2021 年臺灣國際科學展覽會 優勝作品專輯

- 作品編號 100045
- 参展科別 工程學
- 作品名稱 AGRIBOT ROBOTIC SOLUTION TO FOOD SUSTAINABILITY
- 國家 South Africa
- 就讀學校 Reddam House Private School
- 作者姓名 Talhah Patelia

作者照片

INTRODUCTION AND BACKGROUND RESEARCH

Food sustainability is key to human survival. Robotic solutions have started playing large roles in automating farming tasks in order to assist with crop yield and the efficiency of production. Due to the unreliability of and lack of manual labour in many parts of the world, Agribots are playing bigger roles. One of the biggest advantages of Agribots is that they can operate 24/7, 365 days a year without payment.

Agribots are being used more often in dairy farms to milk cows while others are used to shear sheep. Agribots are fast becoming very important to farmers by gathering valuable data; milking cows; automating animal feed; measuring the right amount of pest control, detecting weeds and pests, harvesting and ploughing with unmanned tractors.¹

In many parts of the world farm labour is scarce and difficult to come by. In South Africa for example farm labourers endure gruesome attacks. These attacks on farmers result in the closure of the farm for an extended period of time resulting in the loss of large quantities of crops. Food sustainability is dire in Africa and many parts of the world. "Each day, 25,000 people, including more than 10,000 children, die from hunger and related causes. Some 854 million people worldwide are estimated to be undernourished, and high food prices may drive another 100 million into poverty and hunger.².

90 percent of the world's farms produce over 80 percent of the world's food. They also manage about 75 percent of farmland worldwide. Yet, paradoxically, these farmers are often poor and food insecure themselves.

Due to the increase in the world's population annually, there is a growing demand for food. This has led to increasing pressure on farmers to produce crops. In order to meet this demand, farming innovations are vital for the future of food and agriculture. Constant innovations in agriculture is thus needed to constantly feed a growing and increasing population.

¹ White (2018) Three agribots transforming the farming industry: Available at: <u>https://www.themanufacturer.com/articles/three-agribots-</u> revolutionising-the-farming-industry/ Date accessed: 11 October 2019

² Holmes (2017) Losing 25 000 a day to Hunger Available at: <u>https://www.un.org/en/chronicle/article/losing-25000-hunger-every-day</u> Date accessed: 02 January 2021

Innovation in agriculture is also critical to help farmers use resources in better and more efficient ways. "Innovation is one of our best tools for creating a #ZeroHunger world."³

PROJECT PURPOSE AND ENGINEERING GOALS

The purpose of this project is:

- To build a working mechanical robot for the use of retrieving data wirelessly, on farms, using precision movements in sub optimal environments up to a 10km range using RF (Radio Frequency) and worldwide using GSM (Global System for Mobile Communication).
- To submit the data to a user using communication APIs through SMS.
- To learn by applying the principles of self-learning, limiting the use of ready-made solutions and the integration of readily available components;⁴
- **To give back** by transferring the knowledge; skills and resources acquired to interested young students.
- The robot should be multi-purposed, motorised, have a 'Rocker Boggy' suspension and a Reach Arm.
- This robot should have unique Sensors and APIs (Application Programming Interfaces).
- Agribot could be used in a variety of fields such Search and Rescue/ mining, Archaeology/ Caves, Agriculture and Architecture/Design.⁵
- The body and wheels of Agribot will be fully designed by the developer; 3D printed; modular and tiered. The project will aim to integrate mechanics, electronics, design, software engineering, added sensors and APIs onto a single robot with limited conflict. This will be done by using available resources and components.
- The reach arm on Agribot is equipped with a Reach Arm which could gather soil, water and plant samples. The sensors would gather information such as gradients, terrain, weight, angles of velocity, soil humidity and the Pi camera would take photographs.
- The location and weather APIs could provide five day temperature forecast and send data via SMS.

³ FAO (2018) Innovating for our Future of Food and Agriculture Available at: <u>http://www.fao.org/fao-stories/article/en/c/1170362/</u> Date accessed: 02 January 2021

⁴ Michael (2014) www.RobotScience.co.za is where teenagers age 14+ learn to build robots from electronic parts Available at: http://roboscience.co.za/about/index.htm Date accessed: 30 May 2019

⁵ Robotnor Created for advanced Robotics : Available at: <u>https://robotnor.no/research/serpentine-robots-for-planetary-exploration-serpex/</u> : Date accessed: 12 April 2019

- The SDR (Software defined radio) would be able to pick up radio frequencies thereby enabling Agribot to locate certain markers.
- With Agribot's weight bearing capacity of 30kgs it could carry water, plant and soil samples.
- Agribot has 10km wireless range with RF (Radio Frequency) and could be used from anywhere in the world using GSM (Global System for Mobile Communication).
- The developer intends for the coding of Agribot to be so precise, that it could navigate to exact locations/ coordinates. The added GPS API also aids with this process.
- Agribot's data collection would be sent to an Arduino, which would be sent to the Raspberry
 Pi, and a Raspberry Pi would then to a computer, which would display the data through a
 program or store the information on the SD card and the Raspberry Pi. Additionally, with the
 use of API's, data gathered would be immediately sent to the user via SMS.
- Agribot is **environmentally friendly**. It is 3D printed from PLA, PETG and PTE filament which are all biodegradable. PLA is made from 80% corn-starch and so if the robot gets lost in any of the above environments it would decompose.
- The project aims to integrate mechanics, electronics, design, software engineering, added sensors and APIs onto a single robot with limited conflict. This was done by using available resources and components.

The developer prioritised his self-development on the wide range of knowledge and skills and development areas. To achieve this the developer had no technical support from school; had no technical support from his parents; restricted any usage of third-party solutions; self-learnt each area in order to design and produce every component on Agribot; worked independently and did his best to recycle and produce in a sustainable manner.

METHODS

Definitions

The definitions of the concepts to be used in this project plan are as follows:

Concept	Definition
Arduino ⁶	Arduino is single-board with a microcontroller that interacts
	with other electrical components

⁶ Android Authority (2015) *Writing your first Android App- Everything you need to know*: Available at: <u>https://www.youtube.com/watch?v=mAJeK283j0l</u>: Date accessed: 28 August 2019

Raspberry Pi ⁷	Raspberry Pi assists with programming in languages like			
	Scratch and Python.			
DC Motors	DC motors is a motor that takes electrical current (direct			
	current and converts it into motion).			
Soldering	Soldering is a process in which two or more items are joined			
	together by melting soldering coil into the joint,			
Additive Manufacturing	3D printing is referred to as additive manufacturing because it			
	means that the manufacturing occurs by layers stacking on top			
	of each other. For example, imagine if you are trying to build a			
	sphere with sheets of paper. You would start off at the bottom			
	of the sphere by cutting out a small circle on the paper. Then			
	you would stack a slightly larger circle than the bottom layer.			
	Thereafter, when you get to the required radius height of the			
	circle then you would start decreasing the sizes of the circles			
	that you stack. At a certain point you would reach the required			
	diameter of the sphere. You would have then manufactured an			
	object by using Additive Manufacturing. The same is used in 3D			
	printing by substituting paper with high temperature, high			
	viscosity PLA.			
Coding	Coding is programming, where a programming language such			
	as Python is used			
Python ⁸	Python is programming language.			
HTML	Hypertext Markup Language is the standard markup language			
	for documents designed to be displayed in a web browser.			
Autodesk Fusion 360	Fusion 360 is a CAD (Computer Aided Design) software used to			
	design 3D models			
Prusa Slic3r	Slic3r is free software 3D slicing engine for 3D printers It			
	converts .stl files into .gcode for the printer.			
Prusa	Prusa is a 3D printer developer and retailer based in Prague			
Multimeter	A multimeter measures voltage, current, and resistance			

⁷ Weaver (2018) Controlling Stepper Motors using Python with a Raspberry Pi: Available at: <u>https://medium.com/@Keithweaver_/controlling-stepper-motors-using-python-with-a-raspberry-pi-b3fbd482f886</u>: Date accessed: 20 June 2019

⁸ Operators and Expressions in Python – Real Python: Available at: <u>https://realpython.com/python-operators-expressions/</u>: Date accessed: 23 June 2019

SDR	Software Defined Radio		
Perfboard	Perfboard is a board that allows one to solder components		
	onto it thus creating an electronic circuit.		
Potentiometer	A potentiometer is a terminal resistor that forms an adjustable		
	voltage divider based on a rotating spinner.		
GUI	Graphical User Interface		
UI	User Interface		
API	Application Processing Interface		
RF	Radio frequency		
GSM	Global System for Mobile Communication		

The following materials will be used to build Agribot:

2 kgs of filament	M4 Bolts	M6 Bolts
(Part PLA, part PTE and part PETG)		
M3 Bolts	Nuts	Breadboard
Breadboard Wires	Arduino's (Due, nano, 101	18650 cells to form a battery
	intel curie)	(up cycled)
Alligator Clips (recycled)		Raspberry Pi 3 b+
A A A A A A A A A A A A A A A A A A A	Soldering Wire	
Sellotape	Electrical Tape	Zip Ties
		Ø
Steel Shaft	Pulleys	USB Hub

Wifi Module/ Router	Flux	Hot glue/ Glue sticks
		and the second se
LED's	Bearings	Buck Module
E E E E E E E E E E E E E E E E E E E	Ó	
DC Motors	Servos	LoRa Module
A CAR		

Equipment

The following **equipment** will be used to build Agribot:

Laptop	Allan keys – various sizes	Soldering station
Pliers	Prusa i3MK2S & i3MK3S 3D printers	
Screwdrivers various sizes (Phillips and Flat)	Wire Strippers	Scissors

AC to DC Battery Charger system	Multimeter	LithoKala 18650 cell charger
Knives	XT60 Connectors	Bosch cordless drill
K		

Components

The following components will be built onto Agribot:

Ultrasonic Sensor ⁹ To estimate the distance to an object in front of the robot by emitting an ultrasonic signal which bounces back to a sensor.
Temperature and humidity sensor To measure temperature and humidity ¹⁰
Gyrometer Sensor built into the Arduino To measure rotational motion and angles of velocity relative to the earth's gravity (e.g. inclines and declines)
Accelerometer sensor built into the Arduino To test for different forces (e.g. wind, gravity, vibrations/ earthquakes, rockslides, mudslides, volcano eruptions, vibrations from bombs, avalanches etc.)
Pi Camera
RTL – SDR Kit To test for radio waves, airband, security walkie talkies, bandwidth and radio frequencies

 ⁹ Arduino Uno and HY-SRF05 ultrasonic sensor example - Arduino Learning Available at:<u>http://arduinolearning.com/code/arduino-uno-and-hy-srf05-ultrasonic-sensor-example.php</u>
 Date accessed: 06 June 2019
 ¹⁰ Raspberry Pi (2017) DS18B20 Temperature sensor with Python (Raspberry Pi): Available at: <u>https://bigl.es/ds18b20-temperature-sensor-with-</u>

python-raspberry-pi/: Date accessed: 01 September 2019

	Photoresistor To change the resistance relative to the light input
	Weighing Sensor To change its resistance relative to the load applied
	Weighing cell
The second se	Infrared Sensors
*	Soil moisture sensor
	GPS module

STEP BY STEP PROCEDURE

Agribot Robot Build

ltem	Description	Process	Learning Objectives	Resources	Tools
Item	Description Design of the robot	Process Process: Design the body based around the suspension shape and dimension on fusion 360 and to enable this to factor in the robot overall design Consider different designs of robots and looked at the tank, normal car, spider and mars rovers inspired design	Learn:	Resources Resources 3D printing Nerd Makers news Thomas Sanladerer How to make anything Evan and Katelyn Michael Reeves	Tools Tools • Ruler • Data sheets • Fusion 360
		options. Select the most adequate design Research various models. Design various cases around the electronics in a modular	And improve knowledge and skill in designing 3D printing models by using different type tools: such as revolution tool, rotational tools for sketching and extruding. For sketching, the tools such as revolution, circle, squares,	• Bobby Duke Arts	

Item	Description	Process	Learning Objectives	Resources	Tools
		fashion Place these modules in the shape of the robot. Design all of these components in SDL files to enable printing on 3D printer Use Fusion 360 to design Research different types of wheels and suspension. Design the developer's own ideas on Fusion 360, scale down on the design and convert it to a 3D printing model on an SDL file. Test and change design if required	rectangles, arcs, mirror and line tools. For extruding the sketch – revolutions, cutting, intersecting, creating new body, filleting, rounding out edges and extruding normal faces of sketches. How to obtain dimensions of electronic components, bolts, 8mm shaft, bearings, tension between belt and pulleys, aerial holder, placement of Go Pro, compartment for batteries, placement for lights, holds for Raspberry Pi, Arduino, buck modules, stepper motors.		
2.	3D Printing	Process Extract the SDL files from Fusion 360 and import them to Prusa Slic3r software. This takes the SDL files and slices it in layers to allow for the 3D printer to perform the additive manufacturing. The Slic3r software uses a	Learn: How to set different temperatures, speed, for different filaments Considerations of how and when an object requires a skirt, brim How to determine whether an	Resources You tube channels • 3D printing nerd • Makers news • Thomas Sanladerer • How to make anything	 Tools Original Prusa i3 Mk2S Printer Spatula Glue stick Pliers Hobby Knife

Item	Description	Process	Learning Objectives	Resources	Tools
			filament		
3.	Electronics	ProcessResearchSource and purchasecomponents such as DCmotors, APIs, sensors,connectors, wires, wireconnectors, different typesof wire, solder, solderingstation, soldering helpinghand, perf board, multi-meter, micro controllers(raspberry pi and Arduino)and bread and perf board.Assemble components onthe bread board.Test the components onbread board with pinconnectors.Check if electroniccomponents work by testing	filament Learn: How different electronic components work; How to wire. How circuits work How to work safely with electronics. How to measure voltage; amps and resistance. How micro-controllers communicate to the Arduino and Raspberry pi and other components electrically, How to connect batteries in different ways, How to measure how long a battery would last	Resources EEV BLOG Electro Boom Colinfurze Michael Reeves William Osman Peter Stripol Great Scott! 	Tools Stepper driver, Sensors, Connectors, Wire connectors, Wire connectors, Different types of wire, Wire stripper, Solder, Solder, Soldering station, Soldering helping hand, Perf board, Multi-meter, Minere contection
		the code and its functionality.	How to better configure batteries.		 Micro controllers (Raspberry Pi and Arduino) and
		Check if there are any shorts. Simplify wiring schematics.	How to calculate resistance in a circuit board by calculating amps.		Bread board

Item	Description	Process	Learning Objectives	Resources	Tools	
		Compact wires. Assemble all components on perf board using the schematic and solder all components in place. Check if any shorts on the perf board using a multi- meter. Connect to Raspberry pi and Arduino. Run the code to check for functionality.				
4.	Physics	Process Understand the speed of sound to derive the distance of the ultrasonic sensor. Understand and test the different honeycomb structures to develop the strength for designing objects. The use of mathematics for to understand how the sensors work and what they measure.	Learn: To create and use equations. To use equations to derive data product. The use of math to develop coding. The use of math to bring together the software and electronic components. About how fast sound travels? Sound beams.	Resources You Tube: • Veritasium • Physics Girl • Vsouce • Tested	Tools •	Calculator Internet research and obtain information

ltem	Description	Process	Learning Objectives	Resources	Tools
			Sonar.		
			Force from accelerometer.		
			Gyro – how different objects act in a space.		
			How can different objects and shapes be used to create a heavier load bearing capacity while constructing with design that is light, efficient and practical.		
5.	Coding	Process	Learnt*	Resources	Tools
		Research how to control stepper motors from a Raspberry Pi. Obtain a list of components. Consider which coding languages to be used based on what work was needed. Select code that has a GPIO library Understand C# and C++ and as such could use C.	How to write Python. How to write C#. How to write C++. How to write HTML. How to write PHP. How to write SQL. How to write Raspberry Pi terminal code.	 Freecodecamp.org circuit.io Live overflow Michael Reeves Peter Stripol The coding train Code Bullet Simone Giertz Jabrils Devon Crawford Allen Pan – Sufficiently Advanced AvE William Osman 	 Websites You Tube Google Computer Atom and Visual studios Integrated Development Environment (IDE)
		To learn new code and what is closer to the Raspberry Pi-	How to write Windows terminal code. How to write Java script.	Jarvis JohnsonAlexis Gay	

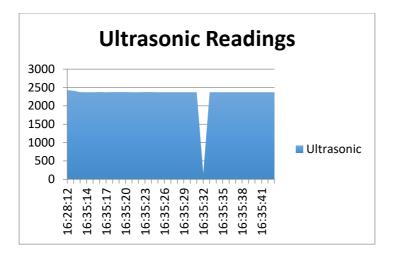
Item	Description	Process	Learning Objectives	Resources	Tools
		such as Python.		Carykh	
		Learn Python through	How different codes speak to each other in different ways .		
		Learn Python through different forums on the	each other in unerent ways .		
		internet videos on the basics	How computer code works on		
		of python from	the most basic level.		
		freecodecamp.org	Here to internet with in		
		Start using the different GPI	How to integrate math in equations for solutions to most		
		codes on Python and	problems		
		outputting data from			
		Raspberry Pi to the stepper			
		driver boards.	*		
		Use knowledge to connect			
		the two step driver boards			
		into one in order to control			
		both at the same time using			
		a common code. Start programming the			
		sensors on the Arduino .			
		Test using pre-existing code			
		from circuit.io – If code is			
		not effective based on the			
		UI, to adapt the code to make own UI with own			
		sensors .Re-write own code			
		in various code languages.			
		Code HTML website to			
		display any HTML document.			
		Connect the Arduino with			
		Raspberry Pi using Python.			

Item	Description	Process	Learning Objectives	Resources	Tools
		Wrlte code with Atom and Visual studios Integrated Development Environment (IDE)			
6.	Manufacturing	 Process: Parts from 3D printer cleaned with a knife and plyers. Select the bolts and nuts for the required parts. Set out the electronics and fasten with M3, M4 and M6 bolts. Use vice to insert the bearings in plastic. Use lathe and grinder to manufacture steel axles. Use handsaw to cut down on different bolts. Tighten and assemble 	Learn: How to use equipment like lathe and grinder. How to design parts that work with certain manufactured materials such as bots, nuts bearings etc . How to tension different materials and components. Plastic deformation. Different kinds of materials that can be sued for different parts of the robot. How to use the nuts and bolts to make the robot modular. How to use a Vernier scale.	Resources : I like to make stuff Michael Reeves William Osman Collinfirze Peter Stripol Tested Evan and Katelyn Alec Steele	 Lathe Screw drivers Allen Keys Grinder Different types of measuring tools such as Vernier scale Knife Plyers Vice Saw Soldering Iron

THE DEVELOPMENT OF AGRIBOT

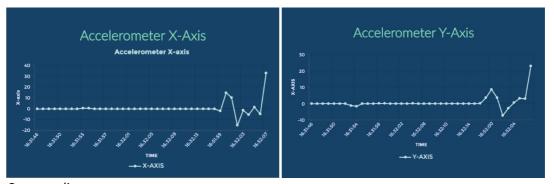
ITEM	AREA	RESULTS
1.	Design	 SPR was initially designed as a tank (SPR101). Due to the limitations with this design (see first prototype) the developer redesigned SPR102 SPR102 was designed around the electrical components making it a more compact and neat design. The wheels of SPR102 were initially designed as broad wheels and later redesigned as thinner wheels due to the increased torque on thinner wheels. Scietmeer3 had extra batteries and the body was built to accommodate the electrical components. The wheels of Scietmeer3 were printed with TPE (flexible filament) to allow for more agility Scietmeer4's body was designed to have a longer and wider wheelbase thus allowing more space for the sensors and components The suspension was changed to a rocker boggy suspension. The wheels were reprinted to be wider. Scietmeer5's body and legs were reprinted to be stronger than Scietmeer4, a Reach arm and loading tray were added to the robot
2.	3D Printing	 The printing of SPR101 was affected by various limitations (See pg.25) Printing SPR102 was much easier to print as the developer was on holiday and had the ability and time to keep a close eye on the printer during prints The developer further experimented with using a combination of PLA and PETG filament to print and found that PLA was a more durable substance, however PETG was a lot stronger. This means that PLA has some play in the material but PETG would snap under certain forces. Scietmeer3's wheels were printed in PTE (flexible filament) Scietmeer4 & 5's wheels were printed wider and in PTE. Each wheel took 17 hours to print. The body was printed in a combination of PLA and PETG (which is stronger and harder than PLA)
3.	Electronics	The developer realised his limitations with regards to Electronics as parts were burnt out due to his lack of knowledge

		 This part of the project was the most difficult and frustrating for the developer as he could not find direct answers to his questions on the internet. He used trial and error with, for example, the Adafruit Hat and realised through the trial and error method that certain components would not be feasible to use. The developer also burnt out a battery pack in the manufacture of Scietmeer5. Burnt out components lead to additional costs and time needed to redo the electronics, yet on the positive side it is a huge learning curve.
4.	Mechanical	 The developer found that he had minimal problems with the Mechanical side of the project He was able to understand and find a lot of relevant information on the internet. Testing load balance and mass was relatively easy and he found that during the second, third, fourth and fifth prototypes the mechanical side of the project went extremely smoothly and easily.
5.	Coding	 The developer enjoyed coding all the prototypes with Python and C++. He taught himself both coding languages including Javascript, HTML and Scratch and with some trial and error found that he was able to code the prototypes quite effectively and precisely using the code. He used Python for the stepper and DC motors and he used C++ for the sensors. He ran the code numerous times, check for errors. He ran the robot to determine faults He tested code for movement, precision, distance, sensors and APIs.
6.	Manufacturing	 During the manufacture of all the prototypes, the developer tested for the correct tension and had to redesign and reprint various parts to vary the distance between axle and motor to check which one worked the smoothest. During the design of the prototypes the developer ensured that he measured out the electronic parts very precisely during the design process, the manufacturing process was relatively easy. He realised that the time and accuracy taken during the design process enabled him to quickly and effectively manufacture and assemble the prototypes.


For more information on step-by-step and day-to-day results please refer to the Journal.

TESTING

ITEM	AREA	METHOD
1.	Design	Measure components and double checking on the Fusion
		360 to determine of all components will fit
2.	3D Printing	Print out small squares with set dimensions and test
		tolerance of printer.
		Test different materials that could be used for compression,
		stress and other forces
		Test if different parts and shapes could stick to the heated-
		bed
		Visual inspection
3.	Electronics	Multimeter to test voltage and current, resistance and
		shorts
		Run electricity through it to check if all areas working.
4.	Mechanical	Test design, shape, weight, size, set out of all components,
		motor, axle design, load balance.
		Use the sliding finger technique to determine the centre of
		mass.
5.	Coding	Run the code numerous times, check for errors, run the
		robot, determine faults, test code to relate to movement,
		distance, sensors etc
6.	Manufacturing	To test for the correct tension, printed various parts to vary
		the distance between axle and motor. Check which one
		works the smoothest.
		Check axle and whether it smoothly fits on axle by running
		motor


TESTING AND RESULTS

During the testing phase of Agribot, the following results were gathered:

1. Ultrasonic Readings


The Ultrasonic sensor sends out a pulse of sonar, which hits an object and bounces back whereby the ultrasonic sensor would retrieve the pulse of sonar. The ultrasonic sensor was placed on the top of the robot in order to retrieve data of the height of a cave. The reason the numbers are so high is that when the pulse of sound bounced off the roof of the cave, the roof was not parallel to the ultrasonic sensor causing the beam of sound to bounce around the cave walls thereby taking longer to come back to the ultrasonic sensor. The readings from the ultrasonic sensor were therefore not accurate. The developer would in the future like to try Infrared as an option to see if it would yield more accurate readings.

Cave readings

2. Accelerometer Data

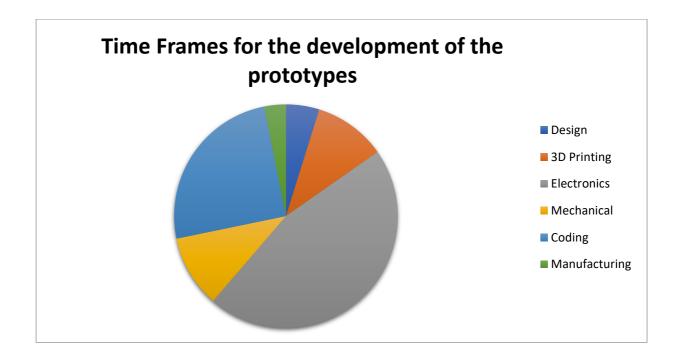
The accelerometer measured three axis, viz. X, Y and Z Axis. The graphs above represent time against G forces (acceleration and deceleration). The information gathered above could be used to detect natural disasters such as earthquakes, tremors, tsunamis, volcano eruptions, tectonic shifts, rock falls, mud slides, avalanches etc. The graphs above indicate that the accelerometer is gathering the data intended by the developer.

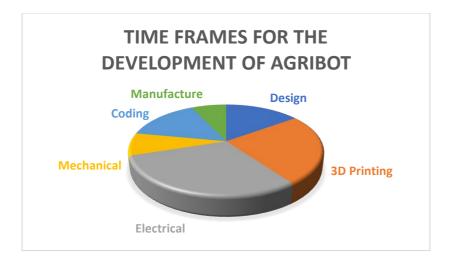
Cave readings

3. Gyrometer Data

The Gyrometer captured X, Y and Z Axis. The data in the above graphs are displayed as time against degrees per second. This information is useful to in understand the terrain of the cave. Additionally, it is helpful to providing data that would assist one to create a 3D model of the terrain of the cave. The gyrometer collected the data as intended.

	Coding the Raspberry Pi 3b+
	The code for the Raspberry Pi is written in CSS
	HTML Node JS (Express)
and the second sec	The rest of the code on the Raspberry Pi is
	written in Python
	Radio Frequency (RF) (LoRa Modules)
	The developer built a communication hub
	which is coded in C++ which communicates
	with Agribot through LoRa modules.
	Due to the lockdown, the developer was only
	able to test the RF up to 100m. It worked
	perfectly and the developer is sure that given
	a larger open space the RF would be able to
	work well.


	Pi Camera
	The Raspberry Pi is connected to the Pi
	camera which is running open CV and allows
	for visual analysis i.e. facial recognition.
	Arduini due/ nano / 101 intel curie
	The Arduino communicates with the Robots
	arm and gives it movement commands
	The Arduino is also connected to the relay and
	activates on input from sensors.
sketch.jull9s Arduino 1.8.13 (Windows Store 1.8.42.0) File Edit Sketch Tools Help	Coding and accuracy of movement
sketch_jul19a§ finclude <\$FI.h>	Agribot is running a server on the Raspberry Pi
<pre>finclude (LoRa.h> int countr = 0; int Ledin = 7;</pre>	This server is a node express server and allows
<pre>void setup() { Serial.epin(#600); while ('Serial); </pre>	communication to the robot through APIs via
<pre>Serial.printin('LoBa Sender'); if ('LoBa.begin(433E6)) { Serial.printl('Seriating LoBa failed!'); </pre>	the network to retrieve data.
<pre>while (1); } LoRa.setTxPower(20);</pre>	This communicates with the Arduino.
} void loop() {	The Arduino communicates to most of the
<pre>Serial.print("Sending packet: "); Serial.printin(counter); // send packet</pre>	sensors in order to retrieve data.
LoBa.beginBacket(); LoBa.print("hello "); LoBa.endPacket(); LoBa.endPacket(); counter++:	The code for the Arduino is written n C++
	Reach Arm
	The Arduino communicates with the Robots
	arm and gives it movement commands.
	The reach arm was able to carry weight of up
	to 100g during testing. During the continuous
	testing of the arm the shoulder servo broke.
	The developer had trouble obtaining stronger
The second se	servos for the shoulder joint of the arm during
	lockdown as these servos are procured from
	China.
0 R=220	Weigh Sensor
	The weigh sensor was tested using a tin of
	tuna, baked beans and tinned fruit. The
	results of the sensor was 2grams off the
	weight displayed on the tins. The developer


	believes that this discrepancy is negligible and
	thus indicates the validity and reliability of the
	sensor.
	Weather API
•••	The weather API worked perfectly and even
"dallyForecasts": { "forecastLocation": { forecast': [forecast': [provided a seven-day weather forecast, with
"daylight": "D", "description": "Drizzle. Overcast. Cool.", "skyInfo": "18", "skvDescription": "Dvercast",	sunshine, rainfall and minimum and maximum
"temperatureBesc: "Cool", "comfort": "9.21", "highTemperature": 12.00",	temperatures. This API is better than the one
"lowTemperature": 77.80", "humidity: "94", "dewFoint": "10.43", "precipitationProbability": "28",	on the cell phones which only provide five-day
"precipitationDest: "Drizzle", "rainFall: "0.00", "snowFall: ""," "airInfo": "22",	weather forecasts.
"airDescription": "Damp", "windSpeed" "18.26", "windDirection": "163", "windDirection": "163",	
"windDescShort": "S", "uvIndex": "0", "uvOesc": "Minimal",	
<pre>"barometerPressure": "1007.17", "icon": "18", "iconName": "sprinkles", "iconLink": "https://weather.api.here.com/static/weather/icon/27.png",</pre>	
"doyOfWeek": "4", "weekday": "Mednesday", "utcTime": "2013-12-64T09:00:00.08-06:00" }.	
), "country": "United States", "state": "Illinois", "city": "Chicago",	
"latitude": 41.83, "longitude": -07.68, "distance": 0,	
"timezone": -6 } } "feedCreation": "2013-12-04T09:44:13.574",	
'metric': true }	
	Heremaps/ Googlemaps API
Christina Court Baltoric Hall Bottori Hall Harroyer G	The developer tested the googlemaps API at
	various locations and obtained the exact
Casterosue Aperments	degrees of latitude and longitude. The API also
AstioTech Contevence Cantre Pratade Valage Krightsbridge	indicated the position of the robot on
Praces how	googlemaps including the address. This API
	works perfectly. As can be seen, the address
Couple	of 9 9 th Street Killarney was located.

1 The Bridge	18650 cells and batteries powering the	
D'Matt	Hydrogas generator, liquid pump	
2 (Hudiogos + 1 - White -	This wire diagram was sketched for the relay	
Constolar of the time	circuit.	
D depuid + 57 - 57 - 50404 C	It shows how the Hydro-gas Generator, the	
Prine Participant	liquid pump and the lights are controlled and	
4) Bulberg	powered.	
11 and 24	The batteries that are used to power these	
विक्र विक्र विक्र विक्र विक्र	sensors were made by the developer from	
	upcycled and bought 18650 cells.	
	Rocker Boggy Suspension	
	The developer designed and 3D printed his	
	own version of the Rocker Boggy suspension	
	He made them strong by printing out	
	hollowed out legs in which he inserted 8mm	
	stainless steel metal rods in the leg. This	
	compensates for the weight of the robot and	
	any additional weight that it could carry as	
	well as ensuring that it would be able to	
	traverse uneven terrains easily.	
-11	The Differential	
1 to a set	The developer designed, developed and 3D	
	printed the differential for Agribot.	
	The differential converts a right rotation of	
A CONTRACT	motion to a left rotation of motion by	
ATTEND	inverting the rotation.	
17 AL	The differential balances the robot.	
	The differential was put into place as an auto-	
	leveller that does not use any electronics.	
	When one leg of the robot goes up the other	
	one goes down and vice versa	

	Software Defined Radio (SDR)
10000000000000000	The SDR was tested on many occasions and it
	picked up many radio frequencies including
	that of security radios, radio channels and on
and the second state of th	clear days vague airplane conversations with
	control towers. This sensor was successful.
Cathode Angde	Hydrogen Testing
	The electrolysis machine induces a current in a
Hydrogen Oxygen	liquid from an anode (+) and a cathode (-), this
Hydrogen Bubbles	current thus splits molecules and in the case
W W	of water produces hydrogen gas, oxygen gas –
← ←	and depending on your electrolyte chlorine
	(tap water)/a form of sodium.
1.0 T T T	Communication Box
	The communication Box holds a LoRa module
	that is connected through SPI to the Arduino
	nano. The nano and the LoRa were both
	powered by a single 18650 running through a
	voltage regulator to convert 3~4v to a stable
	3.3v.
	Photoresistor
	The photoresistor produces a resistance
	proportional to the light. This resistance is
*	read by an Arduino and detects a change, for
	that change it with send a digital high to a
	relay that will turn on the lights.
	GPS Module
	The GPS Module connects to the raspberry pi
	3b+ through serial and then communicates to
	a python program that records the data given
	out (latitude, longitude, pitch, etc.), this is
	pushed into a node.js express API that then
	speaks to a weather API and then gives

	Infrared Sensors
The second se	This sensor tells the Arduino and Raspberry pi
	if an object is in front of the robot. The robot
	will try to move away from the object and
	carry on its path.
2 A	Soil Moisture Sensors
	This sensor will give a percentage of moisture
	proportional to the moisture inside the soil,
	this data can be sent to the raspberry pi so
	that it can be store what soil moisture the soil
	is in an area thus show what plants you can
	plant there

- The electrical components took the most time to implement due to the different voltages needed for the different components. The developer did not have any prior knowledge of the way electrical components fit together. He learnt everything from the internet and Youtube videos. During the learning process, the developer burnt out component and wiring, which was extremely frustrating and upsetting for him, however this was the only way for him to learn to wire the robot. Additionally, the developer spent hundreds of hours researching and sourcing the best and most cost effective components from around the globe for Agribot.
- The 3D printing took the second most time because the wheels were printed using PTE (flexible) filament. The print took 17hours per wheel and the first four wheels failed between 7 and 12 hours during the print.
- The design of Agribot took many hours because of the research that went into the Reach
 Arm, the Rocker Boggy Suspension and the self-balancing body of the robot.
- The coding process was time consuming because the developer first had to learn a few coding languages, then code the robot, then tested, re-coded re-tested and repeated the process until he was satisfied that the movements were fluid and perfect.

COSTING

Description	Cost
3kg of PETG, PLA and TPE filament	R600.00
Estimated print cost	R1 000.00
M3 Bolts	R39.80
M4 Bolts	R59.40

M6 Bolts	R79.60
Nuts	R19.90
Breadboard	R117.33
Breadboard Wires	R33.91
Arduino Genuino 101 intel curie board with built in Gyrometer	R275.00
and Accelerometer	
18650 cells to form a battery (up cycled)	Free (upcycled)
Alligator Clips	Recycled (Free)
Soldering Wire	R55.90
Raspberry Pi 3 b+	R560.86
Cellotape	R20.00
Electrical Tape	R17.95
Zip Ties	R10.00
Steel Shafts	R100.00
Pulleys	R159.00
Belts	R120.00
USB Hub	Free (Borrowed)
Wifi Module/ Router	Free (Borrowed)
Flux	Free (came with soldering wire)
Hot glue	R26.51
LEDs	R49.55
Temperature and humidity sensor	R109.04
Pi Camera	R175.00
RTL – SDR Kit	R420.00
Ultrasonic Sensor	R44.60
Stepper Motors	R679.60
Bearings	R79.60
Buck module	R56.52
6X DC Motors	R1 134.00
5X Servos	R720.00
LoRa Module	R149.99
Photoresistor	R1.15
Weighing Sensor	R30.00

Weighing Cell	R69.00
5X Infrared Sensors	R245.00
Soil moisture sensor	R25.00
GPS module	R186.05
	R7 469.26

THE PREVIOUS PROTOTYPES

PROTOTYPE 1

SCIETMEER PRECISION ROBOT (SPR101)

	SPR101's wheels were based on a double
	bicycle chain on each side of the robot, thus
	making up two bicycle chains in total, which
	would have been driven by a single sprocket
	driver and at the base of the robot's chain was
	a pulley on each axel. The base axel sprockets
	were substituted for pulleys with a bicycle
	sprocket in its middle, this was to ensure that
	the chain does not jump the pulleys.
	The blue section is the case around the
	Raspberry Pi. The red piece on top of the blue is
	a casing for the electrical boards
	The blue section here is the casing around the
	battery, and the yellow pieces are the M4 bolts
* *	
	Aerial view of the preliminary thinking and
	designs on Fusion 360.

	The parts on SPR 101 had to be adjusted by re-
	designing and re-printing some of the parts to
	ensure that they fit correctly and to ensure that
	the chain does not skip and also to ensure that
	the motors were able to handle to pressure of
	these PLA filament home-made pulleys.
	The most difficult assembly was that of the
	chain, because a chain breaker had to be used
	to break the bicycle chain and then reconnect
	the two ends to make it the correct size chain
	for the robot. Figuring out the places that the
	sprockets should go in, and the alignment of
	the motor to the main drive by getting the
	stepper motor pulley and belt tensioned
	accurately was also quite difficult.
	accurately was also quite difficult.

PROTOTYPE 2

SCIETMEER PRECISION ROBOT (SPR 102)

Due to the limitations presented by SPR101 including the following, the developer decided to redesign, re-print and re manufacture the current prototype SPR102:

- The mass of SPR101 was too heavy for the motors to handle
- The design of the chain system was too complicated for the developer to perfect with the time

constraints

- SPR 101 was bulky in design.
- SPR101 had sharp edges that could easily get hooked onto rocks and netting.
- The electrical components did not have proper places for them to fit on SPR101

The developer decided to use stepper motors instead of a chain driven motor

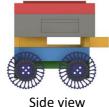
OT ETPune 4P3S	The preliminary design thoughts were roughly
and the second se	sketched out first.
THE THE	The developer designed SPR 102 on Fusion 360.
- Change weeks	SPR 102 was designed around the electrical
the second se	components thus making it a very compact
Lesson and the second	robot. Once the design was done, the
	developer was able to 3D print SPR 102.

	The print went well over the first day and the
	developer was able to start the assembly of the
	parts ¹¹ with ease because the measurement of
	all the electronics that were to be fitted onto
	SPR102 had been made provision for during the
	design. This also ensured that the parts fitted
	well together.
	Saving your work from the python console
	Available at: http://blog.e-shell.org/174 Date
	accessed: 18 June 2019
1	Part E is the axel to hold the wheels
	Initially the developer designed and printed a
	wider wheel for SPR 102. After a testing process
	of the movement with this wheel the developer
	conducted further research in order to
	understand the type of wheel that would exert
	more torque.
	Research indicated that a thinner wheel
	exerted more torque that a wider wheel which
	led the developer to redesign the wheels.

¹¹ pi 2 - How to connect Raspberry Pi to 3 stepper motors - Raspberry Pi Stack Exchange Available at: <u>https://raspberrypi.stackexchange.com/questions/57667/how-to-connect-raspberry-pi-to-3-stepper-motors</u> Date accessed: 20 June 2019

PROTOTYPE 3

SCIETMEER PRECISION ROBOT (SPR 103)


Due to the limitations presented by SPR102, the developer decided to redesign, re-print and re manufacture the prototype Scietmeer3: Precision Robot and Mobile Science Lab.

The developer decided that even though SPR 102 moved and worked well he was keen to refine the prototype in order to ensure that all the electrical components fit more neatly onto the body. He furthermore felt the need to print wheels for the robot using flexible filament so that Scietmeer3 would be able to easily manoeuvre on rough terrains such as a cave. Additionally, he added a cover to the top of Scietmeer3's body so as to protect the electrical components from the elements.

Scietmeer3's design was very similar to that of SPR102, however it was designed, printed and built to fit the electrical components, the sensors, the batteries, an extra battery and the battery bank snugly and more comfortably. The wiring was also neatened up a lot on Scietmeer3.

The wheels were redesigned and reprinted in a flexible filament. This new design made the robot more agile on rough terrain.

The following pictures depict the design of Scietmeer3 on Fusion360

Front view

PROTOTYPE 4

SCIETMEER PRECISION ROBOT (SPR 104)

Due to the developer's continuous research, he decided to upgrade the prototype and as such set out to develop and design Scietmeer4: Precision Robot and Mobile Science Lab.

Scietmeer4 was a completely new robot with a wheelbase and suspension. The 'Rocker Boggy'¹² suspension was adopted (referenced to the Mars Rover Curiosity) as this would mean more

¹² Rocking Dave (2017) Why do Mars Rovers have 6 wheels attached in this weird way?: Available at: <u>https://steemit.com/space/@rocking-dave/why-do-nasa-mars-rovers-have-6-wheels-attached-in-this-weird-way</u>: Date accessed: 14 September 2019

flexibility in terms of movement. This suspension would allow Scietmeer4 to climb stairs, thus enabling agility on rough and rocky terrains.¹³

Once again, the body of the Robot was widened and lengthened to be able to neatly and comfortably fit all components such as batteries, Arduino, Raspberry Pi, Wiring, Sensors etc. An SMS API was implemented onto Scietmeer4

The developer designed the wheels from scratch.

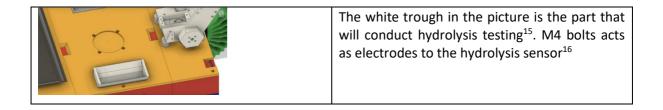
Three dimensional view of the wheel ¹⁴
The wheels were printed in a flexible filament (TPE). Each wheel took 17 hours to print. These wheels are broader and have a greater infill than that of Scietmeer4, due to the size of the Robot's body
Scietmeer4 was equipped with a 'Rocker Boggy' suspension and six wheels. This would allow for more agility over rough terrain.
Bottom view of Scietmeer 4

PROTOTYPE 5

SCIETMEER PRECISION ROBOT (SPR 105)

During the testing phase of Scietmeer4 at a Hackathon a careless onlooker broke the leg of Scietmeer4 thereby causing damage.

¹³ Bhardwaj (2015) *Design analysis of Rocker Bogie Suspension System and Access the possibility to implement in Front Loading Vehicles:* Available at: <u>https://www.researchgate.net/publication/330854620 Design analysis of Rocker Bogie Suspension System and Access the possibility to implement in Front Loading Vehicles:</u> Date accessed: 05 September 2019


¹⁴ Wheels 24 (2019) No more punctures: Michelin GM goes reveals airless tyres for passenger cars: Available at: <u>https://www.wheels24.co.za/News/Gear_and_Tech/no-more-punctures-michelin-gm-goes-reveals-airless-tyres-for-passenger-cars-20190613</u>: Date accessed: 03 August 2019

The developer managed to patch up the leg for the presentation and judging process, however this got him thinking about strengthening the legs of Scietmeer. Apart from this he decided to further enhance Scietmeer 5 with the following additions:

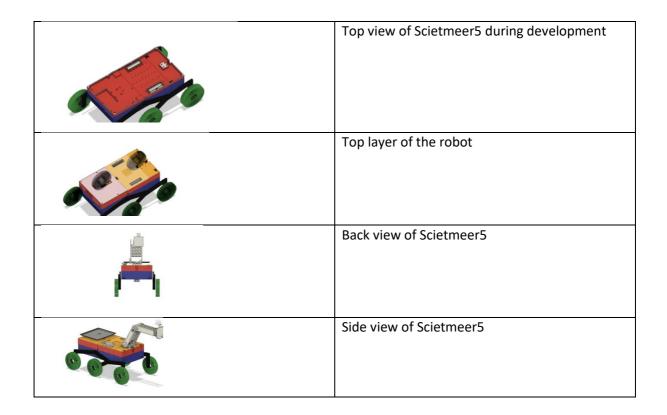
- The redesign of sturdier stronger legs printed in PETG filament, which is stronger than PLA
- · Additional batteries for longer usage of the robot
- · A Reach Arm for gathering samples
- A *loading plate* to drop samples onto, so that multiple samples could be collected from one place
- · Hydrolysis testing
- · LoRa modules to enable a 10km wireless range
- GSM to enable the robot to be used from anywhere in the world
- GPS API to be able to provide locations and for the robot to be able to navigate to exact locations

Reprinting and adding on additional components and batteries meant that the electrical components on Scietmeer5 had to be completely rewired.

In addition to the SMS API, the developer added on the API which enables location services. This would allow Scietmeer5 to transmit exact locations to the user or be sent to an exact location by the user e.g. farmer in agricultural situations, to assist with exact locations for search and rescue and in archaeological sites.

¹⁵ Make it big *DIY Hydrogen Generator* Available at: <u>https://www.instructables.com/id/DIY-hydrogen-generator/</u> Date accessed: 01 March 2016

¹⁶ The king of Random (2015) *How to Convert Water Into Fuel by Building a DIY Oxyhydrogen Generator* Available at: <u>https://www.instructables.com/id/How-to-Convert-Water-into-Fuel-by-Building-a-DIY-O/</u> Date accessed: 01 March 2016


	A closer look at the hydrolysis testing trough
	A cross section of Scietmeer5 cut in half.
	Reach Arm. The elbow allows for 360 degree movement. ¹⁷
056	Front view of the reach arm and elbow ¹⁸
	Wrist bearing on the Reach Arm ¹⁹
	A closer look at the bearing for the base of the Reach Arm.
	A cross section of the base bearing

¹⁷ Kang (2016) 6 DoF robot arm test; Available at: <u>https://www.youtube.com/watch?v=uBP4FCDORtQ</u> : Date accessed: 12 October 2019

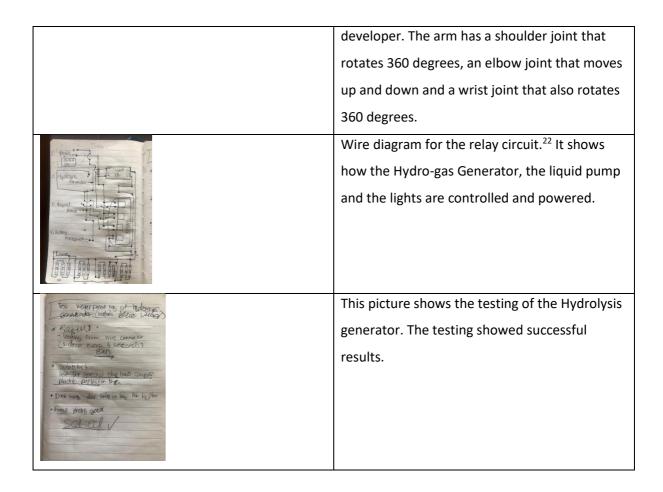
¹⁹ Beck (2015) Arduino / Teensy 6 DOF / Axis Robotic Arm Inverse Kinematics: Available at: <u>https://www.youtube.com/watch?v=AGHwW5TSNCY</u>: Date accessed: 01 September 2019

¹⁸ Geminy studio (2016) Robot Arm - Arduino & 3D Printer project Available at: <u>https://www.youtube.com/watch?v=QOcm2gTX_8U</u> Date accessed: 17 November 2019

Side view of the cross section of the base bearing
The base bearing of the Reach Arm connected to the body of Scietmeer5.
The loading tray, which will be used for the collection of samples
The side view of the loading tray and where the load cell will fit in the yellow part.
A view of the bottom of Scietmeer5. The box at the bottom hold the SDR (Software Defines Radio).
Bottom view of Scietmeer5
Side view of the tiers of the body of Scietmeer5
Front view of the inside of Scietmeer5.

CURRENT PROTOTYPE: AGRIBOT

The developer changed the legs of the Rocker Boggy design to compensate for a lack of stability and support. This new leg design allows for better precision and easier turning movements. The new leg design ensures that the legs are sturdier and stronger.


The developer researched existing designs on Nasa's 'Curiosity' Rover.²⁰ He then created his own design using Autodesk Autocad Fusion360.

²⁰ Mars engineering curiosity: Available at: <u>https://www.lpi.usra.edu/education/explore/LifeOnMars/activities/pdfs/CuriosityToolsSchematic.pdf</u>: Date accessed: 14 February 2020

Har was were able to a second of the second	These pictures show the initial sketch and design of the legs. ²¹
	The developer 3D printed the hollowed out legs in which he inserted 8mm stainless steel metal rods to create a stronger leg that could also compensate for the weight of the robot and any additional weight that it could carry samples and aid in search and rescue operations etc.
	The above pictures show the developer cutting the 8mm stainless steel rods, using handsaw and a bench-press, to size to be inserted into the 3D printed legs. He held the rods in place with a bench press while he used a hand saw to cut them.

²¹ Nasa Science (2009) From legs to wheels: Available at: <u>https://mars.nasa.gov/resources/24247/from-legs-to-wheels/</u> Date accessed: 14 February 2020

The differential was sketched first before it was designed on Autocad Autodesk Fusion 360.
This is where the legs connect to the differential rod. The differential was put into place as an auto- leveller that does not use any electronics. When one leg goes up the other one goes down and vice versa.
The developer is assembling the turning mechanism on the legs. There are four turning mechanisms on the robot.
This is the preliminary testing of Agribot's ability to ascend and descend stairs.
Scietmeer5 and Agribot was fitted with a pincer that would be able to collect soil and water samples. The pincer was designed with a scoop to make the collection of water samples easy. The ends of the pincer have ridges on them to assist with the grip of samples so that they do not slip when they are being placed on the weigh scale. The pincer is attached to the arm of Scietmeer. This arm was designed and 3D printed by the

ERRORS AND LIMITATIONS

- *Time limitations:* The project was time intensive as the developer needed to self-learn and apply every aspect of the process, design, electronics, coding, mechanical, software engineering and assembly of the robot. This was exacerbated as the developer was 14 years old at the time, has a full school and religious study during the day and needed to do all work at nights, on the weekends and during the holidays.
- Accessibility of parts: The developer acquired specialised components such as the Adafruit Hat and Arduino hat for SPR101; the SDR (Software Defined Radio); the LoRa module (Long Range module), which is available from Amazon and Bangood in China. These parts were difficult to find locally and if they were available locally they were more expensive than importing them.

²²CircuitMaker workspace Activation: Available at: https://shell.circuitmaker.com/activate/EE6B1310-4FEB-4940-9E7F-6677F1453C69?mkt_tok=eyJpljoiWVdVM01qSTFOelF5TkRBeilsInQiOiJxeHF0bTlyamRpY1ZidlBkQjRzdHhYNU5CZ0tpYXV6 aGdwRXk1SzlORTR1YUw0aDVTUTVuK3k4dUNHQkZ0K3FDM1ZqZ3daNStxRkdGdDJOTmVoYVp4WHhkTVdVMVdTTThadz dOdjVxUm1IUVZvRXE1Nm9VdlhKYWRGa0FSMjdKWiJ9 Date accessed: 21 June 2019

- *Covid-19:* Due to the Covid-19 pandemic and lockdown, any burnt out electronic parts as well as simple bolts and nuts were almost impossible to obtain. This was due to the closure of and inaccessibility of many stores as well as the inability to order any parts from China or through Amazon. The developer had to redesign certain parts in order to make do with whatever he had available
- Burnt out electrical parts: Electrical engineering errors and faults led to burning out of components and parts during the learning process. This would however on the positive side result in practical and valuable lessons
- Limited access to mentors / professionals: None or very limited access to a mentor that understood the full scope of the prototypes. Main sources of information was the internet, YouTube and trial and error to get different parts of the design, the coding, the electrical components and the mechanical components to work.
- *Cost of parts:* The developer was 15 years old at the time; he does not have an independent income and has no sponsor. The developer depended on his own pocket money, available devices in the home, his parents, recycling, and borrowing of tools and parts.
- 3D Printer Problems: The 3D printer resulted in failures due to the heat bed, the PINDA (Prusa Induction Auto Levelling Probe) faults and the fluctuation of outside temperatures. Any failures to the 3D printer resulted in long delays; expenses and components that had to be shipped in from Prague.
- *Filament Humidity and Temperature:* The filament is stored in the developer's bedroom in an apartment. The slightest amount of humidity caused the filament to destroy itself. The filament needed to be dried out by putting it into zip lock bags The ideal temperature for filament is between -20 degrees Celsius and +30 degrees Celsius and the filament humidity range has to be below 50% humidity.
- *Filament Problem 1:* The prints needed to take place at night and took long periods of time to complete. Filament levels can be underestimated and there is no filament sensor on the printer. This resulted in failed and costly prints.
- *Filament Problem 2:* A knot in the filament would lead to the Bowden tube clogging inside the hot-end. This required the developer to use a "cold pull technique". This entails inserting a piece of filament, then setting the nozzle temperature to 215 degrees Celsius and then letting the temperature cool down to around 170 degrees Celsius and then pulling the filament out from the bottom of the nozzle with force. This increased the time, frustrations and costs.

- *Filament Problem 3:* The nozzle blocked up with filament. This required the developer to push an acupuncture needle up the bottom of the nozzle and then use the "cold pull technique" to pull out the blocked filament.
- *Printer Fails:* Due to load shedding and sudden power cuts the print failed. Prints needed to be timed out of load shedding schedules. However unplanned power cuts led to failed prints

CONCLUSION

From the above investigations, it was verified that a home-made robot does not have to be expensive to build. It can be built using mainly recycled, up-cycled, borrowed and biodegradable materials.

Agribot was fitted with a range of sensors and APIs which after much testing yielded positive results. There were minor discrepancies on some of the sensors, however they did provide the information that was intended.

Agribot is coded in Python and Arduino (C++). The developer is an exceptional coder for his age and has won many awards in this field. Therefore the coding for the movement of Agribot is precise and exact. The coding process was also used to collect data through the sensors via the Arduino and this process was also accurate.

The electronics of connecting all the sensors onto Agribot was extremely difficult. The developer went through a trial and error process in this area. With persistence he obtained success. Since the developer has been successful in 3D printing and 3D design the design and 3D printing of Agribot is was so precise that the parts fit accurately together making the assembly of Agribot easy.

Although the developer has had challenges with the weight bearing and shoulder servo on the reach arm of Agribot, he views this as a challenge and as soon as parts are more accessible he aims to tackle this challenge with renewed energy.

The developer researched and learned about electrical and mechanical engineering as well as increased his knowledge on software engineering, the project of building six prototypes took approximately eighteen months to design, develop, build and code. It is important to note that the developer devoted all his weekends, holidays and spare time and many sleepless nights to this project.

ACKNOWLEDGEMENTS

The developer would like to acknowledge the following people for their assistance and kindness:

42

- Firstly, he thanks the Almighty for granting him the ability to complete Agribot.
- Thank you to his parents for the financial and emotional support during the project.
- Thank you to his grandparents, uncles, aunts and cousins for their motivation and support.
- Thank you to his, teachers and school friends for their continuous support and encouragement.

REFERENCES

- Monk (2012) Configuring the Pi for I2C | Using the BMP085/180 with Raspberry Pi or Beaglebone Black | Adafruit Learning System Available at: <u>https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c</u> Date accessed: 04 April 2019
- Ada (2019) Stacking HATs | Adafruit DC and Stepper Motor HAT for Raspberry Pi | Adafruit Learning System Available at: <u>https://learn.adafruit.com/adafruit-dc-and-stepper-motor-hat-for-raspberry-pi/stackinghats</u> Date accessed: 06 April 2019
- Walsh (2015) Access Mac Camera by Command Line Available at: <u>https://davidwalsh.name/mac-camera</u> Date accessed: 09 May 2019
- Rembor (2018) Introduction Adafruit MotorKit Library 1.0 documentation Available at: <u>https://circuitpython.readthedocs.io/projects/motorkit/en/latest/</u> Date accessed: 25 May 2019
- Ada (2019) Assembly | Adafruit DC and Stepper Motor HAT for Raspberry Pi | Adafruit Learning System Available at: <u>https://learn.adafruit.com/adafruit-dc-and-stepper-motor-hat-for-raspberry-pi/assembly</u> Date accessed: 29 May 2019
- Lesniak (2019) MotorHat Class | Adafruit Class Library for Windows IoT Core | Adafruit Learning System Available at: <u>https://learn.adafruit.com/adafruit-class-library-for-windows-iot-core/motorhat-class</u>

Date accessed: 29 May 2019

- 7. Ada (2019) Installing Software | Adafruit DC and Stepper Motor HAT for Raspberry Pi | Adafruit Learning System Available at: <u>https://learn.adafruit.com/adafruit-dc-and-stepper-motor-hat-for-raspberry-pi/installing-software</u> Date accessed: 29 May 2019
- Ada (2019) Digital I/O | CircuitPython on Linux and Raspberry Pi | Adafruit Learning System Available at: <u>https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/digital-i-o</u> Date accessed: 29 May 2019
- 9. Earl (2019 Types of Steppers | All About Stepper Motors | Adafruit Learning System Available at: <u>https://learn.adafruit.com/all-about-stepper-motors/types-of-steppers</u> Date accessed: 29 May 2019
- 10. Earl (2019) What is a Stepper Motor? | All About Stepper Motors | Adafruit Learning System Available at: <u>https://learn.adafruit.com/all-about-stepper-motors/what-is-a-stepper-motor</u> Date accessed: 29 May 2019
- 11. Ada (2018) Installing CircuitPython Libraries on Raspberry Pi | CircuitPython on Linux and Raspberry Pi | Adafruit Learning System Available at: <u>https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi</u> Date accessed: 29 May 2019
- 12. Park (2019) Control Your Robot's Speed | CurieBot: Arduino 101 Mini Robot Rover | Adafruit Learning System Available at: <u>https://learn.adafruit.com/all-about-stepper-motors/matching-the-driver-to-the-stepper</u>

Date accessed: 29 May 2019

- 13. [SOLVED] Pololu pulsing issue Available at: <u>https://reprap.org/forum/read.php?219,86951</u> Date accessed: 29 May 2019
- 14. Earl (2019) Matching the Driver to the Stepper | All About Stepper Motors | Adafruit Learning System Available at:

https://learn.adafruit.com/all-about-stepper-motors/matching-the-driver-to-the-stepper Date accessed: 29 May 2019

- 15. Monk (2019) Configuring I2C | Adafruit's Raspberry Pi Lesson 4. GPIO Setup | Adafruit Learning System Available at: <u>https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c</u> Date accessed: 29 May 2019
- 16. Earl (2019) Driving a Stepper | All About Stepper Motors | Adafruit Learning System Available at: <u>https://learn.adafruit.com/all-about-stepper-motors/driving-a-stepper</u> Date accessed: 29 May 2019
- 17. Michael (2014) www.RobotScience.co.za is where teenagers age 14+ learn to build robots from electronic parts
 Available at: <u>http://roboscience.co.za/about/index.htm</u>
 Date accessed: 30 May 2019
- 18. Circuit Construction Kit: DC Available at: <u>https://phet.colorado.edu/sims/html/circuit-construction-kit-dc/latest/circuit-construction-kit-dc/latest/circuit-construction-kit-dc_en.html</u> Date accessed: 31 May 2019
- 19. Michael Reeves Tutoring
 Available at:
 <u>https://michaelreeves.us/pages/tutoring.html</u>
 Date accessed: 06 June 2019
- 20. 3. CGI module Python Notes (0.14.0)
 Available at:
 <u>https://thomas-cokelaer.info/tutorials/python/module_cgi.html</u>
 Date accessed: 13 June 2019
- 21. Torobot 32 Channel USB UART Servo Motor Controller Robotics Bangladesh Available at: <u>https://store.roboticsbd.com/motor-driver/306-torobot32-channel-usb-uart-servo-motorcontroller-robotics-bangladesh.html</u> Date accessed: 02 June 2019
- 22. Rdagger68 (2017) How to control bi-polar stepper motors on a Raspberry Pi in Python using a DRV-8825 stepper motor driver Available at:

https://www.youtube.com/watch?v=LUbhPKBL_IU Date accessed: 13 June 2019

- 23. Knight of Pi (2018) Python-Webframework Django on a Raspberry Pi Available at: <u>http://www.knight-of-pi.org/python-webframework-django-on-the-raspberry-pi/</u> Date accessed: 16 June 2019
- 24. Fasilkom (2017) Controlling Raspberry Pi with Django Ristek Fasilkom Medium Available at: <u>https://medium.com/ristek-fasilkom/controlling-raspberry-pi-with-django-a91940fc3f4d</u> Date accessed: 16 June 2019
- 25. Rovai (2018) Python WebServer With Flask and Raspberry Pi Towards Data Science Available at: <u>https://medium.com/m/global-</u> <u>identity?redirectUrl=https%3A%2F%2Ftowardsdatascience.com%2Fpython-webserver-with-flask-and-raspberry-pi-398423cc6f5d</u> Date accessed: 16 June 2019
- 26. Murugavel (2018) Python CGI Example(Install and Simple Example)
 Available at:
 <u>https://medium.com/@manivannan_data/python-cgi-example-install-and-simple-example-59e049128406</u>

 Date accessed: 16 June 2019
- 27. Ghimire (2018) Getting Started 1 Raspberry Pi Setup & TeamViewer Connection (Embedded Systems for AI) Available at: <u>https://medium.com/@ghimire.aiesecer/getting-started-raspberry-pi-setup-teamviewerconnection-77df16e901fe</u> Date accessed: 16 June 2019
- 28. Bahl (2018) Read Arduino Serial Monitor Using NodeJS Hacker Noon Available at: <u>https://medium.com/m/global-</u>

identity?redirectUrl=https%3A%2F%2Fhackernoon.com%2Farduino-serial-data-796c4f7d27ce Date accessed: 16 June 2019

 29. Repl.it - Online Python Editor and IDE - Fast, Powerful, Free Available at: <u>https://repl.it/languages/python3</u> Date accessed: 17 June 2019

- 30. Pena (2018) How to run a Python Script onclick event from JavaScript? Available at: <u>https://medium.com/@NadyaCPena/how-to-run-a-python-script-onclick-event-from-javascript-e5ac79a0320</u> Date accessed: 17 June 2019
- 31. Weaver (2018) Controlling Stepper Motors using Python with a Raspberry Pi Available at: <u>https://medium.com/@Keithweaver_/controlling-stepper-motors-using-python-with-a-raspberry-pi-b3fbd482f886</u> Date accessed: 20 June 2019
- 32. Muthiyan (2017) Getting out of the emergency mode in ubuntu Neha Muthiyan Medium Available at: <u>https://medium.com/@nehamuthiyan/getting-out-of-the-emergency-mode-in-ubuntu-818180ce3940</u> Date accessed: 20 June 2019
- 33. Arduino Uno and HY-SRF05 ultrasonic sensor example Arduino Learning Available at: <u>http://arduinolearning.com/code/arduino-uno-and-hy-srf05-ultrasonic-sensor-example.php</u> Date accessed: 06 June 2019
- 34. Operators and Expressions in Python Real Python Available at: <u>https://realpython.com/python-operators-expressions/</u> Date accessed: 23 June 2019
- 35. Jarrel (2018) Data Types & Large Digit Sums (Python) codeburst Available at: <u>https://medium.com/m/global-identity?redirectUrl=https%3A%2F%2Fcodeburst.io%2Fdata-types-large-digit-sums-python-29a8646715e3</u> Date accessed: 22 June 2019
- 36. Saving your work from the python console Available at: <u>http://blog.e-shell.org/174</u> Date accessed: 18 June 2019
- 33.20.2. cgi Common Gateway Interface support Python 2.7.16 documentation Available at: <u>https://docs.python.org/2/library/cgi.html</u> Date accessed: 17 June 2019
- 34. cgi Common Gateway Interface support Python 3.7.3 documentation

Available at:

https://docs.python.org/3/library/cgi.html Date accessed: 16 June 2019

- 35.How to run python script in webpage Stack Overflow Available at: <u>https://stackoverflow.com/questions/7460938/how-to-run-python-script-in-webpage</u> Date accessed: 16 June 2019
- 36. Python scripts in HTML Stack Overflow
 Available at:
 <u>https://stackoverflow.com/questions/5842487/python-scripts-in-html</u>
 Date accessed: 16 June 2019
- 37. Building a website with Python Flask PythonHow Available at: <u>https://pythonhow.com/building-a-website-with-python-flask/</u> Date accessed: 16 June 2019
- 38. Pourki (2018) How making a website with Python works PythonHow Available at: <u>https://pythonhow.com/how-making-a-website-with-python-works/</u> Date accessed: 16 June 2019
- 39. cgi Common Gateway Interface support Python 3.7.3 documentation Available at: <u>https://docs.python.org/3/library/cgi.html</u>
 Date accessed: 16 June 2019
- 40. Orsini (2014) How To Host A Website With Raspberry Pi ReadWrite Available at: <u>https://readwrite.com/2014/06/27/raspberry-pi-web-server-website-hosting/</u> Date accessed: 16 June 2019
- 41. How can I make a time delay in Python? Stack Overflow
 Available at:
 <u>https://stackoverflow.com/questions/510348/how-can-i-make-a-time-delay-in-python</u>
 Date accessed: 23 June 2019
- 42. CircuitMaker workspace Activation Available at: <u>https://shell.circuitmaker.com/activate/EE6B1310-4FEB-4940-9E7F-</u> <u>6677F1453C69?mkt_tok=eyJpIjoiWVdVM01qSTFOeIF5TkRBeilsInQiOiJxeHF0bTlyamRpY1ZidI</u> <u>BkQjRzdHhYNU5CZ0tpYXV6aGdwRXk1SzIORTR1YUw0aDVTUTVuK3k4dUNHQkZ0K3FDM1ZqZ</u>

<u>3daNStxRkdGdDJOTmVoYVp4WHhkTVdVMVdTTThadzdOdjVxUm1lUVZvRXE1Nm9VdlhKYWR</u> <u>Ga0FSMjdKWiJ9</u>

Date accessed: 21 June 2019

- 43. Raspberry Pi Web Server using Flask to Control GPIOs | Random Nerd Tutorials Available at: <u>https://randomnerdtutorials.com/raspberry-pi-web-server-using-flask-to-control-gpios/</u> Date accessed: 17 June 2019
- 44. Python Write terminal output to file then read file Stack Overflow
 Available at:
 <u>https://stackoverflow.com/questions/47376705/python-write-terminal-output-to-file-then-read-file</u>

 Date accessed: 17 June 2019
- 45. pi 2 How to connect Raspberry Pi to 3 stepper motors Raspberry Pi Stack Exchange Available at:

https://raspberrypi.stackexchange.com/questions/57667/how-to-connect-raspberry-pi-to-3stepper-motors Date accessed: 20 June 2019

 46. How to Unmount a CIFS Share From a Directory You Own (Solaris CIFS Administration Guide) Available at: <u>https://docs.oracle.com/cd/E19120-01/open.solaris/820-</u> <u>2429/unmountsharetask/index.html</u> Date accessed: 20 June 2019

- 47. Laurb9 (2019) GitHub laurb9/StepperDriver: Arduino library for A4988, DRV8825, DRV8834, DRV8880 and generic two-pin (DIR/STEP) stepper motor drivers
 Available at:
 <u>https://github.com/laurb9/StepperDriver</u>
 Date accessed: 26 June 2019
- 48. How to write to multiple GPIOs at the same time Raspberry Pi Stack Exchange Available at: <u>https://raspberrypi.stackexchange.com/questions/59583/how-to-write-to-multiple-gpios-</u> at-the-same-time

Date accessed: 30 June 2019

49. Python - How do I write data to a file, and not just print to console window - Raspberry Pi Stack Exchange Available at: <u>https://raspberrypi.stackexchange.com/questions/92741/how-do-i-write-data-to-a-file-and-not-just-print-to-console-window</u>

Date accessed: 17 June 2019

- 50. Mertz (2018) Documenting Python Code: A Complete Guide Real Python Available at: <u>https://realpython.com/documenting-python-code/</u> Date accessed: 27 June 2019
- 51. Kishore (2009) How to Fix "not recognized as an internal or external command" in Windows Available at: <u>https://helpdeskgeek.com/how-to/fix-not-recognized-as-an-internal-or-external-command/</u>

Date accessed: 01 June 2019

- 52. Turkel et.al. (2018) Output Data as an HTML File with Python | Programming Historian Available at: <u>https://programminghistorian.org/en/lessons/output-data-as-html-file</u> Date accessed: 01 July 2019
- 53. Surbhi et.al. (2019) Rescue Robot A Study Available at: <u>http://www.rroij.com/open-access/rescue-robota-study.php?aid=43661</u> Date accessed: 22 July 2019
- 54. Israel21c staff (2018) Meet the new search and rescue creepy crawley robot Available at: <u>https://www.israel21c.org/meet-the-new-creepy-crawly-search-and-rescue-robot/</u> Date accessed: 22 July 2019
- 55. Gohd (2017) Snake robots could allow us to explore the caverns of Mars Available at: <u>https://futurism.com/snake-robots-could-allow-us-to-explore-the-caverns-of-mars</u> Date accessed: 22 July 2019
- 56. Wheels 24 (2019) No more punctures: Michelin GM goes reveals airless tyres for passenger cars Available at: <u>https://www.wheels24.co.za/News/Gear_and_Tech/no-more-punctures-michelin-gm-goes-reveals-airless-tyres-for-passenger-cars-20190613</u>

Date accessed: 03 August 2019

- 57. Rouse (2017) Agbot (Agricultural Robot) Available at: <u>https://whatis.techtarget.com/definition/agbot-agricultural-robot</u> Date accessed: 05 November 2019
- 58. Photomodeler Technologies What is photogrammetry Available at:

https://www.photomodeler.com/products/photogrammetrysoftware/?gclid=EAIaIQobChMIjPGzkIXx5QIVBLTtCh27Vg_vEAAYASAAEgKnFvD_BwE Date accessed: 17 November 2019

- 59. JerryRigEverything (2017) What is the gold play button REALY made of? Available at: <u>https://www.youtube.com/watch?v=yHA2HbNtcG4</u> Date accessed: 28 August 2019
- 60. CodeCommenterTeam (2018) *How to become a programmer: 8 steps to building an App from scratch* Available at: <u>https://www.codementor.io/codementorteam/how-to-build-app-from-scratch-beginner-programmer-7z0atq56w</u> Date accessed: 28 August 2019
 - 61. Android Authority (2015) Writing your first Android App- Everything you need to know Available at: <u>https://www.youtube.com/watch?v=mAJeK283j0I</u> Date accessed: 28 August 2019
 - 62. Krol (2018) 10 Excellent programmes from building mobile Apps Available at: <u>https://mashable.com/article/build-mobile-apps/</u> Date accessed: 28 August 2019
 - 63. Turner (2019) Best mobile app development software of 2019
 Available at:
 <u>https://www.techradar.com/best/best-mobile-app-development-software</u>
 Date accessed: 28 August 2019
 - 64. Krol (2018) 10 Excellent programmes from building mobile Apps Available at: <u>https://mashable.com/article/build-mobile-apps/</u> Date accessed: 28 August 2019
 - 65. MIT (2019) Robo thread Available at: <u>https://www.youtube.com/watch?v=INSyV4dgqu8</u> Date accessed: 28 August 2019
 - Raspberry Pi (2017) DS18B20 Temperature sensor with Python (Raspberry Pi) Available at: <u>https://bigl.es/ds18b20-temperature-sensor-with-python-raspberry-pi/</u> Date accessed: 01 September 2019
 - 67. Rocking Dave (2017) Why do *Mars Rovers have 6 wheels attached in this weird way?* Available at:

https://steemit.com/space/@rocking-dave/why-do-nasa-mars-rovers-have-6-wheelsattached-in-this-weird-way

Date accessed: 14 September 2019

- 68. Sadaghdar (2016) Fake and real wireless power Available at: <u>https://www.youtube.com/watch?v=TQwGjhwPEik</u> Date accessed: 17 September 2019
- 69. Spiess (2017) #112 LoRa / LoRaWAN De-Mystified / Tutorial

Available at: <u>https://www.youtube.com/watch?v=hMOwbNUpDQA</u> Date accessed: 25 September 2019

- 70. Electronoobs (2019) PROTOCOLS: UART I2C SPI Serial communications #001
 Available at:
 <u>https://www.youtube.com/watch?v=lyGwvGzrqp8</u>
 Date accessed: 28 September 2019
- 71. Sparkfun Electronics (2019) *PROTOCOLS:* Product Showcase: LoRa Raspberry Pi Gateway with Enclosure
 Available at:
 <u>https://www.youtube.com/watch?v=yTtr8a9sDe4</u>
 Date accessed: 28 September 2019
- 72. The thought emporium(2019) Worlds Smallest Tesla Valve? Shrinky Dink (Shrink Film) Microfluidics Available at: <u>https://www.youtube.com/watch?v=eNBg_1GPuH0</u> Date accessed: 10 October 2019
- 73. Boston Dynamics (2018) Vision-free MIT Cheetah Available at: <u>https://www.youtube.com/watch?v=QZ1DaQgg3IE</u> Date accessed: 11 October 2019
- 74. Kang (2016) 6 DoF robot arm test
 Available at:
 <u>https://www.youtube.com/watch?v=uBP4FCDORtQ</u>
 Date accessed: 12 October 2019
- 75. Intact Abode (2017) *How to Create Simple DataEntry Form in Java Swing with Database Part* 2

Available at: <u>https://www.youtube.com/watch?v=Lq-sgeYAvq4</u> Date accessed: 10 November 2019

- 76. UMK games (2016) Java Calculator App Development Tutorial 2 | Swing | GUI Available at: <u>https://www.youtube.com/watch?v=IDK8E9Wq9LA</u> Date accessed: 10 November 2019
- 77. Geminy studio (2016) Robot Arm ARDUINO & 3D PRINTER PROJECT Available at: <u>https://www.youtube.com/watch?v=QOcm2gTX_8U</u> Date accessed: 17 November 2019
- 78. Robotnor Created for advanced Robotics
 Available at:
 <u>https://robotnor.no/research/serpentine-robots-for-planetary-exploration-serpex/</u>

 Date accessed: 12 April 2019
- 79. R Star (2018) The creeping crawling robot Avalable at: <u>https://www.labroots.com/trending/technology/12144/rstar-creepy-crawling-robot</u> Date accessed 12 April 2019
- 80. White (2018) Three agribots transforming the farming industry
 Available at: <u>https://www.themanufacturer.com/articles/three-agribots-revolutionising-the-farming-industry/</u>

 Date accessed: 11 October 2019
- Freethink (2017) Uprising Rescue Bots
 Available at: <u>https://www.freethink.com/shows/uprising/search-and-rescue-robots</u>
 Date accessed: 12 April 2019
- 82. Nasa Science (2009) From legs to wheels
 Available at: <u>https://mars.nasa.gov/resources/24247/from-legs-to-wheels/</u>
 Date accessed: 14 February 2020
- *83. Mars engineering curiosity* Available at:

https://www.lpi.usra.edu/education/explore/LifeOnMars/activities/pdfs/CuriosityToolsSche matic.pdf

Date accessed: 14 February 2020

84. Bhardwaj (2015) Design analysis of Rocker Bogie Suspension System and Access the possibility to implement in Front Loading Vehicles
 Available at:

https://www.researchgate.net/publication/330854620 Design analysis of Rocker Bogie Suspension System and Access the possibility to implement in Front Loading Vehicle Date accessed: 05 September 2019

- 85. Beck (2015) Arduino / Teensy 6 DOF / Axis Robotic Arm Inverse Kinematics Available at: <u>https://www.youtube.com/watch?v=AGHwW5TSNCY</u> Date accessed: 01 September 2019
- 86. The king of Random (2015) How to Convert Water Into Fuel by Building a DIY Oxyhydrogen Generator
 Available at: <u>https://www.instructables.com/id/How-to-Convert-Water-into-Fuel-by-Building-a-DIY-O/</u>
 Date accessed: 01 March 2016
- 87. Make it big DIY Hydrogen Generator
 Available at: <u>https://www.instructables.com/id/DIY-hydrogen-generator/</u> Date accessed: 01 March 2016
- 88. CETech (2019) Lora tutorial | Getting started with lora | What is LoRa features | LoRa introduction | LoRaWAN
 Available at: <u>https://www.youtube.com/watch?v=jp_2gwBrQc8</u>
 Date accessed: 02November 2020
- 89. Spiess(2018) #112 LoRa / LoRaWAN De-Mystified / Tutorial Available at: <u>https://www.youtube.com/watch?v=hMOwbNUpDQA</u> Date accessed: 02 November 2019
- 90. Holmes (2017) Losing 25 000 a day to Hunger
 Available at: <u>https://www.un.org/en/chronicle/article/losing-25000-hunger-every-day</u>
 Date accessed: 02 January 2021
- 91. FAO (2018) Innovating for our Future of Food and Agriculture Available at: <u>http://www.fao.org/fao-stories/article/en/c/1170362/</u> Date accessed: 02 January 2021

【評語】100045

This work is aimed to build up an Agribot system for the multipurpose in the agriculture field, essentially a self-driving vehicle with a robotic arm and environmental sensing. Very detailed engineering works were carried out. It may be more helpful if the design can be divided into modules or integration of changeable modules. Besides, many functions are set for this project. For example, what function of Hydrogen Testing is in this study? These have to be justified clearly for practical uses in the report.