

2024年臺灣國際科學展覽會

優勝作品專輯

作品編號 190037

參展科別 電腦科學與資訊工程

作品名稱 Breaking a Caesar Cipher / Vigenère

Cipher Encryption for Secure Data

Communication

得獎獎項 四等獎

就讀學校 High School Jim Fouche

指導教師 Dibata Johannes Lephondo

作者姓名 Johannes Jacobus Deysel

i

作者照片

Computer Science 2023

Page | 3

Abstract

This project had one purpose: creating almost unbreakable encryption by breaking a Caesar

– and Vigenère Cipher and getting familiar with how they work. Created a program to encrypt

and decrypt messages with a Caesar Cipher and Vigenère Cipher encryption. Breaking these

encryptions in these programs will help to identify the factors that contribute to strong and

weak encryption systems.

A program was created to encrypt messages using Caesar Cipher with a key from 1 to 25 and

decrypt messages without knowing the original key by doing different types of “attacks” on the

system: a brute force and frequency analysis attack. Created another program to encrypt

messages using Vigenère Cipher with a keyword or keyphrase and decrypted messages

whilst knowing that original keyword. Tested and compared the two different cyphers when

being attacked. This helped identify factors that influenced the strength of encryption and

identified the advantages and disadvantages of each Cipher as well as the weaknesses in

each attack.

Through testing and breaking a Caesar and Vigenère Cipher successfully, multiple factors

were identified that influenced the strength of the encryption system. These were used to

ensure the new encryption created will be as strong as can be. Comparing the success rate

of the different attacks on each Cipher, the similarities, weaknesses and strengths in the Brute

Force and Frequency Analysis attacks were found.

Computer Science 2023

Page | 4

Introduction

Literature Review

(“Biggest Data Breaches in US History”, 2023)

The software company, UpGuard, which uses cybersecurity risk management software to help

organizations across the globe prevent data breaches, says that the biggest data breaches in

US history happened between 2019 and 2021 and included some of the biggest companies

like Microsoft, Facebook, LinkedIn, etc.

These colossal data breaches had several negative consequences. Identity theft was one of

the biggest consequences where hackers gained that sensitive information and used it to

commit fraudulent activities, such as opening new accounts or making unauthorized

purchases. The answer to reducing this large amount of data breaches is to strengthen

modern encryptions. Companies must ensure that their encryption techniques evolve and

strengthen at the same pace as the fast evolution of technology, especially AI. The gap within

the majority of companies’ encryption is that it’s not evolving fast enough to withstand hackers

and AI.

Problem Statement

Technology is evolving rapidly; thus, hackers are also evolving their methods to decrypt these

systems. To ensure the safety of users’ data online, there is a constant need to evaluate what

hackers know and to strengthen your encryption.

The first step to beat a hacker is for companies to think like hackers to protect themselves.

The problem is that hackers are catching up and there is a need for new, different, and

innovative encryptions.

Aim

The aim of this project is to create an encryption by breaking a Caesar – and Vigenère Cipher

by creating a program to encrypt messages with a Caesar Cipher and Vigenère Cipher

encryption and then break them without the original key.

Engineering goals or Design goals

Develop a computer program that would be able to encrypt messages in Caesar Cipher and

break those encrypted messages with two different methods. (“Crack the Code: Breaking a

Caesar Cipher”, 2020)

Create encryption and decryption process called Vigenère Cipher to compare to the Caesar

Cipher encryption get familiar with different encryption techniques and identify advantages or

similarities.

Method

Materials

 Windows operated computer

 Application: Delphi version 11 was used as the programming language

Computer Science 2023

Page | 5

Procedure and Developing

Planning

An IPO table was used to plan this. An IPO table lists the input that the program needed to

get from the user, the processing that had to be done to that input, and then what information

had to be put out to the user.

 Table 1: The encryption section

Input Process Output

 Plaintext to encrypt

 A key to encrypt in

 Shift each of the
characters in the
plaintext provided an X
number of times forward
in the alphabet where X
= the user’s key.

 Give feedback to the
user and output the
encrypted message with
the characters already
shifted.

 Table 2.1: The decryption section (Brute force)

Input Process Output

 An already encrypted
message

 Decrypt the given
message by shifting
each of the characters X
times backward in the
alphabet

 No provided key. Thus
try all 25 possible keys
(1 to 25)

 Output the key used with
its corresponding
decrypted output
message. (There will be
25 outputs, one for every
key).

 Table 2.2: The decryption section (Data analysis)

Input Process Output

 An already encrypted
message (original
English)

 Analyze the given
encrypted message by
counting how many
times a character
occurs.

 Get the characters
occurring the most in the
message and use it as a
safe guess to represent
the character “e”.

 Use that safe guess as
the key used to get an
output.

 Output the key guessed
with its corresponding
decrypted message,
which if correct, should
be English.

Method: 5 Steps

1. Identified the existing encryption techniques

o Caesar Cipher

o Vigenère Cipher

2. Created a program with Caesar Cipher

o Encrypted message with a key from 1 to 25

o Decrypted message without knowing the key

Computer Science 2023

Page | 6

 Brute Force

 Frequency Analysis

3. Created a program with Vigenère Cipher

o Encrypted a message with a keyword

o Decrypted a message whilst knowing the original keyword

4. Tested and compared the two

o Identifed factors that influence the strength of an encryption

o Identifed the advantages and disadvantages of Caesar – and Vigenère Cipher

5. Creted own encryption with a twist

Pre-knowledge to encrypt or decrypt

 Encryption
The ASCII (American Standard Code for Information Interchange) table (Table 1) assigns

standard numeric values to letters, numerals, punctuation marks, and other characters used

in computers.

Every character and alphabet letter has a corresponding value on the ASCII table:

Table 1: The ASCII table
Source: (Adapted from Usha, 2010)

The ASCII table is case-sensitive; thus, input messages need to be immediately converted to

uppercase before starting processing.

Every character in the input message was converted into its value in the ASCII table. The

uppercase characters of the alphabet were all increased with a difference of 1, the key was

added to the ASCII value. This shifts each character forward, in the alphabet, the number of

times as the key.

Problem: However, it is important to note that when the value is added to the ASCII value of

a character at the end of the alphabet, like “Z”, special characters are the output, like “[“.

In that case, the program was coded to loop back by using “mod 26” which limits the

characters to only the letters in the alphabet.

Computer Science 2023

Page | 7

The new values were then reconverted back to alphabet characters and displayed as the new

encrypted message.

 Decryption
The program was decrypted by an already encrypted message with the button above.

When breaking into the encryption, there are two ways in which the code would be cracked

without knowing the original key:

 A brute force attack

 Using frequency analyzation

 In the result section of my report I will be discussing which one is more effective aswell

as each one’s advantages and disadvantages.

Prototype 1:

 To encrypt the message the user inputs, the following was done:
(“DELPHI: Encryption examples”, 2008)

1. Split the plaintext message into individual characters.

2. Convert the characters into their corresponding value in the ASCII table with the

function Ord(x).

3. Add the key to the ASCII value to get a new value.

4. Convert the new value to a character using the Chr(x) function.

5. Repeat this for each character in the message, get the number of characters by using

the length(x) function.

6. Do the repeating using a loop.

Figure 1: Testing prototype 1
Source: Screenshot of my own program

Computer Science 2023

Page | 8

 When tested, the following problems with this prototype were identified:
o This project was inspired by a Caesar Cipher encryption (which only uses alphabet

letters) and to prove its weakness. This prototype is not limited to alphabet letters and

includes special characters (See Figure 2: The encrypted message output).

Prototype 2:

 To limit the encryption to alphabet letters only, the following was done:
1. Created an array,

2. Populated the array with the ASCII values of the alphabet characters from A to Z.

Thus, there were 26 slots with values 65 to 90.

3. Added the key to each slot in the array using a loop. A new alphabet was created

using a unique key.

4. Replaced the characters in the input message with the new corresponding characters

in the new alphabet.

Ex. If the message is “E”, the letter was replaced with the 5th character in the array

The output is now limited to only letters in the alphabet. (See Figure 3: The encrypted message

output).

 To decrypt an already encrypted message:
1. Split the encrypted message into its individual characters.

2. Convert the characters into their corresponding value in the ASCII table with the

function Ord(x).

3. Subtract the key from the ASCII value to get a new value.

4. Convert the new value back to a character using the Chr(x) function.

5. Repeat this for each character in the message, get the number of characters by using

the length(x) function.

6. Do the repeating using a loop.

Figure 2: Prototype 2
Source: Screenshot of my own program.

Computer Science 2023

Page | 9

 Problems with this prototype
o In this decryption we need to enter a key, but in reality, we do not know what key the

original message was encrypted in. Thus, the original key is unknown to us and this

prototype relies on knowing the key.

o Because the original key is unknown to us, this decryption requires you to manually

enter all keys from 1 to 25 to get all the possible outputs which takes time.

o This prototype only has one way of decrypting the message (a brute force technique),

which requires you to distinguish between 25 outputs which one looks acceptable

which could be a problem if the original message is not English or another identifiable

language.

Prototype 3:

 Introduction to the “brute force” technique:
(“Classical-ciphers-frequency-analysis-examples”, 2015)

A brute force attack tries every key from 1 to 25 and outputs each’s corresponding decrypted

message. When done, 25 different decrypted messages are left and thus it is required from

the user to manually distinguish between the 25 messages and decide which one looks like

the acceptable output.

To distinguish between messages is easy when we assume the original message was English

(or another identifiable language). But if the original message were a randomly generated

password, it would become impossible to identify the original message from the other 24,

because all of them would look randomly generated.

To automate the brute force technique, all of this needs to be done in a single button (no key

input needed):

1. Decrypt the message with a key of 1. Output it.

2. Decrypt the message with a key of 2. Output it.

3. Use a loop to repeat this decryption until you reach the key 25. Output every key’s

decrypted message.

4. 25 Different output messages will be left at the end (See Figure 3)

Figure 3: Prototype 3’s Brute force

Source: Screenshot of my own program.

Computer Science 2023

Page | 10

 Introduction to the “frequency analyzation” technique:
(“Frequency Analysis: Breaking the Code”, 2017)

To add another way of decrypting a message without a key, a new technique is introduced

called frequency analysis. This analysis the number of times a single character occurs in a

message. For example, the character “e” appears way more in English words than the

character “Z” or “X”. In the English language the letter “E” is the letter that appears the most

on average (see Figure 4).

Table 2: Letter frequency in the English language
Source: Adapted from MEC and Cornell University, 2004

Assuming the original message was in English:

1. Use the built-in position function and a counting variable (which increases every time

the position of a letter is found) along with a loop to continue finding the position of a

given letter.

2. Repeat this process 26 times with another loop for all 26 letters of the alphabet.

3. When the frequency analyzation button is pressed, a list of the 26 letters of the

alphabet should be displayed with their corresponding number of occurrences in the

entered message. (See Figure 4)

4. Analyse that list to identify the most occurring letter.

Computer Science 2023

Page | 11

When that list is studied, it would be clear which letter occurs the most in

the message. It would be a safe assumption that the letter occurring the

most in the encrypted message represents the letter “E” in the original

message.

To perform this assumption, the program requires a manual input on

which letter occurs most after the list is studied:

Assuming the original message was English:

1. Convert the letter occurring the most into its ASCII value using the

built-in ord(x) function.

2. Subtract that value from the value 69, which is the ASCII value for

the letter “E”.

3. Take the absolute value of that answer (remove the negative sign).

4. That answer will be the first guess to which key the original

message was encrypted with.

5. Use that key to do the normal decryption. (See Figure 5)

Figure 5: Prototype 3’s Frequency Analysis
Source: Screenshot of my own program.

 Problems with frequency analysis:
o In some cases, the first try does not work and gives an incorrect decryption (See Figure

5). This is because the letter occurring the most in the original message was NOT the

letter “E”, and thus not an average message. This process would have to be repeated

but this time with the character occurring the second most. However, this is still more

Figure 4: Character
frequency list
Source: Screenshot
of my own program

Computer Science 2023

Page | 12

effective than the brute force method because it significantly reduces the amount of

output messages you have to distinguish from.

o In the case that the original message is not English, this method will most likely not

work. The character occurring the most differs from language to language.

o In the case that the original message is randomly generated like a password, frequency

analysis would be absolutely useless because analysing the frequency of something

random would also just give random results and not something useful.

o There are other substitution ciphers that are designed to defeat frequency analysis.

 Problems with this prototype

o Frequency analysis requires the user to sift through a list of each character’s number

of occurrences and pick the one occurring the most for the program to guess a key

and decrypt the message according to that key.

o If it is the case that the first decryption of frequency analysis does not work, the user

again needs to sift through the list of number of characters occurrences to choose the

character occurring the second most. This slows down the speed of which a message

can be cracked with frequency analysis and is very tedious.

o Frequency analysis is divided into 2 separate buttons/processes. (See Figure 5)

Prototype 1 and 2 thus had a great significance because prototype 1 helped identify

problem areas and in prototype 2 those problems could be approached differently and

be fixed in prototype 3.

Prototype 4

 To automate/fasten the frequency analysis process:

For faster or automatic decryption with frequency analysis, the two different frequency analysis

buttons on prototype 3 needs to be combined into one single process or button. This can be

done by coding the program to automatically sift through the list we generated for the most

occurring character, and in the case of that not being the correct encryption, also be able to

identify the second most occurring character.

Assuming the original message was English:

1. Create 2 arrays with 26 slots each, one for unsorted data and one for sorted data.

2. Populate both arrays with the list of character occurrences frequencies alphabetically.

Computer Science 2023

Page | 13

3. Using 2 loops, an inner and an outer loop, sort one of the arrays

in descending order.

4. The value in the first slot in the sorted array will now be the

greatest number of times a character occurs.

5. Compare that value with the first value in the unsorted array.

6. If they are the same, it is known that “A” is a letter occurring the

most because the unsorted array is in alphabetical order. So, if

they are the same, take the chr(x) of the slot number + 64 and

store that character.

7. It is possible for there to be more than one character occurring

the most in a message, thus this process of comparing and

storing values between arrays needs to be repeated 26 times for

all the number of slots by using a loop.

8. At the end one or more characters are left that can be used to

create a key guess for the decryption. (See Figure 6)

 In the case of the first decryption not being correct (Figure 7)
The button will be pressed a second time and have to automatically identify and use the

character occurring the second most like shown below:

Figure 7: Prototype 4’s Frequency Analysis
Source: Screenshot of my own program.

Do the exact same process as in the previous steps, but replace step 4:

Figure 6: Character
frequency list
Source: Screenshot of
my own program

Computer Science 2023

Page | 14

4. The value in the (first + 1) slot in the sorted array will now be the greatest number of times

a character occurs.

If the second time does not work, replace step 4 again, but plus 2:

4. The value in the (first + 2) slot in the sorted array will now be the greatest number of times

a character occurs.

Repeat these steps until the decryption is correct. (See Figure 7)

 Introduction to the “Random” button

This button generates a random 20-character long message. This feature will be used during

testing to test the program’s encryption and decryption on a randomly generated message.

Final program (Prototype 5)

Another encryption technique was added to the existing program to provide more results to

be able to compare these two techniques.

 Introduction to the Vigenère cipher
(“Vigenère cipher”, 2023)

The Vigenère cipher is a technique of encrypting alphabetic plaintext where each letter of the

plaintext is encoded with a different Caesar cipher, whose key is determined by the

corresponding letter of another text, called the keyword.

For example, if the plaintext is “attacking tonight” and the key is

OCULORHINOLARINGOLOGY, then

 the first letter a of the plaintext is shifted by 14 positions in the alphabet (because the

first letter O of the key is the 14th letter of the alphabet, counting from 0), yielding o;

 the second letter t is shifted by 2 (because the second letter C of the key means 2)

yielding v;

 the third letter t is shifted by 20 (U) yielding n, with wrap-around;

and so on; yielding the message “ovnlqbpvt eoeqtnh”. If the recipient of the message knows

the key, they can recover the plaintext by reversing this process.

Computer Science 2023

Page | 15

Figure 8: Final Program’s Frequency Analysis
Source: Screenshot of my own program.

 What if the plaintext is larger than the keyword?
(“VIGENERE CIPHER”, 2023)

Because the encryption of the plaintext relies on the corresponding character of the keyword

to provide a key, it would become a problem if the keyword is shorter than the plaintext. In that

case, some letters would not have any corresponding character and thus no key.

To fix this, simply repeat the keyword with a loop until the new string is larger than the plaintext.

For example, if the keyword for the above plaintext were “KEYS”:

 The plaintext is 17 characters long and the keyword 4

 Repeat the keyword 5 times, “KEYSKEYSKEYSKEYSKEYS”

 Now the key is 20 characters long and can be used

 Vigenère cipher vs. Frequency analysis
(“Cryptanalysis”, 2023)

The Vigenère cipher is unsuccessful to the decryption method of frequency analysis due to

the fact that the cipher rotates through different shifts, so the same plaintext letter will not

always be encrypted to the same ciphertext letter.

For example, let’s say that “e” is the most common letter in English words. A decrypter using

frequency analysis may think that the most common letter in an encoded message likely

corresponds to “e”. However, since a Vigenère cipher encodes the same letter in different

ways, depending on the keyword, “e” could be encoded as many different letters, thus

breaking the assumptions behind frequency analysis.

Computer Science 2023

Page | 16

 Vigenère cipher vs. Brute force
(“Cryptanalysis”, 2023)

A Vigenère cipher is difficult to crack using brute-force because each letter in a message could

be encoded as any of the 26 letters. Because the encoding of the message depends on the

keyword used, a given message could be encoded in 26 to the power of k ways, where k is

the length of the keyword.

For example, if we only know that a message is encoded with a word with a length of 7 letters,

then it could be encoded in 8 billion ways!

 The vulnerability of Vigenère cipher
(“Cryptanalysis”, 2023)

The primary weakness of the Vigenère cipher is the repeating nature of its key. If a cryptanalyst

correctly guesses the length of the key, then the ciphertext can be treated as interwoven

Caesar ciphers, which, individually, can be easily broken.

Keyword: KIN GKI NGK ING KIN GK ING KING

Plaintext: THE SUN AND THE MAN IN THE MOON

Ciphertext: DPR YEV NTN BUK WIA OX BUK WWBT

Keyword: KIN GKI NGK ING KIN GK ING KING

Ciphertext: DPR YEV NTN BUK WIA OX BUK WWBT

Plaintext: THE SUN AND THE MAN IN THE MOON

For example, in the cryptogram above, the plaintext “THE” occurs twice in the message, and

in both cases, it lines up perfectly with the first two letters of the keyword. Because of this, it

produces the same ciphertext “BUK”.

Repetitions in the ciphertext indicate repetitions in the plaintext, and the space between such

repetitions hint at the length of the keyword.

In fact, any message encrypted with a Vigènere cipher will produce many such repeated

instances. Although not every repeated instance will be the result of the encryption of the same

plaintext, many will be and this provides the basis for breaking the cipher. This method of

analysis is called Kasiski examination.

 Introducing the “Jaco Cipher”: Encryption Steps
The following steps show the encryption process of the final encryption program.

1. Key: Keyword(characters) + Key (Integers) ex. UJGSTFMSNG23

2. Caesar Output = Message is encrypted with Caesar Cipher and key part

3. Vigenère Output = Message is encrypted with Vigenère Cipher and keyword

4. The Caesar Output is encrypted with Vigenère Output as the keyword for X number of

times.

5. The twist: The number of times/layers encrypted stated above will be determined by

the length of your name.

6. That output is then encrypted with the key but including special characters.

Breaking different types of messages

Testing was done by encoding different types of messages, then decoding them and see how

they reacted to the process. This will give an idea to what influences the successfulness of an

encryption.

Computer Science 2023

Page | 17

English

 Encrypted an English type message successfully

 Brute force decrypted the encryption successfully at key 12

 Frequency analysis successfully decrypted the message with key 12 with 2 tries

Figure 1: Testing an English message
Source: Screenshot of my own program.

Computer Science 2023

Page | 18

Afrikaans

 Encrypted an Afrikaans type message successfully

 Brute force decrypted the encryption successfully at key 8

 Frequency analysis successfully decrypted the message with key 8 with 3 tries

Figure 2: Testing an Afrikaans message

Source: Screenshot of my own program.

Computer Science 2023

Page | 19

Password

 Encrypted a Password type message unsuccessfully (Capitalized every letter + left out digits)

 Brute force decrypted the encryption unsuccessfully

 Frequency analysis unsuccessfully decrypted the message

Figure 3: Testing a Password message
Source: Screenshot of my own program.

Computer Science 2023

Page | 20

Randomly generated message (Password without digits)

 Encrypted a Randomly generated type message successfully

 Brute force decrypted the encryption unsuccessfully (impossible to distinguish)

 Frequency analysis unsuccessfully decrypted the message (impossible to distinguish)

Figure 4: Testing a Randomly Generated message
Source: Screenshot of my own program.

Computer Science 2023

Page | 21

Sentence with lots of e’s

 Encrypted a sentence with lots of e’s successfully

 Brute force decrypted the encryption successfully

 Frequency analysis successfully decrypted the message within the first try

Figure 5: Testing a sentence with lots of e’s
Source: Screenshot of my own program.

Computer Science 2023

Page | 22

Sentence with no e’s

 Encrypted a sentence with none e’s successfully

 Brute force decrypted the encryption successfully

 Frequency analysis unsuccessfully decrypted the message even with all tries

Figure 6: Testing a sentence with no e’s
Source: Screenshot of my own program.

Computer Science 2023

Page | 23

Results

The result of this program is that it was in fact able to break a Caesar Cipher encryption which

aligns with the engineering and designing goals. There are also other results gathered.

Different types of messages

 English:

 Encrypted an English type message successfully

 Brute force decrypted the encryption successfully at key 12

 Frequency analysis successfully decrypted the message with key 12 with 2

tries

 Afrikaans:

 Encrypted an Afrikaans type message successfully

 Brute force decrypted the encryption successfully at key 8

 Frequency analysis successfully decrypted the message with key 8 with 3

tries

 Passwords:

 Encrypted a Password type message unsuccessfully (Capitalized every

letter + left out digits)

 Brute force decrypted the encryption unsuccessfully

 Frequency analysis unsuccessfully decrypted the message

 Randomly generated message:

 Encrypted a Randomly generated type message successfully

 Brute force decrypted the encryption unsuccessfully (impossible to

distinguish)

 Frequency analysis unsuccessfully decrypted the message (impossible to

distinguish)

 Sentence with lots of e’s:

 Encrypted a sentence with lots of e’s successfully

 Brute force decrypted the encryption successfully

 Frequency analysis successfully decrypted the message within the first try

 Sentence with no e’s:

 Encrypted a sentence with none e’s successfully

 Brute force decrypted the encryption successfully

 Frequency analysis unsuccessfully decrypted the message even with all

tries

Factors contributing to the strength of an encryption identified

 Size of the key

 Special characters

 Small and capital letters

 Encryption technique

 Length of encryption

 Language of message

 Layering

Computer Science 2023

Page | 24

Discussion

There are loads of websites online encrypting a message with a Caesar Cipher, but none

decrypt them using multiple types of decrypting types. Thus, the one created was able to

gather information showing what variables to consider or improve when wanting to create a

strong encryption for websites, messaging or other platforms.

The factors that contribute to a weak encryption

These factors identified were interpreted in this situation to create the following

characteristics of a strong encryption

Factors identified that contribute to the strength of an encryption

Factors of Weak
Encryption

Factors of Strong
Encryption

Applying research to New
Encryption

Key limited in length and
type

Key not limited Keyword + Integer Key

Strictly alphabet characters Special Characters allowed Alphabet + Special
Characters

Not case sensitive – do not
differentiate between small
and capital

Case sensitivity –
differentiate between small
and capital

Not case sensitive (Beyond
skillset at this moment)

Single technique Different techniques Combination of Caesar
Cipher + Vigenère Cipher +
Twist

Factors Identified Strong Encryption Weak Encryption

Size of key Key is not very limited (up to
1000+ options)

Key is limited (like my
program with only 25
options)

Special characters Special or unusual
characters are allowed

Only alphabet characters are
allowed

Small and capital letters Encryption is case sensitive -
small and capital letters have
different corresponding
ASCII values

Encryption is not case
sensitive - characters are all
capital or all small

Encryption technique Techniques gets updated
and modified ex. Hashing

Techniques are old and out
of date like old Ciphers

Length of encryption Length can be changed and
set to whatever length you
want - making more
possibilities (Hashing -
generates a unique
signature of fixed length for a
data set or message)

Length of plaintext input is
the same as the encryption
length

Language of message Uses random generated
characters like passwords
with next to none patterns
occurring

Uses known languages like
English with occurring
patterns that could be
analyzed

Layering Encrypts in layers Encrypts a single time

Computer Science 2023

Page | 25

Message length =
Encryption length

Encryption length not the
same as input length = more
possibilities

Length of encryption =
Length of keyword

Patterns occur + can be
analyzed ex. encrypting
English linear

Little to no visible patterns Patters non visible = cannot
be analyzed

Encrypts a single time Encrypts in layers Encrypts in multiple layers

After using two different techniques to decrypt messages, differences were noted and listed

below:

Advantages and disadvantages to using a brute force technique

Pros Cons

Button has to be only pressed once Depends on the correct decryption being
easily distinguishable

Guaranteed the correct decryption Slow

 Creates a long list

Advantages and disadvantages to using a frequency analysis technique.

Brute Force vs. Frequency Analysis: The differences

Brute Force Frequency Analysis

Slow Fast

Manually distinguish the correct decryption Manually distinguish the correct decryption

Button pressed once Button pressed more than once

Always guaranteed the correct decryption in
the 26 options

Not always guaranteed the correct
decryption (if original message did not
contain an e)

Creates extensive list Creates shorter list

Works whether original sentence contained
an e or not

Does not work if original message did not
contain an e

Pros Cons

Shortens the list of possible decryptions Not guaranteed the correct decryption (if
original message did not contain an e)

Fast Button in some cases needs to be pressed
multiple times

Works within little tries if original message
contained e’s

Relies on the assumption that the original
message was English

 Does not work at all if original message did
not contain e’s

Computer Science 2023

Page | 26

Knowing different attacks helps to prevent them

Brute Force Attack Frequency Analysis Attack

Uses every possible key Analyses English to guess the most possible

key

Same key is used for every character

 How can these attacks be stopped? Encrypt every character with different key:

1. Creates an impossibly long list of options during Brute Force (26𝑘 ; k = length of

keyword);

2. Every character with different key: Encryption cannot be analysed anymore because it

is non-linear ex. An “E” can be encrypted as an “P” and “Y” in the same text;

Significance of each prototype leading to the final program

 Prototype 1:
This prototype is significant because it identified the problem of the program including

special characters and encrypting punctuation, making it difficult to break a normal Caesar

Cipher like the aim was. This identification allowed for the problem to be fixed and the

decryption of the final program to have a solid foundation and to run smoothly.

 Prototype 2:
This prototype is significant because it identified the problem in which we cannot use the

key to decrypt the message, because the key would be unknown to us which allowed for

the final program to now use pre-known keys to decrypt messages. Secondly it identified

that it would take too long to manually enter 25 keys to see which key worked, thus allowed

for the final program to be automatic and only require the single press of one button. Thirdly

it identified that a brute force technique on its own is not sufficient because the user has

to distinguish between 25 options, thus allowed for the final program to have 2 distinctly

different options of decrypting a message.

 Prototype 3:
This prototype is significant because it firstly identified that frequency analysis was way

too manual and took too long for it to be any faster and more productive than a brute force

technique, this allowed for the final program to have frequency analysis automated and

not require a user to si9ft through a large list for the most and second most occurring

character. Secondly it allowed for the final program to automatically use the second or

third most occurring character to keep on analysing until the correct decryption is reached,

unlike before where the user had to manually sift through a large list again and again.

Lastly, it allowed us to see the way 2 separate buttons in frequency analysis slowed down

the process and made it possible for the final program to have only one button increasing

the speed and productivity.

Caesar Cipher vs. Vigenère cipher

What happens when a simple adjustment of technique is changed?

Caesar Cipher Vigenère cipher

Computer Science 2023

Page | 27

One key used to encrypt entire message Different key used for each individual
character

Frequency analysis can be used to find the
key

Vulnerability: Repetitions in the ciphertext
indicate repetitions in the plaintext, and the
space between such repetitions hint at the
length of the keyword.

Can be broken using a brute force technique Cannot be decrypted using brute force,
because each letter can be encrypted with
26 possible keys, and that is excluding
special characters and spaces.

Limitations and errors

Programming Background

The overall result of this project was more the physical program that was built and less the

results it gathered.

I was limited by not having an IT / programming background before Grade 10, I have only my

Grade 10 IT knowledge of about 8 months that I had to use in order to build this program.

Because of my limitation in knowledge about other languages, I was limited to only the Delphi

programming language and not able to use other languages with more features like Python to

write this program.

This also affected the results my program helped me gathered:

This program was created using the programming language Delphi which is quite outdated

and not frequently used by users. Information about factors that contribute to a weak

encryption was gathered using a program that was designed with Delphi so thus the results

could differ with other programming languages.

For example, Python has a function that could automatically detect an English

word/sentence/phrase which would change one of my factors and thus my results.

Language

For this program to work successfully and to be able to get results, it had to rely on the

assumption that the user’s input message is English or Afrikaans.

This is because the brute force technique relied on the user to distinguish between 25 other

options to find which one looks distinctly different than the rest (thus English or Afrikaans). If

the input message had been a password or a randomly generated message, there would have

been no way for a user to manually distinguish the original text from the other 24 options

because they all would have looked random.

In the same way, the frequency analysis technique also relied on analysing the frequencies of

different letters in each language and the predictable occurrences in languages. If the input

message had been random characters or a password, the frequency analysis would just

straight up not work because of the randomness and unpredictability in the text.

This goes the same for if the input message had been another language than Afrikaans and

English because the character occurring the most in that language would have been different

than the “e” for Afrikaans and English.

Most other languages also use plenty special characters with unusual signs that would have

made it harder to encrypt and decrypt and include a bunch of other factors as well.

Computer Science 2023

Page | 28

The Insider Threat

(“Six Reasons why Encryption isn’t working”, 2015)

This program only provided for two cases of decryption but did not provide for a case in which

somebody could be getting keys from a person working inside of the system.

According to a reference, the “Insider Threat” is one of the biggest causes for data breaches

and in a case like that, the whole decryption process will be totally unnecessary because the

key is known and little to no work or effort has to be put into breaking the encryption.

One of the biggest causes of data breaches is insiders selling these secure keys or sensitive

information to hackers in exchange for money. (See references)

Recommendations for Future Research

Make use of a new programming language used in the practice like Java or Python. Create a

program using the research in this project to further strengthen and test the durability of the

encryption. Add new types of encryption techniques like Transposition Ciphers. Add more

layers like 2D or 3D encryption. By testing the durability in a new language, another

perspective of where it can be improved can come to light.

Conclusion

Applying the bare basics of an encryption technique or Cipher will always be hackable in some
kind of way, BUT by being innovative and combining techniques, applying the research in this
project, and adding twists or information unknown to hackers, will result in an encryption
system to be almost unbreakable.
CONSTANT IMPROVING and INNOVATION of these systems is the biggest step towards
minimizing the huge number of data breaches.

Acknowledgments

• Mrs. Annelize van Rooyen

• Mr. Viwe, my mentor

• Mr. Elmar Henning, my IT teacher

Computer Science 2023

Page | 29

References

 Computer science: Unit 2: Cryptography [Online]. 2023. Khan Academy, date

unknown. Available from: https://www.khanacademy.org/computing/computer-

science/cryptography/crypt/v/caesar-cipher [Accessed on 2 June 2023]

 Jak, O. 2008. DELPHI: Encryption examples [Online] Teachitza, date unknown.

Available from: http://www.teachitza.com/delphi/encryption.htm [Accessed on 5 July

2023]

 Finio, B. 2020. Crack the Code: Breaking a Caesar Cipher. Science Buddies [Online]

Science Buddies, 20 November. Available from:

https://www.sciencebuddies.org/science-fair-projects/project-

ideas/Cyber_p005/cybersecurity/crack-caesar-cipher [Accessed on 15 April 2023]

 Rubens, P. 2014. 6 Tips for Stronger Encryption [Online] Esecurityplanet, 23

January. Available from: https://www.esecurityplanet.com/networks/tips-for-stronger/

[Accessed on 24 April 2023]

 Gualt, M. 2015. Six Reasons why Encryption isn’t working [Online] Guardtime, 15

March. Available from: https://guardtime.com/blog/6-reasons-why-encryption-isnt-

working [Accessed on 16 July 2023]

 Chin, K. 2023. Biggest Data Breaches in US History [Online] Upguard, 18 July.

Available from: https://www.upguard.com/blog/biggest-data-breaches-us [Accessed

on 25 May 2023]

 Gordon, S. 2014. classical-ciphers-frequency-analysis-examples [Online] Sandilands,

3 November. Available from: https://sandilands.info/sgordon/classical-ciphers-

frequency-analysis-examples [Accessed on 30 July 2023]

 Rodriguez-Clark, D. 2017. Frequency Analysis: Breaking the Code [Online] Crypto

Corner, date unknown. Available from: https://crypto.interactive-

maths.com/frequency-analysis-breaking-the-code.html [Accessed on 28 July 2023]

 Unknown, 2023. VIGENERE CIPHER [Online] thedetectivesociety, date unknown.

Available from: https://thedetectivesociety.com/how-to-solve-ciphers/vigenere-

cipher/#:~:text=Decoding%20a%20Vigenere%20cipher%20without,then%20finally%

20deciphering%20the%20message. [Accessed on 27 August 2023]

 Beakal Tiliksew, Pavan Yadav, Karleigh Moore, 2023. Vigenère Cipher [Online]

Brilliant, 27 August 2023. Available from: https://brilliant.org/wiki/vigenere-

cipher/#:~:text=The%20primary%20weakness%20of%20the,individually%2C%20can

%20be%20easily%20broken. [Accessed on 27 August 2023]

 Finio, B. 2020. Crack the Code: Breaking a Caesar Cipher. Science Buddies [Online]

Science Buddies, 20 November. Available from:

https://www.sciencebuddies.org/science-fair-projects/project-

ideas/Cyber_p005/cybersecurity/crack-caesar-cipher [Accessed on 15 April 2023]

https://www.khanacademy.org/computing/computer-science/cryptography/crypt/v/caesar-cipher
https://www.khanacademy.org/computing/computer-science/cryptography/crypt/v/caesar-cipher
http://www.teachitza.com/delphi/encryption.htm
https://www.sciencebuddies.org/science-fair-projects/project-ideas/Cyber_p005/cybersecurity/crack-caesar-cipher
https://www.sciencebuddies.org/science-fair-projects/project-ideas/Cyber_p005/cybersecurity/crack-caesar-cipher
https://www.esecurityplanet.com/networks/tips-for-stronger/
https://guardtime.com/blog/6-reasons-why-encryption-isnt-working
https://guardtime.com/blog/6-reasons-why-encryption-isnt-working
https://sandilands.info/sgordon/classical-ciphers-frequency-analysis-examples
https://sandilands.info/sgordon/classical-ciphers-frequency-analysis-examples

Computer Science 2023

Page | 30

 Chin, K. 2023. Biggest Data Breaches in US History [Online] Upguard, 18 July.

Available from: https://www.upguard.com/blog/biggest-data-breaches-us [Accessed

on 25 May 2023]

 Gualt, M. 2015. Six Reasons why Encryption isn’t working [Online] Guardtime, 15

March. Available from: https://guardtime.com/blog/6-reasons-why-encryption-isnt-

working [Accessed on 16 July 2023]

 Further in references in Report File



Computer Science 2023

Page | 31

Appendix

Code for “Encrypt” Button

Trial Code for “Brute Force” Button

Computer Science 2023

Page | 32

Computer Science 2023

Page | 33

Code for “Decrypt” Button

【評語】190037

This project attempts to decrypt the encrypted message in English

using frequency analysis technique. The message is encrypted in Caesar

Cipher and Vigenère Cipher schemes, respectively. The experiments were

conducted over various types of messages other than English text with

varying degrees of success and failure. The author developed programs to

test the strength and weakness of the two schemes and came up with

some factors that can affect the strength and weakness of the two schemes.

Overall, this study is interesting but the results are quite basic.

	190037-封面
	190037-作者照片
	190037-本文
	190037-評語

