplifies feeding large
groups of bees but does not allow for controlling the amount of
nutrients that bees individually consume. Individual feeding
allows for flexible control but makes mass feeding more
challenging. In this research, to feed honeybees the desired
nutrients, a multi-step process was developed to individually
feed honeybees, as shown in Figure 6. First, honeybees were
attracted near the hive entrance using a coffee filter soaked in a
sucrose solution (Figure 6A). They were then individually
moved to a feeding station in plastic cups, where the solutions
of the specified nutrients had been dropped. The cups were kept
above them to ensure that the honeybees would fully consume
the prepared solutions (Figure 6B), and when the solution had
been visually fully consumed, the bees were moved into a
freezer, where they were stored for a few minutes (Figure 6C).
When they had stopped moving significantly, they were taken
out of the freezer and marked with the color corresponding to
the solution they were given. They were then ready for
experimentation, as seen in Figure 6D. This method ensured
that all bees individually received the same amounts of a certain
nutrient.



Fig. 6. Development of individual honeybee feeding method: (A) Bees were
attracted outside of the hive using a coffee filter soaked in sucrose solution, then
(B) placed under plastic cups to feed and to prevent physical contact. (C) Bees
were then moved into a freezer, color-marked, and (D) gathered for
experimentation.

F. Free Flying Method

In order to evaluate the effects of nutrients on honeybees in
terms of memory and navigation in field-realistic situations, the
second design was a free-flying paradigm where bees were
released at varying distances (300 m, 500 m, and 800 m) from
their hive to see their return rates (Figure 7A). Multiple groups
of thirty bees each were released between 10:00 AM - 1:30 PM
in Deltona, Florida, when the weather conditions were clear,
sunny days between 60-65 °F, with around 9-16 MPH winds
and 15 mile visibility (Figure 7B and 7C). The number of bees
that had returned were counted by a combination of video
analysis through Al as well as manually checking the hives for
the marked bees (Figure 7D-7G). In this way, the memory of
honeybees could be tested by the performances in these designs
after their treatment with a specified nutrient.

m, and 800 m. (B) Bees warm from freezer temperature before release. (C)
shows the release station, with dimensions 15 cm (Length) x 18.7 cm (Width)
x 9.2 cm (Height). (D) Tallying of marked bees gives return rate. (E), (F), and
(G) show examples of color marks indicating different nutrient solutions
consumed.

G. Data Analysis Using a Statistical Method

To identify the difference between two sets of data,
statistical t-tests were employed. The obtained p-values were
then compared to an alpha value of 0.05 to determine whether
differences between two sets of data were statistically
significant or not. The statistical tests were used to compare the
different groups in the free-flying paradigm.

1II. RESULTS AND DISCUSSION

A. BeeMind Al Functions

1) Monitoring In-hive Conditions

By integrating 8 different sensors, different conditions that
were both in-hive and external could be tracked in real time,
with data being updated every 5 minutes as shown in Figure 8.
The temperature and humidity levels inside the hive were
maintained steadily over time. The COz levels were also shown
to be between the levels of 1000 and 3000 ppm. The external
pressure levels were also consistently between 1010 and 1011
Pa. These levels are consistent with previously reported values
[17].
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Fig. 8. Real-time monitoring of both in-hive and external conditions such as
(A) temperature and humidity, (B) CO», and (C) atmospheric pressure. One unit
on the x-axis corresponds to 5 seconds in real time.

2) Tracking Honeybee Inflow and Outflow

At the entrance of the hive, the camera module of BeeMind
Al was capable of monitoring the entrance divider, and thus
could count the number of honeybees entering and exiting the
hive over a period of time, allowing for tracking of marked bees
in the free-flying experiment. As shown in Figure 9A, the blue
rectangle was the area of counting, with honeybees passing the
top blue line adding to the upward count and honeybees passing



the bottom blue line adding to the downward count. As shown
in Figure 9B, in the afternoon, the honeybees entering the hive
exceeded those exiting the hive, which indicated normal
circumstances.
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Fig. 9. (A) BeeMind Al camera module monitoring entrance divider of hive
and tracking inflow and outflow of honeybees. Blue rectangle represents area
of counting with top line registering upward count and bottom line registering
downward count. (B) Real-time data of inflow and outflow of honeybees taken
every 5 minutes.

3) Flight Path Tracking and Analyzation

In order to study the effects of different nutrients on
honeybees, an Al-based video analysis method was developed
to track honeybee flight patterns and behaviors in the tri-
chamber maze design. By utilizing cameras mounted above
each chamber, the flight paths of honeybees throughout every
chamber could be tracked and analyzed. As shown in Figure 10,
different honeybee flight patterns can be broken down into four
time zones based on their flight times: T1, T2, T3, and T4. More
detailed work on this method will be published elsewhere.

Fig. 10. BeeMind AI camera flight path tracking capabilities used to evaluate
the effect of different nutrients on honeybee flight times in maze with different
flight time zones shown (A) T1 (flight time < 10 seconds) (B) T2 (flight time <
20 seconds) (C) T3 (flight time < 30 seconds) and (D) T4 (flight time > 30
seconds).

B. Tri-Chamber Maze

Experimentation with the tri-chamber maze design was
conducted to test honeybee memory and yielded some insights
on honeybee behavior. The first finding is how the memory of
honeybees is very strong, being able to recognize the correct
target sign among many other different signs after training. It
revealed how honeybees rely on their visual memory to make
decisions, as honeybees took around 15% more time at Level 2
where the targets were more similar than at Level 1 where the
targets were more distinct. Another insight is that honeybees
can become careless, as most honeybees that did not pass level
1 spent longer on the retake and successfully passed the retake.
75% of honeybees selected the correct symbol at Level 1, while
48% of honeybees were able to get both Level 1 and Level 2
correct, with the average score of all honeybees being 2.1.

C. Free Flying Design

In the free flying experiment where bees were captured,
marked, and released, several key findings were obtained. The
first key finding was the ability of nanoparticles to significantly
improve the return rates of foraging honeybees. As shown in
Table 2, honeybees which received C60 had the highest return
rates, followed by the chitosan group, control group, and then
the neonicotinoids. The second key finding was the effect that
different nutrients had on the time it took for honeybees to leave
the release station. As shown in Figure 11, the neonicotinoid
pesticide groups took a shorter amount of time to depart
compared to the control and nanoparticle groups. This
experiment confirmed the positive benefits of nanoparticles
under field-realistic conditions as well as the detrimental effects
of neonicotinoids.

TABLE II. FREE FLYING RETURN RATE BY NUTRIENT AND DISTANCE
Control  Acetamiprid XM Chitosan C60
lug/bee 1 ng/bee 1.2 ng/bee Sug/bee
300 m 88% 73% 50% 90% 95%
500 m 80% 68% 43% 85% 93%
800 m 75% 55% 38% 75% 90%
1,600 . s X -
1,400 . . 1,303
5 1:200 1.100 118
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Fig. 11. Bar graph of the average times taken for bee departure from the release
station after nutrient feeding. Significant p-values indicated: *p<0.05,
**p<0.01, ***p<0.001, and ****p<0.0001.



An interesting behavior was noticed during the free-flying
experiment. Honeybees that had received sublethal doses of
neonicotinoids were crawling on the edges before taking off,
while the honeybees from the control group and the
nanoparticle groups were found to take off directly from the
bottom of release station as shown in Figure 12. This behavior
is still under ongoing evaluation through Al-based video
analysis.

Fig. 12. Different groups of honeybees with different degrees of crawling and
flying behaviors displayed with (A) Control Group, (B) Acetamiprid, and (C)
C60.

IvV. CONCLUSION

In this research, an Al-based system was successfully
developed to monitor honeybee behaviors, and the impact of
different nutrients on honeybees was studied. The first design
for bee learning and memory evaluation of a tri-chamber maze
was shown to be a successful test of honeybee memory and was
the first free-flying maze to incorporate multiple levels with
symbols of different complexities. In the field-realistic free-
flying homing design, it was observed that for the time it took
for bees to depart from the release station, both neonicotinoid
pesticide groups took a statistically significantly shorter
amount of time to depart compared to the control group, while
the nanoparticle groups took a statistically significantly longer
amount of time compared to the control group as shown in
Figure 8. Additionally, C60 nanoparticles showed a significant
positive effect on return rates of foraging honeybees, with a 9%
increase at 300 m, 16% increase at 500 m, and 20% increase at
800 m compared to the control group. The future work of this
research will be focused on continued optimization of Al with
larger sample size, and different nutrients and concentrations
in the free-flying experiment.
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Strengths :

1.

Innovative Data Collection :

BeeMind Al integrates multiple sensors and employs the YOLOvS
deep learning model, offering a non-invasive and precise
method for tracking honeybee behavior and environmental

conditions.
Comprehensive Experimental Design :

The study combines indoor memory evaluations with outdoor
navigation tests, providing a multi-dimensional perspective
on honeybee learning, memory, and field performance. The use
of t-tests validates the statistical significance of the

findings.
Impactful Results:

Detailed data demonstrate the beneficial effects of
water-soluble C60 and chitosan on honeybee navigation and the
detrimental impact of neonicotinoids, offering actionable

insights for pollinator health management.

Weaknesses and Recommendations

L.

Limited AI Applications :



The AI component focuses primarily on motion tracking and
counting, missing opportunities for advanced behavioral
pattern recognition, anomaly detection, or predictive
modeling. Future studies could implement machine learning
algorithms to analyze complex behavioral data and predict

colony health under different conditions.
Narrow Nutrient Selection :

The study tested only two positive (C60 and chitosan) and two
negative (Acetamiprid and Thiamethoxam) substances,
excluding other potentially impactful nutrients such as
natural plant extracts. Expanding the range of tested

substances would improve the generalizability of findings.
Small Sample Size and Short-Term Observations :

The experiments used a limited sample size and focused on
short-term effects, which may not fully represent long-term
1mpacts or variability across different honeybee populations
and environmental conditions. Increasing the sample size,
including diverse honeybee species, and conducting

longitudinal studies would strengthen the findings.
Data Reliability in High-Density Activity :

The accuracy and reliability of the BeeMind AI system in
scenarios of high-density bee activity need further

validation. Enhancements to the system’ s hardware and



software should be explored to maintain data quality under

such conditions.
5. Scalability and Practical Applications :

While the system has demonstrated success in research

settings, 1ts scalability and adaptability for widespread
use remain untested. Future developments should focus on
refining the system for practical applications in diverse

environments.

Conclusion

BeeMind Al represents a significant advancement in honeybee
monitoring technology, offering a robust tool for
understanding the effects of nutrients and pesticides on
honeybee health and behavior. Despite i1ts limitations, the
system provides a foundation for future research, with
potential applications in pollinator conservation and
agricultural sustainability. Implementing the recommended
improvements could maximize the impact and utility of this

innovative Al system.
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