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Abstract

According to the 2024 American Cancer Risk Survey, one in 24 individuals is at high risk
of developing colon cancer. This condition is linked to gut microbiome instability. Consequently,
there is a pressing need for a more effective and precise approach to maintaining gut microbiome
stability, which this research aims to solve by finding the most crucial bacteria species in maintaining
the stability of the gut microbiome through the application of Optimal Linear Feedback Control. Two
of its variants being applied in this research are Sparsity Promoting Linear Quadratic Regulator
(LQRSP) with a variety range of y (0.05, 44.58, and 49.84) and Linear Quadratic Regulator (LQR)
(y = 0) along with other supporting methods; Controllability Gramian and Network Theory (graph
analysis).

The finding in this research shows that bacteria species Bacteroides hydrogenotrophica,
Bacteroides uniformis, Bacteroides vulgaris, Bacteroides thetaiotaomicron, Escherichia lenta, and
Dorea formicigenerans have an important role for preventing and medicating a variety of gut-related
diseases. This conclusion is reinforced by the analysis conducted using the Controllability Gramian,
displaying five of the chosen bacteria with the highest controllability index, which demonstrates that
the system can be effectively controlled. This finding suggests a potential for enhancing therapeutic
strategies, rendering them more precise and systematic. To gain deeper insights into the relationship
between each bacteria and the rationale behind the selection of these bacteria by LQRSP, this study
also employs network theory, which successfully elucidates the choice of Bacteroides uniformis
despite its low controllability index. Additionally, to further validate the efficacy of these bacteria,
the research develops a simulation that compares the controlled system with the uncontrolled system,
utilizing two types of disturbances. The results indicate a significant difference in robustness against
disturbances between the controlled and uncontrolled systems.

The findings from this research can be used as a foundation for a more efficient and
systematic intervention strategy findings. By researching gut microbiome composition regulation
using a mathematical approach, it opens new opportunities for new method discoveries aiming to
increase the health of the gut microbiome which is beneficial for the medical field and prevention of
gut related diseases.
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1. Introduction
1.1 Background

The human gut microbiome is a complex dynamical system consisting of myriads of
bacterial species with various symbiotic interactions between species and the host gut. The bacterial
composition of the gut microbiome dictates a variety of physiological processes, including digestion,
immune regulation, and even mental health through the gut-brain axis [1,2,3]. Ultimately, bacterial
composition in the human gut plays an important role in the health of its human host.

The bacterial composition of the gut microbiome is influenced by numerous factors, such as
diet, lifestyle, genetics, and environmental exposures. Disruptions to this delicate microbial
balance—known as dyshiosis—have been associated with various diseases, including inflammatory
bowel disease, obesity, diabetes, and neurodegenerative disorders [4]. Therefore, maintaining a
healthy and stable gut microbiome composition is critical to preventing disease and supporting
overall health [5]. However, recent studies indicate an increasing prevalence of chronic diseases
associated with dysbiosis, such as colon cancer, diabetes, inflammatory bowel disease, and
cardiovascular diseases [6,7,8]. This highlights the importance of interventive treatment that
moderates gut microbiome composition to mitigate or prevent dysbiosis.

In the medical field, there have been extensive studies to develop methods aimed at
modulating and maintaining the stability of the human gut microbiome. One common approach is
transplanting feces obtained from healthy donors to reintroduce beneficial bacteria to the gut, also
known as Fecal Matter Transplant (FMT) therapy. However, FMT poses a high risk of pathogenic
transmission, infection, and rejection of the host gut microbiome [9,10]. Another common method is
to use specific drugs, such as antibiotics, prebiotics, and probiotics, to modulate the interactions and
composition of intestinal microbes [11]. However, these drug-induced changes in the digestive tract
environment can potentially exacerbate microbiome instability, leading to antibiotic-induced
diarrhea, bloating, and infections [11]. The side effects of both approaches can be attributed to the
lack of precision and non-specific targeting mechanisms of these treatments. Furthermore, the
inherent complexity of the human gut microbiome makes it challenging to design low-risk
therapeutic interventions to stabilize and modulate bacterial compositions properly. A more rigorous
and guantitative approach is required to develop such therapy.



This study will leverage concepts from optimal control theory to help develop robust
strategies for modulating and stabilizing the gut microbiome as a networked system. More
specifically, this research will apply sparse optimal feedback control to a dynamical model of the
human gut microbiome to identify critical bacterial species and interactions responsible for
regulating and maintaining the ecosystem's balance, which can be specifically targeted for
therapeutic interventions.

This study is organized as follows: Section 2 discusses the gut microbiome model this
research assumed and discusses several preliminary concepts in control theory and network science.
Section 3 elaborates on our method of analyzing and applying sparse optimal feedback control to the
gut microbiome. Section 4 elaborates on the implications of our results. Section 5 concludes our
study. Sections 6 and 7 evaluate the scope of our study and potential future works.

1.2 Research Question

1. How can we utilize linear optimal control theory as a quantitative approach to analyze
compositions of the human gut microbiome to develop a more systematic therapeutic design?

2. Based on the Sparsity Promoting Linear Quadratic Regulator, which bacterial species play
an important role in maintaining the stability of the gut microbiome?

1.3 Objectives

This research aims to find the best modulation strategy for a more targeted and systematic
medication development aiming to stabilize the gut microbiome. This can be accomplished through
the use of tools from optimal control theory, including Sparsity Promoting Linear Quadratic
Regulator, Controllability Grammian, and Network Theory (Graph analysis) to find the most
influential bacteria in modulating and maintaining the stability of the gut microbiome.

2. Literature Review

2.1 Dynamical Model of the Human Gut-Microbiome

To model the human gut microbiome, this research adopts the generalized Lotka-Volterra
(gLV) model, a widely used approach for representing the dynamics of interacting microbial
communities. The gLV has been previously utilized to model various dynamic systems, such as stock
market fluctuations, infection patterns of RNA viruses, and gut microbiome [12,13,14]. The gLV
model can capture the population dynamics of microbial species through a set of coupled differential
equations, where the growth rate of each species depends not only on its intrinsic properties but also

on its interactions with other species in the system. The gLV model is given by Equation 1.

dx;
= =it x) =nxg Xl Agxxg, (D)

where the vector x € R™ represents the population densities of n microbial species over time, the
coefficient vector r € R™ is the intrinsic growth rate of each species, and the matrix A € R™*™ is the
interspecies interaction matrix. The value A;; > 0 indicates that species j facilitates the growth of
species i, and A;; < 0 indicates that species j inhibits the growth of species i. In this study, this
research adopt the version of the generalized Lotka-Volterra (gLV) model presented by Hromada
and Venturelli [14], which includes the following 12 microbial species shown in Table 1:



Table 1. Abbreviation indices of bacterial species in [14]

No. Bacteria Species Name

1. BH Bacteroides hydrogenotrophica
2. CA Clostridium aerofaciens

& BU Bacteroides uniformis

4. PC Prevotella copri

5. BO Bacteroides ovatus

6. BV Bacteroides vulgatus

7. BT Bacteroides thetaiotaomicron
8. EL Escherichia lenta

9. FP Faecalibacterium prausnitzii
10. CH Clostridium hiranonsis
11. DP Dorea formicigernerans
12 ER Escherichia rectale

Their experimentally determined growth rates (r) and interaction matrix coefficients (A) are
given in Table 2.
Table 2. Coefficients of the general Lotka-Volterra model [14]
r a BH CA BU PC BO BV BT EL FP_ CH DP ER

0.25 Bl‘-l -0.92] -0.31] -0.23| -0.53| -0.22| -0.13( -0.26| 0.18| -0.24| -0.33| -0.92| -0.55
0.25| CA | 0.43|-0.82]-0.26|-0.69| -0.28) -0.17| -0.27| -0.48| -1.12| 0.30
0.60] BU -0.91 -0.75 -0.56| -0.94| 3.08 -0.83| 0.06
0.24) PC -0.58| -0.32] -0.62| -0.27| -0.20| -0.30| -0.99] -0.45| 0.24|-1.00| -0.92
0.46, BO -0.51 -0.71| -0.51| -0.58| 1.81] -0.18) -0.47 -0.04
0.46| BV | 0.13]-0.65[-0.58 -0.58| -0.66( -0.61| 1.28| -0.63| -0.05| -0.11
0.63| BT | 0.06 -0.97 -0.82| -0.68| -0.96| 1.97| -0.45| -0.07
0.41) EL | 0.83]-0.99] -0.08| -1.09| -0.09| -0.02| -0.10
0.22| FP | 0.91 0.20,-0.42| -0.11| 0.73[-0.07|-0.80| -0.99| 0.43| 0.98
0.47| CH | -0.38| -0.32| -0.22| -0.78| -0.47, -0.59 -0.69| -1.24{-2.30| -0.51
0.24| DP 0.05| -0.16| -0.44{ -0.19| -0.02| -0.19| 0.20, -0.15(-1.32
0.15| ER | 1.47 -0.03 -0.02/-0.03 -0.03 1.19 -1.32

The model provides a comprehensive framework to study the interdependencies among these
microbial populations, making it ideal for exploring strategies to stabilize the gut microbiome. The
following section will discuss concepts and techniques for analyzing the gLV model.

2.2 Optimal Control of Dynamical Networked Systems

2.2.1 Linear Time-Invariant System

This research begin with the simplest dynamical networked system in the form of a square
multivariate linear differential equation given by the Linear Time-Invariant (LTI) system defined
(Equation 2):

&= Ax+Bu+d, @)
where x € R™ is the state vector, u € R™ is the control input vector, d € R™ is the disturbance vector,
A € R™™ js the state transition matrix, and B € R™" is the control input matrix.

The term Ax captures the intrinsic dynamics, where A;; defines how the j-th state influences
the i-th state. The structure of A reflects the network's connectivity, while its eigenvalues indicate
stability: negative real parts signify stability and return to equilibrium, while positive real parts

5



indicate instability. The magnitude of the eigenvalues determines the speed of these dynamics. The
term Bu represents the influence of control inputs u on the system. and d accounts for disturbances
or external factors that perturb the system, representing environmental changes or noise. Together,
these terms describe the balance between intrinsic dynamics, external interventions, and disruptions,
providing a comprehensive framework for analyzing and influencing the system's behavior.

2.2.2 Controllability and H, norm of Networked Systems

Controllability is a fundamental concept in analyzing LTI systems, determining whether it
can steer the system's state vector x from any initial state to any desired final state using appropriate
control inputs u. For the LTI system, the structure of both A and B plays a critical role in ensuring
controllability. The controllability Gramian, W_, provides an energetic perspective on controllability
by quantifying the energy required to move the system between states given A and B. The
controllability Gramian is defined as Equation 3 [15]:

W.(A,B) =[]  e“"BBTeA "dr. A3)

The overall controllability of the LTI given A and B can be measured by computing for the trace of
W, (A, B) [15] (Equation 4:

H,(A, B) = trace(W_.(4, B)). 4)

This value is also known as the H, norm. Larger values of H,(A, B) indicate that less energy is
required to steer the system, while smaller values suggest that the system is inherently harder to
control.

Supplemental to measuring the H, norm, the degree centrality measure can also help reveal
structural insights into the gut microbiome system [16]. By generating a directed graph from the
interconnection matrix A in Eq. (1) showcn in Figure 1, the in and out-degree centrality can be
computed by counting the number of incoming and outgoing directed edges out of every species i.

Negative interaction

Positive interaction BV CA
BT ®
@
oH
BH DP
BU
[
BO® P.C Actinobacteria
@ Bacteroidetes
® Firmicutes
FP Proteobacteria
ER -
EL

Figure 1. Graphical representation of inter-species connectivity based on the matrix 4 in Eq. (1)
[14].



2.2.3 Linear Feedback Control System

Linear feedback control is used extensively in engineering to regulate the behavior of
dynamic systems. It is based on the idea of using information from the current state of the system to
modify its control input and achieve stability and responsiveness. A linear feedback controller for
the LTI in Eq. (2) is given by Equation 5:

u=—Kx, )

where K € R™ ™ is the feedback gain matrix. The resulting controlled system then becomes
(Equation 6):

dx
E:(A—BK)x+d (6)

The box diagram in Figure 2. illustrates the linear feedback control of an LTI.

d

dx/dt = e
_f\; K Ax+Bu+-d >

u(t) = —Kx(t)

Figure 2. A schematic for a linear Feedback control of an LTI system.

The design of the feedback gain matrix K is critical to achieve system stability and responsiveness.
The following section will discuss several criteria for selecting the optimal design for the feedback
gain matrix K.

2.2.4 Sparsity-Promoting Linear Quadratic Regulator (LQRSP)

Optimal control techniques are commonly used to help design feedback control laws for a
system by systematically optimizing a performance criterion. These techniques aim to determine the
best control actions to achieve specific objectives, such as minimizing energy usage, ensuring
stability, or achieving fast and precise tracking of desired trajectories.

In this study, Sparsity Promoting Linear Quadratic Regulator (LQRSP) is utilized to design
an optimal feedback control law [17]. LQRSP considers three key factors in determining the optimal
K: 1) control performance, 2) control effort, and 3) feedback costs. It is an extension of the traditional
Linear Quadratic Regulator (LQR) framework by incorporating sparsity-promoting penalties into the
optimization process, making it particularly useful for systems where feedback control channels can
be limited or resource-intensive or difficult to control, such as in applications like controlling a gut
microbiome.

The output feedback gain matrix K of the LQRSP is determined by solving Equation 7a-c
optimization problem:

minimizey fooo xT()Qx(t) + uT (t)Ru(t)dt + y|K|, (7a)

subject to: dx/dt = Ax + Bu+d (7b)



u(t) = —Kx(t), (7¢c)

where x and u are the same state and control input vectors found in Eq. (2) and K is the feedback
gain matrix found in Eq. (5). The matrices Q € R™™ and R € R™ ™ are symmetric and positive
semidefinite weight matrices that this study set as the identity matrix of size n x n for this study
(Q = R =1,). The coefficient y > 0 is the sparsity penalty for the term |K|,, which |K], is the
number of non-zero entries in the matrix K. Note that when y = 0, the classical LQR formulation is
recovered.

A feature of the LQRSP that is particularly relevant to this study is its ability to identify
frugal control actions by selecting the most critical entries of K for achieving desired system
performance while simultaneously minimizing control energy. By promoting sparsity in the feedback
gain matrix, LQRSP effectively prioritizes impactful control channels based on the inherent structure
and connections of the system being controlled. This makes it suitable for control applications of
highly interconnected systems that require resource-efficient interventions, such as gut microbiome
control.

3. Research Methodology
3.1. Linearization of the gLV model

To allow the application of the tools discussed in section 2, this study must first proceed by
linearizing the gLV model to resemble an LTI. The linearization is done by computing for the
Jacobian of Eq. (8):

P
Jij(x) = a—j;; = Ay + 65 + Xewi AikXi), (8)

where §;; is the Kronecker delta (§;; =0 if i #j and &§;; =1 if { =j). To obtain the linear
approximation of the gLV, the Jacobian is computed at the non-trivial steady state of Eq.(8), x,s. The
heatmap for the Jacobian coefficients is shown in Figure 3.

14
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Figure 3. Heatmap of Jacobian Coefficients. Zero entries are annotated as “0” in the heatmap.



The resulting LTI that approximates the dynamics of the gLV model around the steady state
is then given by Equation 9:

& = J(xs)T + Bu() + d., ©)
where ¥ = x — x. Given Eqg. (9), this study can apply the tools discussed in Section 2.

3.2. Calculating H,-Norm and Degree Centralities

The linear approximation of the gLV allows the computation of the H, norm representing
the total influence of each microbial species in steering the system. To separately measure the
potential control influence of every species k, this study compute the H, norm using Eq. (4) with

A = J(x4) and the following control input matrices (Equation 10):

10 - 0 00 - 0 00 -« 0
00 - 0 01 - 0 o0 - 0

By = P o i ' Bea = P y s Bpp = SR (10)
00 - 0 00 - 0 o0 - 1

Each value of H,(J(xss), Bx) for species k = BH,CA,...,ER indicates the control influence each
species k has on the rest of the system. Similarly, the in and out-degree centrality for each species
k = BH,CA,...,ER is calculated based on the graph in Figure 1.

3.3.  Application of the Sparsity Promoting Linear Quadratic Regulator

To design the feedback gain matrix K using the LQRSP, this research apply the LQRSP
solver in MATLAB to the LTI in Eq. (9) [18], with ] (x,) as the state transition matrix and B = I,,as
the control input matrix. To explore the effects of y on the structure of the output feedback gain
matrix K, this research solve Eq. (7) for y € [0,100], discretized into forty values that generate forty
different values of K(y).

3.4. Feedback Control Model Simulation under Known Disturbance

Using the resulting feedback gain matrices K (y) with various sparsity patterns produced by
LQRSP, this research simulate the feedback-controlled gLV model using K (y) is given by Equation
11:

Z10 = £,(2(t) + Bu(®) + d(®), (11)

where f; is the differential equation governing the dynamics of species i defined in Eq. (1). This
research simulate Eq. (11) using the forward Euler method to obtain a time series with T = 10,000
time points with iteration step of h = 0.01 [19]. This research employ two types of disturbances d(t)

in Eq. (2) to illustrate the stabilizing effect of the controllers:

dstep(t) ={0,t<0|Lt =0} (12)
dimpulse(t) ={1,t =0]0,t # 0}. (13)



where Eq. (12) is known as the step disturbance where, and Eq. (13) is known as the impulse

disturbance.

3.5. Measure of Controller’s Performance under Known Disturbances

To quantify the stabilizing effect of K(y) at different values of y, this research employ the
L, norm to measure the deviation of the simulated dynamics from the steady state x,;. The L; norm
for a set of time series x(t) is defined as Equation 14:

LE®) =YL [, I1%@®ldt. (14)

L1 (x(t)) can interpreted as the magnitude of deviation of x(t) from x.(t). The L, (x(t)) will be
calculated for different feedback gain matrices K (y) and disturbances. Therefore, higher values of
L, (x(t)) indicate poorer control performance and lower values indicate otherwise.

4. Results and Discussion
4.1. Ildentification of Influential Gut Bacteria

Figure 4 shows the result of H,(J, B%)), in-degree and out-degree centrality for each k =
BH,CA,BU,PC,BO,BV,BT,EL,FP,CH,DP,ER:
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Figure 4. a) Controllability index H,(J, B®). b) out-degree centralities, and c) in-degree
centralities for each 12 gut microbial species

Observation of Figure 4a reveals that species BH, BV, BT, EL, FP, and DP represent the six
bacterial strains with the highest H,(J, B®) value, indicating that these species have a strong
dynamical influence over the rest of the gut microbial species. The difference in H,(J, B%)) values
across different strains implies that only certain species can be specifically targeted to effectively
modulate gut microbiome dynamics. This measurement can be used as a data-driven pre-assessment
to design a more informed specific therapeutic program.

In addition, the degree centrality measures in Figures 4a and b reveal the direct relationships
between species. For example, BU and BT are the two strains that have the highest out-degree and
lowest in-degree centrality, indicating that BU and BT are directly responsible for influencing the
dynamics of the largest number of other species in the network but are themselves minimally
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influenced by other species. This highlights their potential role as dominant regulators or drivers
within the system, which is suitable for targeted interventions or manipulations to steer the overall
network dynamics.

4.2. Sparse Control Action via Influential Gut Bacteria

Figure 5 represents the variation of the feedback gain matrix K (y) with increasing sparsity
penalty parameter y:
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Figure 5. Structural variation of the feedback gain matrix K with increasing values of y:a) y = 0,b) y =
0.05,c) y = 44.58,and d) y = 49.81.

An increase in y leads to a more sparse K (y) structure, ultimately resulting in the retention of only
the diagonal coefficients. When the value of y reaches 44.58, all non-diagonal coefficients are
reduced to zero, leaving only the diagonals of BH, BU, BV, BT, EL, and DP unchanged. An increase
in the value of y to 49.84 causes the matrix to become more sparse, leaving only two diagonals
which are located at the indices of the strains BV and EL.

Furthermore, the progression of K(y) the matrix structure as the value of y increases has
several implications. Firstly, the rising cost of creating feedback control prompts LQRSP to select
the most efficient feedback control channel by eliminating variables with minimal coefficients found
in the LQR output of the K matrix. The controlled node at y = 44.58 corresponds well with the
species with higher values of H,(J, B®) , such as BH, BV, BT, EL, FP, and DP. BU is also seen as
one of the controlled nodes at y = 44.58 even with relatively low value of H, (], B¢EU)). However,
the decision to control BU can be explained by its high out-degree centrality. This implies that the
controlled channels selected by LQRSP may also depend on the topology of the inter-species
connections. This correspondence provides a stronger case for the effectiveness of LQRSP in
identifying and prioritizing influential species within the network, ensuring that limited feedback
control resources are allocated to nodes with the highest impact on system dynamics. Therefore, the
LQRSP provides a promising framework for the automation of the identification of influential strains
and the selection of frugal control actions of the gut microbiome.

4.3. Gut Microbiome Stability Analysis Under Disturbance

Comparison of the simulation results of Eq. (11) when no control action is applied and when
different gain matrices K with different levels of sparsities are used as feedback control are visualized
in Figure 6.
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Figure 6. Simulation result of Eqg. (10) with impulse disturbances h ;¢ (t) and step disturbances hg,,, (t)
at four different values of y.

Observation of Figure 6a-e indicates the significance of the feedback gain matrix K in
returning the gut microbiome dynamics to the steady state x,. As expected, the stabilizing effect of
K (y) degrades with increasing y as K(y) becomes sparser. At y = 49.84, the controlled dynamics
of the gut microbiome closely resemble the uncontrolled dynamics due to the negligible stabilizing
effect of the feedback controller. This is evident when observing the extremely sparse feedback gain
matrix K (y) shown in Figure 5d. A similar conclusion can be said in the case of the dynamics with
step disturbances shown in Figures 6f-j. The offset from the steady state gradually becomes larger as
K (y) becomes increasingly sparser. These results imply that there exists a tradeoff between control
performance and frugality of the control channel being used to stabilize the system. This highlights
the importance of selecting an ideal tradeoff when tuning for y to obtain a significantly sparse K (y)
that is significantly stabilizing.

To explore potential tradeoff points, the variations of the L; horm as a measure of controller
performance with increasing forty values of y for both types of disturbances are plotted in Figure 7:
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Figure 7. The variation of L, norm values with increasing y for a) impulse and b) step disturbances. The
dashed line indicates L,norm values without control.

Similar to the results in Figure 6, both Figures 7a and b indicate the reduction in stabilizing
effect (increasing L, norms) of the feedback controller as y increases. However, the finer distribution
of y reveals a critical value of sparsity penalty around y ~ 40, where the value of L, increased
drastically right after. Below this critical value, the system does not suffer a drastic decrease in
performance with increasing sparsity. Overall, the sensitivity of L; norm and K (y) towards values
of y should depend strongly on the inherent interaction structure between bacterial species. The
increasingly frugal controller design might prevent the selection of critical and influential species
found in Sections 5.1 and 5.2, thus causing a significant drop in the stabilizing effect of the controller.

5. Conclusions

The results of this research provides a promising framework in aiding the process of
designing therapeutic strategies that aims to maintain or improve the stability of the human gut
microbiome. By applying control theoretic and network science approaches to identify critical
bacterial species and design frugal control action, this research has introduced a more systematic and
guantitative approach in modulating complex biological processes, such as the human gut
microbiome, than existing therapeutic efforts.

The findings have shown that H, norms and graphical centrality index can be used to identify
dynamically influential species that are suitable for control. This approach is further validated by the
results of the sparse optimal linear feedback controller design via LQRSP, where it is found that the
LQRSP is able to automatically select “favorable” microbial species to control based on the inherent
structure and connectivities between microbial species. Thus, this findings have also shown a
practical first step in utilizing LQRSP to design an exact interventive/preventive therapeutic
strategies by identifying a critical value for y, where the level of sparsity does not significantly
decrease the stabilizing effect of the control action. Therefore, the quantitative insights obtained from
the control theoretic framework can potentially propose a safer and more targeted approach for
designing intervention strategies.
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6. Evaluations

The merit of this research is that all the findings regarding the most influential bacterial
species and the frugal feedback controller design are derived from a purely data-driven and
guantitative approach. This analytical automation can potentially streamline diagnosis processes to
create a more reliable gut microbiome modulation therapy.

Nevertheless, the proposed framework is not without its limitations. Since this study focuses
on the twelve most prevalent bacteria found in individuals, it relies on a specific working dynamical
model. While gLV provides a well-established foundation for modeling microbial interactions, its
assumptions, such as pairwise interactions and constant parameters, may oversimplify the complexity
of real gut microbiomes. Furthermore, this framework does not account for rare or context-specific
bacterial species, nor does it consider external environmental factors or host-related influences,
which can significantly affect microbiome dynamics. Furthermore, real gut microbiomes rarely
exhibit a linear and steady state dynamics due to the constantly changing and complex gut
environment, suggesting that the resulting sparse optimal linear feedback controller might not be
suitable.

7. Future Works

For future work, application of Nonlinear control and Robust control is intended as an
alternative control technique to account for non-linearities and uncertainty of the model parameters.
Furthermore, to further develop this research, support from the medical industry is very crucial in
the form of direct in-vivo/in-vitro interventional experiments can provide greater insights regarding
the true dynamics of the human gut microbiome, leading to more practical and reliable approaches
that can be utilized in the medical field.
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The proposed research is important in the sense that it
can be used to either replace, or reduce, or refine traditional
cost/time-demanding human subject research. It aims to find
bacteria species from gut microbiome that could help and/or
medicate a variety of gut-related diseases such as colon
cancer. A generalized Lotka-Volterra model for a set of 12
microbial species [14] is utilized to characterize the
dynamics (growth rate of each and their interactions). Then,
a feedback control with a gain matrix K is included and the
object 1s to seek for the most dense gain matrix, satisfying
the dynamics of the generalized Lotka-Volterra model, while
the state variation and the control effort are minimized
(LQRSP). The proposed research tries to simulate the
optimization problem with, first a linearization to the
generalized Lotka-Volterra model and then a neural network
model for obtaining a steady state. In the end, with the
criteria of the H_2-norm and degree centralities and the help
of Matlab package, the author favors 6 species out of the 12
to have more important roles in gut microbiome stability.
Overall speaking, the project is interesting and the

data-driven model has important impact in medication. However,



1t lacks of real data from patients and hospitals to further
tune the model. The author is also encouraged to find other

optimization algorithms to directly solve the LQRSP, rather

than a less precise simulation.
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