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Abstract

The equation of an ellipse and quadratic residues are well-known
concepts in elementary geometry and number theory, respectively. While
the properties of ellipse equations in Euclidean space have been extensively
studied, many characteristics of quadratic residues, such as consecutive
quadratic residues, have also been explored in past research.

In this study, we discovered the characteristic polynomial of the
equation of an ellipse over finite fields F,, a single-variable polynomial
that shares the same roots as the ellipse. Furthermore, by examining the
parallels between the equation of an ellipse and the pairs of residues and
nonresidues, we derived a characteristic polynomial for this concept and
demonstrated its connection to the Catalan number, a significant sequence
in combinatorics.

This research was conducted through the following steps. First, the
power sums of the roots of the ellipse in F,, were calculated using the Leg-
endre symbol and Euler’s criterion. Next, the characteristic polynomial
of the ellipse was determined using Newton’s identity, generating func-
tions, and Vieta’s theorem. Finally, leveraging the equivalence between
the equation of the ellipse and the pairs of residues and nonresidues, we
established the main results connecting these two concepts with Catalan
numbers.

1 Introduction

An ellipse is a well-known structure in Euclidean space defined as the set of
points for which the sum of the two distances to two fixed points is a constant.
Euclidean space is continuous, and the equation of an ellipse can be extended
into discrete fields such as F, as shown below.

az? +by? =1 (mod p)



Unlike Euclidean space, the properties of elliptic equations in discrete spaces
are not well studied.

This study investigates the relationship between the equation of an ellipse
in IF, and the Catalan numbers, as well as the relationship between pairs of
residues/nonresidues and polynomials that have Catalan numbers as coefficients.
In this section, we aim to briefly introduce the key findings and the flow of the
research.

In this paper, we will only consider elliptic equations of the form ax?+by? =
1 (mod p). Additionally, we will focus solely on the properties of x, as the
properties of y can be determined by exchanging a and b. Therefore, this set
will be of primary interest to us.

Definition 1.1 (Solutions for the Equation of an Ellipse). The set of solutions
for the equation of the ellipse is defined as follows:

X,(a,b) ={z |2 €Fy,y € Fp,az® +by* =1 (mod p) } . (1)

First, we investigated some properties of the elements of X,(a,b). From
those properties, we derived the polynomial whose solution set is X,(a,b). The
polynomials are represented as follows:

Theorem 1.1 (Relation between Catalan Numbers and the Equation of an
Ellipse over F,). For t = % (p—i— 1+ (%) — (‘;b)), the following equations
hold: (Here, all fractions should be considered as arithmetic inverses.)

If (%) =—1 and (_Tb) =-1,
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Since the equation of the ellipse over F, is quadratic, it has a deep rela-
tionship with quadratic residues. By investigating a special ellipse equation, we
found the relationship between polynomials with Catalan number coefficients
and pairs of residues and nonresidues. The definitions and main results are
provided below.

Definition 1.2 (Pairs of Residues/Nonresidues). The sets of pairs of residues/nonresidues
are defined as follows:

)]
a5}

Definition 1.3 (Polynomials with Catalan Number Coefficients). For an odd
prime p, P;(z) and Py(z) are defined as follows:

2]

Pl (l’) = Z 4722’021,1.1‘ (6)
=0
2] |

Pg (.’1?) = Z 4_21_16'%,1.’17Z (7)
=0

Theorem 1.2 (Relation between Catalan Numbers and Pairs of Residues/Nonresidues).
For a prime p > 3:

[I @-a=4" (3(;1) + 1) (P (z) + Py (z)) (mod p)  (8)

acA,U{1}

[[ G-a=1" (3(;1) + 1) (@P1 () + P» (2)) (mod p)  (9)

a€B,U{1}

I[[ @-a)y=47" ( <pl> + 3) Py (z) (mod p) (10)

ael’y

I[[ @-ay=47" (—<_p1> + 3) Py (z) (mod p) (11)

aEA,

2 Power Sums of Solutions of Ellipse over [,

From now on, we consider p as an odd prime number and a,b as two integers
that are relatively prime with p, where p t a, b.



Definition 2.1. An alternative set of solutions for the equation of the ellipse
is defined as follows:

X;,’)(a,b) = {£E2 |z € Xp(a,b),a:2 #0,a" (mod p)} (12)

Definition 2.2. For an integer k > 0, the power sums of the elements of X, (a, b)
are defined as follows: (Note that py = |X,(a,b)|)

DE = Z ¥ (13)
r€Xp(a,b)

First, we will derive the formula for py and then generalize the formula to
Pk-

Lemma 2.1. For a non-negative integer k < %, the equation below holds:

pka (‘”ﬁp+ b) =0 (mod p) (14)

x=1

Proof. By Euler’s criterion [4],

Lk ar +b = p-1
Zxk< > fok(aerb)T (mod p).
p

r=1 x=1

Since every term on the right-hand side has a degree lower than p — 1, the sum
of each term with the same degree vanishes. Therefore, the equation holds. [

Lemma 2.2. The following equation holds:

-1

= (5) =)

r=1

Proof. Since p is an odd prime number,

(5) -G (57 - ()

Note that {a+bx~! |1 <2z <p—1}U{a} is a complete residue system modulo
p. Finally, from Lemma 2.1,

1

§ (e £ ) () (2)

=1 =1

Definition 2.3. The function X 45() is defined as follows:

= (- () (- (5
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Lemma 2.3. The equation below holds:

4 if v € X)(a,b),
1+ (%) ifz=0 (mod p),
Xpab(z) = " (17)
1+(2) fzr=a"" (mod p),
0 otherwise.

Proof. Let’s verify the equation case by case. If x € X)(a,b), the equation
holds since (%) = (%) = 1 by Definition 2.1. In the cases where z =
0 (mod p) or z = a~! (mod p), the equation holds because 1+ (“T_l) =1+ (%)
and 1+ b;Tl =1+ (%). For all other cases, one of (%) or (W) is
—1, so the value is 0.

Theorem 2.4. The zero-power sum (number of solutions) is represented as

follows: . % {p+ - (Z) B (‘Z”)} (18)

Proof. By Lemma 2.3, |X},(a,b)| is equal to:

Y =

1<z<p-1l,ptz—a—?

{E () (- () - ()

=1

Using Lemmas 2.1 and 2.2, we have:

& (1 () (6 (=5)) -
. N —ab—lx;+ b_lac)) _
()-GO}
senr=to--(3)-()- (2}

If 2 # 0,a”"' (mod p), then z € X,(a,b) & 2* € X,(a,b). Therefore, we
can calculate pg as follows:

p0:2.|X1’)(a,b)|+;(1+ (2)) L (Z)
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Substituting the value of | X}, (a,b)|, we get:
1 a —ab
po=zp+1+ (= —(— ).
2 p p
Lemma 2.5. For a positive integer k < %, the following equation holds:

o (#) < (F) () wan o

=1
Proof. By Euler’s criterion [4],

p—1

ka (ax —|—bx> Zx (az® + bx) B (mod p).

=1

Since the degree of the right-hand side is lower than 3=1) , sums of terms with

degrees other than p—1 vanish. For the terms of degree p— 1, by Fermat’s Little
Theorem, the value matches the right-hand side of the desired equation. O

Theorem 2.6. Forp > 3 and a positive integer k < %, the following equations
hold:

p2r—1 =0,

pu=at { oo () (Z) L (1 (4))), (mod p)  (20)

Proof. It follows that pog—1 = 0 because if € X,(a,b), then —z € X,(a,b).
The formula for the even power sums is now shown. The power sums of Xz/,(a, b)
can be simplified as follows using Lemmas 2.1, 2.3, and 2.5:

Z i (4 (3))
(B (=20 (11 (2))

z=1

(D) () ()

Using the fact that 2 = k has 1 + (%) solutions:
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Since:

p—1 1—p 2k—1—p
_1\k([ 2 — 2 "7 — —k(2k_1)"'1: ok (2
(-1 ( k ) = o =2 o =2 i (mod p),

the desired equation holds. O

3 Characteristic Polynomial of Ellipse over F,

In this section, we derive the characteristic polynomial of an ellipse over IFp,
which contains the roots of the ellipse, using a generating function based on the
properties of the roots investigated.

Definition 3.1. For the ellipse az? + by? = 1 (mod p), a monic polynomial f
in F), is called the characteristic polynomial of x when z € X,(a,b) if and only
if f(z)=0.

Definition 3.2. The greatest common divisor of all characteristic polynomi-
als of the ellipse with respect to x is referred to as the minimal characteristic
polynomial of x for the ellipse.

Definition 3.3 (Catalan Number). For n > 0, the n-th Catalan number is

defined as:
C - 1 <2n)
n+1\n

Definition 3.4. The functions F(z) and C(x) denote the generating functions
of the sequences (2:) and C),, respectively.

Definition 3.5. If M(z) is the generating function of the sequence a,, then
My (z) is defined as the generating function of the sequence az;,.

Theorem 3.1. The following equation holds:

Proof. This follows directly by calculation. O

Theorem 3.2. The formulas for F(z) and C(z) are as follows:

1 C( ) 1—+1—4dx
—_— )= —-——.
V1 —4x 2z

Proof. See [1]. O

F(z) =

Using these formulas and Theorem 3.1, we can derive the formulas for Fy(x)
and Cy(z).



Definition 3.6. For the elements of X, (a,b) = {1, 22, ..., 2}, the elementary
symmetric polynomial of the roots of the ellipse is defined as:

O = Z Ty =" Ty, -

1<i1 <. <0 <| Xp(a,b)]
Theorem 3.3 (Newton’s Identity). For a non-negative integer k < |X,(a,b)],
the following relationship holds:

k

kow =Y (=1)" ok ip;.

i=1
Proof. See [5] or [3]. O
Theorem 3.4. For a non-negative integer k < p%l, o2k+1 = 0 holds.

Proof. We prove the theorem using mathematical induction. By Theorem 2.6,
01 = p1 = 0. Assuming the expression holds for all £ < n — 1, we can express
O2n+1 using Newton’s identities:

2n+1

(27’L + 1)U2n+1 = Z (*1)i710—2n+1—ipi'
i=1

From Theorem 2.6 and the inductive assumption, it follows that for odd 7, p; = 0
and o; = 0. Thus, 02,41 = 0, completing the proof. O

Theorem 3.5. For the non-negative integer k < p—;l, the following equation
holds:

a—ko—4kCy, if *?b =1, %) =1,
—a kW=D, if (=) =1,(2) =-1,
o2 = b P (mod p)
—q kg—1k (Co +4C5; 1) if _?b =1, % =1,
—aF274 (20561 + 8Cor—2) if %} =-1, %) =1,
Proof. From Theorem 2.6, when (’Tab) =1 and (%) = —1, the equations
=0 d — _ —ko—(2k+1) 2k d
pek+1 =0 (mod p), pay =—a "2 . ) (mod p)
hold.

We prove the theorem using mathematical induction. For k = 0, o¢g = 1,
so the equation is satisfied. Assuming the equation holds for all £k < n — 1,
Newton’s identities give:

n—1 n—1 .
. a2
2noo, = — g O2iPan—2; = 27" (16a) g QQ(HZ)CQZ'( Z_ Z,Z> (mod p).
i=0 i=0



The generating function for 2% (2:) is F'(4z), and the generating function for
Cy; is Ca(x). From the calculations, we know:

F(4z)Cq(z) = 2F3(x) — Ca(x),
and the sequence corresponding to this product is (4221). Thus:
n . n—1 .
dn +1 2(n—i 2n — 27 i 2n — 2
— ) (n z)C ; =y, 22(n z)C ; )
(") =L een (27 e (Y
Substituting this back, we find:

an+1

. - o dn (4
oo, =271 (16a) {( on ) _ CQn} =9 1(16@) 271711 (22> (mod p).

Simplifying further and multiplying both sides by (2n)~!, the expression
holds for k = n, completing the proof by induction.

When (’Tab) = —1and (%) = —1, from Theorem 2.6,

2k
pak = a~ k2~ (2k+1) < k) (mod p).

Mathematical induction will be used to prove the given expression. For k = 0,
oo = 1, so the equation holds. Assuming the expression holds for £k < n — 1,
Newton’s identities and the inductive hypothesis yield:

n—1 n—1 .
_ — 2n — 21
27’LO’2n = — E 02iP2n—2i = (16&) " E 22(n Z)CQZ‘1< n—i ) (HlOd p)
=0 =0

The generating function corresponding to the sequence 22 (2;) is F'(4zx), and
the generating function for 2C5;_1 is

Glx) = Va (C(Va) — (Vi) — 1.

Furthermore, F(4z)G(x) = —Fs(z), and the sequence corresponding to this

function is —(32) Using the properties of generating functions,

dn ! o2n — 2i
— =92C9,_1+2Y 2200700, 7).
<2n> 2n—1 F Z 2i-1{

=0

Thus, the summation simplifies to:
— o1 —n dn — _o-1 —n
2noy, = —27" (16a) 2C,_1 + om = —27"(16a) "8n - Co,—1 (mod p).

Multiplying both sides by (2n)~1, the expression holds for k = n. By induc-
tion, the expression holds for all 0 < k < %1.



When (‘Tab) =1 and (%) =1, from Theorem 2.6,

2k
por = —a k2~ (k+D) ( k:) +a~" (mod p).

Using mathematical induction as before, for £k = 0, 0y = 1, so the equation
holds. Assuming the expression holds for £ < n — 1, Newton’s identities and the
inductive hypothesis yield:

n—1
2nogy, = — Z 02iP2n—2i
= n—1
= (16a) " Y 24" (Cy; + 4Ch; 1)
=0
—n = 2(n—i) (9—1 2n — 20

i=0
The third summation, previously calculated, is:
-— I — 2
Z 22(n=17) (271021' + 2C2i71) ( . > = —8n-Cap_1 + 2n - Cay.
n—1
i=0

. . 47+ 1
The generating function for 2% is —&-,

Ca; +4C5;_1 is Co(x) + 2G(x). Furthermore:

and the generating function for

Co(z) +2G(z) 1 ( 1 1

1-160 4/ \/I1dyz 14z
4n

2

> = CQ(.Z‘) — 2F2(Jj),

and the sequence corresponding to this function is —( :1) Using the properties

of generating functions:

n—1
4n + 1 n—i
_< o > = E 24( ) (CQZ + 402i_1) + OZn + 402n—1'
=0

Thus, the summation simplifies to:

_ 4 1
2nog, = (16a)" {—( nQ;: ) —Co, —4C9,_1+8n-Cop_1 — 2n - an}

4
= (16&)7n {2 <QZ> —4C5,—1 +8n-Coyy_1 — 2n - an}

= —(16a) " (2n - C2p + 81 - Cayp—1) (mod p).

Multiplying both sides by (2n)~1, the expression holds for k = n. By induc-
tion, the expression holds for all 0 < k < %1.

10



When (‘“b) = —1and (%) =1, from Theorem 2.6,

P

2k
Do = a~Fo—(2k+1) ( k) +ak (mod p).

We proceed by mathematical induction as before. For & = 0, oy = 1, so the
equation holds. Assuming that the expression holds for £k < n — 1, we apply
Newton’s identities and the inductive hypothesis:

n—1
2noo, = — E 02iP2n—2i
i=0

n—1
= (16a)™" Z 2417 (2051 + 8C3—2)
i=0
! 4 o — 2i
+ (16a)~" Z 220 (Cy; 1 + 4Co; o) ( ) ) (mod p).
i=0 n-

The summation in the third line of the equation was calculated earlier:

n—1

) 2n — 2
Z 22(n72) (Czifl + 4021;2) < Z _ ,L.Z) = —4n-Cop_1 + (16n - 16) - Cap—2.
=0

The generating function corresponding to the sequence 2% is 171161,, and the

generating function for 2Cy;_1 + 8C4;_2 is G(z) 4+ 8xCy(x). Furthermore:

8xC2(x) +G(z) 1 Cs () +2G(2)
16 :2{_02(x)+ T }

and the sequence corresponding to this function is 7(32) Using the properties
of generating functions:

= _F2('T)7

dn n—1 )
— (2n> = Z 24(n—1) (2021‘_1 + 8021‘—2) +2C%,—1 + 8Cap—2.
=0

Thus, the summation simplifies as:

2nog, = (16@)_n {—877, -Cop—1—8C9p_9 —4n-Cop_1 + (16n — 16) . CQn_Q}
= —(16a) " (4n - Cap—1 + 160 - Cay—2) (mod p).

Multiplying both sides by (2n)~!, the expression holds for £ = n. By math-

ematical induction, the given expression holds for all 0 < k < %. O

Remark. At Theorem 3.5, we used the notation C_; = —% and C_o = 0. These

values satisfy the analytical extension of the Catalan number as described in

[2].

11



From Theorems 3.4 and 3.5, we have derived the elementary symmetric poly-
nomials in terms of the roots of the ellipse defined by az? + by? = 1 (mod p).
Therefore, using Vieta’s theorem, we can now determine the minimal charac-
teristic polynomial of the ellipse as defined in Definition 3.2 and prove Theorem
1.1.

Proof. By Vieta’s theorem, the minimal characteristic polynomial of the ellipse
can be written as:

(]
H (x—a)= Z oot T2,
=0

a€Xp(a,b)

Substituting the result from Theorem 3.5, we can derive the four equations
stated in Theorem 1.1. O

4 Relation of the Characteristic Polynomial and
the Pairs of Quadratic Residues/Nonresidues

Lemma 4.1. For an odd prime p, the following hold:

Coma =2 <pl> (mod p) and Crs = —471 (p) (mod p).

Proof. We calculate C -1 as follows:

Cos = 2 (p_1> _ 2= Db o).

(=5

Similarly, for C =3, We calculate:

Cps = 2<p :33) = @ (mod p).

S

Using the result:

12



we combine these equations to obtain:

O

Using the extended definition of the Catalan number as previously described
in Section 3, we derive the following theorem:

Theorem 4.2. For a prime p > 3,

Pi(z) = % ((?) +3) I G- k.

ker,

1 —1,2 —

Proof. Consider the equation g~ 122 —g~1y? = 1 (mod p). By Theorem 2.4, the

number of solutions is p—;l. Excluding 0, the solutions of the ellipse can be writ-

ten as +aq,tas,...,tas, where t = [”Z—l]. By Theorem 3.5, the characteristic
polynomial of this ellipse is:

¢ t
24721'9102“6%721 — i H(xz _ af).
i=0 i=1

Substituting % = X and rearranging the equation gives:

t

Pi(X) = AT[(X —a;%9),

=1

where A = (—1)%a?---alg~!. By comparing the highest-order terms on both

sides, we find:
A =47%Cy (mod p).

When p = 4t+1, 16! = 2°~! = 1 (mod p), and Cy; = 2 (mod p), which gives
A =2 (mod p). When p =4t + 3, 16! =471 (mod p), and Co; = 47! (mod p),
which gives A =1 (mod p). Thus, in general:

1 -1
A=~ — 3.
() +)
Since I'y = {a7%g,...,a;%g} by the definition of the ellipse equation, the
theorem is proved. O
Theorem 4.3. For a prime p > 3,

Py(z) = % <<pl) 3) II @-&).

kEA,

13



Proof. Consider g~ '22 — y?> = 1 (mod p). By Theorem 2.4, the number of

solutions is %1. Excluding 0, the solutions of the ellipse can be represented

as *ai,+as, ..., +a;, where t = [%]. By Theorem 3.5, the characteristic
polynomial of this ellipse is:

t t
—2i i Lo pHl_o¢ 2 2
E —2-47%¢'Co_122 =2 H(:L‘ —a?).

=0 =1

Substituting % = X and rearranging the equation gives:

——2AH —a; 29),

where A = (—1)!a?---a2g~*. By a process similar to Theorem 4.2, we obtain:

1 —1
2A==-(|—])-3).
((5)-2)

Since A, = {a;2g,...,a; g} by the definition of the ellipse equation, the
theorem is proved. O
Theorem 4.4. For a prime p > 3,

A+ P =3 (3(=)-1) T @-»
1\ 2\ ) = 9 P X .
keA,U{1}

Proof. Consider 22 — y? = 1 (mod p). By Theorem 2.4, the number of solu-

tions is %. Excluding 0, the solutions of the ellipse can be represented as

+ai,£as, ..., +a;, where t = [EX1]. By Theorem 3.5, the characteristic poly-
nomial of this ellipse is:

t
Z —47 (O + 409 1) B2 g2 1_[(952 —a?).
=0 3
Substituting 1% = X and rearranging the equation gives:

¢
(4_(2i_1)02i_1 + 4_2i0214> Xi=—-A H(X —

M-

I
o

K3

where A = (—1)%a?---a?. Since CPTH = 0 (mod p), the left-hand side matches

Pl(l') + Pg(l‘)
By a process similar to Theorem 4.3, we find:

A= % (3 <_p1> + 1) (mod p).

Finally, since 4, U {1} = {a;?,...,a;%} by the definition of the ellipse
equation, the theorem is proved. O

14



Theorem 4.5. For a prime p > 3,

ePy(z) + Py(z) = % <3 (‘pl) + 1) I @-»

keB,U{1}

Proof. Consider 22 — g7'y?> = 1 (mod p). By Theorem 2.4, the number of
solutions is p%?’. Excluding 0, the solutions of the ellipse can be represented
as *ay,*as,...,*as;, where t = [%]. By Theorem 3.5, the characteristic

polynomial of this ellipse is:

t t

Z —472% (2021'71 + 8021'72) .’E¥72i = (EpT%izt H(x2 - af)

i=0 =1

Substituting :%2 = X and rearranging the equation gives:

M-

Il
=]

¢
(4_(21'_1)021‘71 + 4_(%_2)02172) X'=-24 H(X —a; %),
i=1

7

where A = (—1)%a?---a?. Since Cptr =0 (mod p), the left-hand side matches

xPy(z) + Pa(x).
By a process similar to Theorem 4.3, we find:

—2A:1(3(_1> +1).
2 D
Finally, since B, U {1} = {a;?,...,a; %} by the definition of the ellipse

equation, the theorem is proved. O

Now, it is straightforward to see that Theorems 4.2-4.5 are equivalent to
Theorem 1.3. These theorems provide meaningful corollaries about the proper-
ties of polynomials with coefficients as Catalan numbers.

Corollary 4.5.1. For a prime p > 3,
Pi(z) - Py(z) = —2 (g;* + 1) :
xPl(x)Q + Pg(x)2 =4 (:EPTH + 1) .
Proof. The first equation follows directly since I', U A, is the set of quadratic
nonresidues. Additionally, since A, U B, U {1} is the set of quadratic residues,
the following equation holds:

(xPy(z) + Po(z)) (P1(z) + Pa(z)) = =2 (2 — 1) (m— _ 1) _

The second equation can then be derived by rearranging these equations.  [J

15



5 Conclusion

Our research has clarified the number-theoretical connections between the equa-
tion of an ellipse over finite fields, Catalan numbers, and pairs of residues and
nonresidues. Firstly, we determined the power sums of the solutions to the equa-
tion of the ellipse using the properties of the Legendre symbol. Subsequently,
we identified the characteristic polynomial of the equation of the ellipse by ap-
plying Newton’s identity. By examining four distinct ellipse equations under

conditions on (%) and (‘;b), we established relationships between the pairs of

residues/nonresidues and the two polynomials Pj(x) and Py(x). These results
demonstrate the Catalan number’s role as a powerful tool for uncovering new
aspects of mathematical theory, particularly within finite fields Fp,.

In Section 3, it was shown that the Catalan number can represent the exact
roots of an ellipse in finite fields IF,,. Pell’s equation over IF,, as stated below,
serves as a notable example of the Catalan number’s significance since it is a
special case of an ellipse:

2?2 —ny? =1 (mod p).

Furthermore, in Section 4, we discovered that the Catalan number can also
represent all pairs of residues and nonresidues.

This study not only provides a deeper understanding of the interplay be-
tween Catalan numbers and finite field theory but also opens new pathways for
exploring the applications of Catalan numbers in number theory and beyond.

References

[1] H Alzer and GV Nagy. Some identities involving central binomial coefficients
and catalan numbers. Integers, 20:A59, 2020.

[2] Wen-Hui Li, Jian Cao, Da-Wei Niu, Jiao-Lian Zhao, and Feng Qi. An an-
alytic generalization of the catalan numbers and its integral representation.
arXww preprint arXiw:2005.13515, 2020.

[3] DG Mead. Newton’s identities. The American mathematical monthly,
99(8):749-751, 1992.

[4] Ivan Niven, Herbert S Zuckerman, and Hugh L. Montgomery. An introduction
to the theory of numbers. John Wiley & Sons, 1991.

[5] Doron Zeilberger. A combinatorial proof of newton’s identities. Discrete
mathematics, 49(3), 1984.

16



[:=:% ] 010041

The motivation of this work stems from solving a modular
p elliptic equation. Treating these solutions as roots, the
resulting polynomial under modulo p has coefficients related
to Catalan numbers. On the other hand, based on whether r or
l-r 1saquadratic residue modulo p, the solutions can be divided
into four categories. In each category, the numbers treated as
roots form a polynomial under modulo p, which is also related
to Catalan numbers. The authors demonstrate exceptional
mathematical ability, and the work showcases creativity. It is
suggested that future research could explore whether these
equations have specific applications in related mathematical

fields.
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