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1 Introduction  

In Singapore’s evolving cyber landscape, 96% of organisations have suffered at least one 

cyber attack and 95% of organisations have been reporting more sophisticated attacks in the frame 

of one year according to a 2019 report[1] by Carbon Black. As such, more tools must be utilised to 

counter increasingly refined attacks performed by malicious actors. Honeypots are effective tools 

for studying and mitigating these attacks. They work as decoy systems, typically deployed 

alongside real systems to capture and log the activities of the attacker. These systems are useful as 

they can actively detect potential attacks, help cybersecurity specialists study an attacker’s tactics 

and even misdirect attackers from their intended targets. Honeypots can be classified into two main 

categories:      

1.   Low-interaction honeypots merely emulate network services and internet protocols, 

allowing for limited interaction with the attacker. 

2.   High-interaction honeypots emulate operating systems, allowing for much more 

interaction with the attacker. 

Although honeypots are powerful tools, its value diminishes when its true identity is 

uncovered by attackers. This is especially so with attackers becoming more skilled through system 

fingerprinting or analysing network traffic from targets and hence, hindering honeypots from 

capturing more experienced attackers. While substantial research has been done to defend against 

system fingerprinting scans (see 1.1 Related Work), not much has been done to defend against 

network traffic analysis. As pointed out by Symantec[2][3], when attackers attempt to sniff network 

traffic of the system in question, the lack of network traffic raises a red flag, increasing the 

likelihood of the honeypot’s true identity being discovered. In addition, the main concern with 

regards to honeypot deployment being their ability to attract and engage attackers for a substantial 

period of time, an increased ability to interest malicious actors is invaluable. Producing human-

like network activity on a honeypot would appeal to more malicious actors. Hence, this research 

aims to build an intelligent web-surfer which can learn and thus simulate human web-surfing 

behaviour, creating evidence of human network activities to disguise the identity of honeypots as 

production systems and luring in more attackers interested in packet sniffing for malicious 

purposes.  
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1.1 Related Works 

Previous studies looking to increase the deceptive capabilities of honeypots have identified 

a few prevailing problems that arise, such as large numbers of open ports, suspicious timestamps 

on server requests, and invalid HTTP request replies.[4] Fixes to these problems are suggested via 

reconfiguring honeypot scripts as well as opening only essential ports.[4] Other solutions proposed 

include utilising dedicated hardware to minimise arbitrary software delays [5] and automatic 

honeypot deployment [6]. 

However, few researchers have studied the idea of automated and dynamic honeypots, and 

even fewer (perhaps none) have studied the emulating of human-like network activities in high-

interaction honeypots. Some intriguing instances with regards to dynamic honeypots/honeynets 

include BAIT-TRAP which emulates vulnerabilities based on attractive target services in a 

common network [7], and automated failure injecting honeypots which adapt to an attacker’s 

interaction once they have entered the system [8]. There have also been studies conducted to review 

these dynamic and intelligent honeypots, comparing them against their static counterparts, all of 

which have concluded that dynamic honeypots pose a significant advantage over their static 

counterparts in its engagement of attackers.[5][9] 

While there has been considerable research done in developing intelligent web-browsing 

behaviour, much of it has been focused on improving user experience through site [10-11] or 

hyperlink [12] recommendations. Meanwhile, we believe it a worthwhile concept to integrate 

intelligent web-browsing behaviour to strengthen honeypots. We explore plausible means to go 

about implementation in 2 Methodology. 

 

2 Methodology 

2.1 Building the intelligent web-surfer 

For the web-surfer to work effectively, it must be i) able to produce credible browsing 

behaviour so as to not reveal itself easily, ii) highly adaptable so as to keep up with relevant 

news topics and iii) dynamic in response so as to actively explore new websites when given the 

same test cases to prevent raising suspicions. A few basic solutions were conceptualised and the 

degree to which each solution satisfies the criteria above are shown in Table 1 on the next page. 
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Method  

 

Description 

Criteria 

i) Credibility  ii) Adaptability   iii) Dynamism 

1. Rule-based 

    system 

Code rules to surf 

websites based on 

human behaviour 

-High 

credibility 

-Medium adaptability; 

dictionary of websites 

to be visited must be 

changed occasionally 

-Dynamic 

2. Machine    

    Learning 

    based on  

    links 

Learn what 

websites to visit 

from given data 

- High  

credibility 

-Low adaptability; 

model must be 

retrained on new data 

occasionally 

-Prone to 

repetitive 

behaviour  

(see below) 

3. Top-ranked 

    searches 

Surfs the top visited 

websites 

-Low 

credibility 

-High adaptability -Dynamic 

Table 1 Possible solutions for an intelligent web-surfer 

While Method 1 might seem like the best solution for the problem, it requires expert 

knowledge on human browsing behaviour which we do not have. In Method 2, there is a high 

chance of the model overfitting the data due to the nature of human-browsing data. For a given 

sequence of websites in the data, there are very few possible websites that realistically succeed 

this sequence. This could lead to the model generating repetitive behaviour which would raise 

suspicions amongst attackers. Hence, a novel method combining Method 1 and Method 2 was 

identified, in which the intelligent web surfer comes with two components, i) a browser agent 

(see Appendix B1) which simulates basic actions of a human surfer such as clicking on hyperlinks, 

performing queries on search engines, keying in specific URLs and leaving the browser, ii) a 

decision machine learning (ML) model which sends the browser agent different inputs 

corresponding to the set of possible actions a human can take when browsing the web (see Figure 

1). 

 

            

Figure 1 Diagrammatic representation of the solution 
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We implemented the browser agent using Selenium WebDriver for Python, an open source 

web-based automation tool which will allow us to browse the web from a Python script. The agent 

was based on Chrome browser, chosen for its popularity of about 70% usage share[13]. According 

to research[14] on web browsing behaviour, hyperlinks in both web pages and search engines 

account for the majority of page loads at 45.1%, whereas keying in the URLs (Uniform Resource 

Locator) and utilising autocomplete accounted for 33.0%. Hence, these behaviours were chosen to 

build the browser agent. Complex behaviour such as posting information, switching tabs, page 

reloads as well as going forward and back a page were excluded as they were difficult to extract 

from the training data provided. 

 

2.1.1 Building the ML Model 

The model was trained with anonymised data provided by DSO containing individual 

browsing data. Data came in the form of raw (Hypertext Transfer Protocol) HTTP requests. Hence, 

they had to be filtered to remove meaningless data such as .png and .jpg images which send 

additional requests when a web page is being loaded. (see Appendix B2) A program was then 

created to label each request or a cluster of requests with the following set of rules (shown in 

Figure 2), having each set of labels represented with the action state. (see Appendix B3)  

Afterwards, the data was segmented to extract and utilise the browsing data of 75 people over a 

span of 14 days. Finally, the model was trained with the labelled sequence of events.  

 

Figure 2 Flowchart logic for labelling browsing behaviour       

The model (see Appendix B4) made use of Tensorflow [15] (a popular machine learning 

library owned by Google) and Keras (TensorFlow's high-level API for building and training deep 

learning models) [16]. A recurrent neural network model which predicts the next action state given 

its previous action states was deployed. The architecture of the model is as follows: an embedding 

layer to encode inputs into vectors, a GRU (Gated Recurrent Unit) layer, and a Dense output layer 

which outputs the action state the browser agent is to perform next. An alternative to the GRU 

layer is the less recently introduced long short term memory (LSTM) layer. Based on online 
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sources and reviews[17], it was concluded that both layers were reputable in their ability to perform 

sequence-based tasks with long-term dependencies. However, a GRU model is able to achieve a 

lower loss after training with the same number of epochs, and can train approximately 3.84% faster 

than its LSTM counterpart. Hence, we decided to proceed with a GRU layer. 

To train and test the model, the data set was split into a 4:1 training to validation ratio. The 

model was trained with 100 epochs and the weights corresponding to the lowest validation loss 

were saved. (see Appendix A1) 

 

2.3  Building the honeypot system 

A Windows 10 virtual machine (VM) was deployed as a high-interaction honeypot. 

Windows operating system (OS) chosen for its popularity around the world, with a usage share of 

39.2%.[18]  The program files were encrypted and hidden with the built-in Windows functionality, 

so as to ensure that they do not give away the identity of the honeypot. To monitor and visualise 

the activities of potential attackers, the following software were used:  

● Sysmon [19]: a Windows system service/device driver that logs system activity to the 

Windows event log, providing detailed information about process creations, network 

connections, and changes to file creation time  

● Winlogbeat [20] : Logs security events such as logon successes (4624) and failures (4625), 

and can be configured to read from any event log channel, providing access to crucial 

Windows data,  

● Packetbeat [21] : Captures and analyses network traffic. In the honeypot, HTTP requests 

from the pages visited are captured, allowing one to keep track of websites recently 

browsed by the web-browsing program. 

● ELK [22] (Elasticsearch, Logstash, and Kibana) Stack work together to analyse, filter and 

visualise the data from the above Beats respectively. Elasticsearch is a search and analytics 

engine. Logstash is a server‑side data processing pipeline that ingests data from the above 

sources simultaneously, transforms it, and then sends it to Elasticsearch. Kibana allows 

users to visualize the data with charts and graphs. (see Appendix A4) 
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2.4 Assessment of the honeypot 

The honeypot we built was assessed on two metrics, i) the deception capabilities of the 

web-surfer and ii) the functionality of the honeypot. 

For i), we collected 22 responses from a survey sent to DSO interns and staff. The program 

was executed and HTTP as well as HTTPS logs generated were captured using Telerik Fiddler. [23] 

Participants were first given 3 real human logs as examples. They were then given 6 logs from 

three different types of browsing, in random order as follows:  

i) randomly browsed URLs to serve as a baseline (see Appendix B6) ,  

ii) HoneySurfer (see Appendix B5) and  

iii) real human browsing.  

They were asked to rate each log on a Likert Scale of 1 to 6 as to whether they believed the 

logs were automated or human-generated, with 1 representing logs that were “definitely automated” 

and 6 representing logs that were “definitely human-generated”. The rationale behind their ratings 

were also collected. (see Appendix A2.2). t-values were calculated to determine the magnitude of 

similarity between real humans and each other type of browsing. 

For ii), functionality testing was performed on all of the logging components (Packetbeat, 

Winlogbeat & Sysmon) to ensure that all components were working correctly. The actions below 

were performed from another computer and the events logged for each component were checked 

if they were being monitored on the ELK Stack.      

       1. Packetbeat: Browsed URLs (cURL) on the honeypot to generate and log HTTP requests.  

       2. Winlogbeat & Sysmon: Started a process.  
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3 Results 

3.1 Survey Results 

 

Figure 3 Graph of average rating for each type of browsing. 

      (*Error bars represent standard error of average rating from each type of browsing) 

Type of Logs Sample Size Mean ± SE t-value 

Random Browsing 6 2.91 ± 0.0737 -6.71 

HoneySurfer 6 3.88 ± 0.158 -0.901 

Real Human 6 4.08 ± 0.157 N/A 

                                Table 2 Descriptive data for each type of browsing. 

 

3.2 Honeypot Functionality Testing 

Via SSH into the honeypot, a dummy program was started up and successfully logged 

under Winlogbeat & Sysmon and HTTP requests to a website via cURL were successfully logged 

under Packetbeat. Hence, all components were working correctly.  
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4 Discussion 

From Figure 3, both HoneySurfer and human-generated logs outperformed the logs from 

random browsing, with human-generated logs having a slightly higher score than HoneySurfer.  In 

addition, the low t-value of -0.901 for HoneySurfer compared to the high t-value of -6.71 for 

random browsing meant that our HoneySurfer was closely similar to that of real humans. Hence, 

our intelligent web-surfer successfully produced logs that looked almost like those of real humans 

to the participants. However, some of our more experienced participants who are more familiar 

with analysis of network logs also provided feedback to improve our web browsing agent. These 

are covered in 5 Limitations and Further Work.  

 

5 Limitations and Further Work 

Ideally, further testing of the honeypot would include deployment against real attackers. 

For instance, it could be uploaded onto a cloud service such as Amazon Web Services. However, 

due to time and resource constraints, we were not able to ensure that the honeypot would be secure 

enough to prevent human attackers from potentially exploiting it to access a real system.  

Furthermore, there are many other aspects of improving the realistic quality of the network 

activity that have yet to be explored. A few of the survey participants pointed out that the typing 

speed was too consistent for searches and that the human-generated searches were more likely to 

make mistakes in spelling. Hence, a good area for further work would be randomising the typing 

speeds as well as mimicking spelling errors when our honeypot creates a query. Another area for 

development would be to include other forms of network activity such as composing emails and 

documents, SSH and FTP (File Transfer Protocol). However the content generated in each type of 

network activity will be subject to close inspection and analysis by attackers and more time is 

needed to develop such realistic systems.  

Apart from improvements in functionality, an interesting application we hope to explore is 

the ability of our honeypot to counteract packet-sniffing. POST functions containing login 

credentials to a fake website we create could be integrated into the honeypot. This could entice 

attackers to enter these credentials, allowing us to log their activity on the website. 
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6 Conclusion  

We successfully developed a novel approach to produce intelligent web-browsing 

behaviour which was then integrated into a high-interaction honeypot. Cybersecurity is rising in 

the agenda of many countries and organisations. It is obvious that honeypots have high potential 

for development and should be implemented more frequently in the cyber landscape. Therefore, 

every step forward should be valued. As more sophisticated attacks and attackers are on the rise, 

we hope that this prototype can be implemented in future honeypots so as to help threat hunters 

stay one step ahead. 
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8. Appendix  

A. Tables & Figures 

B. Scripts 

A1 - Model Training 

 

          Figure A1.1 Bar chart of frequency of each type of action recorded from dataset. 

 

 

Figure A1.2 Graph of loss curves during training. 

 

  

2296 (3.08%) 

57004 (76.4%) 

14190 
(19.0%) 

1137 
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A2 Survey Results 

Log No. Random Browsing HoneySurfer Human-generated 

1 2.90 4.14 3.82 

2 2.86 4.32 3.59 

3 3.09 3.68 3.95 

4 2.86 3.72 4.41 

5 3.14 3.27 4.64 

6 2.64 4.13 4.09 

Mean ± SE 2.91 ± 0.0737 3.88 ± 0.158 4.08 ± 0.157 

                                     Table A2.1 Table of raw data for each test case 

Reasons why survey participants believed 

the logs to be human-generated 

Reasons why survey participants believed 

the logs to be automated 

- Google search URL gradually 

increases as queries are typed in 

- Common/Familiar sites like 

google/youtube, social sites 

- Systematic logs - spends time on one 

webpage, clicking on the links before 

moving on to another. 

- Plausible story behind the logs 

- Mistakes made when typing website 

which was then retyped 

- Sites visited were in Singapore 

- Repeated visits to the same host 

- Unfamiliar websites 

- Too many different area codes 

- User seems to switch to unrelated sites  

- User seems to spend little time on each 

site 

- Consistent time intervals when keying 

in Google queries 

 

 

Table A2.2 Table of reasons why survey participants believed  logs to be human-

generated/automated 

A3 - Data Analysis                

Log Type p-value Interpretation (Reject H0/normality if p < 0.05) 

Random Browsing 0.5821 Null hypothesis not rejected. Data is in normal distribution. 

HoneySurfer 0.5628 Null hypothesis not rejected. Data is in normal distribution. 

Real Humans 0.9187 Null hypothesis not rejected. Data is in normal distribution. 

                         Table A3.1 Table of results from Shapiro-Wilk test for normality 
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A4 - Functionality Testing 

i) Packetbeat 

           Figure A4.1 Photo of successful logging of HTTP request to http://example.com 

            

ii) Winlogbeat & Sysmon 

 

 

 

Figure A4.2 Photo of Winlogbeat & Sysmon Dashboard 

 

Figure A4.3 Photo of successful logging of process start-up  of dummy program - 

“malware.exe” 
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Figure A4.4 Photo of port count and sum of source.bytes visualisations 
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B1 - Browser Agent 

#Importing modules... 

from selenium import webdriver 

from selenium.webdriver.common.by import By 

from selenium.webdriver.support.ui import WebDriverWait 

from selenium.common.exceptions import WebDriverException 

from selenium.webdriver.support import expected_conditions as EC 

from selenium.webdriver.common.keys import Keys 

from selenium.webdriver.common.proxy import Proxy, ProxyType 

import random 

import time 

 

#class BrowserAgent 

class BrowserAgent(): 

 

    #Initialize browser 

    def __init__(self): 

        prox = Proxy() 

        prox.proxy_type = ProxyType.MANUAL 

        prox.http_proxy = "localhost:8888" 

        prox.ssl_proxy = "localhost:8888" 

        capabilities = webdriver.DesiredCapabilities.CHROME 

        prox.add_to_capabilities(capabilities) 

 

        self.driver = webdriver.Chrome(desired_capabilities=capabilities) 

        self.driver.get("https://www.google.com") 

        self.visitedList = [] #List of visited websites 

           

    #Get hyperlink from website 

    def clickOnHyperlink(self): 

        hrefList = self.driver.find_elements_by_xpath("//a[@href]") 

        if len(hrefList) == 0: #Goes back a page if the current webpage has no hyperlinks 

            self.driver.back() 

        else: 

            N = random.randint(0, len(hrefList)) 

            href = hrefList[N].get_attribute("href") 

            self.driver.get(href) 

            self.visitedList.append(href)    #Appends previously visited website to visited list 

 

    #Generate random google search 

    def randomGoogle(self): 

        #List of common starting phrases 

        googleList = ["What is", "Where is", "Best places", "Where to go in", "What to do when", "Why is",  

                      "What kind of", "Where am I", "Where should I", "weather", "weather in", "Why you should",  

                      "How to", "wikihow", "wikipedia", "Who is the", "top", "Define"]          

        self.driver.get("http://www.google.com") #Go to google home page 

        searchField = self.driver.find_element_by_name("q")  

        searchField.send_keys(random.choice(googleList)) #Select random starting phrase 

        googleSuggestion = WebDriverWait(self.driver, 10).until(EC.visibility_of_all_elements_located((By.XPATH, 

"//form[@action='/search' and @role='search']//ul[@role='listbox']//li//span"))) 

        chosen = random.choice(googleSuggestion) #Select random autocomplete 

        chosen.click() 

 

         

    #Get query and click on random search result from the first page of the search resullt 

    def getQuery(self): 

        results = self.driver.find_elements_by_xpath('//div[@class="r"]/a/h3') 

        N = random.randint(0, len(results)) - 1 

        try: 

            time.sleep(5) 

            results[N].click() 

            time.sleep(random.randint(3,10)) 

        except WebDriverException: #Rerun function if error occurs 

            self.getQuery() 

    #Visit specific URL 

    def getURL(self): 

        #List of common URLs we specified 

        commonList = ["https://world.taobao.com/", "https://www.qq.com/", "https://www.reddit.com/", 
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                      "https://www.facebook.com/", "https://www.youtube.com/", 

                      "https://www.amazon.com/", "https://www.imdb.com/", "https://www.nytimes.com/", 

                      "https://www.tripadvisor.com.sg/", "https://www.indeed.com.sg/?r=us",  

                      "https://www.urbandictionary.com", 

                      "https://www.hardwarezone.com.sg/", "https://sg.carousell.com/", "https://www.instagram.com/", 

                      "https://www.asiaone.com", "https://www.kiasuparents.com/kiasu/",   

                      "https://stomp.straitstimes.com/", "https://www.aliexpress.com/", "https://www.lazada.sg/", 

                      "https://sg.yahoo.com/?p=us", "https://www.straitstimes.com/", "https://www.qoo10.sg/?__ar=Y", 

                      "https://www.channelnewsasia.com/", "https://www.amazon.com/", "https://www.ebay.com.sg/"]                       

        url = random.choice(commonList + self.visitedList) #Choose random url based on common + previously visited url 

        self.driver.get(url) 

        self.visitedList.append(url)   #Appends visited URL to previously visited website list 

 

    #Quit browsing the web 

    def quitBrowsing(self): 

        time.sleep(random.randint(3600,36000)) 

 

    #Parsing input 

    def doInput(self, method_no): 

        try: 

            if method_no == "1": 

                self.randomGoogle() 

                self.getQuery() 

            elif method_no == "2": 

                self.clickOnHyperlink() 

            elif method_no == "3": 

                self.getURL() 

            elif method_no == "4": 

                self.quitBrowsing() 

 

B2 - Extract and filter out HTTP requests 

##Importing modules 

import difflib, glob, gzip, os, re 

 

##Variables 

inputPath = '’  ################################INSERT INPUT PATH HERE######################### 

outputPath = ‘’ ################################INSERT OUTPUT PATH HERE######################### 

 

def filterFile(path, outputFile): 

 ##Declaring variables/lists 

 fileList = [] 

 getList = [b'temp'] 

 getLine = b'temp' 

 previousLine = b'temp' 

 count = 0 

 isValidReferer = False 

 allOutputList = [] 

 f = open(outputFile, "a+") 

 

 ##Sorting files with respect to time 

 for filename in glob.glob(os.path.join(path, '*.log.gz')): 

     fileList.append(filename) 

 fileList.sort() 

 

 hostCriteria = (b'doubleclick', b'ads', b'gstatic', b'notify') 

 getCriteria = (b'doubleclick', b'adserver', b'adServer', b'jpeg', b'png', b'jpg', b'gif', b'Service') 

 for filed in fileList: 

     with gzip.open(filed,'r') as file: 

         for line in file: 

             if b'Host:' in line: #Check if line contains "Host", i.e. potentially a HTTP request 

                 if any(i in line for i in hostCriteria): #If "Host" is an ad server, ignore request 

                     isValidReferer = False 

                     continue 

                 else: 

                     #Check if line above "Host" line contains the GET header, indicating a HTTP request 

                     if b'</TimeStamp><Name>HTTP</Name><Header>GET' in previousLine: 
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                         if any(f in previousLine for f in getCriteria): 

                             isValidReferer = False 

                             continue #Ignore if request is from an ad or image 

                         else: 

                             if not any(b'upload' or b'download') in line and b'ad' in line: 

                                 isValidReferer = False 

                                 continue 

                             else: 

                                 tempGLine = previousLine.split(b'<Header>')[1].lstrip() 

                                 for i in getList: 

                                     #Only treat request as unique if similarity is <50% with respect to all   

                                      #previously stored requests 

                                     if difflib.SequenceMatcher(None, tempGLine, i).ratio() < 0.5: 

                                         isDuplicate = False 

                                     else: 

                                         isDuplicate = True 

                                         isValidReferer = False 

                                         break 

                                 if isDuplicate: 

                                     continue 

                                 else: 

                                     getLine = tempGLine 

                                     if len(getList) > 40: 

                                         getList.pop(0) 

                                     getList.append(tempGLine) 

                                     count += 1                                    

                                      a=re.findall(b'[0-2][0-4]:[0-5][0-9]:[0-5][0-9].[0-9][0-9][0-9]',previousLine) 

                                     if len(a) != 0: 

                                         allOutputList.append(str(a[0])) 

                                         allOutputList.append(str(getLine)) 

                                         allOutputList.append(str(line)) 

                                         isValidReferer = True 

             elif b'Referer:' in line: 

                 if isValidReferer: 

                     allOutputList.append(str(line)) 

             previousLine = line 

 allOutputList.append(count) 

 

 for item in allOutputList: 

     f.write("%s\n" % item) 

 

def extractData(path, outputPath): 

 fileList = [] 

 ##Sorting files with respect to time 

 for items in Path(path).iterdir(): 

     fileList.append(items) 

 fileList.sort() 

 

 i = 0 

 for file in fileList[8:22]: 

     i += 1 

     outputFile = outputPath + "/output" + str(i) + ".txt" 

     filterFile(file, outputFile) 

 

#Defining location of path 

fileList = [] 

##Sorting files with respect to time 

for items in Path(path).iterdir(): 

 fileList.append(items) 

fileList.sort() 

 

i = 0 

for file in fileList[9:]: 

 i += 1 

 outputPath += str(i) 

 os.makedirs(outputPath) 

 try: 

          extractData(file, outputPath) 

 except: 

        pass 
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B3 - Labelling HTTP Requests 

#Importing modules 

import re 

from datetime import datetime 

from pathlib import Path 

 

##Variables 

inputPath = '’  ################################INSERT INPUT PATH HERE######################### 

outputPath = ‘’ ################################INSERT OUTPUT PATH HERE######################### 

 

#Generate labels for a given folder (day) 

def generateLabel(file): 

 ##Splits the data into individual http requests 

 fileLines = '' 

 with open(file) as files: 

     for line in files: 

         fileLines += str(line) 

 httpList = re.split(".(?=[0-2][0-4]:[0-5][0-9]:[0-5][0-9].[0-9][0-9][0-9])", fileLines) 

 httpList.pop(0) 

 

 seq = "" 

 tSeq = "" 

 prevTime = "00:00:00.000" 

 

 for http in httpList: 

      

     #Obtain difference in time 

     currTime = re.findall("[0-2][0-4]:[0-5][0-9]:[0-5][0-9].[0-9][0-9][0-9]", http)[0] 

     fmt = '%H:%M:%S.%f' 

     tDelta = datetime.strptime(currTime, fmt) - datetime.strptime(prevTime, fmt) 

     timeDiff = tDelta.seconds 

    

     #Filters request if time between is less than to 2 seconds 

     if timeDiff < 2: 

         continue 

          

     #Prevent errors due to measuring time difference at the first request of folder 

     #User has quit browsing if time difference > 1 hour 

     if prevTime != "00:00:00.000" and timeDiff > 3600: 

         seq += "4"                 

 

        

     prevTime = currTime        

     

     #Sort HTTP requests to corresponding methods 

     if re.compile("GET /url?").search(http) or re.compile("GET /search?").search(http): 

         seq += "1"        #Search Engine 

     elif re.compile("Referer:").search(http): 

         seq += "2"        #Click on a hyperlink 

     else: 

         seq += "3"        #Specific URL 

 

 return seq 

     

seqFile = open(outputPath, "w") 

#Write the data into .txt files 

for folder in Path(inputPath).iterdir(): 

 seqFile.write("\n") 

 for file in Path(folder).iterdir(): 

     data = generateLabel(file) 

     seqFile.write(data) 

 

B4 - Training the ML Model 
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#Version: Tensorflow 2.0 - keras 2.2.4 

#Importing modules... 

from __future__ import absolute_import, division, print_function, unicode_literals 

from tensorflow.keras.models import load_model 

import tensorflow as tf 

import matplotlib.pyplot as plt 

import numpy as np 

import os 

import time 

import random 

 

#Variables 

#Filepath 

filepath = '/home/ac/Desktop/data.txt' 

 

#Input Initialization variables 

seq_length = 50 

action_size = 4 

 

#Batching variables 

BUFFER_SIZE = 10000 

BATCH_SIZE = 100 

 

#Model variables 

embedding_dim = 64 

rnn_units = 256 

 

#Training variables 

epochs = 100 

val_split = 0.2 

 

#Splits the line into input and target sequences 

def split_input_target(line): 

 inputSeq = line[:-1] 

 targetSeq = line[1:] 

 return inputSeq, targetSeq 

 

#Setup the dataset 

def setup(text, seq_length): 

  # Extract data to np array 

  action_vector = np.array([int(c)-1 for c in text if c != '\n']) 

  

  # Create training examples / targets 

  num_Dataset = tf.data.Dataset.from_tensor_slices(action_vector) 

  sequences = num_Dataset.batch(seq_length+1, drop_remainder=True)   

  datasetLine = sequences.map(split_input_target) 

  return datasetLine 

 

#Function to build model 

def build_model(action_size, embedding_dim, rnn_units, batch_size): 

  model = tf.keras.Sequential([ 

 tf.keras.layers.Embedding(action_size, embedding_dim, 

                           batch_input_shape=[batch_size, None]), 

 tf.keras.layers.GRU(rnn_units, 

                     return_sequences=True, 

                     stateful=True, 

                     recurrent_initializer='glorot_uniform'), 

 tf.keras.layers.Dense(action_size) 

  ]) 

  return model 

 

#Reads the data from file and sort it 

with open(filepath) as fp: 

  text = fp.readline() 

  isSetup = 0 

  while text: 

 data = setup(text, seq_length) 

 text = fp.readline() 

 if isSetup == 0: 

   dataset = data 
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   isSetup = 1 

 else: 

   dataset = dataset.concatenate(data) 

                          

#Shuffle and prepare training and validation dataset 

dataset = dataset.shuffle(BUFFER_SIZE) 

trainLen = int(len([i for i in dataset]) * (1 - val_split)) 

train_dataset = dataset.take(trainLen).batch(BATCH_SIZE, drop_remainder=True) 

val_dataset = dataset.skip(trainLen).batch(BATCH_SIZE, drop_remainder=True) 

 

#Build the model 

model = build_model( 

  action_size = action_size, 

  embedding_dim = embedding_dim, 

  rnn_units=rnn_units, 

  batch_size=BATCH_SIZE) 

 

#Defines loss function 

def loss(labels, logits): 

  return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True) 

 

#Compile model using loss function and Adam Optimizer 

model.compile(optimizer='adam', loss=loss) 

 

model.summary() 

#File where the checkpoints will be saved 

checkpoint = "Checkpoints.hdf5" 

 

#Sets checkpoint when validation loss is < than that of previous epoch 

checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( 

 filepath = checkpoint, 

 monitor = 'val_loss', 

 save_weights_only = True, 

 save_best_only = True) 

 

#Train the model 

history = model.fit(train_dataset, validation_data = val_dataset, epochs=epochs, callbacks = [checkpoint_callback]) 

 

#Rebuild and reconfigure model with batch size of 1. 

model = build_model(action_size, embedding_dim, rnn_units, batch_size=1) 

model.load_weights(checkpoint) 

model.build(tf.TensorShape([1, None])) 

 

#Save the model 

model.save('MLModel.hdf5') 

 

#Plot training and validation loss functions 

plt.plot(history.history['loss'], label = 'training_loss') 

plt.plot(history.history['val_loss'], label = 'validation_loss') 

plt.title('Model loss against number of epochs') 

plt.ylabel('Loss') 

plt.xlabel('Number of epochs') 

plt.show() 

 

 

B5 - main() function 

#Importing modules... 

from BrowserAgent import BrowserAgent 

import tensorflow as tf 

from tensorflow.keras.models import load_model 

import random 

import numpy as np 

import time 

 

#Generate the method number to be sent to Browser Agent 
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def generate_browsing(model, start_string): 

   # Vectorise start string of numbers 

   input_eval = [int(x) for x in str(start_string)] 

   input_eval = tf.expand_dims(input_eval, 0) 

   model.reset_states() 

   predictions = model(input_eval) 

   predictions = tf.squeeze(predictions, 0) 

   predicted_id = tf.random.categorical(predictions, num_samples=1)[-1,0].numpy() 

   predicted_id += 1  #Convert back to action state integers 

   return (str(predicted_id)) 

    

#main function 

def main(): 

   #Set up 

   browser = BrowserAgent() 

   MLModel = tf.keras.models.load_model('MLModel.hdf5', compile = False) 

   start_string = random.choice(("1", "3")) #Start off with a google search or keying in a specific URL 

   while True: 

   cmdInput = generate_browsing(MLModel, start_string) #Generates browsing 

   browser.doInput(cmdInput) #Sends input to browser agent 

   start_string = str(start_string) + ''.join(str(cmdInput)) 

   time.sleep(random.randint(5, 30)) #Sleeps for random time 

 

#Start the main function 

main() 

 

B6 - Random URL Browsing (baseline in survey) 

from selenium import webdriver 

from selenium.webdriver.common.by import By 

from selenium.webdriver.support.ui import WebDriverWait 

from selenium.webdriver.support import expected_conditions as EC 

from selenium.webdriver.common.keys import Keys 

from selenium.common.exceptions import WebDriverException 

from selenium.webdriver.common.proxy import Proxy, ProxyType 

import time, random 

 

prox = Proxy() 

prox.proxy_type = ProxyType.MANUAL 

prox.http_proxy = "localhost:8888" 

prox.ssl_proxy = "localhost:8888" 

 

capabilities = webdriver.DesiredCapabilities.CHROME 

prox.add_to_capabilities(capabilities) 

 

driver = webdriver.Chrome(desired_capabilities=capabilities) 

 

while True: 

    driver.get('http://www.uroulette.com/visit/swpun') 

    time.sleep(random.randint(3,10)) 

 

 

 



【評語】190040 

The topic of this project is Intelligent Web-Surfing 

Honeypots. This is a complete work. The problem definition 

could be more clear, which may help the authors come out the 

solutions. The definition could help the authors identify the 

critical issue in this topic. There are many previous works that 

focus on the same topic. The authors may consider to have a 

comparison with these works.  
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