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Abstract 
 

 According to the 2024 American Cancer Risk Survey, one in 24 individuals is at high risk 

of developing colon cancer. This condition is linked to gut microbiome instability.  Consequently, 

there is a pressing need for a more effective and precise approach to maintaining gut microbiome 

stability, which this research aims to solve by finding the most crucial bacteria species in maintaining 

the stability of the gut microbiome through the application of Optimal Linear Feedback Control. Two 

of its variants being applied in this research are Sparsity Promoting Linear Quadratic Regulator 

(LQRSP) with a variety range of  (0.05, 44.58, and 49.84) and Linear Quadratic Regulator (LQR) 

( = 0) along with other supporting methods; Controllability Gramian and Network Theory (graph 

analysis). 

The finding in this research shows that bacteria species Bacteroides hydrogenotrophica, 

Bacteroides uniformis, Bacteroides vulgaris, Bacteroides thetaiotaomicron, Escherichia lenta, and 

Dorea formicigenerans have an important role for preventing and medicating a variety of gut-related 

diseases. This conclusion is reinforced by the analysis conducted using the Controllability Gramian, 

displaying five of the chosen bacteria with the highest controllability index, which demonstrates that 

the system can be effectively controlled. This finding suggests a potential for enhancing therapeutic 

strategies, rendering them more precise and systematic. To gain deeper insights into the relationship 

between each bacteria and the rationale behind the selection of these bacteria by LQRSP, this study 

also employs network theory, which successfully elucidates the choice of Bacteroides uniformis 

despite its low controllability index. Additionally, to further validate the efficacy of these bacteria, 

the research develops a simulation that compares the controlled system with the uncontrolled system, 

utilizing two types of disturbances. The results indicate a significant difference in robustness against 

disturbances between the controlled and uncontrolled systems. 

The findings from this research can be used as a foundation for a more efficient and 

systematic intervention strategy findings. By researching gut microbiome composition regulation 

using a mathematical approach, it opens new opportunities for new method discoveries aiming to 

increase the health of the gut microbiome which is beneficial for the medical field and prevention of 

gut related diseases.  
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1. Introduction 

 
1.1 Background 

 
The human gut microbiome is a complex dynamical system consisting of myriads of 

bacterial species with various symbiotic interactions between species and the host gut.  The bacterial 

composition of the gut microbiome dictates a variety of physiological processes, including digestion, 

immune regulation, and even mental health through the gut-brain axis [1,2,3]. Ultimately, bacterial 

composition in the human gut plays an important role in the health of its human host.  

The bacterial composition of the gut microbiome is influenced by numerous factors, such as 

diet, lifestyle, genetics, and environmental exposures. Disruptions to this delicate microbial 

balance—known as dysbiosis—have been associated with various diseases, including inflammatory 

bowel disease, obesity, diabetes, and neurodegenerative disorders [4]. Therefore, maintaining a 

healthy and stable gut microbiome composition is critical to preventing disease and supporting 

overall health [5]. However,  recent studies indicate an increasing prevalence of chronic diseases 

associated with dysbiosis, such as colon cancer, diabetes, inflammatory bowel disease, and 

cardiovascular diseases [6,7,8]. This highlights the importance of interventive treatment that 

moderates gut microbiome composition to mitigate or prevent dysbiosis.  

In the medical field, there have been extensive studies to develop methods aimed at 

modulating and maintaining the stability of the human gut microbiome. One common approach is 

transplanting feces obtained from healthy donors to reintroduce beneficial bacteria to the gut, also 

known as Fecal Matter Transplant (FMT) therapy. However, FMT poses a high risk of pathogenic 

transmission, infection, and rejection of the host gut microbiome [9,10]. Another common method is 

to use specific drugs, such as antibiotics, prebiotics, and probiotics, to modulate the interactions and 

composition of intestinal microbes [11]. However, these drug-induced changes in the digestive tract 

environment can potentially exacerbate microbiome instability,  leading to antibiotic-induced 

diarrhea, bloating, and infections [11]. The side effects of both approaches can be attributed to the 

lack of precision and non-specific targeting mechanisms of these treatments. Furthermore, the 

inherent complexity of the human gut microbiome makes it challenging to design low-risk 

therapeutic interventions to stabilize and modulate bacterial compositions properly. A more rigorous 

and quantitative approach is required to develop such therapy.  

4.2  Sparse Control Action via Influential Gut Bacteria 112 

4.3 Gut Microbiome Stability Analysis Under Disturbance 12–13 
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This study will leverage concepts from optimal control theory to help develop robust 

strategies for modulating and stabilizing the gut microbiome as a networked system. More 

specifically, this research will apply sparse optimal feedback control to a dynamical model of the 

human gut microbiome to identify critical bacterial species and interactions responsible for 

regulating and maintaining the ecosystem's balance, which can be specifically targeted for 

therapeutic interventions. 

This study is organized as follows: Section 2 discusses the gut microbiome model this 

research assumed and discusses several preliminary concepts in control theory and network science. 

Section 3 elaborates on our method of analyzing and applying sparse optimal feedback control to the 

gut microbiome. Section 4 elaborates on the implications of our results. Section 5 concludes our 

study.  Sections 6 and 7 evaluate the scope of our study and potential future works. 

 

 

1.2 Research Question 
 

1. How can we utilize linear optimal control theory as a quantitative approach to analyze 

compositions of the human gut microbiome to develop a more systematic therapeutic design?  

2. Based on the Sparsity Promoting Linear Quadratic Regulator, which bacterial species play 

an important role in maintaining the stability of the gut microbiome? 

 

1.3 Objectives 
  
 This research aims to find the best modulation strategy for a more targeted and systematic 

medication development aiming to stabilize the gut microbiome. This can be accomplished through 

the use of tools from optimal control theory, including Sparsity Promoting Linear Quadratic 

Regulator, Controllability Grammian, and Network Theory (Graph analysis) to find the most 

influential bacteria in modulating and maintaining the stability of the gut microbiome. 

 

2. Literature Review 
 

2.1 Dynamical Model of the Human Gut-Microbiome 
 
To model the human gut microbiome, this research adopts the generalized Lotka-Volterra 

(gLV) model, a widely used approach for representing the dynamics of interacting microbial 

communities. The gLV has been previously utilized to model various dynamic systems, such as stock 

market fluctuations, infection patterns of RNA viruses, and gut microbiome [12,13,14]. The gLV 

model can capture the population dynamics of microbial species through a set of coupled differential 

equations, where the growth rate of each species depends not only on its intrinsic properties but also 

on its interactions with other species in the system. The gLV model is given by Equation 1. 

      
𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥1, . . . , 𝑥𝑛) = 𝑟𝑖𝑥𝑖 + ∑𝑛

𝑗=1 𝐴𝑖𝑗𝑥𝑖𝑥𝑗,       (1)                                 

 

where the vector 𝑥 ∈ ℝ𝑛 represents the population densities of 𝑛 microbial species over time, the 

coefficient vector 𝑟 ∈ ℝ𝑛 is the intrinsic growth rate of each species, and the matrix 𝐴 ∈ ℝ𝑛×𝑛 is the 

interspecies interaction matrix. The value 𝐴𝑖𝑗 > 0 indicates that species 𝑗 facilitates the growth of 

species 𝑖, and 𝐴𝑖𝑗 < 0 indicates that species 𝑗 inhibits the growth of species 𝑖. In this study, this 

research adopt the version of the generalized Lotka-Volterra (gLV) model presented by Hromada 

and Venturelli [14], which includes the following 12 microbial species shown in Table 1: 
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  Table 1. Abbreviation indices of bacterial species in [14] 

No. Bacteria Species Name 

1. BH Bacteroides hydrogenotrophica 

2. CA Clostridium aerofaciens 

3. BU Bacteroides uniformis 

4. PC Prevotella copri 

5. BO Bacteroides ovatus 

6. BV Bacteroides vulgatus 

7. BT Bacteroides thetaiotaomicron 

8. EL Escherichia lenta 

9. FP Faecalibacterium prausnitzii 

10. CH Clostridium hiranonsis 

11. DP Dorea formicigernerans 

12 ER Escherichia rectale 

 

 

 

Their experimentally determined growth rates (𝑟) and interaction matrix coefficients (𝐴) are 

given in Table 2.  

Table 2.  Coefficients of the general Lotka-Volterra model [14]  

 

The model provides a comprehensive framework to study the interdependencies among these 

microbial populations, making it ideal for exploring strategies to stabilize the gut microbiome. The 

following section will discuss concepts and techniques for analyzing the gLV model. 
 

2.2 Optimal Control of Dynamical Networked Systems 
 

2.2.1 Linear Time-Invariant System 

This research begin with the simplest dynamical networked system in the form of a square 

multivariate linear differential equation given by the Linear Time-Invariant (LTI) system defined 

(Equation 2): 

 

                         
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝐵𝑢 + 𝑑,                    (2) 

 

where 𝑥 ∈ ℝ𝑛 is the state vector, 𝑢 ∈ ℝ𝑛 is the control input vector, 𝑑 ∈ ℝ𝑛 is the disturbance vector,  

𝐴 ∈ ℝ𝑛×𝑛 is the state transition matrix, and 𝐵 ∈ ℝ𝑛×𝑛 is the control input matrix.  

The term 𝐴𝑥 captures the intrinsic dynamics, where 𝐴𝑖𝑗 defines how the 𝑗-th state influences 

the 𝑖-th state. The structure of 𝐴 reflects the network's connectivity, while its eigenvalues indicate 

stability: negative real parts signify stability and return to equilibrium, while positive real parts 
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indicate instability. The magnitude of the eigenvalues determines the speed of these dynamics. The 

term 𝐵𝑢 represents the influence of control inputs 𝑢 on the system. and 𝑑 accounts for disturbances 

or external factors that perturb the system, representing environmental changes or noise. Together, 

these terms describe the balance between intrinsic dynamics, external interventions, and disruptions, 

providing a comprehensive framework for analyzing and influencing the system's behavior. 

 

2.2.2 Controllability and 𝑯𝟐 norm of Networked Systems 

Controllability is a fundamental concept in analyzing LTI systems, determining whether it 

can steer the system's state vector 𝑥 from any initial state to any desired final state using appropriate 

control inputs 𝑢. For the LTI system, the structure of both 𝐴 and 𝐵 plays a critical role in ensuring 

controllability. The controllability Gramian, 𝑊𝑐, provides an energetic perspective on controllability 

by quantifying the energy required to move the system between states given 𝐴 and 𝐵. The 

controllability Gramian is defined as Equation 3 [15]: 

 

𝑊𝑐(𝐴, 𝐵) = ∫
∞

0
𝑒𝐴𝜏𝐵𝐵𝑇𝑒𝐴𝑇𝜏𝑑𝜏.          (3)                                             

 

The overall controllability of the LTI given 𝐴 and 𝐵 can be measured by computing for the trace of 

𝑊𝑐(𝐴, 𝐵) [15] (Equation 4: 

 

𝐻2(𝐴, 𝐵) = 𝑡𝑟𝑎𝑐𝑒(𝑊𝑐(𝐴, 𝐵)).                                                    (4) 

 

This value is also known as the 𝐻2 norm. Larger values of 𝐻2(𝐴, 𝐵) indicate that less energy is 

required to steer the system, while smaller values suggest that the system is inherently harder to 

control.  

 Supplemental to measuring the 𝐻2 norm, the degree centrality measure can also help reveal 

structural insights into the gut microbiome system [16]. By generating a directed graph from the 

interconnection matrix 𝐴 in Eq. (1) showcn in Figure 1, the in and out-degree centrality can be 

computed by counting the number of incoming and outgoing directed edges out of every species 𝑖. 

 

 

Figure 1. Graphical representation of inter-species connectivity based on the matrix 𝐴 in Eq. (1) 

[14]. 



7 

2.2.3  Linear Feedback Control System 
 

Linear feedback control is used extensively in engineering to regulate the behavior of 

dynamic systems. It is based on the idea of using information from the current state of the system to 

modify its control input and achieve stability and responsiveness. A linear feedback controller for 

the LTI in Eq. (2) is given by Equation 5: 

 

    𝑢 = −𝐾𝑥,                           (5) 

 

where 𝐾 ∈ ℝ𝑛×𝑛 is the feedback gain matrix. The resulting controlled system then becomes 

(Equation 6): 

 
𝑑𝑥

𝑑𝑡
= (𝐴 − 𝐵𝐾)𝑥 + 𝑑                                                  (6) 

 

The box diagram in Figure 2. illustrates the linear feedback control of an LTI. 

  
Figure 2. A schematic for a linear Feedback control of an LTI system. 

 

The design of the feedback gain matrix 𝐾 is critical to achieve system stability and responsiveness. 

The following section will discuss several criteria for selecting the optimal design for the feedback 

gain matrix 𝐾. 

 

2.2.4 Sparsity-Promoting Linear Quadratic Regulator (LQRSP) 
 

Optimal control techniques are commonly used to help design feedback control laws for a 

system by systematically optimizing a performance criterion. These techniques aim to determine the 

best control actions to achieve specific objectives, such as minimizing energy usage, ensuring 

stability, or achieving fast and precise tracking of desired trajectories.  

In this study, Sparsity Promoting Linear Quadratic Regulator (LQRSP) is utilized to design 

an optimal feedback control law [17]. LQRSP considers three key factors in determining the optimal 

𝐾: 1) control performance, 2) control effort, and 3) feedback costs. It is an extension of the traditional 

Linear Quadratic Regulator (LQR) framework by incorporating sparsity-promoting penalties into the 

optimization process, making it particularly useful for systems where feedback control channels can 

be limited or resource-intensive or difficult to control, such as in applications like controlling a gut 

microbiome. 

The output feedback gain matrix 𝐾 of the LQRSP is determined by solving  Equation 7a-c 

optimization problem: 

  

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐾 ∫
∞

0
𝑥𝑇(𝑡)𝑄𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)𝑑𝑡 + 𝛾|𝐾|0     (7a)                  

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   𝑑𝑥/𝑑𝑡 = 𝐴𝑥 + 𝐵𝑢 + 𝑑                                                  (7b) 
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            𝑢(𝑡) = −𝐾𝑥(𝑡),                                                             (7c) 

 

where 𝑥 and 𝑢 are the same state and control input vectors found in Eq. (2) and 𝐾 is the feedback 

gain matrix found in Eq. (5). The matrices 𝑄 ∈ ℝ𝑛×𝑛 and 𝑅 ∈ ℝ𝑛×𝑛 are symmetric and positive 

semidefinite weight matrices that this study set as the identity matrix of size 𝑛 × 𝑛 for this study 

(𝑄 = 𝑅 = 𝐼𝑛). The coefficient 𝛾 > 0 is the sparsity penalty for the term |𝐾|0, which |𝐾|0 is the 

number of non-zero entries in the matrix 𝐾. Note that when 𝛾 = 0, the classical LQR  formulation is 

recovered. 

A feature of the LQRSP that is particularly relevant to this study is its ability to identify 

frugal control actions by selecting the most critical entries of 𝐾 for achieving desired system 

performance while simultaneously minimizing control energy. By promoting sparsity in the feedback 

gain matrix, LQRSP effectively prioritizes impactful control channels based on the inherent structure 

and connections of the system being controlled. This makes it suitable for control applications of 

highly interconnected systems that require resource-efficient interventions, such as gut microbiome 

control. 

 

3. Research Methodology 
 
3.1.     Linearization of the gLV model 
 
To allow the application of the tools discussed in section 2, this study must first proceed by 

linearizing the gLV model to resemble an LTI. The linearization is done by computing for the 

Jacobian of Eq. (8): 

 

𝐽𝑖𝑗(𝑥) =
𝜕𝑓𝐼

𝜕𝑥𝑗
= 𝐴𝑖𝑗𝑥𝑖 + 𝛿𝑖𝑗(𝑟𝑖 + ∑𝑘≠𝑖 𝐴𝑖𝑘𝑥𝑘),                                      (8) 

 

where 𝛿𝑖𝑗 is the Kronecker delta (𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗 and 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗). To obtain the linear 

approximation of the gLV, the Jacobian is computed at the non-trivial steady state of Eq.(8), 𝑥𝑠𝑠. The 

heatmap for the Jacobian coefficients is shown in Figure 3. 

 

 

Figure 3. Heatmap of Jacobian Coefficients. Zero entries are annotated as “0” in the heatmap. 
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 The resulting LTI that approximates the dynamics of the gLV model around the steady state 

is then given by Equation 9: 
𝑑𝑥̄

𝑑𝑡
= 𝐽(𝑥𝑠𝑠)𝑥̄ + 𝐵𝑢(𝑡) + 𝑑 ,                                     (9)  

 

where 𝑥̄ = 𝑥 − 𝑥𝑠𝑠. Given Eq. (9), this study can apply the tools discussed in Section 2. 

 

3.2.    Calculating 𝑯𝟐-Norm and Degree Centralities  

The linear approximation of the gLV allows the computation of the 𝐻2 norm representing 

the total influence of each microbial species in steering the system. To separately measure the 

potential control influence of every species 𝑘, this study compute the 𝐻2 norm using Eq. (4) with 

𝐴 = 𝐽(𝑥𝑠𝑠) and the following control input matrices (Equation 10): 

         

Each value of 𝐻2(𝐽(𝑥𝑠𝑠), 𝐵𝑘) for species 𝑘 = 𝐵𝐻, 𝐶𝐴, . . . , 𝐸𝑅 indicates the control influence each 

species 𝑘 has on the rest of the system. Similarly, the in and out-degree centrality for each species 

𝑘 = 𝐵𝐻, 𝐶𝐴, . . . , 𝐸𝑅 is calculated based on the graph in Figure 1. 

  

3.3.     Application of the Sparsity Promoting Linear Quadratic Regulator 
 

To design the feedback gain matrix 𝐾 using the LQRSP, this research apply the LQRSP 

solver in MATLAB to the LTI in Eq. (9) [18], with 𝐽(𝑥𝑠𝑠) as the state transition matrix and 𝐵 = 𝐼𝑛as 

the control input matrix. To explore the effects of 𝛾 on the structure of the output feedback gain 

matrix 𝐾, this research solve Eq. (7) for 𝛾 ∈ [0,100], discretized into forty values that generate forty 

different values of 𝐾(𝛾). 

 

3.4.     Feedback Control Model Simulation under Known Disturbance 
 

Using the resulting feedback gain matrices 𝐾(𝛾) with various sparsity patterns produced by 

LQRSP, this research  simulate the feedback-controlled gLV model using 𝐾(𝛾) is given by Equation 

11: 

 

 
𝑑𝑥̄𝑖(𝑡)

𝑑𝑡
= 𝑓𝑖(𝑥̄(𝑡)) + 𝐵𝑢(𝑡) + 𝑑(𝑡),                      (11) 

 

where 𝑓𝑖 is the differential equation governing the dynamics of species 𝑖 defined in Eq. (1). This 

research simulate Eq. (11) using the forward Euler method to obtain a time series with 𝑇 = 10,000 

time points with iteration step of ℎ = 0.01 [19]. This research employ two types of disturbances 𝑑(𝑡) 

in Eq. (2) to illustrate the stabilizing effect of the controllers:  

 

   𝑑𝑠𝑡𝑒𝑝(𝑡) = {0, 𝑡 < 0| 1, 𝑡 ≥ 0}            (12) 

       𝑑𝑖𝑚𝑝𝑢𝑙𝑠𝑒(𝑡) = {1, 𝑡 = 0| 0, 𝑡 ≠  0}.               (13) 
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where Eq. (12) is known as the step disturbance where, and Eq. (13) is known as the impulse 

disturbance.   

            

3.5.    Measure of Controller’s Performance under Known Disturbances 

 
 To quantify the stabilizing effect of 𝐾(𝛾) at different values of 𝛾, this research employ the 

𝐿1 norm to measure the deviation of the simulated dynamics from the steady state 𝑥𝑠𝑠 . The 𝐿1 norm 

for a set of time series 𝑥(𝑡) is defined as Equation 14: 

 

𝐿1(𝑥̄(𝑡)) = ∑𝑛
𝑖=1 ∫

𝑇

0
|𝑥̄𝑖(𝑡)|𝑑𝑡.  (14)                                

 

𝐿1(𝑥(𝑡)) can interpreted as the magnitude of deviation of 𝑥(𝑡) from 𝑥𝑠𝑠(𝑡). The 𝐿1(𝑥̄(𝑡)) will be 

calculated for different feedback gain matrices 𝐾(𝛾) and disturbances. Therefore, higher values of 

𝐿1(𝑥̄(𝑡)) indicate poorer control performance and lower values indicate otherwise. 

  

4. Results and Discussion 
 

4.1.    Identification of Influential Gut Bacteria 
 

Figure 4 shows the result of 𝐻2(𝐽, 𝐵(𝑘)), in-degree and out-degree centrality for each 𝑘 =

𝐵𝐻, 𝐶𝐴, 𝐵𝑈, 𝑃𝐶, 𝐵𝑂, 𝐵𝑉, 𝐵𝑇, 𝐸𝐿, 𝐹𝑃, 𝐶𝐻, 𝐷𝑃, 𝐸𝑅: 

 

 

 Figure 4. a) Controllability index 𝐻2(𝐽, 𝐵(𝑖)). b) out-degree centralities, and c) in-degree 

centralities for each 12 gut microbial species   

 

Observation of Figure 4a  reveals that species BH, BV, BT, EL, FP, and DP represent the six 

bacterial strains with the highest 𝐻2(𝐽, 𝐵(𝑘)) value, indicating that these species have a strong 

dynamical influence over the rest of the gut microbial species. The difference in 𝐻2(𝐽, 𝐵(𝑘))  values 

across different strains implies that only certain species can be specifically targeted to effectively 

modulate gut microbiome dynamics. This measurement can be used as a data-driven pre-assessment 

to design a more informed specific therapeutic program.  

In addition, the degree centrality measures in Figures 4a and b reveal the direct relationships 

between species. For example, BU and BT are the two strains that have the highest out-degree and 

lowest in-degree centrality, indicating that BU and BT are directly responsible for influencing the 

dynamics of the largest number of other species in the network but are themselves minimally 
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influenced by other species. This highlights their potential role as dominant regulators or drivers 

within the system, which is suitable for targeted interventions or manipulations to steer the overall 

network dynamics.      

 

4.2.    Sparse Control Action via Influential Gut Bacteria 
 

Figure 5 represents the variation of the feedback gain matrix 𝐾(𝛾) with increasing sparsity 

penalty parameter 𝛾:  

 

 

Figure 5. Structural variation of the feedback gain matrix 𝐾 with increasing values of  𝛾: a) 𝛾 = 0, b) 𝛾 =

0.05, c) 𝛾 = 44.58, and d) 𝛾 = 49.81.

An increase in 𝛾 leads to a more sparse 𝐾(𝛾) structure, ultimately resulting in the retention of only 

the diagonal coefficients. When the value of 𝛾 reaches 44.58, all non-diagonal coefficients are 

reduced to zero, leaving only the diagonals of BH, BU, BV, BT, EL, and DP unchanged. An increase 

in the value of  𝛾 to 49.84 causes the matrix to become more sparse, leaving only two diagonals 

which are located at the indices of the strains BV and EL.  

Furthermore, the progression of 𝐾(𝛾) the matrix structure as the value of 𝛾 increases has 

several implications. Firstly, the rising cost of creating feedback control prompts LQRSP to select 

the most efficient feedback control channel by eliminating variables with minimal coefficients found 

in the LQR output of the 𝐾 matrix. The controlled node at 𝛾 = 44.58 corresponds well with the 

species with higher values of 𝐻2(𝐽, 𝐵(𝑖)) , such as BH, BV, BT, EL, FP, and DP. BU is also seen as 

one of the controlled nodes at 𝛾 = 44.58 even with relatively low value of 𝐻2(𝐽, 𝐵(𝐵𝑈)). However, 

the decision to control BU can be explained by its high out-degree centrality. This implies that the 

controlled channels selected by LQRSP may also depend on the topology of the inter-species 

connections. This correspondence provides a stronger case for the effectiveness of LQRSP in 

identifying and prioritizing influential species within the network, ensuring that limited feedback 

control resources are allocated to nodes with the highest impact on system dynamics. Therefore, the 

LQRSP provides a promising framework for the automation of the identification of influential strains 

and the selection of frugal control actions of the gut microbiome.   

4.3.    Gut Microbiome Stability Analysis Under Disturbance 
 

Comparison of the simulation results of Eq. (11) when no control action is applied and when 

different gain matrices 𝐾 with different levels of sparsities are used as feedback control are visualized 

in Figure 6.  
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Figure 6. Simulation result of Eq. (10) with impulse disturbances ℎ𝑖𝑚𝑝𝑢𝑙𝑠𝑒(𝑡) and step disturbances ℎ𝑠𝑡𝑒𝑝(𝑡) 

at four different values of  𝛾. 

 

Observation of Figure 6a-e indicates the significance of the feedback gain matrix 𝐾 in 

returning the gut microbiome dynamics to the steady state 𝑥𝑠𝑠. As expected, the stabilizing effect of 

𝐾(𝛾) degrades with increasing 𝛾 as 𝐾(𝛾) becomes sparser. At 𝛾 = 49.84, the controlled dynamics 

of the gut microbiome closely resemble the uncontrolled dynamics due to the negligible stabilizing 

effect of the feedback controller. This is evident when observing the extremely sparse feedback gain 

matrix 𝐾(𝛾) shown in Figure 5d. A similar conclusion can be said in the case of the dynamics with 

step disturbances shown in Figures 6f-j. The offset from the steady state gradually becomes larger as 

𝐾(𝛾) becomes increasingly sparser. These results imply that there exists a tradeoff between control 

performance and frugality of the control channel being used to stabilize the system. This highlights 

the importance of selecting an ideal tradeoff when tuning for 𝛾 to obtain a significantly sparse 𝐾(𝛾) 

that is significantly stabilizing. 

To explore potential tradeoff points, the variations of the 𝐿1 norm as a measure of controller 

performance with increasing forty values of 𝛾 for both types of disturbances are plotted in Figure 7: 
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Figure 7. The variation of 𝐿1 norm values with increasing 𝛾 for a) impulse and b) step disturbances. The 

dashed line indicates 𝐿1norm values without control. 

 

Similar to the results in Figure 6, both Figures 7a and b indicate the reduction in stabilizing 

effect (increasing 𝐿1norms) of the feedback controller as 𝛾 increases. However, the finer distribution 

of 𝛾 reveals a critical value of sparsity penalty around 𝛾 ≈ 40, where the value of  𝐿1 increased 

drastically right after. Below this critical value, the system does not suffer a drastic decrease in 

performance with increasing sparsity. Overall, the sensitivity of 𝐿1 norm and 𝐾(𝛾) towards values 

of 𝛾 should depend strongly on the inherent interaction structure between bacterial species. The 

increasingly frugal controller design might prevent the selection of critical and influential species 

found in Sections 5.1 and 5.2, thus causing a significant drop in the stabilizing effect of the controller.  

 

5. Conclusions 
 
The results of this research provides a promising framework in aiding the process of 

designing therapeutic strategies that aims to maintain or improve the stability of the human gut 

microbiome. By applying control theoretic and network science approaches to identify critical 

bacterial species and design frugal control action, this research has introduced a more systematic and 

quantitative approach in modulating complex biological processes, such as the human gut 

microbiome, than existing therapeutic efforts.  

The findings have shown that 𝐻2 norms and graphical centrality index can be used to identify 

dynamically influential species that are suitable for control. This approach is further validated by the 

results of the sparse optimal linear feedback controller design via LQRSP, where it is found that the 

LQRSP is able to automatically select “favorable” microbial species to control based on the inherent 

structure and connectivities between microbial species. Thus, this findings have also shown a 

practical first step in utilizing LQRSP to design an exact interventive/preventive therapeutic 

strategies by identifying a critical value for 𝛾, where the level of sparsity does not significantly 

decrease the stabilizing effect of the control action. Therefore, the quantitative insights obtained from 

the control theoretic framework can potentially propose a safer and more targeted approach for 

designing intervention strategies. 
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6. Evaluations   
 
The merit of this research is that all the findings regarding the most influential bacterial 

species and the frugal feedback controller design are derived from a purely data-driven and 

quantitative approach. This analytical automation can potentially streamline diagnosis processes to 

create a more reliable gut microbiome modulation therapy.  

Nevertheless, the proposed framework is not without its limitations. Since this study focuses 

on the twelve most prevalent bacteria found in individuals, it relies on a specific working dynamical 

model. While gLV provides a well-established foundation for modeling microbial interactions, its 

assumptions, such as pairwise interactions and constant parameters, may oversimplify the complexity 

of real gut microbiomes. Furthermore, this framework does not account for rare or context-specific 

bacterial species, nor does it consider external environmental factors or host-related influences, 

which can significantly affect microbiome dynamics. Furthermore, real gut microbiomes rarely 

exhibit a linear and steady state dynamics due to the constantly changing and complex gut 

environment, suggesting that the resulting sparse optimal linear feedback controller might not be 

suitable. 

 

7. Future Works 
 
For future work, application of  Nonlinear control and Robust control is intended as an 

alternative control technique to account for non-linearities and uncertainty of the model parameters. 

Furthermore, to further develop this research, support from the medical industry is very crucial in 

the form of direct in-vivo/in-vitro interventional experiments can provide greater insights regarding 

the true dynamics of the human gut microbiome, leading to more practical and reliable approaches 

that can be utilized in the medical field.  
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【評語】010040  

The proposed research is important in the sense that it 

can be used to either replace, or reduce, or refine traditional 

cost/time-demanding human subject research. It aims to find 

bacteria species from gut microbiome that could help and/or 

medicate a variety of gut-related diseases such as colon 

cancer. A generalized Lotka-Volterra model for a set of 12 

microbial species [14] is utilized to characterize the 

dynamics (growth rate of each and their interactions). Then, 

a feedback control with a gain matrix K is included and the 

object is to seek for the most dense gain matrix, satisfying 

the dynamics of the generalized Lotka-Volterra model, while 

the state variation and the control effort are minimized 

(LQRSP). The proposed research tries to simulate the 

optimization problem with, first a linearization to the 

generalized Lotka-Volterra model and then a neural network 

model for obtaining a steady state. In the end, with the 

criteria of the H_2-norm and degree centralities and the help 

of Matlab package, the author favors 6 species out of the 12 

to have more important roles in gut microbiome stability. 

Overall speaking, the project is interesting and the 

data-driven model has important impact in medication. However, 



it lacks of real data from patients and hospitals to further 

tune the model. The author is also encouraged to find other 

optimization algorithms to directly solve the LQRSP, rather 

than a less precise simulation. 
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