2025年臺灣國際科學展覽會 優勝作品專輯

作品編號 010010

參展科別 數學

作品名稱 關於Repunit數列 之餘數性質探討

得獎獎項 三等獎

突尼西亞國際工程與科技節 I-FEST2

就讀學校 臺北市立麗山高級中學

指導教師 林劭原

夏良忠

作者姓名 許弘毅

關鍵詞 Repunit數列、餘數數列、非齊次線性遞迴

作者簡介

教授、老師和同學大家好!我是來自麗山高中的許弘毅!

很慶幸今年能在我高中科展生涯的尾端參與國際科展,高中是我第一次踏進數學這個領域,在這三年的以來從最初對數論這個領域完全沒有概念,在學習的過程中感受到最純粹的美好,到現在有辦法完整的寫出一份報告書,這些經歷讓我對數學有了更深的理解及熱愛。

一路得感謝很多人,非常感謝師大數學系夏良忠指導教授的幫忙,讓我得以 在數論這塊專業領域有更深的了解;謝謝學校老師的磨練和砥礪,你們的意見和 想法都讓我的心智磨練的更加強大。

最後給任何想參與數學科展的你和妳,希望你都能在數學研究上找到屬於你的快樂。

研究報告封面

2025 年臺灣國際科學展覽會 研究報告

區別: 北區

科別:數學科

作品名稱:關於 Repunit 數列之餘數性質探討

關鍵詞:Repunit 數列、餘數數列、非齊次線性遞迴

編號:

(編號由國立臺灣科學教育館統一填列)

摘要

在這篇作品中,主要研究 Repunit 數列<R_n>=<1,11,111,...>在模 n 之下的 餘數數列<r_k,n>循環性質。我們探討了 Repunit 餘數數列在什麼條件下為純循環週期數列、混循環週期數列和完全純循環週期數列,同時給出了循環週期的公式及上界。接著我們發現一階非齊次線性遞迴數列在模 n 之下的循環週期與 c 進制 Repunit 數列在模 n/gcd(n,c) 之下的循環週期相同,並且進一步探討餘數數列在什麼條件下為純循環數列、混循環循環數列和完全純循環數列。

Abstract

This work primarily investigates the cyclic properties of the remainder sequence <r_k,n> of the Repunit sequence <R_n>=<1, 11, 111,...> modulo n. We explore the conditions under which the remainder sequence of Repunit numbers forms a purely periodic sequence, a pre-periodic sequence, or a perfectly periodic sequence, and we provide the formula and the upper bound for the cyclic period. Furthermore, we discover that the cyclic period of a first-order non-homogeneous linear recurrence sequence modulo n is the same as that of the base-c Repunit sequence modulo n/gcd(n,c). We also explore the conditions under which the remainder sequence forms a purely periodic sequence, a pre-periodic sequence, or a perfectly periodic sequence.

壹、研究動機

當在找專題研究的題目的時候,偶然翻到了一個有趣的題目,「把1,11,111這三個數字分別除以3,發現餘數是1,2,0,不僅餘數都不同,而且所有除以3可能餘數都出現了。把1,11,111,1111 這四個數字分別除以4發現餘數是1,3,3,3 只有兩個數字。……當有幾個數字時,餘數會湊滿呢?」

我們將以上問題延伸,探討在 Repunit 數列 $\langle 1,11,111,...\rangle$ 在模 n 之下的餘數數列其循環週期為多少,什麼時候循環週期恰為 n 及循環週期的上界為多少。接著我們想進一步探討不同的非齊次線性遞迴數列在模 n 之下的餘數在是否也會循環,同時也探討其循環週期、上界及因倍數性質。

貳、研究目的

- -、探討 Repunit 餘數數列的循環性質
- 二、探討 Repunit 餘數數列的循環週期
- \mathbf{z} 、探討一階非齊次線性遞迴數列在模 n 之下的餘數循環性質

冬、研究設備與器材

紙、筆、電腦

肆、研究過程或方法及進行步驟

一、名詞定義與基本性質

Definition 1. (Repunit, Albert H. Beiler[3], 由重複的單一數字組成的數字稱為 Repunit (Repeated unit))

對於有k位重複的 1 組成的數字, 我們記做 R_k

$$R_k = \frac{10^k - 1}{9} = 10^{k-1} + 10^{k-2} + \dots + 10^0$$

Definition 2. (Repunit 數列 (Repunits), OEIS A002275)

由 Repunit 所組成的遞廻數列,我們記做 $\langle R_k \rangle \coloneqq \langle 1,11,111,... \rangle$ (稱為 Repunit 數列)

遞迴關係如下

$$R_k = 10 \cdot R_{k-1} + 1$$
, $R_0 = 0$

Definition 3. (Repunit 數列在模 n 下的餘數數列之週期性質)

Repunit 數列 $\langle R_k \rangle$ 的每一項 R_k 在模正整數 n 下所得到的餘數數列 $\langle r_k, n \rangle$ (稱為 Repunit 餘數數 列)會有週期循環的性質。

$$\langle R_k \rangle \equiv \langle r_k, n \rangle \pmod{n}$$

$$\langle r_k, 3 \rangle = \langle 1, 2, 0, 1, 2, 0, 1, 2, 0, \dots \rangle$$

$$\langle r_k, 13 \rangle = \langle 1, 11, 7, 6, 9, 0, 1, 11, 7, 6, 9, 0, \dots \rangle$$

$$\langle r_k, 12 \rangle = \langle 1, 11, 3, 7, 11, 3, 7, \dots \rangle$$

$$\langle r_k, 1000 \rangle = \langle 1, 11, 111, 111, 111, \dots \rangle$$

像是 $\langle r_k, 3 \rangle$ 每三項就循環一次,而 $\langle r_k, 12 \rangle$ 則是會經過第一項 1 之後,接下來每三項就循環一次。如同 $\langle r_k, 12 \rangle$ 和 $\langle r_k, 1000 \rangle$,在數列的前幾項有不循環的部分,我們稱為<u>混循環週期數列</u>;反之如 $\langle r_k, 13 \rangle$,數列中沒有不循環的部分,我們稱為<u>純循環週期數列</u>,特別的是形如 $\langle r_k, 3 \rangle$,數列恰好每三項就循環一次,循環週期恰好與模數相同,我們稱為<u>完全純循環週期數列。 $\langle r_k, n \rangle$ 的不循環長度</u>,我們記為 $s_n(s_3 = 0, s_{13} = 0, s_{12} = 1, s_{1000} = 2)$;而 $\langle r_k, n \rangle$ 的最小循環週期</u>,我們記為 $l_n(l_3 = 3, l_{13} = 6, l_{12} = 3, l_{1000} = 1)。$

Definition 4. (p 進位數賦, p-adic valuation)

$$v_p(n) = \left\{ egin{array}{l} \max\{k \mid k \in \mathbb{N}_0 \colon p^k \mid n\} & \text{if } n
eq 0 \\ \infty & \text{if } n = 0 \end{array}, p$$
是質數, $n \in \mathbb{N}$

Proposition 1.

$$R_i - R_i = R_{i-j} \cdot 10^j (i > j > 0)$$

Proof.

$$R_i - R_j = \frac{(10^i - 1) - (10^j - 1)}{9} = \frac{10^i - 10^j}{9} = \frac{10^{i-j} - 1}{9} \cdot 10^j = R_{i-j} \cdot 10^j$$

Proposition 2. (Repunit 的除法原理)

若
$$i = jq + r \ (j > r \ , i \ j \ q \in \mathbb{N}, r \ge 0)$$
,則存在正整數 Q ,使得 $R_i = R_j \cdot Q + R_r$

Proof.

$$(10^{i} - 1) = (10^{j} - 1) \cdot 10^{i-j} + (10^{i-j} - 1)$$
$$(10^{i-j} - 1) = (10^{j} - 1) \cdot 10^{i-2j} + (10^{i-2j} - 1)$$
$$\vdots$$

$$(10^{i-j(q-1)} - 1) = (10^j - 1) \cdot 10^{i-jq} + (10^{i-jq} - 1)$$

由於i = jq + r ,可得

$$= (10^{j} - 1) \cdot 10^{i-jq} + (10^{r} - 1)$$

故

$$(10^i-1)=(10^j-1)\cdot(10^{i-j}+\cdots+10^{i-jq})+(10^r-1)$$

 $\diamondsuit Q = (10^{i-j} + \cdots + 10^{i-jq})$

$$9 \cdot R_i = 9 \cdot (R_j \cdot Q + R_r)$$
$$R_i = R_j \cdot Q + R_r$$

Proposition 3. (Repunit 的最大公因數)

$$gcd(R_i, R_j) = R_{gcd(i,j)} (i j \in \mathbb{N})$$

Proof.

利用輾轉相除法求 R_i , R_i 的最大公因數

$$\begin{split} R_i &= R_j \cdot q_1 + R_{r_1} \,, \qquad i = j q_1{}' + r_1 \\ R_j &= R_{r_1} \cdot q_2 + R_{r_2} \,, \qquad j = r_1 q_2{}' + r_2 \\ R_{r_1} &= R_{r_2} \cdot q_3 + R_{r_3} \,, \qquad r_1 = r_2 q_3{}' + r_3 \\ &\vdots \\ R_{r_{S-2}} &= R_{r_{S-1}} \cdot q_S + R_{r_S} \,, \qquad r_{S-2} = r_{s-1} q_s{}' + r_s \end{split}$$

若 $r_s|r_{s-1}$, 則由 Proposition 1.

$$R_{r_s}|R_{r_{s-1}}$$

可知 R_i , R_i 的最大公因數為

$$\gcd(R_i, R_j) = R_{r_s}$$

此時 $r_s = \gcd(i, j)$,故

$$R_{r_s} = R_{\gcd(i,j)}$$

Remark:

若 $R_i|R_i$ $(i j \in \mathbb{N}, i > j)$,則 $gcd(R_i, R_i) = R_i$ 。

Proposition 4.

$$n$$
 是正整數 $\gcd(n, 10) = 1$, \Leftrightarrow s 為最小的正整數滿足 $10^s \equiv 1 \pmod{n}$ 若整數 a 滿足 $10^a \equiv 1 \pmod{n}$,則 $s \mid a$

Proof.

 $\Rightarrow a = sq + r(q \in \mathbb{N}, 0 \le r < s)$

$$10^{sq+r} \equiv 1 \pmod{n}$$

$$10^{sq} \cdot 10^r \equiv 1 \pmod{n}$$

$$10^r \equiv 1 \pmod{n}$$

但與 r < s 且 s 為最小的正整數滿足 $10^s \equiv 1 \pmod{n}$ 矛盾,故 r = 0。

L.T.E. lemma (升幕引理,Lifting-The-Exponent lemma, Geretschläger, R. [8])

給定
$$x,y,n \in \mathbb{N}$$
 和質數 p ,若 $p \nmid x,p \nmid y,p \mid x-y$ 當 p 是奇數,則 $v_p(x^n-y^n)=v_p(x-y)+v_p(n)$ 當 $p=2$,則 $v_p(x^n-y^n)=v_p(x-y)+v_p(x+y)+v_p(n)-1$

二、探討 Repunit 餘數數列的循環週期

首先我們將任意正整數寫成 $n=2^{\alpha}\cdot 5^{\beta}\cdot t$ $(\alpha,\beta\in\mathbb{N}\cup\{0\},t\in\mathbb{N},\gcd(t,10)=1)$,經由觀察我們可以發現, $\langle r_k,n\rangle$ 的不循環長度 s_n ,似乎恰好為 $\max(\alpha,\beta)-1$ 。也就是若 $\gcd(n,10)\neq 1$,則 Repunit 餘數數列會是混循環週期數列,反之若 $\gcd(n,10)=1$ 則 Repunit 餘數數列會是純循環週期數列。

$$n = 2^2 \cdot 5^0 \cdot 3$$
, $\langle r_k, 12 \rangle = \langle 1,11,3,7,11,3,7,\dots \rangle$, $s_n = \max(2,0) - 1 = 1$
 $n = 2^3 \cdot 5^3 \cdot 1$, $\langle r_k, 1000 \rangle = \langle 1,11,111,111,111,\dots \rangle$, $s_n = \max(3,3) - 1 = 2$

而對於純循環週期數列和混循環週期數列,其循環週期只與 t 有關

$$\begin{split} n &= 2^0 \cdot 5^0 \cdot 3 \text{ , } \langle r_k \text{ , } 3 \rangle = \langle 1, 2, 0, 1, 2, 0, \dots \rangle, l_n = 3 \\ n &= 2^2 \cdot 5^0 \cdot 3 \text{ , } \langle r_k \text{ , } 12 \rangle = \langle 1, 11, 3, 7, 11, 3, 7, \dots \rangle, l_n = 3 \\ n &= 2^0 \cdot 5^0 \cdot 21 \text{ , } \langle r_k \text{ , } 21 \rangle = \langle 1, 11, 6, 19, 2, 0, 1, 11, 6, 19, 2, 0, \dots \rangle, l_n = 6 \\ n &= 2^1 \cdot 5^0 \cdot 21 \text{ , } \langle r_k \text{ , } 21 \rangle = \langle 1, 11, 27, 19, 23, 21, 11, 27, 19, 23, 21, \dots \rangle, l_n = 6 \end{split}$$

Problem 1. Repunit 餘數數列是否會循環?

Solution

$$(-) \gcd(n, 10) = 1$$

Lemma 1.1

若
$$gcd(n, 10) = 1$$
 ,則必存在一個最小正整數 l s.t. $10^l \equiv 1 \pmod{9n}$

Proof.

Let
$$S = \{10^0, 10^1, 10^2 \dots, 10^a, \dots, 10^b, \dots\}$$

將集合內的每個元素模 9n ,因為模 9n 下的餘數為有限的,由鴿籠原理,必能找到一組 10^a , 10^b ,同時 b-a 為最小的,使得 $10^a \equiv 10^b \pmod{9n}$ 。由於 $\gcd(n,10)=1$,故

$$10^{b-a} \equiv 1 \pmod{9n}$$

 $\Rightarrow l = b - a$

 $10^l \equiv 1 \pmod{9n}$

Lemma 1.2

若 gcd(n, 10) = 1,則 $R_l \equiv 0 \pmod{n} \Leftrightarrow 10^l \equiv 1 \pmod{9n}$

Proof.

 (\Rightarrow)

$$R_l = \frac{10^l - 1}{9} \equiv 0 \pmod{n}$$
$$\frac{10^l - 1}{9} = n \cdot t, t \in \mathbb{N}$$
$$10^l - 1 = 9n \cdot t$$

可得

$$10^l \equiv 1 \pmod{9n}$$

(⇐)

$$10^{l} \equiv 1 \pmod{9n}$$

$$10^{l} - 1 = 9n \cdot t, t \in \mathbb{N}$$

$$\frac{10^{l} - 1}{9} = n \cdot t$$

可得

$$R_l \equiv 0 \pmod{n}$$

Theorem 1.

若 gcd(n, 10) = 1 且 l 是最小的正整數使得 $R_l \equiv 0 \pmod{n}$,則 $\langle r_k$, $n \rangle$ 的循環週期 $l_n = l$

Proof.

由遞迴關係 $R_{k+1} = 10 \cdot R_k + 1$ 及 $R_l \equiv 0 \pmod{n}$,可得

$$\begin{split} R_{l+1} &\equiv 10 \cdot R_l + 1 \equiv 1 \equiv R_1 \; (\text{mod } n) \\ R_{l+2} &\equiv 10 \cdot R_{l+1} + 1 \equiv 10 \cdot R_1 + 1 \equiv R_2 \; (\text{mod } n) \\ &\vdots \\ R_{2l} &\equiv 10 \cdot R_{2l-1} + 1 \equiv 10 \cdot R_{l-1} + 1 \equiv R_l \; (\text{mod } n) \\ &\vdots \\ \end{split}$$

也就是

$$\langle r_k, n \rangle = \langle R_1 \pmod{n}, \dots, R_l \pmod{n}, R_{l+1} \equiv R_1 \pmod{n}, \dots, R_{2l} \equiv R_l \pmod{n}, \dots \rangle$$

可知 Repunit 餘數數列是純循環週期數列,由於 l是最小的正整數使得 $R_l \equiv 0 \pmod n$,循環週期 $l_n = l$ 。

(二) $n = 2^{\alpha} \cdot 5^{\beta}$ ($\alpha, \beta \in \mathbb{N} \cup \{0\}, \alpha, \beta$ 不全為 0)

Theorem 2.

 $\Xi n = 2^{\alpha} \cdot 5^{\beta}(\alpha, \beta \in \mathbb{N} \cup \{0\}, \alpha, \beta$ 不全為 0), (r_k, n) 的不循環節長度 $s_n = \max(\alpha, \beta) - 1$ 。

Proof.

考慮在 $n=2^{\alpha}\cdot 5^{\beta}$ 的情況,我們想找到最小的正整數 j 和另一個正整數 i(i>j) ,使得

$$R_i \equiv R_j \pmod{2^{\alpha} \cdot 5^{\beta}}$$

也就是

$$R_{i-j} \cdot 10^j \equiv 0 \pmod{2^{\alpha} \cdot 5^{\beta}}$$

顯然 $R_{i-j} \not\equiv 0 \pmod{2^{\alpha} \cdot 5^{\beta}}$,因此

$$10^j \equiv 0 \pmod{2^\alpha \cdot 5^\beta}$$

可得 $j \ge \max(\alpha, \beta)$,接下來證明 $j = \max(\alpha, \beta)$ 。由反證法,假設 $j > \max(\alpha, \beta)$,可得

$$10^{j} \equiv 10^{\max(\alpha,\beta)} \equiv 0 \pmod{2^{\alpha} \cdot 5^{\beta}}$$

但 j 為最小的正整數滿足上式,因此 $j > \max(\alpha, \beta)$ 矛盾,故 $j = \max(\alpha, \beta)$ 。

接下來由遞迴關係 $R_{k+1} = 10 \cdot R_k + 1$ 及 $10^j \equiv 0 \pmod{2^{\alpha} \cdot 5^{\beta}}$,可得

$$R_{i+1} \equiv 10 \cdot R_i + 1 \equiv R_i \pmod{n}$$

$$R_{j+2} \equiv 10 \cdot R_{j+1} + 1 \equiv 10 \cdot R_j + 1 \equiv R_j \pmod{n}$$

:

也就是

$$\langle r_k, n \rangle = \langle R_1 \pmod{n}, \dots, R_j \pmod{n}, R_{j+1} \equiv R_j \pmod{n}, \dots \rangle$$

故可知在此情況下 Repunit 餘數數列會是混循環週期數列,而不循環長度 $s_n = \max(\alpha, \beta) - 1$ 。

 (Ξ) $n = 2^{\alpha} \cdot 5^{\beta} \cdot t \ (\alpha, \beta \in \mathbb{N} \cup \{0\}, t \in \mathbb{N}, \gcd(t, 10) = 1)$

接下來我們考慮在 $n=2^{\alpha}\cdot 5^{\beta}\cdot t$ 的情況,首先我們想找到最小的正整數 j 和另一個正整數 i (i>j) ,使得

$$R_i \equiv R_i \pmod{2^{\alpha} \cdot 5^{\beta} \cdot t}$$

也就是

$$R_{i-i} \cdot 10^j \equiv 0 \pmod{2^{\alpha} \cdot 5^{\beta} \cdot t}$$

因為 $gcd(R_{i-1}, 10) = 1$,故必存在最小的正整數 l ,使得

$$R_l \equiv 0 \pmod{t}$$

$$10^j \equiv 0 \pmod{2^\alpha \cdot 5^\beta}$$

由 **Theorem 2**. , 可推得 $j = \max(\alpha, \beta)$ 。

接下來由遞迴關係 $R_{k+1}=10\cdot R_k+1$ 及 $R_{l+\max(\alpha,\beta)}\equiv R_{\max(\alpha,\beta)} \big(\text{mod }2^\alpha\cdot 5^\beta\big)$,可得

$$R_{l+\max(\alpha,\beta)+1} \equiv 10 \cdot R_{l+\max(\alpha,\beta)} + 1 \equiv 10 \cdot R_{\max(\alpha,\beta)} + 1 \equiv R_{\max(\alpha,\beta)+1} \pmod{n}$$

:

$$R_{2l+\max(\alpha,\beta)} \equiv 10 \cdot R_{2l+\max(\alpha,\beta)-1} + 1 \equiv 10 \cdot R_{l+\max(\alpha,\beta)-1} + 1 \equiv R_{l+\max(\alpha,\beta)} \pmod{n}$$

也就是

$$\langle r_k , n \rangle =$$

$$\langle R_1(\bmod{n}), \dots, R_{\max(\alpha,\beta)}(\bmod{n}), \dots, R_{l+\max(\alpha,\beta)}(\bmod{n}), R_{l+\max(\alpha,\beta)+1} \equiv R_{\max(\alpha,\beta)+1}(\bmod{n}), \\ \dots, \dots, R_{2l+\max(\alpha,\beta)} \equiv R_{l+\max(\alpha,\beta)}(\bmod{n}) \rangle$$

故可知在此情況下 Repunit 餘數數列會是混循環週期數列,而不循環長度 $s_n = \max(\alpha,\beta) - 1$,循環週期 $l_n = l$ 。

Problem 2. Repunit 餘數數列在什麼條件下為完全純循環週期數列?

Solution

我們發現只有在模 $3^m (m \in \mathbb{N})$ 之下,Repunit 餘數數列才會是完全純循環週期數列。由 **Definition 3.** 我們要證明 $l_n = n$,也就是

$$R_n \equiv 0 \pmod{n}$$

Theorem 3.

$$10^{3^m} \equiv 1 \pmod{3^{m+2}}, m \in \mathbb{N}$$

Proof.

已知 3|(10-1)∧3∤1∧3∤10

± L.T.E. lemma

$$v_3\big(10^{3^m}-1\big)=v_3(10-1)+v_3(3^m)=m+2$$

可得 $10^{3^m} - 1 = 3^{m+2} \cdot t$, gcd(3,t) = 1

得證

$$10^{3^m} \equiv 1 \pmod{3^{m+2}}$$

Remark:

接下來我們證明 $l_{3^m}=3^m$,由反證法,假設存在更小的循環週期,根據 Proposition 4. 我們知道其必整除 3^m ,我們將其記為 $3^\alpha (3^\alpha | 3^m$, $\alpha < m$),其滿足 $10^{3^\alpha} \equiv 1 \pmod{3^{m+2}}$ 。由 L.T.E. lemma,

$$v_3(10^{3^\alpha}-1)=\alpha+2$$

但 $\alpha < m$,可得

$$10^{3^{\alpha}} \not\equiv 1 \pmod{3^{m+2}}$$

這與原假設矛盾,故 $l_{3^m} = 3^m$ 。

Problem 3. Repunit 餘數數列的循環週期的上界

Solution

前面我們證明了在 $n=3^m (m\in\mathbb{N})$ 時循環週期會恰好等於 3^m ,接下來證明在 $n=3^m\cdot t,\gcd(t,30)=1$ 的情況下,循環週期的上界。

lemma 4.1

若
$$gcd(n,m) = gcd(nm,10) = 1$$
, $l_{nm} = lcm(l_n, l_m)$

Proof.

已知 $10^{l_{nm}} \equiv 1 \pmod{9nm}$,故 $10^{l_{nm}} \equiv 1 \pmod{9n}$, $10^{l_{nm}} \equiv 1 \pmod{9m}$,由 **Proposition 4.**可得

$$l_n|l_{nm}$$
 , $l_m|l_{nm}$

由於lnm為最小的正整數滿足

$$10^{l_{nm}} \equiv 1 \pmod{9nm}$$

故 $l_{nm} = \text{lcm}(l_n, l_m)$

Theorem 4.

$$l_{3^{m}\cdot t}$$
是最小的正整數,使得 $R_{l_{3^{m}\cdot t}}\equiv 0 \pmod{3^{m+2}\cdot t}$, $\gcd(t,30)=1$,則 $l_{3^{m}\cdot t}\leq 3^{m}\phi(t)$

Proof.

⊞ Lemma 1.2

$$R_{l_{3}m+2,_{t}} \equiv 0 (\text{mod } 3^{m} \cdot t) \Leftrightarrow 10^{l_{3}m,_{t}} \equiv 1 (\text{mod } 3^{m+2} \cdot t)$$

因為 $gcd(3^m, t) = gcd(3^m \cdot t, 10)$ 由 lemma 4.1

$$l_{3^{m} \cdot t} = \text{lcm}(l_{3^{m}}, l_{t}) = \text{lcm}(3^{m}, l_{t})$$

由於 $l_t \leq \phi(t)$

$$lcm(3^m, l_t) \le 3^m l_t \le 3^m \phi(t)$$

可得

$$l_{3^m \cdot t} \le 3^m \phi(t)$$

Problem 4. Repunit 餘數數列的循環週期公式

Solution

在前面的討論我們可以知道 l_n 的上界為 $3^m\phi(t)$,但更進一步地我們想得到循環週期的公式。由**參考文獻** [6](朱亮儒。科學教育月刊第 449 期。淺談分數化小數的分類),我們知道由 $\frac{1}{n}$ 化成循環小數之循環節長度與 Repunit 餘數數列的循環週期有所關聯。接下來我們定義 $\operatorname{len}\left(\frac{1}{n}\right)$ 為 $\frac{1}{n}$ 化成循環小數之循環節長度。 若 n 跟 30 互質,則 $\operatorname{len}\left(\frac{1}{n}\right)$ 就是最小的正整數 l 滿足

$$10^l \equiv 1 \pmod{n}$$

恰好跟 l_n 相等。若 $n=3^m(m\in\mathbb{N})$,由 Theorem 3.

$$10^{3^m} \equiv 1 \pmod{3^{m+2}}$$

我們可以知道 $\operatorname{len}\left(\frac{1}{3^{m+2}}\right)$ 為 3^m ,接下來我們來推導出 l_n 的公式。

Theorem 5.

拉gcd
$$(n,10)=1, n={p_1}^{k_1}...p_r^{k_r}, l_n=\mathrm{lcm}(l_{p_1}{}^{k_1},...,l_{p_r}{}^{k_r})$$

Proof.

$$l_n = l_{p_1^{k_1} \dots p_r^{k_r}}$$

由 lemma 4.1 可推得

$$l_n = \operatorname{lcm}(l_{p_1^{k_1}}, \dots, l_{p_r^{k_r}})$$

三、探討一階非齊次線性遞迴數列的循環週期性質

Definition 4. (一階非齊次線性遞迴餘數數列(first-order non-homogeneous linear recurrence sequence))

一階非齊次線性遞迴數列(first-order non-homogeneous linear recurrence sequence)定義如下

$$a_k = c \cdot a_{k-1} + d$$
, $c \in \mathbb{N}$, $d \in \mathbb{N}$, $a_0 = 0$

而一階非齊次線性遞迴數列在模 n 之下的餘數所形成的數列,我們稱為一階非齊次線性遞迴餘數數列,我們 記為 $\langle A_k^{(c,d)}, n \rangle$,其循環週期記為 $L_n^{(c,d)}$,不循環節長度記為 $S_n^{(c,d)}$ 。

Definition 5. (c 進制 Repunit 數列 (base-c Repunits))

由 Repunit 所組成的遞迴數列,我們記做 $\langle R_k^{(c)} \rangle$ (稱為 <u>c 進制 Repunit 數列</u>),遞迴關係如下

$$R_k^{(c)} = c \cdot R_{k-1}^{(c)} + 1$$
, $R_0^{(c)} = 0$, $c \in \mathbb{N}$

Definition 6. (Repunit 數列在模 n 下的餘數數列之週期性質)

c 進制 Repunit 數列在模 n 之下的餘數所形成的數列,我們稱為 c 進制 Repunit 餘數數列,我們記為 $\langle r_k^{(c)}, n \rangle$,其循環週期記為 $l_n^{(c)}$,不循環節長度記為 $s_n^{(c)}$ 。

首先我們先求解數列一般項,由遞迴關係 $a_k = c \cdot a_{k-1} + d$,可得

$$a_k = d \cdot \frac{c^k - 1}{c - 1} = d \cdot R_k^{(c)}$$

可發現數列各項恰為 c 進制 Repunit 數列的 d 倍,故可寫作

$$\langle d \cdot R_1^{(c)} \pmod{n}, d \cdot R_2^{(c)} \pmod{n}, \dots, d \cdot R_k^{(c)} \pmod{n}, \dots \rangle$$

$$\Leftrightarrow$$
 N $=$ $\frac{n}{\gcd(n,d)}$,則此時 $L_n^{(c,d)} = l_N^{(c)}$, $S_n^{(c,d)} = S_N^{(c)}$

$$\langle R_1^{(c)} \pmod{N}, R_2^{(c)} \pmod{N}, \dots, R_k^{(c)} \pmod{N}, \dots \rangle$$

也就是說一階非齊次線性遞迴數列在模 n 之下的餘數數列循環週期實際上就跟 c 進制 Repunit 數列在模 $\frac{n}{\gcd(n,d)}$ 之下的餘數數列循環週期是一樣的。

Problem 5. c 進制 Repunit 餘數數列在模 n 之下是否會循環?

Solution

$$(-) \gcd(n,c) = 1$$

Lemma 7.1

若
$$gcd(n,c) = 1$$
,則必存在一個最小正整數 l

s.t.
$$c^l \equiv 1 \pmod{(c-1)n}$$

Proof.

Let
$$S = \{c^0, c^1, c^2 \dots, c^a, \dots, c^b, \dots\}$$

將集合內的每個元素模 (c-1)n ,因為模 (c-1)n 下的餘數為有限的,由鴿籠原理,必能找到一組 c^a , c^b ,同時 b-a 為最小的,使得

$$c^a \equiv c^b \pmod{(c-1)n}$$

由於 gcd(n,c) = 1

$$c^{b-a} \equiv 1 \pmod{(c-1)n}$$

 $\Rightarrow l = b - a$

$$c^l \equiv 1 \pmod{(c-1)n}$$

Lemma 7.2

若
$$gcd(n,c) = 1$$
,則

$$R_l^{(c)} \equiv 0 \pmod{n} \iff c^l \equiv 1 \pmod{(c-1)n}$$

Proof.

 (\rightarrow)

$$R_l^{(c)} = \frac{c^l - 1}{c - 1} \equiv 0 \pmod{n}$$

$$\frac{c^l - 1}{c - 1} = n \cdot t, t \in \mathbb{N}$$

$$c^l - 1 = (c - 1)n \cdot t$$

可得

$$c^l \equiv 1 \pmod{(c-1)n}$$

 (\leftarrow)

$$c^{l} \equiv 1 \pmod{(c-1)n}$$
$$c^{l} - 1 = (c-1)n \cdot t, t \in \mathbb{N}$$

$$\frac{c^l - 1}{c - 1} = n \cdot t$$

可得

$$R_I^{(c)} \equiv 0 \pmod{n}$$

Theorem 7.

若
$$\gcd(n,c)=1$$
 , l 是最小的正整數 s.t. $R_l^{(c)}\equiv 0 \pmod{n}$, $\langle r_k^{(c)}$, $n \rangle$ 的循環週期 $l_n^{(c)}=l$

Proof.

由遞迴關係
$$R_k^{(c)} = c \cdot R_{k-1}^{(c)} + 1$$
 及 $R_l^{(c)} \equiv 0 \pmod{n}$,可得
$$R_{l+1}^{(c)} \equiv 10 \cdot R_l^{(c)} + 1 \equiv 1 \equiv R_1^{(c)} \pmod{n}$$

$$R_{l+2}^{(c)} \equiv 10 \cdot R_{l+1}^{(c)} + 1 \equiv 10 \cdot R_1^{(c)} + 1 \equiv R_2^{(c)} \pmod{n}$$
 证
$$\vdots$$

$$R_{2l}^{(c)} \equiv 10 \cdot R_{2l-1}^{(c)} + 1 \equiv 10 \cdot R_{l-1}^{(c)} + 1 \equiv R_l^{(c)} \pmod{n}$$
 证

也就是

$$\langle r_k^{(c)} , n \rangle = \langle R_1^{(c)} (\text{mod } n), \dots, R_l^{(c)} (\text{mod } n), R_{l+1}^{(c)} \equiv R_1^{(c)} (\text{mod } n), \dots, R_{2l}^{(c)} \equiv R_l^{(c)} (\text{mod } n), \dots \rangle$$

在此情況下 c 進制 Repunit 餘數數列會是純循環週期數列,由於 l是最小的正整數使得 $R_l^{(c)} \equiv 0 \pmod n$,故可知循環週期 $l_n^{(c)} = l$ 。

(二)
$$n=p_1^{\alpha_1}...p_r^{\alpha_r}(\alpha_1,...,\alpha_r\in\mathbb{N}\cup\{0\},$$
不全為 $0)$

Theorem 8.

$$c$$
 的質因數為 $\{p_1,p_2,\ldots,p_r\}$,若 $n=p_1^{\alpha_1}\ldots p_r^{\alpha_r}(\alpha_1,\ldots,\alpha_r\in\mathbb{N}\cup\{0\}$,不全為 0),
$$\langle r_k^{(c)}\,,\,n\rangle$$
 的不循環節 $s_n=\max(\alpha_1,\ldots,\alpha_r)-1.$

Proof.

考慮在 $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ 的情況,我們想找到最小的正整數 j 和另一個正整數 i(i > j) ,使得

$$R_i^{(c)} \equiv R_i^{(c)} \pmod{p_1^{\alpha_1} \dots p_r^{\alpha_r}}$$

也就是

$$R_{i-j}^{(c)} \cdot c^j \equiv 0 \pmod{p_1^{\alpha_1} \dots p_r^{\alpha_r}}$$

顯然 $R_{i-j}^{(c)} \not\equiv 0 \pmod{p_1^{\alpha_1} \dots p_r^{\alpha_r}}$,因此 $c^j \equiv 0 \pmod{p_1^{\alpha_1} \dots p_r^{\alpha_r}}$

可得 $j \ge \max(\alpha_1, ..., \alpha_r)$,接下來證明 $j = \max(\alpha_1, ..., \alpha_r)$ 。由反證法,假設 $j > \max(\alpha_1, ..., \alpha_r)$,可得

$$c^j \equiv c^{\max(\alpha_1, \dots, \alpha_r)} \equiv 0 \pmod{p_1^{\alpha_1} \dots p_r^{\alpha_r}}$$

但 j 為最小的正整數滿足上式,因此 $j > \max(\alpha_1, ..., \alpha_r)$ 矛盾,故 $j = \max(\alpha_1, ..., \alpha_r)$ 。

接下來由遞迴關係 $R_k^{(c)}=c\cdot R_{k-1}^{(c)}+1$ 及 $R_{i-j}^{(c)}\cdot c^j\equiv 0 (\text{mod }p_1^{\alpha_1}...p_r^{\alpha_r})$,可得

$$R_{j+1}^{(c)} \equiv c \cdot R_j^{(c)} + 1 \equiv R_j^{(c)} \pmod{n}$$

$$R_{j+2}^{(c)} \equiv c \cdot R_{j+1}^{(c)} + 1 \equiv c \cdot R_j^{(c)} + 1 \equiv R_j^{(c)} \pmod{n}$$
:

也就是

$$\langle r_k^{(c)}, n \rangle = \langle R_1^{(c)} \pmod{n}, \dots, R_j^{(c)} \pmod{n}, R_{j+1}^{(c)} \equiv R_j^{(c)} \pmod{n}, \dots \rangle$$

故可知在此情況下 c 進制 Repunit 餘數數列會是混循環週期數列,而不循環長度 $s_n^{(c)} = \max(\alpha_1,...,\alpha_r) - 1$ 。

(三)
$$n = p_1^{\alpha_1} \dots p_r^{\alpha_r} \cdot t \ (\alpha_1, \dots, \alpha_r \in \mathbb{N} \cup \{0\},$$
不全為 $0, t \in \mathbb{N}, \gcd(t, c) = 1)$

接下來我們考慮在 $n=p_1^{\alpha_1}\dots p_r^{\alpha_r}\cdot t$ 的情況,首先我們想找到最小的正整數 j 和另一個正整數 i (i>j) , 使得

$$R_i^{(c)} \equiv R_i^{(c)} \pmod{n = p_1^{\alpha_1} \dots p_r^{\alpha_r} \cdot t}$$

也就是

$$R_{i-j}^{(c)} \cdot c^j \equiv 0 \pmod{p_1^{\alpha_1} \dots p_r^{\alpha_r} \cdot t}$$

因為 $gcd(R_{i-i}^{(c)}, c) = 1$,故必存在最小的正整數 l,使得

$$R_i^{(c)} \equiv 0 \pmod{t}$$

 $\Leftrightarrow i-j=l$,顯然 $R_{i-j}^{(c)}\not\equiv 0 (\operatorname{mod} p_1^{\alpha_1}...p_r^{\alpha_r})$,因此

$$c^j \equiv 0 \pmod{p_1^{\alpha_1} \dots p_r^{\alpha_r}}$$

由 **Theorem 2**.,可推得 $j = \max(\alpha_1, ..., \alpha_r)$ 。

接下來由遞迴關係 $R_k^{(c)} = c \cdot R_{k-1}^{(c)} + 1$ 及 $R_{l+\max(\alpha_1,\dots,\alpha_r)}^{(c)} \equiv R_{\max(\alpha_1,\dots,\alpha_r)}^{(c)} \pmod{2^{\alpha} \cdot 5^{\beta}}$,可得 $R_{l+\max(\alpha_1,\dots,\alpha_r)+1}^{(c)} \equiv c \cdot R_{l+\max(\alpha_1,\dots,\alpha_r)}^{(c)} + 1 \equiv c \cdot R_{\max(\alpha_1,\dots,\alpha_r)}^{(c)} + 1 \equiv R_{\max(\alpha_1,\dots,\alpha_r)+1}^{(c)} \pmod{n}$

:

$$R_{2l+\max(\alpha_1,\dots,\alpha_r)}^{(c)} \equiv c \cdot R_{2l+\max(\alpha_1,\dots,\alpha_r)-1}^{(c)} + 1 \equiv c \cdot R_{l+\max(\alpha_1,\dots,\alpha_r)-1}^{(c)} + 1 \equiv R_{l+\max(\alpha_1,\dots,\alpha_r)}^{(c)} \pmod{n}$$

也就是

$$\langle r_k^{(c)}, n \rangle =$$

$$\langle R_1^{(c)} (\operatorname{mod} n), \dots, R_{\max(\alpha_1, \dots, \alpha_r)}^{(c)} (\operatorname{mod} n), \dots, R_{l+\max(\alpha_1, \dots, \alpha_r)}^{(c)} (\operatorname{mod} n), R_{l+\max(\alpha_1, \dots, \alpha_r)+1}^{(c)} \equiv R_{\max(\alpha_1, \dots, \alpha_r)+1}^{(c)} (\operatorname{mod} n), \dots, R_{2l+\max(\alpha_1, \dots, \alpha_r)}^{(c)} (\operatorname{mod} n), \dots, R_{2l+\max(\alpha_1, \dots,$$

故可知在此情況下 Repunit 餘數數列會是混循環週期數列,而不循環長度 $s_n^{(c)} = \max(\alpha_1,...,\alpha_r) - 1$,循環週期 $l_n^{(c)} = l$ 。

Problem 6. c 進制 Repunit 餘數數列在什麼條件下為完全純循環週期數列?

Solution

Theorem 9.

$$c-1$$
的質因數為 $\{p_1,p_2,\dots,p_s\}$,若 $n=p_1{}^{\alpha_1}\dots p_s{}^{\alpha_s}(\alpha_1,\dots,\alpha_s\in\mathbb{N}\cup\{0\},\alpha_k$ 和 k 不全為 $0)$

$$c^n \equiv 1 \pmod{n(c-1)}, c \in \mathbb{N}, n \in \mathbb{N}$$

Proof.

已知
$$p_1|(c-1), p_1|(c-1), ... p_s|(c-1)$$

± L.T.E. lemma

$$\begin{split} v_{p_1}(c^n-1) &= v_{p_1}(c-1) + v_{p_1}(n) = v_{p_1}(n(c-1)) \\ &\vdots \\ v_{p_s}(c^n-1) &= v_{p_s}(c-1) + v_{p_s}(n) = v_{p_s}(n(c-1)) \\ & \Leftrightarrow c^n-1 = p_1^{v_{p_1}(c^n-1) + v_{p_1}(n)} \cdot ... \cdot p_s^{v_{p_s}(c^n-1) + v_{p_s}(n)} \cdot t \text{ , gcd}(c-1,t) = 1 \text{ , } \exists \exists \\ & c^n-1 = p_1^{v_{p_1}(c^n-1)} \cdot ... \cdot p_r^{v_{p_r}(c^n-1)} \cdot t = p_1^{v_{p_1}(n(c-1))} \cdot ... \cdot p_s^{v_{p_s}(n(c-1))} \cdot t = n(c-1) \cdot t \end{split}$$

得證

$$c^n \equiv 1 \left(\bmod n(c-1) \right)$$

Remark:

接下來我們證明 $l_n^{(c)}=n$,由反證法,假設存在更小的循環週期,我們知道其必整除 $l_n^{(c)}$,我們將其記為 l'(l'|n,l'< n),其滿足 $c^{l'}\equiv 1\ (\text{mod}\ n(c-1))$ 。由 L.T.E. lemma,

$$v_{p_1}(c^{l'}-1)=v_{p_1}(c-1)+v_{p_1}(l')=v_{p_1}(l'(c-1))$$
 :

$$v_{p_s}\big(c^{l'}-1\big)=v_{p_r}(c-1)+v_{p_s}(l')=v_{p_s}(l'(c-1))$$

$$c^{l'} \not\equiv 1 \pmod{n(c-1)}$$

這與原假設矛盾,故 $l_n^{(c)} = n$ 。

伍、研究結果

對於 Repunit 數列

$$\langle R_k \rangle \coloneqq \langle 1,11,111, \dots \rangle$$

遞迴關係如下

$$R_k = 10 \cdot R_{k-1} + 1$$
 , $R_0 = 0$

$$R_k = \frac{10^k - 1}{9} = 10^{k-1} + 10^{k-2} + \dots + 10^0,$$

若 $n = 2^{\alpha} \cdot 5^{\beta} \cdot t \ (\alpha, \beta \in \mathbb{N} \cup \{0\}, t \in \mathbb{N}, \gcd(t, 10) = 1)$

我們知道 $\langle r_k, n \rangle$ 的循環週期為

$$l_n = \text{lcm}(l_{p_1}^{k_1}, \dots, l_{p_r}^{k_r}) \le 3^m \phi(t)$$

不循環節長度為

$$s_n = \max(\alpha, \beta) - 1$$

其中若 $n = 3^m, m \in \mathbb{N}$, 其循環節長度恰為

$$l_{3}^{m} = 3^{m}$$

	$\operatorname{mod} n$	循環週期 (<i>l</i> _n)	不循環節長度(s _n)
<u>純循環週期數列</u>	$n = t, \gcd(t, 10) = 1$	$l_n \le 3^m \phi(t)$	0
混循環週期數列	$n = 2^{\alpha} \cdot 5^{\beta} \cdot t$ $(\alpha, \beta \in \mathbb{N} \cup \{0\}, t \in \mathbb{N}, \gcd(t, 10) = 1)$	$l_n \le 3^m \phi(t)$	$\max(\alpha, \beta) - 1$
完全循環週期數列	$n=3^m, m\in\mathbb{N}$	3 ^m	0

對於一階非齊次線性遞迴數列

$$a_k = c \cdot a_{k-1} + d, c \in \mathbb{N}, d \in \mathbb{N}, a_0 = 0$$

$$a_k = d \cdot \frac{c^k - 1}{c - 1} = d \cdot R_k^{(c)}$$

 $\Leftrightarrow c$ 的質因數為 $\{p_1,p_2,\ldots,p_r\}$, $N=\frac{n}{\gcd(n,d)}$,若 $N=p_1^{\alpha_1}\ldots p_r^{\alpha_r}\cdot t$ $(\alpha_1,\ldots,\alpha_r\in\mathbb{N}\cup\{0\}$,不全為 $0,t\in\mathbb{N}$, $\gcd(t,c)=1$),我們知道 $\langle A_k^{(c,d)}$, $n\rangle$ 的循環週期為

$$L_n^{(c,d)} = l_N^{(c)}$$

$$S_n^{(c,d)} = S_N^{(c)}$$

c-1 的質因數為 $\{p_1,p_2,\ldots,p_s\}$,其中若 $N=p_1^{\alpha_1}\ldots p_s^{\alpha_s}(\alpha_1,\ldots,\alpha_s\in\mathbb{N}\cup\{0\},\alpha_k$ 和 k 不全為 0) 其循環節長度恰為

$$L_n^{(c,d)} = l_N^{(c)} = N$$

陸、結論及未來展望

一、結論

本作品首先探討 Repunit 餘數數列的循環週期,先分成 $\gcd(n,10)=1,n=2^{\alpha}\cdot 5^{\beta}$ 及 $n=2^{\alpha}\cdot 5^{\beta}\cdot t$ 這三種情況討論,發現 n 的 2^{α} 和 5^{β} 因數部分決定其不循環節長度,而 n 跟 10 互質的部分決定其循環節長度,而且循環節長度的上界為 $3^m\phi(t)$,特別的是若 $n=3^m$,則其循環週期恰為 3^m ,同時我們也給出了循環週期的公式 $l_n=\mathrm{lcm}(l_{p_1}{}^k{}_1,\ldots,l_{p_r}{}^k{}_r)$ 。最後我們發現一階非齊次線性遞迴數列在模 n 之下的循環週期與 n 建制 Repunit 數列在模 n 之下的循環週期相同,若 n0 定时循環週期相同,若 n0 定时 n0 要列的循環週期恰好為 n0 家 n0 要列的循環週期恰好為 n0 家 n0 。

二、未來展望

- (-) 探討高階非齊次線性遞迴數列在模 n 之下的餘數數列是否會循環
- () 探討高階非齊次線性遞迴數列在模 n 之下的循環週期

柒、附錄

一、另一種觀點證明 Repunit 餘數數列會循環

首先我們定義 \mathbb{Z}_n 為整數除以 n 之下所有可能餘數所形成的集合

$$\mathbb{Z}_n = \{0,1,2,\ldots,n-1\}$$

接下來觀察遞迴關係

$$R_k = 10 \cdot R_{k-1} + 1$$
 , $R_0 = 0$

可發現 $\langle r_k, n \rangle$ 的前後項關係可以表示成 f(x), 其中 f 為從 \mathbb{Z}_n 映射到 \mathbb{Z}_n 的函數

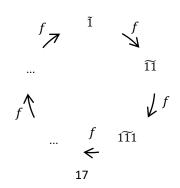
$$f: \mathbb{Z}_n \to \mathbb{Z}_n$$
, $f(x) = 10x + 1$

另外我們定義 \tilde{a} 為 a 在模 n 下的同餘等價類

$$\tilde{a} \equiv a \pmod{n}, \tilde{a} \in \mathbb{Z}_n$$

至此可以把 $\langle r_k, n \rangle$ 表示成

 $\langle r_k, n \rangle = \langle \tilde{1}, \tilde{11}, \tilde{111}, ... \rangle = \langle f(0), f \circ f(0), f \circ f(0), ... \rangle = \langle f(0), f^2(0), f^3(0), ... \rangle ($ 。 是合成) 首先我們要證明n跟 10 互質的情況,如果要證明 $\langle r_k, n \rangle$ 是純循環週期數列的話,實際上就是要證明 f(0) 在合成了 l_n 次之後會循環,也就是 f 是對射(單射且滿射)。



首先我們先證明 f 是滿射,也就是對於值域來說,定義域中總是存在一個元素 x ,使得 f(x)=10x+1。 令 f(x)=a=10x+1

$$a \equiv 10x + 1 \pmod{n}$$

$$a - 1 \equiv 10x \pmod{n}$$

因為 gcd(n,10) = 1 ,根據線性同餘可以知道必存在 s,使得

$$s \cdot 10 \equiv 1 \pmod{n}$$

故我們將兩邊同乘 s ,可得

$$s \cdot (a-1) \equiv s \cdot 10x \pmod{n}$$
$$s \cdot (a-1) \equiv x \pmod{n}$$

得證 f 是滿射

接下來我們證明 f 是單射,也就是若 f(a)=f(b),其中 $a,b\in\mathbb{Z}_n$,則 a=b。 若 f(a)=f(b),則

$$10a + 1 \equiv 10b + 1 \pmod{n}$$
$$10a \equiv 10b \pmod{n}$$

因為 gcd(n, 10) = 1,故10一定有乘法反元素 s 使得

$$s \cdot 10 \equiv 1 \pmod{n}$$

左右同乘 s 可得

$$s \cdot 10a \equiv s \cdot 10b \pmod{n}$$

 $a \equiv b \pmod{n}$

由於 $a,b \in \mathbb{Z}_n$,故

$$a = b$$

得證 f 是單射

有了這個結果之後接下來我們可以找出 $\langle r_k, n \rangle$ 的循環週期 l_n

$$f^i(0) = f^{i+l_n}(0)$$

由於 f 是對射,故反函數 f^{-1} 也是對射,等號左右同時合成 f^{-1} 可得

$$f^{-1} \circ f^{i}(0) = f^{-1} \circ f^{i+l_n}(0)$$
$$f^{i-1}(0) = f^{i+l_n-1}(0)$$

合成 i 次可得

$$f^{l_n}(0) = 0 \equiv R_{l_n}(\text{mod } n)$$

也就是循環週期 l_n 必滿足

$$R_{l_n} \equiv 0 \pmod{n}$$

捌、參考文獻(文獻) 及其他

- [1] 游森棚。森棚教官的數學題一全數出動
- [2] David M.Burton(2010). Elementary Number Theory 7th
- [3] Albert H.Beiler(1966). Recreations in the Theory of Numbers
- [4] 陸思明。高中新數學教室一數
- [5] 康明昌。數學傳播 25 卷 3 期。循環小數
- [6] 朱亮儒。科學教育月刊第 449 期。淺談分數化小數的分類
- [7] 李織蘭。蔣曉雲。數學傳播 45 卷 2 期。"光棍數"的數論性質和分數小數互化問題討論
- [8] Geretschläger, R. (2020). Engaging Young Students in Mathematics through Competitions World Perspectives and Practices. World Scientific.

【評語】010010

探討 Repunit 數列及其推展數列的餘數循環特性;作者給出一些規律,也得到循環節及不循環節長度的一些規則;整體而言,對於要探討的目標,能完整的呈現,是很不錯的作品。