
2021年臺灣國際科學展覽會

優勝作品專輯

作品編號 190040

參展科別 電腦科學與資訊工程

作品名稱 HoneySurfer: Intelligent Web-Surfing

Honeypots

得獎獎項

國 家 Singapore

就讀學校 Raffles Institution

作者姓名 Janessa Valencia Guo Jiaxuan

Axel Jude Chong He Jun

Oliver James Tan 排版\190040-封面

i

作者照片

1

1 Introduction

In Singapore’s evolving cyber landscape, 96% of organisations have suffered at least one

cyber attack and 95% of organisations have been reporting more sophisticated attacks in the frame

of one year according to a 2019 report[1] by Carbon Black. As such, more tools must be utilised to

counter increasingly refined attacks performed by malicious actors. Honeypots are effective tools

for studying and mitigating these attacks. They work as decoy systems, typically deployed

alongside real systems to capture and log the activities of the attacker. These systems are useful as

they can actively detect potential attacks, help cybersecurity specialists study an attacker’s tactics

and even misdirect attackers from their intended targets. Honeypots can be classified into two main

categories:

1. Low-interaction honeypots merely emulate network services and internet protocols,

allowing for limited interaction with the attacker.

2. High-interaction honeypots emulate operating systems, allowing for much more

interaction with the attacker.

Although honeypots are powerful tools, its value diminishes when its true identity is

uncovered by attackers. This is especially so with attackers becoming more skilled through system

fingerprinting or analysing network traffic from targets and hence, hindering honeypots from

capturing more experienced attackers. While substantial research has been done to defend against

system fingerprinting scans (see 1.1 Related Work), not much has been done to defend against

network traffic analysis. As pointed out by Symantec[2][3], when attackers attempt to sniff network

traffic of the system in question, the lack of network traffic raises a red flag, increasing the

likelihood of the honeypot’s true identity being discovered. In addition, the main concern with

regards to honeypot deployment being their ability to attract and engage attackers for a substantial

period of time, an increased ability to interest malicious actors is invaluable. Producing human-

like network activity on a honeypot would appeal to more malicious actors. Hence, this research

aims to build an intelligent web-surfer which can learn and thus simulate human web-surfing

behaviour, creating evidence of human network activities to disguise the identity of honeypots as

production systems and luring in more attackers interested in packet sniffing for malicious

purposes.

2

1.1 Related Works

Previous studies looking to increase the deceptive capabilities of honeypots have identified

a few prevailing problems that arise, such as large numbers of open ports, suspicious timestamps

on server requests, and invalid HTTP request replies.[4] Fixes to these problems are suggested via

reconfiguring honeypot scripts as well as opening only essential ports.[4] Other solutions proposed

include utilising dedicated hardware to minimise arbitrary software delays [5] and automatic

honeypot deployment [6].

However, few researchers have studied the idea of automated and dynamic honeypots, and

even fewer (perhaps none) have studied the emulating of human-like network activities in high-

interaction honeypots. Some intriguing instances with regards to dynamic honeypots/honeynets

include BAIT-TRAP which emulates vulnerabilities based on attractive target services in a

common network [7], and automated failure injecting honeypots which adapt to an attacker’s

interaction once they have entered the system [8]. There have also been studies conducted to review

these dynamic and intelligent honeypots, comparing them against their static counterparts, all of

which have concluded that dynamic honeypots pose a significant advantage over their static

counterparts in its engagement of attackers.[5][9]

While there has been considerable research done in developing intelligent web-browsing

behaviour, much of it has been focused on improving user experience through site [10-11] or

hyperlink [12] recommendations. Meanwhile, we believe it a worthwhile concept to integrate

intelligent web-browsing behaviour to strengthen honeypots. We explore plausible means to go

about implementation in 2 Methodology.

2 Methodology

2.1 Building the intelligent web-surfer

For the web-surfer to work effectively, it must be i) able to produce credible browsing

behaviour so as to not reveal itself easily, ii) highly adaptable so as to keep up with relevant

news topics and iii) dynamic in response so as to actively explore new websites when given the

same test cases to prevent raising suspicions. A few basic solutions were conceptualised and the

degree to which each solution satisfies the criteria above are shown in Table 1 on the next page.

3

Method

Description

Criteria

i) Credibility ii) Adaptability iii) Dynamism

1. Rule-based

 system

Code rules to surf

websites based on

human behaviour

-High

credibility

-Medium adaptability;

dictionary of websites

to be visited must be

changed occasionally

-Dynamic

2. Machine

 Learning

 based on

 links

Learn what

websites to visit

from given data

- High

credibility

-Low adaptability;

model must be

retrained on new data

occasionally

-Prone to

repetitive

behaviour

(see below)

3. Top-ranked

 searches

Surfs the top visited

websites

-Low

credibility

-High adaptability -Dynamic

Table 1 Possible solutions for an intelligent web-surfer

While Method 1 might seem like the best solution for the problem, it requires expert

knowledge on human browsing behaviour which we do not have. In Method 2, there is a high

chance of the model overfitting the data due to the nature of human-browsing data. For a given

sequence of websites in the data, there are very few possible websites that realistically succeed

this sequence. This could lead to the model generating repetitive behaviour which would raise

suspicions amongst attackers. Hence, a novel method combining Method 1 and Method 2 was

identified, in which the intelligent web surfer comes with two components, i) a browser agent

(see Appendix B1) which simulates basic actions of a human surfer such as clicking on hyperlinks,

performing queries on search engines, keying in specific URLs and leaving the browser, ii) a

decision machine learning (ML) model which sends the browser agent different inputs

corresponding to the set of possible actions a human can take when browsing the web (see Figure

1).

Figure 1 Diagrammatic representation of the solution

4

We implemented the browser agent using Selenium WebDriver for Python, an open source

web-based automation tool which will allow us to browse the web from a Python script. The agent

was based on Chrome browser, chosen for its popularity of about 70% usage share[13]. According

to research[14] on web browsing behaviour, hyperlinks in both web pages and search engines

account for the majority of page loads at 45.1%, whereas keying in the URLs (Uniform Resource

Locator) and utilising autocomplete accounted for 33.0%. Hence, these behaviours were chosen to

build the browser agent. Complex behaviour such as posting information, switching tabs, page

reloads as well as going forward and back a page were excluded as they were difficult to extract

from the training data provided.

2.1.1 Building the ML Model

The model was trained with anonymised data provided by DSO containing individual

browsing data. Data came in the form of raw (Hypertext Transfer Protocol) HTTP requests. Hence,

they had to be filtered to remove meaningless data such as .png and .jpg images which send

additional requests when a web page is being loaded. (see Appendix B2) A program was then

created to label each request or a cluster of requests with the following set of rules (shown in

Figure 2), having each set of labels represented with the action state. (see Appendix B3)

Afterwards, the data was segmented to extract and utilise the browsing data of 75 people over a

span of 14 days. Finally, the model was trained with the labelled sequence of events.

Figure 2 Flowchart logic for labelling browsing behaviour

The model (see Appendix B4) made use of Tensorflow [15] (a popular machine learning

library owned by Google) and Keras (TensorFlow's high-level API for building and training deep

learning models) [16]. A recurrent neural network model which predicts the next action state given

its previous action states was deployed. The architecture of the model is as follows: an embedding

layer to encode inputs into vectors, a GRU (Gated Recurrent Unit) layer, and a Dense output layer

which outputs the action state the browser agent is to perform next. An alternative to the GRU

layer is the less recently introduced long short term memory (LSTM) layer. Based on online

5

sources and reviews[17], it was concluded that both layers were reputable in their ability to perform

sequence-based tasks with long-term dependencies. However, a GRU model is able to achieve a

lower loss after training with the same number of epochs, and can train approximately 3.84% faster

than its LSTM counterpart. Hence, we decided to proceed with a GRU layer.

To train and test the model, the data set was split into a 4:1 training to validation ratio. The

model was trained with 100 epochs and the weights corresponding to the lowest validation loss

were saved. (see Appendix A1)

2.3 Building the honeypot system

A Windows 10 virtual machine (VM) was deployed as a high-interaction honeypot.

Windows operating system (OS) chosen for its popularity around the world, with a usage share of

39.2%.[18] The program files were encrypted and hidden with the built-in Windows functionality,

so as to ensure that they do not give away the identity of the honeypot. To monitor and visualise

the activities of potential attackers, the following software were used:

● Sysmon [19]: a Windows system service/device driver that logs system activity to the

Windows event log, providing detailed information about process creations, network

connections, and changes to file creation time

● Winlogbeat [20] : Logs security events such as logon successes (4624) and failures (4625),

and can be configured to read from any event log channel, providing access to crucial

Windows data,

● Packetbeat [21] : Captures and analyses network traffic. In the honeypot, HTTP requests

from the pages visited are captured, allowing one to keep track of websites recently

browsed by the web-browsing program.

● ELK [22] (Elasticsearch, Logstash, and Kibana) Stack work together to analyse, filter and

visualise the data from the above Beats respectively. Elasticsearch is a search and analytics

engine. Logstash is a server‑side data processing pipeline that ingests data from the above

sources simultaneously, transforms it, and then sends it to Elasticsearch. Kibana allows

users to visualize the data with charts and graphs. (see Appendix A4)

6

2.4 Assessment of the honeypot

The honeypot we built was assessed on two metrics, i) the deception capabilities of the

web-surfer and ii) the functionality of the honeypot.

For i), we collected 22 responses from a survey sent to DSO interns and staff. The program

was executed and HTTP as well as HTTPS logs generated were captured using Telerik Fiddler. [23]

Participants were first given 3 real human logs as examples. They were then given 6 logs from

three different types of browsing, in random order as follows:

i) randomly browsed URLs to serve as a baseline (see Appendix B6) ,

ii) HoneySurfer (see Appendix B5) and

iii) real human browsing.

They were asked to rate each log on a Likert Scale of 1 to 6 as to whether they believed the

logs were automated or human-generated, with 1 representing logs that were “definitely automated”

and 6 representing logs that were “definitely human-generated”. The rationale behind their ratings

were also collected. (see Appendix A2.2). t-values were calculated to determine the magnitude of

similarity between real humans and each other type of browsing.

For ii), functionality testing was performed on all of the logging components (Packetbeat,

Winlogbeat & Sysmon) to ensure that all components were working correctly. The actions below

were performed from another computer and the events logged for each component were checked

if they were being monitored on the ELK Stack.

 1. Packetbeat: Browsed URLs (cURL) on the honeypot to generate and log HTTP requests.

 2. Winlogbeat & Sysmon: Started a process.

7

3 Results

3.1 Survey Results

Figure 3 Graph of average rating for each type of browsing.

 (*Error bars represent standard error of average rating from each type of browsing)

Type of Logs Sample Size Mean ± SE t-value

Random Browsing 6 2.91 ± 0.0737 -6.71

HoneySurfer 6 3.88 ± 0.158 -0.901

Real Human 6 4.08 ± 0.157 N/A

 Table 2 Descriptive data for each type of browsing.

3.2 Honeypot Functionality Testing

Via SSH into the honeypot, a dummy program was started up and successfully logged

under Winlogbeat & Sysmon and HTTP requests to a website via cURL were successfully logged

under Packetbeat. Hence, all components were working correctly.

8

4 Discussion

From Figure 3, both HoneySurfer and human-generated logs outperformed the logs from

random browsing, with human-generated logs having a slightly higher score than HoneySurfer. In

addition, the low t-value of -0.901 for HoneySurfer compared to the high t-value of -6.71 for

random browsing meant that our HoneySurfer was closely similar to that of real humans. Hence,

our intelligent web-surfer successfully produced logs that looked almost like those of real humans

to the participants. However, some of our more experienced participants who are more familiar

with analysis of network logs also provided feedback to improve our web browsing agent. These

are covered in 5 Limitations and Further Work.

5 Limitations and Further Work

Ideally, further testing of the honeypot would include deployment against real attackers.

For instance, it could be uploaded onto a cloud service such as Amazon Web Services. However,

due to time and resource constraints, we were not able to ensure that the honeypot would be secure

enough to prevent human attackers from potentially exploiting it to access a real system.

Furthermore, there are many other aspects of improving the realistic quality of the network

activity that have yet to be explored. A few of the survey participants pointed out that the typing

speed was too consistent for searches and that the human-generated searches were more likely to

make mistakes in spelling. Hence, a good area for further work would be randomising the typing

speeds as well as mimicking spelling errors when our honeypot creates a query. Another area for

development would be to include other forms of network activity such as composing emails and

documents, SSH and FTP (File Transfer Protocol). However the content generated in each type of

network activity will be subject to close inspection and analysis by attackers and more time is

needed to develop such realistic systems.

Apart from improvements in functionality, an interesting application we hope to explore is

the ability of our honeypot to counteract packet-sniffing. POST functions containing login

credentials to a fake website we create could be integrated into the honeypot. This could entice

attackers to enter these credentials, allowing us to log their activity on the website.

9

6 Conclusion

We successfully developed a novel approach to produce intelligent web-browsing

behaviour which was then integrated into a high-interaction honeypot. Cybersecurity is rising in

the agenda of many countries and organisations. It is obvious that honeypots have high potential

for development and should be implemented more frequently in the cyber landscape. Therefore,

every step forward should be valued. As more sophisticated attacks and attackers are on the rise,

we hope that this prototype can be implemented in future honeypots so as to help threat hunters

stay one step ahead.

7 Bibliography

[1]: Carbon Black (2019). Singapore: Global Threat Report: Defender Power On The Rise.

[2]: L. Oudot, T. Holz (2004) Defeating Honeypots : Network issues, Part 1: Symantec Connect. Retrieved

from https://www.symantec.com/connect/articles/defeating-honeypots-network-issues-part-1

[3]: Spitzner (2004) Problems and Challenges with Honeypots: Symantec Connect. Retrieved from

https://www.symantec.com/connect/articles/problems-and-challenges-honeypots

[4]: Dahbul, R. N., Lim, C., & Purnama, J. (2017). Enhancing Honeypot Deception Capability Through

Network Service Fingerprinting. Journal of Physics: Conference Series, 801, 012057. doi: 10.1088/1742-

6596/801/1/012057

[5]: Tsikerdekis, M., Zeadally, S., Schlesener, A., & Sklavos, N. (2018). Approaches for Preventing

Honeypot Detection and Compromise. 2018 Global Information Infrastructure and Networking Symposium

(GIIS). doi: 10.1109/giis.2018.8635603

[6]: Fu, X., Yu, W., Cheng, D., Tan, X., Streff, K., & Graham, S. (2006). On Recognizing Virtual Honeypots

and Countermeasures. 2006 2nd IEEE International Symposium on Dependable, Autonomic and Secure

Computing. doi: 10.1109/dasc.2006.36

[7]: Jiang, X. (2004). BAIT-TRAP: a Catering Honeypot Framework.

[8]: Wagener G., State R., Dulaunoy A., Engel T. (2009) Self Adaptive High Interaction Honeypots Driven

by Game Theory. In: Guerraoui R., Petit F. (eds) Stabilization, Safety, and Security of Distributed Systems.

SSS 2009. Lecture Notes in Computer Science, vol 5873. Springer, Berlin, Heidelberg

https://www.symantec.com/connect/articles/defeating-honeypots-network-issues-part-1
https://www.symantec.com/connect/articles/problems-and-challenges-honeypots

10

[9]: Zakaria, W. Z. A., & Kiah, M. L. M. (2013). A review of dynamic and intelligent honeypots.

ScienceAsia, 39S(1), 1. doi: 10.2306/scienceasia1513-1874.2013.39s.001

[10]: Rabbi, M. F., Ahmed, T., Chowdhury, A. R., & Islam, M. R.-O.-B. (2006). Adaptive Web Browser:

An Intelligent Browser. 2006 International Conference on Communication Technology. doi:

10.1109/icct.2006.341854

[11]: Lai, H., & Yang, T.-C. (2000). A system architecture for intelligent browsing on the Web. Decision

Support Systems, 28(3), 219–239. doi: 10.1016/s0167-9236(99)00087-1

[12]: Li, J., Xing, Z., Ye, D., & Zhao, X. (2016). From Discussion to Wisdom: Web Resource

Recommendation for Hyperlinks in Stack Overflow. Proceedings of the 31st Annual ACM Symposium on

Applied Computing - SAC 16. doi: 10.1145/2851613.2851815

[13]: Liu, S. (2019). Desktop internet browser market share 2015-2019. Retrieved from

https://www.statista.com/statistics/544400/market-share-of-internet-browsers-desktop/

[14]: Weth, C. V. D., & Hauswirth, M. (2013). DOBBS: Towards a Comprehensive Dataset to Study the

Browsing Behavior of Online Users. 2013 IEEE/WIC/ACM International Joint Conferences on Web

Intelligence (WI) and Intelligent Agent Technologies (IAT). doi: 10.1109/wi-iat.2013.8

[15]: Tensorflow. Retrieved from https://www.tensorflow.org

[16]: Keras: The Python Deep Learning library. Retrieved from https://keras.io/

[17]: Muccino, E. (2019). LSTM vs GRU: Experimental Comparison. Retrieved from

https://medium.com/mindboard/lstm-vs-gru-experimental-comparison-955820c21e8b

[18]: Galov, N. (2019). Mobile and Desktop Operating Systems Market Share. Retrieved from

https://hostingtribunal.com/blog/operating-systems-market-share/#gref

[19]: Markruss. Sysmon - Windows Sysinternals. Retrieved from https://docs.microsoft.com/en-

us/sysinternals/downloads/sysmon

[20]: Winlogbeat. Retrieved from https://www.elastic.co/products/beats/winlogbeat

[21]: Packetbeat. Retrieved from https://www.elastic.co/products/beats/packetbeat

[22]: What is the ELK Stack? Retrieved from https://www.elastic.co/what-is/elk-stack

[23]: Fiddler - Free Web Debugging Proxy - Telerik. Retrieved from https://www.telerik.com/fiddler

https://www.statista.com/statistics/544400/market-share-of-internet-browsers-desktop/
https://www.tensorflow.org/
https://keras.io/
https://medium.com/mindboard/lstm-vs-gru-experimental-comparison-955820c21e8b
https://hostingtribunal.com/blog/operating-systems-market-share/#gref
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://www.elastic.co/products/beats/winlogbeat
https://www.elastic.co/products/beats/packetbeat
https://www.elastic.co/what-is/elk-stack
https://www.telerik.com/fiddler

11

8. Appendix

A. Tables & Figures

B. Scripts

A1 - Model Training

 Figure A1.1 Bar chart of frequency of each type of action recorded from dataset.

Figure A1.2 Graph of loss curves during training.

2296 (3.08%)

57004 (76.4%)

14190
(19.0%)

1137

12

A2 Survey Results

Log No. Random Browsing HoneySurfer Human-generated

1 2.90 4.14 3.82

2 2.86 4.32 3.59

3 3.09 3.68 3.95

4 2.86 3.72 4.41

5 3.14 3.27 4.64

6 2.64 4.13 4.09

Mean ± SE 2.91 ± 0.0737 3.88 ± 0.158 4.08 ± 0.157

 Table A2.1 Table of raw data for each test case

Reasons why survey participants believed

the logs to be human-generated

Reasons why survey participants believed

the logs to be automated

- Google search URL gradually

increases as queries are typed in

- Common/Familiar sites like

google/youtube, social sites

- Systematic logs - spends time on one

webpage, clicking on the links before

moving on to another.

- Plausible story behind the logs

- Mistakes made when typing website

which was then retyped

- Sites visited were in Singapore

- Repeated visits to the same host

- Unfamiliar websites

- Too many different area codes

- User seems to switch to unrelated sites

- User seems to spend little time on each

site

- Consistent time intervals when keying

in Google queries

Table A2.2 Table of reasons why survey participants believed logs to be human-

generated/automated

A3 - Data Analysis

Log Type p-value Interpretation (Reject H0/normality if p < 0.05)

Random Browsing 0.5821 Null hypothesis not rejected. Data is in normal distribution.

HoneySurfer 0.5628 Null hypothesis not rejected. Data is in normal distribution.

Real Humans 0.9187 Null hypothesis not rejected. Data is in normal distribution.

 Table A3.1 Table of results from Shapiro-Wilk test for normality

13

A4 - Functionality Testing

i) Packetbeat

 Figure A4.1 Photo of successful logging of HTTP request to http://example.com

ii) Winlogbeat & Sysmon

Figure A4.2 Photo of Winlogbeat & Sysmon Dashboard

Figure A4.3 Photo of successful logging of process start-up of dummy program -

“malware.exe”

14

Figure A4.4 Photo of port count and sum of source.bytes visualisations

15

B1 - Browser Agent

#Importing modules...

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import WebDriverWait

from selenium.common.exceptions import WebDriverException

from selenium.webdriver.support import expected_conditions as EC

from selenium.webdriver.common.keys import Keys

from selenium.webdriver.common.proxy import Proxy, ProxyType

import random

import time

#class BrowserAgent

class BrowserAgent():

 #Initialize browser

 def __init__(self):

 prox = Proxy()

 prox.proxy_type = ProxyType.MANUAL

 prox.http_proxy = "localhost:8888"

 prox.ssl_proxy = "localhost:8888"

 capabilities = webdriver.DesiredCapabilities.CHROME

 prox.add_to_capabilities(capabilities)

 self.driver = webdriver.Chrome(desired_capabilities=capabilities)

 self.driver.get("https://www.google.com")

 self.visitedList = [] #List of visited websites

 #Get hyperlink from website

 def clickOnHyperlink(self):

 hrefList = self.driver.find_elements_by_xpath("//a[@href]")

 if len(hrefList) == 0: #Goes back a page if the current webpage has no hyperlinks

 self.driver.back()

 else:

 N = random.randint(0, len(hrefList))

 href = hrefList[N].get_attribute("href")

 self.driver.get(href)

 self.visitedList.append(href) #Appends previously visited website to visited list

 #Generate random google search

 def randomGoogle(self):

 #List of common starting phrases

 googleList = ["What is", "Where is", "Best places", "Where to go in", "What to do when", "Why is",

 "What kind of", "Where am I", "Where should I", "weather", "weather in", "Why you should",

 "How to", "wikihow", "wikipedia", "Who is the", "top", "Define"]

 self.driver.get("http://www.google.com") #Go to google home page

 searchField = self.driver.find_element_by_name("q")

 searchField.send_keys(random.choice(googleList)) #Select random starting phrase

 googleSuggestion = WebDriverWait(self.driver, 10).until(EC.visibility_of_all_elements_located((By.XPATH,

"//form[@action='/search' and @role='search']//ul[@role='listbox']//li//span")))

 chosen = random.choice(googleSuggestion) #Select random autocomplete

 chosen.click()

 #Get query and click on random search result from the first page of the search resullt

 def getQuery(self):

 results = self.driver.find_elements_by_xpath('//div[@class="r"]/a/h3')

 N = random.randint(0, len(results)) - 1

 try:

 time.sleep(5)

 results[N].click()

 time.sleep(random.randint(3,10))

 except WebDriverException: #Rerun function if error occurs

 self.getQuery()

 #Visit specific URL

 def getURL(self):

 #List of common URLs we specified

 commonList = ["https://world.taobao.com/", "https://www.qq.com/", "https://www.reddit.com/",

16

 "https://www.facebook.com/", "https://www.youtube.com/",

 "https://www.amazon.com/", "https://www.imdb.com/", "https://www.nytimes.com/",

 "https://www.tripadvisor.com.sg/", "https://www.indeed.com.sg/?r=us",

 "https://www.urbandictionary.com",

 "https://www.hardwarezone.com.sg/", "https://sg.carousell.com/", "https://www.instagram.com/",

 "https://www.asiaone.com", "https://www.kiasuparents.com/kiasu/",

 "https://stomp.straitstimes.com/", "https://www.aliexpress.com/", "https://www.lazada.sg/",

 "https://sg.yahoo.com/?p=us", "https://www.straitstimes.com/", "https://www.qoo10.sg/?__ar=Y",

 "https://www.channelnewsasia.com/", "https://www.amazon.com/", "https://www.ebay.com.sg/"]

 url = random.choice(commonList + self.visitedList) #Choose random url based on common + previously visited url

 self.driver.get(url)

 self.visitedList.append(url) #Appends visited URL to previously visited website list

 #Quit browsing the web

 def quitBrowsing(self):

 time.sleep(random.randint(3600,36000))

 #Parsing input

 def doInput(self, method_no):

 try:

 if method_no == "1":

 self.randomGoogle()

 self.getQuery()

 elif method_no == "2":

 self.clickOnHyperlink()

 elif method_no == "3":

 self.getURL()

 elif method_no == "4":

 self.quitBrowsing()

B2 - Extract and filter out HTTP requests

##Importing modules

import difflib, glob, gzip, os, re

##Variables

inputPath = '’ ################################INSERT INPUT PATH HERE#########################

outputPath = ‘’ ################################INSERT OUTPUT PATH HERE#########################

def filterFile(path, outputFile):

 ##Declaring variables/lists

 fileList = []

 getList = [b'temp']

 getLine = b'temp'

 previousLine = b'temp'

 count = 0

 isValidReferer = False

 allOutputList = []

 f = open(outputFile, "a+")

 ##Sorting files with respect to time

 for filename in glob.glob(os.path.join(path, '*.log.gz')):

 fileList.append(filename)

 fileList.sort()

 hostCriteria = (b'doubleclick', b'ads', b'gstatic', b'notify')

 getCriteria = (b'doubleclick', b'adserver', b'adServer', b'jpeg', b'png', b'jpg', b'gif', b'Service')

 for filed in fileList:

 with gzip.open(filed,'r') as file:

 for line in file:

 if b'Host:' in line: #Check if line contains "Host", i.e. potentially a HTTP request

 if any(i in line for i in hostCriteria): #If "Host" is an ad server, ignore request

 isValidReferer = False

 continue

 else:

 #Check if line above "Host" line contains the GET header, indicating a HTTP request

 if b'</TimeStamp><Name>HTTP</Name><Header>GET' in previousLine:

17

 if any(f in previousLine for f in getCriteria):

 isValidReferer = False

 continue #Ignore if request is from an ad or image

 else:

 if not any(b'upload' or b'download') in line and b'ad' in line:

 isValidReferer = False

 continue

 else:

 tempGLine = previousLine.split(b'<Header>')[1].lstrip()

 for i in getList:

 #Only treat request as unique if similarity is <50% with respect to all

 #previously stored requests

 if difflib.SequenceMatcher(None, tempGLine, i).ratio() < 0.5:

 isDuplicate = False

 else:

 isDuplicate = True

 isValidReferer = False

 break

 if isDuplicate:

 continue

 else:

 getLine = tempGLine

 if len(getList) > 40:

 getList.pop(0)

 getList.append(tempGLine)

 count += 1

 a=re.findall(b'[0-2][0-4]:[0-5][0-9]:[0-5][0-9].[0-9][0-9][0-9]',previousLine)

 if len(a) != 0:

 allOutputList.append(str(a[0]))

 allOutputList.append(str(getLine))

 allOutputList.append(str(line))

 isValidReferer = True

 elif b'Referer:' in line:

 if isValidReferer:

 allOutputList.append(str(line))

 previousLine = line

 allOutputList.append(count)

 for item in allOutputList:

 f.write("%s\n" % item)

def extractData(path, outputPath):

 fileList = []

 ##Sorting files with respect to time

 for items in Path(path).iterdir():

 fileList.append(items)

 fileList.sort()

 i = 0

 for file in fileList[8:22]:

 i += 1

 outputFile = outputPath + "/output" + str(i) + ".txt"

 filterFile(file, outputFile)

#Defining location of path

fileList = []

##Sorting files with respect to time

for items in Path(path).iterdir():

 fileList.append(items)

fileList.sort()

i = 0

for file in fileList[9:]:

 i += 1

 outputPath += str(i)

 os.makedirs(outputPath)

 try:

 extractData(file, outputPath)

 except:

 pass

18

B3 - Labelling HTTP Requests

#Importing modules

import re

from datetime import datetime

from pathlib import Path

##Variables

inputPath = '’ ################################INSERT INPUT PATH HERE#########################

outputPath = ‘’ ################################INSERT OUTPUT PATH HERE#########################

#Generate labels for a given folder (day)

def generateLabel(file):

 ##Splits the data into individual http requests

 fileLines = ''

 with open(file) as files:

 for line in files:

 fileLines += str(line)

 httpList = re.split(".(?=[0-2][0-4]:[0-5][0-9]:[0-5][0-9].[0-9][0-9][0-9])", fileLines)

 httpList.pop(0)

 seq = ""

 tSeq = ""

 prevTime = "00:00:00.000"

 for http in httpList:

 #Obtain difference in time

 currTime = re.findall("[0-2][0-4]:[0-5][0-9]:[0-5][0-9].[0-9][0-9][0-9]", http)[0]

 fmt = '%H:%M:%S.%f'

 tDelta = datetime.strptime(currTime, fmt) - datetime.strptime(prevTime, fmt)

 timeDiff = tDelta.seconds

 #Filters request if time between is less than to 2 seconds

 if timeDiff < 2:

 continue

 #Prevent errors due to measuring time difference at the first request of folder

 #User has quit browsing if time difference > 1 hour

 if prevTime != "00:00:00.000" and timeDiff > 3600:

 seq += "4"

 prevTime = currTime

 #Sort HTTP requests to corresponding methods

 if re.compile("GET /url?").search(http) or re.compile("GET /search?").search(http):

 seq += "1" #Search Engine

 elif re.compile("Referer:").search(http):

 seq += "2" #Click on a hyperlink

 else:

 seq += "3" #Specific URL

 return seq

seqFile = open(outputPath, "w")

#Write the data into .txt files

for folder in Path(inputPath).iterdir():

 seqFile.write("\n")

 for file in Path(folder).iterdir():

 data = generateLabel(file)

 seqFile.write(data)

B4 - Training the ML Model

19

#Version: Tensorflow 2.0 - keras 2.2.4

#Importing modules...

from __future__ import absolute_import, division, print_function, unicode_literals

from tensorflow.keras.models import load_model

import tensorflow as tf

import matplotlib.pyplot as plt

import numpy as np

import os

import time

import random

#Variables

#Filepath

filepath = '/home/ac/Desktop/data.txt'

#Input Initialization variables

seq_length = 50

action_size = 4

#Batching variables

BUFFER_SIZE = 10000

BATCH_SIZE = 100

#Model variables

embedding_dim = 64

rnn_units = 256

#Training variables

epochs = 100

val_split = 0.2

#Splits the line into input and target sequences

def split_input_target(line):

 inputSeq = line[:-1]

 targetSeq = line[1:]

 return inputSeq, targetSeq

#Setup the dataset

def setup(text, seq_length):

 # Extract data to np array

 action_vector = np.array([int(c)-1 for c in text if c != '\n'])

 # Create training examples / targets

 num_Dataset = tf.data.Dataset.from_tensor_slices(action_vector)

 sequences = num_Dataset.batch(seq_length+1, drop_remainder=True)

 datasetLine = sequences.map(split_input_target)

 return datasetLine

#Function to build model

def build_model(action_size, embedding_dim, rnn_units, batch_size):

 model = tf.keras.Sequential([

 tf.keras.layers.Embedding(action_size, embedding_dim,

 batch_input_shape=[batch_size, None]),

 tf.keras.layers.GRU(rnn_units,

 return_sequences=True,

 stateful=True,

 recurrent_initializer='glorot_uniform'),

 tf.keras.layers.Dense(action_size)

])

 return model

#Reads the data from file and sort it

with open(filepath) as fp:

 text = fp.readline()

 isSetup = 0

 while text:

 data = setup(text, seq_length)

 text = fp.readline()

 if isSetup == 0:

 dataset = data

20

 isSetup = 1

 else:

 dataset = dataset.concatenate(data)

#Shuffle and prepare training and validation dataset

dataset = dataset.shuffle(BUFFER_SIZE)

trainLen = int(len([i for i in dataset]) * (1 - val_split))

train_dataset = dataset.take(trainLen).batch(BATCH_SIZE, drop_remainder=True)

val_dataset = dataset.skip(trainLen).batch(BATCH_SIZE, drop_remainder=True)

#Build the model

model = build_model(

 action_size = action_size,

 embedding_dim = embedding_dim,

 rnn_units=rnn_units,

 batch_size=BATCH_SIZE)

#Defines loss function

def loss(labels, logits):

 return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True)

#Compile model using loss function and Adam Optimizer

model.compile(optimizer='adam', loss=loss)

model.summary()

#File where the checkpoints will be saved

checkpoint = "Checkpoints.hdf5"

#Sets checkpoint when validation loss is < than that of previous epoch

checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(

 filepath = checkpoint,

 monitor = 'val_loss',

 save_weights_only = True,

 save_best_only = True)

#Train the model

history = model.fit(train_dataset, validation_data = val_dataset, epochs=epochs, callbacks = [checkpoint_callback])

#Rebuild and reconfigure model with batch size of 1.

model = build_model(action_size, embedding_dim, rnn_units, batch_size=1)

model.load_weights(checkpoint)

model.build(tf.TensorShape([1, None]))

#Save the model

model.save('MLModel.hdf5')

#Plot training and validation loss functions

plt.plot(history.history['loss'], label = 'training_loss')

plt.plot(history.history['val_loss'], label = 'validation_loss')

plt.title('Model loss against number of epochs')

plt.ylabel('Loss')

plt.xlabel('Number of epochs')

plt.show()

B5 - main() function

#Importing modules...

from BrowserAgent import BrowserAgent

import tensorflow as tf

from tensorflow.keras.models import load_model

import random

import numpy as np

import time

#Generate the method number to be sent to Browser Agent

21

def generate_browsing(model, start_string):

 # Vectorise start string of numbers

 input_eval = [int(x) for x in str(start_string)]

 input_eval = tf.expand_dims(input_eval, 0)

 model.reset_states()

 predictions = model(input_eval)

 predictions = tf.squeeze(predictions, 0)

 predicted_id = tf.random.categorical(predictions, num_samples=1)[-1,0].numpy()

 predicted_id += 1 #Convert back to action state integers

 return (str(predicted_id))

#main function

def main():

 #Set up

 browser = BrowserAgent()

 MLModel = tf.keras.models.load_model('MLModel.hdf5', compile = False)

 start_string = random.choice(("1", "3")) #Start off with a google search or keying in a specific URL

 while True:

 cmdInput = generate_browsing(MLModel, start_string) #Generates browsing

 browser.doInput(cmdInput) #Sends input to browser agent

 start_string = str(start_string) + ''.join(str(cmdInput))

 time.sleep(random.randint(5, 30)) #Sleeps for random time

#Start the main function

main()

B6 - Random URL Browsing (baseline in survey)

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support import expected_conditions as EC

from selenium.webdriver.common.keys import Keys

from selenium.common.exceptions import WebDriverException

from selenium.webdriver.common.proxy import Proxy, ProxyType

import time, random

prox = Proxy()

prox.proxy_type = ProxyType.MANUAL

prox.http_proxy = "localhost:8888"

prox.ssl_proxy = "localhost:8888"

capabilities = webdriver.DesiredCapabilities.CHROME

prox.add_to_capabilities(capabilities)

driver = webdriver.Chrome(desired_capabilities=capabilities)

while True:

 driver.get('http://www.uroulette.com/visit/swpun')

 time.sleep(random.randint(3,10))

【評語】190040

The topic of this project is Intelligent Web-Surfing

Honeypots. This is a complete work. The problem definition

could be more clear, which may help the authors come out the

solutions. The definition could help the authors identify the

critical issue in this topic. There are many previous works that

focus on the same topic. The authors may consider to have a

comparison with these works.

C:\Users\cutes\Downloads\2021-國際科展\排版\190040-評語

	190040-封面
	190040-作者照片
	190040-本文
	1 Introduction
	2 Methodology
	3 Results
	4 Discussion
	5 Limitations and Further Work
	6 Conclusion
	7 Bibliography
	8. Appendix

	190040-評語

