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Abstract  

Aims: The prevalence of fatty liver is rising in modern countries worldwide. However, the scoring 

for fatty liver severity as evaluated by different pathologists may be inconsistent, and a helpful 

reference opinion is usually lacking. The shortage of pathologists in comparatively rural areas is 

another issue. We therefore aimed to build a histopathological Artificial Intelligence (AI) model 

for evaluating the severity of hepatic steatosis.  

Methods: With the approval of the Institutional Review Board of Taichung Veterans General 

Hospital, we screened the pathology database to obtain a sufficient number of liver pathology 

slices. Two pathologists independently interpreted the percentage of hepatic steatosis (Class 0-3) in 

each slide. A scoring consensus was reached via a discussion regarding the slides, with different 

scores given between the two pathologists. Based upon the consensus scores, we trained a machine 

learning model with the machine learning program, Google Teachable Machine, and optimized its 

performance after adequate retraining.  

Results: Trained using a total of 200 slides, a consensus-based AI model was built, and the 

model’s accuracy growth curve eventually reached a stable performance of 0.8. We performed an 

independent test with another 100 slides for the two pathologists, and the consensus answers were 

finally obtained after discussing for the 12 different interpretations. Furthermore, in the 

independent test that had been interpreted by the two pathologists, the predictions from the AI 

model were comparable with the consensus scores (71% in the same classes, 27% in the classes 

with one-class interval, only 2% in the classes with 2-class intervals, and zero percent in the 

classes with > 2-class intervals).  

Conclusions: This consensus-based machine learning model was able to primitively evaluate the 

severity of hepatic steatosis, and may provide a solid basis for clinical applications in the future.  
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摘要  

研究目的：脂肪肝的盛行率在全世界的現代化國家都在增加。病理醫師在評估

脂肪肝的嚴重等級時，常缺乏參考意見以減少差異。許多地區也缺乏病理醫師。

本研究旨在建立一個有效評估脂肪肝嚴重程度的病理組織學人工智慧模型。研

究過程：本研究經由臺中榮民總醫院人體研究倫理審查委員會審核通過，篩選

後取得病理資料庫中適合的肝臟組織切片，由兩位病理醫師獨立為肝組織中脂

肪堆積的程度評分。再以病理醫師討論後的共識答案為分級標準，來訓練人工

智慧模型。研究結果：在 100個樣本的獨立測試中，人工智慧模型和病理專科

醫師的評分，有 71%完全相同、27%差異只有一個等級、2%差異 2個等級、而沒

有 2個等級以上的差異。結論及應用：我們已初步建立一個可以評估脂肪肝嚴

重程度的人工智慧模型。這模型可為將來人工智慧的臨床應用，建立一個良好

的基礎。 
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Introduction 

Liver is an essential organ for fat metabolism, and so-called “fatty liver” may occur if the 

metabolism is unbalanced (Chalasani, Younossi et al. 2018). Fatty liver is pathologically a short 

term for the phenomena of fat over-accumulation within hepatocytes. It’s generally the 

consequences of excessive alcohol intake or fat-related metabolic disorders; for example, being 

overweight (Cusi 2012). Fatty liver is essentially a lifestyle disease. In Westernized countries, 

owing to the trend of exquisite diets with a high calorie content, a decreasing amount of exercise, 

and the popularity of alcohol consumption, fatty liver has become a common disease. Furthermore, 

an aging society results in the increased risk of fatty liver disease, involving metabolic syndromes 

such as hypertension, hyperglycemia, and hyperlipidemia (Chalasani, Younossi et al. 2012). 

Therefore, the rising prevalence of fatty liver disease has been observed throughout modern 

countries worldwide (Li, Zou et al. 2019). For example, in an epidemiological survey of 3,260 

participants launched in Shengang Township, Changhua County, Taiwan, amongst all participants 

with abnormal liver function, up to 33.6% of cases were caused by fatty liver disease (Chen, 

Huang et al. 2007).  

Fatty liver is just a general term for a spectrum of this disease (Satapathy and Sanyal 2015). As 

it varies with the progression of the illness, clinical manifestations of fatty liver are differentiated 

into several stages according to the severity of patients’ condition. The first stage of fatty liver is 

hepatic steatosis, which doesn’t cause inflammation, though fat particles are piling up in the liver. 

The second stage is steatohepatitis, where in addition to steatosis, there will be inflamed cells as 

well as hepatocyte ballooning. In the long term, this could cause liver fibrosis. The final stage is 

drawn out by chronic liver inflammation, necrosis, and fibrosis, which beget liver cirrhosis. Severe 

liver cirrhosis is the consequence of liver fibrosis, and may trigger complications, cause liver 

cancer, or even result in death (Lee, Wu et al. 2017). In an epidemiological research study (Sheka, 

Adeyi et al. 2020), after keeping track of the participants for roughly a decade, 20% of those who 



3 

 

originally settled in the first stage, steatosis, had progressed to the second stage, steatohepatitis. 

Moreover, 20% of those who started in the second stage ended up with liver cirrhosis. In a study 

from the United States (Younossi, Otgonsuren et al. 2015), patients with liver cancer led by fatty 

liver increased by 9% per year. It is estimated that fatty liver may become the main cause of liver 

cancer. In the near future, fatty liver is certainly going to become one of the most concerning 

topics of public health worldwide.  

Over the recent decades, Artificial Intelligence (AI) has gone through numerous evolutions. 

As the technology matures, the fields of its practice continue to extend further and deeper. It can 

provide great support in biotechnology, and even advance its clinical applications (Le Berre, 

Sandborn et al. 2020). For example, AI has been used for interpreting cancerous lesions during a 

gastrointestinal endoscopic examination, detecting bleeding during a capsular endoscopy, 

evaluating the degree of liver fibrosis, and distinguishing pancreatitis from pancreatic cancer. 

Furthermore, AI may even assist in the speculation of clinical therapeutics. In the pathological 

image of fatty liver disease, liver cells with fat accumulation are significantly different when 

compared to normal liver cells (Kleiner, Brunt et al. 2005). The white round lesions seen in the 

images are clearly distinguishable from normal liver cells, and are therefore suitable for use in 

image recognition technology. Diagnosis of fatty liver requires well trained and experienced 

pathologists; however, the shortage of pathologists in less developed areas is currently a very 

relevant issue. The areas lacking proper medical resources must send their liver specimens to 

medical centers simply to get an interpretation. AI can possibly offer an elementary interpretation 

and provide a prompt diagnostic reference prior to obtaining an interpretation from a pathologist. 

Additionally, the decisions made by different pathologists may also be varied. It is at this time 

when AI technology can come into play, as it can serve as a helpful second opinion for 

pathologists prior to making their final decisions.  

For now, the research surrounding AI in the diagnosis of fatty liver disease is still limited. In a 

recent AI study (Forlano, Mullish et al. 2020), although the team was able to correctly calculate the 



4 

 

percentage of hepatic steatosis in liver tissues, there seemed to be a considerable difference 

between the technically “accurate” result and a pathologist’s classification standard. Therefore, 

previous research has not been very effective in the clinical classification of fatty liver. To find a 

solution to the above-mentioned concerns, we aimed to build a machine learning model for scoring 

the severity of hepatic steatosis based upon pathologists’ interpretations. 

 

Materials and Methods 

Database screening   

Figure 1 shows the process regarding the building of a machine learning AI model. We 

screened the Pathology Database of Taichung Veterans General Hospital, with patients who had 

received liver surgery or liver biopsy being recruited for data collection. This study has been 

approved by the Human Research Ethics Review Committee of Taichung Veterans General 

Hospital (No. CE20345B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The process of AI model building 
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Obtaining pathological slides  

After selecting sufficient liver pathology specimens from the database, we analyzed the 

selected pathology slides for quality control. Any malignancy in the liver tissues would cause a 

specimen to be excluded. In order to obtain high-quality pathological slides, we would perform a 

tissue section for the residual liver specimens (Figure 2). We initially obtained 100 pathology 

slides for the AI model training. If more slides were to be essential for retraining the primitive 

training model (Step 8 in Figure 1), we would gather an additional 100 slides. 

Figure 2. Obtaining adequate pathological slides 

 

Slide digitalization   

We placed the liver sections onto the electronic image scanner, digitized them and archived 

the panoramic scanned image (Figure 3). 

Independent pathologist interpretation 

Two pathologists from Taichung Veterans General Hospital evaluated the severity level of 

hepatic steatosis in the liver tissue slides, and classified the severity levels into four groups: Class 

0 (<5%), Class 1 (5-33%), Class 2 (>33-66%), and Class 3 (>66%). 

Pathologist consensus for steatosis scoring 

When the two pathologists’ judgment on a slide differed, a consensus would be reached after 

a full discussion. The consensus score was treated as the standard score for the AI model training. 
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Figure 3. Arrows show the whitish round lesions of hepatic steatosis in pathological slides 

(100 times magnified): (A)(B) Class 1, (C)(D) Class 2, (E)(F) Class 3 

 

Consensus-based AI model training  

With the consensus scores evaluated by the pathologists now used as the standard answer to 

the training data, we trained a machine learning model with the Teachable Machine, which was 

developed by Google (https://teachablemachine.withgoogle.com). Teachable Machine utilizes JS 

MobileNet as its machine learning architecture, which is a lightweight deep convolutional neural 

network that provides an efficient model for mobile and embedded vision applications. Please 

refer to Supplementary File 1. for the source code of this machine learning model in Teachable 

Machine.  

Preliminary AI model 

After training by the consensus-based training data was completed, a primitive AI model was 

built for further independent sample testing. 

  

https://teachablemachine.withgoogle.com/
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Independent sample testing 

After the initial model training was completed, we ran the independent test data through the 

model to obtain its predictions. At the same time, we respectively obtained both individual and 

consensus answers from the two pathologists. 

Result analysis  

We compared the divergence between the AI predictions and the consensus answers produced 

by the two pathologists. 

AI model optimization 

Based upon the differences between the predictions and answers, we reviewed and analyzed 

the effectiveness of the AI model, and continued improving the model according to the AI model’s 

performance. 

Statistical analysis 

We used the confusion matrix for data analysis, as it is used for evaluating the performance of 

a classification model. The definitions surrounding statistical data analysis are as follows: True 

Positive (TP), a sample where the model correctly classified the positive class; False Positive (FP), 

a sample where the model incorrectly classified the positive class; False Negative (FN), a sample 

where the model incorrectly classified the negative class; True Negative (TN), a sample where the 

model correctly classified the negative class. Precision=TP/(TP+FP), the ratio of correct positive 

predictions to the total predicted positives. Recall=TP/ (TP+FN), the ratio of correct positive 

predictions to the total positive examples. F1-score=2*Precision *Recall/(Recall +Precision), 

F1-score is the weighted average of Precision and Recall. 
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Results and Discussions 

Evaluation of each fatty liver class in the training model 

As shown in Figure 4, after being trained with a total of 200 images from liver pathology 

slides, the model’s accuracy growth curve (accuracy per epoch) eventually reached a stable 

performance of 0.8, although there was still room for further improvement. In addition, although 

the loss value was not high, the learning curve (loss per epoch) was not considered ideal. The 

accuracy of Class 1 was 0.93, which was the best of the four. Second in accuracy was Class 3 at 

0.83, with Class 0 at 0.75, third. In this stage, the data necessary for evaluation provided by the 

Teachable Machine was not obtained from an independent test set; therefore, while it could be a 

valuable reference, it is not an absolute evaluation criterion. Due to the limited time taken to 

prepare the training data, the number of images in the training set was not a very large quantity, 

therefore the amount of image data in all classes should /needs to be increased in the future, 

particularly in the classes with a lower accuracy rate (e.g., Class 2). During the model training 

process, we found that an increase in the number of images in the training set could effectively 

improve the accuracy parameters. This will be one of the essential keys to improving this AI model 

in the future. 

Figure 4. Performance of the training model 

 

Scoring differences between the two pathologists 

We took an additional 100 images from pathology slides to be used as the independent set, 
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and for the two pathologists to interpret individually. The results revealed that there were 12 

different interpretations amongst the 100 images between the two pathologists (1 from Class 0, 8 

from Class 1, 2 from Class 2, and 1 from Class 3). All of them differed by one level (e.g., Class 1 

and Class 2), while there was no (0%) difference of two levels or more (e.g., Class 0 and Class 3). 

The 12 images with different diagnoses were then discussed by the two pathologists in order to 

reach a consensus, which were considered to be the standard answers for scoring. Pathologist A 

altered 5 interpretations of the former diagnosis, while pathologist B altered 7 interpretations of the 

former diagnosis, which does not indicate a significant difference. In the analysis of confusion 

matrix (Figure 5), although the weighted average of precision reached 0.91 between pathologists A 

and B, the precision in Class 2 turned out to be the worst (0.56). This shows that Class 2 is the 

most difficult to judge, possibly due to the fact that it lies directly in the middle of the levels of 

severity, which can be easily confused with Class 1 or 3. Additionally, the differences between the 

two pathologists can also influence the training and performance of our AI model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Scoring differences between the two pathologists 

 

Scoring differences between the AI model and the pathologist consensus     

We tested the model using the independent test set that had been interpreted by the two 

pathologists, and compared its predictions with the consensus answers that the pathologists gave. 

The results showed that there were 29 different diagnoses within all 100 images, and most of them 

were off by only one level. Of the 29 images with incorrect predictions, 11 were in Class 0, 10 in 

     

Doctor A and Doctor B

precision recall f1-score support

class 0 0.91 1 0.95 21

class 1 0.97 0.76 0.85 42

class 2 0.56 0.83 0.67 12

class 3 0.96 1 0.98 25

accuracy 0.88 100

macro avg 0.85 0.9 0.86 100

weighted avg 0.91 0.88 0.88 100  
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Class 1, 8 in Class 2, and none in Class 3. There were 2 images which were wrong by two levels 

and none wrong by three levels. The two which were incorrect by two levels were both Class 3, 

but misclassified into Class 1. Moreover, in 26 of the 100 images from the independent test set 

with the standard answers of Class 3, seven of the 26 were incorrectly interpreted by the AI model. 

Of the 7 images, 5 were misinterpreted as Class 2. The percentage of two-level misinterpretation 

was 7.7% (2/26), which is relatively low for a model with this amount of training data. However, if 

we consider a two-level-difference situation as being a severe misjudgment, it can indicate that 

there may be some unidentified bias between Classes 1 and 3. Moreover, in the data visualization 

graph (Figure 6), the precision of Class 2 is the worst, which reflects that the identification of 

Class 2 is in great need of both enhancement and improvement. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Scoring differences between the pathologist consensus and the AI model 

 

Cross analysis between the AI model, the consensus and each individual pathologist  

We used the following four statistical models to perform cross analysis on the interpretation 

of the results. “Analysis Model 1” is the comparison between the consensus of the two 

pathologists and the interpretation of the AI model. "Analysis Model 2" is the comparison between 

Pathologist A and the AI model. "Analysis Model 3" is the comparison between Pathologist B and 

the AI model. "Analysis Model 4" is the comparison between Pathologist A and Pathologist B. The 

following table shows the results of the four analysis models in Recall, Precision, and F1-score. 

Consensus and AI

precision recall f1-score support

class 0 0.67 1 0.8 22

class 1 0.71 0.62 0.67 40

class 2 0.31 0.33 0.32 12

class 3 1 0.73 0.84 26

accuracy 0.7 100

macro avg 0.67 0.67 0.66 100

weighted avg 0.73 0.7 0.7 100  
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Table 1. Recall in each analysis model. 

Recall 

Analysis Model 1 Analysis Model 2 Analysis Model 3 Analysis Model 4 

Consensus vs. AI Dr. A vs. AI Dr. B vs. AI Dr. A vs. Dr. B 

Class 0 1 1 1 1 

Class 1 0.62 0.62 0.61 0.76 

Class 2 0.33 0.33 0.28 0.83 

Class 3 0.73 0.72 0.73 1 

 

Table 2. Precision in each analysis model. 

Precision 

Analysis Model 1 Analysis Model 2 Analysis Model 3 Analysis Model 4 

Consensus vs. AI Dr. A vs. AI Dr. B vs. AI Dr. A vs. Dr. B 

Class 0 0.67 0.64 0.7 0.91 

Class 1 0.71 0.74 0.57 0.97 

Class 2 0.31 0.31 0.38 0.56 

Class 3 1 0.95 1 0.96 

 

Table 3. Fl-score in each analysis model. 

Fl-score 

Analysis Model 1 Analysis Model 2 Analysis Model 3 Analysis Model 4 

Consensus vs. AI Dr. A vs. AI Dr. B vs. AI Dr. A vs. Dr. B 

Class 0 0.8 0.78 0.82 0.95 

Class 1 0.67 0.68 0.59 0.85 

Class 2 0.32 0.32 0.32 0.67 

Class 3 0.84 0.82 0.84 0.98 
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The standard answer to our current AI model training was based upon the consensus of the 

two pathologists. However, we discovered that different pathologist’s judgments could differ, 

particularly when it came to moderate fatty liver (Class 2). This is understandable being that it’s 

obviously easier to distinguish the differences between more extreme cases, and oppositely for the 

fuzzier middle ground (Classes 1 and 2), particularly when the severity level is close to the border 

line of the two classes (33% or 66%). If the standard answer is based upon human judgment, 

which can be rather uncertain, it can be expected that the model will be incapable of being 100% 

correct. Therefore, in addition to increasing the number of samples to avoid unidentified bias, there 

are two possible directions for model improvement: First, rather than striving to achieve 100% 

accuracy, we can change the goal of improvement to be the elimination of serious 

misinterpretation (incorrect by two levels or more), and consider one-level differences as a 

reasonable error, much like when it comes to cytological judgment regarding cervical cancer cells 

in current clinical practices. Second, we can reconsider whether the traditional classification is 

reasonable, by for example, changing the definition of moderate fatty liver, such as Class 2, in 

order to reduce the differences in the judgments of the pathologists. As shown in Figure 7, if we 

classify the degree of hepatic steatosis into only two levels, i.e. Class 0-1 & Class 2-3, the 

consistence and accuracy of this AI model can be generally improved. 

Figure 7. The degree of hepatic steatosis was classified into two levels, i.e. Class 0-1 & Class 2-3. 
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Conclusions and Applications 

Fatty liver has been a common disease in modern countries worldwide for many years. 

However, the application of AI on the diagnosis of fatty liver disease remains limited. Although 

previous AI studies were able to digitize and calculate the required data, the resulting technically 

“correct” information has shown a considerable difference with that of pathologists. For example, 

in the previous AI model (Forlano, 2020), the median percentage of hepatic steatosis in Class 3 

was only 28.4%; however, the definition of Class 3 hepatic steatosis should be > 66%. In addition 

to the above-mentioned discrepancy between the exact percentage and the clinical definition in 

fatty liver classification, we have found that some tricky problems exist before applying AI to the 

diagnosis of fatty liver. For example, the semi-quantitative definitions of scoring classes in fatty 

liver diagnosis. In the previous definition of moderate fatty liver (Class 2), 33-66% of hepatic 

steatosis accumulation should be estimated in the slide, but what is actually the percentage within 

the range of 33-66% may seem more or less to the human eye. Furthermore, scoring differences 

between the results given by different pathologists are not so rare. These delicate problems should 

be considered the important study gaps which will require great effort and hard work in order to 

resolve. Nonetheless, it seems that there is an unknown “common standard” when it comes to 

humans estimating the severity of fatty liver. Different pathologists’ interpretations may differ 

slightly, but never on a huge scale, e.g., no interpretation of liver slides from our two pathologists 

differed by more than one level. With that in mind, the model we built was based upon the 

consensus diagnosis provided by pathologists, and therefore should be able to produce 

interpretations closer to those of pathologists in the real world. Although our model still has a long 

way to go before it can be used in clinical practice, we still achieved a goal of having only 2% of 

the results varying above one levels, and none more than two levels. It is apparent that if there is 

an investment of more time, resources and technology, as well as in-depth discussions with 

pathologists to optimize our model, using AI to diagnose fatty liver is definitely feasible, and 
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worth the effort to continue its research. Through this experimental study, we are grateful to have 

learned from these practical experiences, which are nowhere to be found in previously given 

lectures or available literature. We now feel that we have a clearer understanding of the 

interpretation of both the human brain and AI. 
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Supplementary File 1. The source code of this machine learning model in Teachable Machine 

(https://github.com/googlecreativelab/teachablemachine-community/blob/master/libraries/image/sr

c/teachable-mobilenet.ts) 

/**  
 * @license  
 * Copyright 2019 Google LLC. All Rights Reserved.  
 * Licensed under the Apache License, Version 2.0 (the "License");  
 * you may not use this file except in compliance with the License.  
 * You may obtain a copy of the License at  
 *  
 * http://www.apache.org/licenses/LICENSE-2.0  
 *  
 * Unless required by applicable law or agreed to in writing, software  
 * distributed under the License is distributed on an "AS IS" BASIS,  
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
 * See the License for the specific language governing permissions and  
 * limitations under the License.  
 * =============================================================================  
 */  
import * as tf from '@tensorflow/tfjs';  
import { util, Rank } from '@tensorflow/tfjs';  
import { capture } from './utils/tf';  
import { TensorContainer } from '@tensorflow/tfjs-core/dist/tensor_types';  
import { CustomCallbackArgs } from '@tensorflow/tfjs';  
import { CustomMobileNet,  
    Metadata,  
    loadTruncatedMobileNet,  
    ClassifierInputSource,  
    ModelOptions  
} from './custom-mobilenet';  
import * as seedrandom from 'seedrandom';  
import { Initializer } from '@tensorflow/tfjs-layers/dist/initializers';  
const VALIDATION_FRACTION = 0.15;  
export interface TrainingParameters {  
    denseUnits: number;  
    epochs: number;  
    learningRate: number;  
    batchSize: number;  
}  
interface Sample {  
    data: Float32Array;  
    label: number[];  
}  
// tslint:disable-next-line:no-any  
const isTensor = (c: any): c is tf.Tensor =>  
    typeof c.dataId === 'object' && typeof c.shape === 'object';  
/**  
 * Converts an integer into its one-hot representation and returns  
 * the data as a JS Array.  
 */  
function flatOneHot(label: number, numClasses: number) {  
    const labelOneHot = new Array(numClasses).fill(0) as number[];  
    labelOneHot[label] = 1;  
    return labelOneHot;  
}  
/**  
 * Shuffle an array of Float32Array or Samples using Fisher-Yates algorithm  
 * Takes an optional seed value to make shuffling predictable  
 */  
function fisherYates(array: Float32Array[] | Sample[], seed?: seedrandom.prng) {  
    const length = array.length;  
    // need to clone array or we'd be editing original as we goo  
    const shuffled = array.slice();  
    for (let i = (length - 1); i > 0; i -= 1) {  
        let randomIndex ;  
        if (seed) {  
            randomIndex = Math.floor(seed() * (i + 1));  
        }  
        else { 
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            randomIndex = Math.floor(Math.random() * (i + 1));  
        }  
        [shuffled[i], shuffled[randomIndex]] = [shuffled[randomIndex],shuffled[i]];  
    }  
    return shuffled;  
}  
export class TeachableMobileNet extends CustomMobileNet {  
    /**  
     * the training model for transfer learning  
     */  
    protected trainingModel: tf.LayersModel;  
    /**  
     * Training and validation datasets  
     */  
    private trainDataset: tf.data.Dataset<TensorContainer>;  
    private validationDataset: tf.data.Dataset<TensorContainer>;  
    private __stopTrainingResolve: () => void;  
    // private __stopTrainingReject: (error: Error) => void;  
    // Number of total samples  
    private totalSamples = 0;  
    // Array of all the examples collected  
    public examples: Float32Array[][] = [];  
    // Optional seed to make shuffling of data predictable  
    private seed: seedrandom.prng;  
    constructor(truncated: tf.LayersModel, metadata: Partial<Metadata>) {  
        super(tf.sequential(), metadata);  
        // the provided model is the truncated mobilenet  
        this.truncatedModel = truncated;  
    }  
    public get asSequentialModel() {  
        return this.model as tf.Sequential;  
    }  
    /**  
     * has the teachable model been trained?  
     */  
    public get isTrained() {  
        return !!this.model && this.model.layers && this.model.layers.length > 2;  
    }  
    /**  
     * has the dataset been prepared with all labels and samples processed?  
     */  
    public get isPrepared() {  
        return !!this.trainDataset;  
    }  
    /**  
     * how many classes are in the dataset?  
     */  
    public get numClasses(): number {  
        return this._metadata.labels.length;  
    }  
    /**  
     * Add a sample of data under the provided className  
     * @param className the classification this example belongs to  
     * @param sample the image / tensor that belongs in this classification  
     */  
    // public async addExample(className: number, sample: HTMLCanvasElement | tf.Tensor) {  
    public async addExample(className: number, sample: HTMLImageElement | HTMLCanvasElement | tf.Tensor) 
{  
        const cap = isTensor(sample) ? sample : capture(sample);  
        const example = this.truncatedModel.predict(cap) as tf.Tensor;  
        const activation = example.dataSync() as Float32Array;  
        cap.dispose();  
        example.dispose();  
        // save samples of each class separately  
        this.examples[className].push(activation);  
        // increase our sample counter  
        this.totalSamples++;  
    }  
    /**  
     * Classify an input image / Tensor with your trained model. Return all results.  
     * @param image the input image / Tensor to classify against your model  
     * @param topK how many of the top results do you want? defautls to 3  
     */  
    public async predict(image: ClassifierInputSource, flipped = false) { 



18 

 

 
        if (!this.model) {  
            throw new Error('Model has not been trained yet, called train() first');  
        }  
        return super.predict(image, flipped);  
    }  
    /**  
     * Classify an input image / Tensor with your trained model. Return topK results  
     * @param image the input image / Tensor to classify against your model  
     * @param maxPredictions how many of the top results do you want? defautls to 3  
     * @param flipped whether to flip an image  
     */  
    public async predictTopK(image: ClassifierInputSource, maxPredictions = 10, flipped = false, ) {  
        if (!this.model) {  
            throw new Error('Model has not been trained yet, called train() first');  
        }  
        return super.predictTopK(image, maxPredictions, flipped);  
    }  
    /**  
     * process the current examples provided to calculate labels and format  
     * into proper tf.data.Dataset  
     */  
    public prepare() {  
        for (const classes in this.examples){  
            if (classes.length === 0) {  
                throw new Error('Add some examples before training');  
            }  
        }  
        const datasets = this.convertToTfDataset();  
        this.trainDataset = datasets.trainDataset;  
        this.validationDataset = datasets.validationDataset;  
    }  
    /**  
     * Process the examples by first shuffling randomly per class, then adding  
     * one-hot labels, then splitting into training/validation datsets, and finally  
     * sorting one last time  
     */  
    private convertToTfDataset() {  
        // first shuffle each class individually  
        // TODO: we could basically replicate this by insterting randomly  
        for (let i = 0; i < this.examples.length; i++) {  
            this.examples[i] = fisherYates(this.examples[i], this.seed) as Float32Array[];  
        }  
        // then break into validation and test datasets  
        let trainDataset: Sample[] = [];  
        let validationDataset: Sample[] = [];  
        // for each class, add samples to train and validation dataset  
        for (let i = 0; i < this.examples.length; i++) {  
            const y = flatOneHot(i, this.numClasses);  
            const classLength = this.examples[i].length;  
            const numValidation = Math.ceil(VALIDATION_FRACTION * classLength);  
            const numTrain = classLength - numValidation;  
            const classTrain = this.examples[i].slice(0, numTrain).map((dataArray) => {  
                return { data: dataArray, label: y };  
            });  
            const classValidation = this.examples[i].slice(numTrain).map((dataArray) => {  
                return { data: dataArray, label: y };  
            });  
            trainDataset = trainDataset.concat(classTrain);  
            validationDataset = validationDataset.concat(classValidation);  
        }  
        // finally shuffle both train and validation datasets  
        trainDataset = fisherYates(trainDataset, this.seed) as Sample[];  
        validationDataset = fisherYates(validationDataset, this.seed) as Sample[];  
        const trainX = tf.data.array(trainDataset.map(sample => sample.data));  
        const validationX = tf.data.array(validationDataset.map(sample => sample.data));  
        const trainY = tf.data.array(trainDataset.map(sample => sample.label));  
        const validationY = tf.data.array(validationDataset.map(sample => sample.label));  
        // return tf.data dataset objects  
        return {  
            trainDataset: tf.data.zip({ xs: trainX,  ys: trainY}),  
            validationDataset: tf.data.zip({ xs: validationX,  ys: validationY})  
        };  
    }  
    /** 
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     * Saving `model`'s topology and weights as two files  
     * (`my-model-1.json` and `my-model-1.weights.bin`) as well as  
     * a `metadata.json` file containing metadata such as text labels to be  
     * downloaded from browser.  
     * @param handlerOrURL An instance of `IOHandler` or a URL-like,  
     * scheme-based string shortcut for `IOHandler`.  
     * @param config Options for saving the model.  
     * @returns A `Promise` of `SaveResult`, which summarizes the result of  
     * the saving, such as byte sizes of the saved artifacts for the model's  
     *   topology and weight values.  
     */  
    public async save(handlerOrURL: tf.io.IOHandler | string, config?: tf.io.SaveConfig): 
Promise<tf.io.SaveResult> {  
        return this.model.save(handlerOrURL, config);  
    }  
    /**  
     * Train your data into a new model and join it with mobilenet  
     * @param params the parameters for the model / training  
     * @param callbacks provide callbacks to receive training events  
     */  
    public async train(params: TrainingParameters, callbacks: CustomCallbackArgs = {}) {  
        // Add callback for onTrainEnd in case of early stop  
        const originalOnTrainEnd = callbacks.onTrainEnd || (() => {});  
        callbacks.onTrainEnd = (logs: tf.Logs) => {  
            if (this.__stopTrainingResolve) {  
                this.__stopTrainingResolve();  
                this.__stopTrainingResolve = null;  
            }  
            originalOnTrainEnd(logs);  
        };  
          
        // Rest of trian function  
        if (!this.isPrepared) {  
            this.prepare();  
        }  
        const numLabels = this.getLabels().length;  
        util.assert(  
            numLabels === this.numClasses,  
            () => `Can not train, has ${numLabels} labels and ${this.numClasses} classes`);  
        const inputShape = this.truncatedModel.outputs[0].shape.slice(1); // [ 7 x 7 x 1280]  
        const inputSize = tf.util.sizeFromShape(inputShape);  
        // in case we need to use a seed for predictable training  
        let varianceScaling: Initializer;  
        if (this.seed) {  
            varianceScaling = tf.initializers.varianceScaling({ seed: 3.14});  
        }  
        else {  
            varianceScaling = tf.initializers.varianceScaling({});  
        }  
        this.trainingModel = tf.sequential({  
            layers: [  
                tf.layers.dense({  
                    inputShape: [inputSize],  
                    units: params.denseUnits,  
                    activation: 'relu',  
                    kernelInitializer: varianceScaling, // 'varianceScaling'  
                    useBias: true  
                }),  
                tf.layers.dense({  
                    kernelInitializer: varianceScaling, // 'varianceScaling'  
                    useBias: false,  
                    activation: 'softmax',  
                    units: this.numClasses  
                })  
            ]  
        });  
        const optimizer = tf.train.adam(params.learningRate);  
        // const optimizer = tf.train.rmsprop(params.learningRate);  
        this.trainingModel.compile({  
            optimizer,  
            // loss: 'binaryCrossentropy',  
            loss: 'categoricalCrossentropy',  
            metrics: ['accuracy']  
        }); 



20 

 

 
        if (!(params.batchSize > 0)) {  
            throw new Error(  
            `Batch size is 0 or NaN. Please choose a non-zero fraction`  
            );  
        }  
        const trainData = this.trainDataset.batch(params.batchSize);  
        const validationData = this.validationDataset.batch(params.batchSize);  
        // For debugging: check for shuffle or result from trainDataset  
        /*  
        await trainDataset.forEach((e: tf.Tensor[]) => {  
            console.log(e);  
        })  
        */  
        const history = await this.trainingModel.fitDataset(trainData, {  
            epochs: params.epochs,  
            validationData,  
            callbacks  
        });  
        const jointModel = tf.sequential();  
        jointModel.add(this.truncatedModel);  
        jointModel.add(this.trainingModel);  
        this.model = jointModel;  
        optimizer.dispose(); // cleanup of memory  
        return this.model;  
    }  
    /*  
     * Setup the exampls array to hold samples per class  
     */  
    public prepareDataset() {  
        for (let i = 0; i < this.numClasses; i++) {  
            this.examples[i] = [];  
        }  
    }  
    public setLabel(index: number, label: string) {  
        this._metadata.labels[index] = label;  
    }  
    public setLabels(labels: string[]) {  
        this._metadata.labels = labels;  
        this.prepareDataset();  
    }  
    public getLabel(index: number) {  
        return this._metadata.labels[index];  
    }  
    public getLabels() {  
        return this._metadata.labels;  
    }  
    public setName(name: string) {  
        this._metadata.modelName = name;  
    }  
    public getName() {  
        return this._metadata.modelName;  
    }  
    public stopTraining() {    
        const promise = new Promise((resolve, reject) => {  
            this.trainingModel.stopTraining = true;  
            this.__stopTrainingResolve = resolve;  
            // this.__stopTrainingReject = reject;  
        });  
          
        return promise;  
    }  
    public dispose() {  
        this.trainingModel.dispose();  
        super.dispose();  
    }  
    /*   
     * Calculate each class accuracy using the validation dataset  
     */  
    public async calculateAccuracyPerClass() {  
        const validationXs = this.validationDataset.mapAsync(async (dataset: TensorContainer) => {  
            return (dataset as { xs: TensorContainer, ys: TensorContainer}).xs;  
        });  
        const validationYs = this.validationDataset.mapAsync(async (dataset: TensorContainer) => {  
            return (dataset as { xs: TensorContainer, ys: TensorContainer}).ys; 
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        });  
        // we need to split our validation data into batches in case it is too large to fit in memory  
        const batchSize = Math.min(validationYs.size, 32);  
        const iterations = Math.ceil(validationYs.size / batchSize);  
        const batchesX = validationXs.batch(batchSize);  
        const batchesY = validationYs.batch(batchSize);  
        const itX = await batchesX.iterator();  
        const itY = await batchesY.iterator();  
        const allX = [];  
        const allY = [];  
        for (let i = 0; i < iterations; i++) {  
            // 1. get the prediction values in batches  
            const batchedXTensor = await itX.next();  
            const batchedXPredictionTensor = this.trainingModel.predict(batchedXTensor.value) as 
tf.Tensor;  
            const argMaxX = batchedXPredictionTensor.argMax(1); // Returns the indices of the max values 
along an axis  
            allX.push(argMaxX);  
            // 2. get the ground truth label values in batches  
            const batchedYTensor = await itY.next();  
            const argMaxY = batchedYTensor.value.argMax(1); // Returns the indices of the max values along 
an axis  
            allY.push(argMaxY);  
            // 3. dispose of all our tensors  
            batchedXTensor.value.dispose();  
            batchedXPredictionTensor.dispose();  
            batchedYTensor.value.dispose();  
        }  
        // concatenate all the results of the batches  
        const reference = tf.concat(allY); // this is the ground truth  
        const predictions = tf.concat(allX); // this is the prediction our model is guessing  
        // only if we concatenated more than one tensor for preference and reference  
        if (iterations !== 1) {  
            for (let i = 0; i < allX.length; i++) {  
                allX[i].dispose();  
                allY[i].dispose();  
            }  
        }  
        return { reference, predictions };  
    }  
    /*  
     * optional seed for predictable shuffling of dataset  
     */  
    public setSeed(seed: string) {  
        this.seed = seedrandom(seed);  
    }  
}  
export async function createTeachable(metadata: Partial<Metadata>, modelOptions?: ModelOptions) {  
    const mobilenet = await loadTruncatedMobileNet(modelOptions);  
    return new TeachableMobileNet(mobilenet, metadata);  
} 

 



【評語】090019 

整體研究主題鮮明有趣，雖然實驗經費有限，以至於能使用

的分析工具有限，但建議在拍照時，顏色呈現可以加入控制組，

避免自動調節色彩以至於誤導實驗結果。對於實驗原理的闡述及

結果的呈現，可再用更精確的文字多加描述、以及更直觀可理解

的圖表呈現，可讓讀者更容易理解該實驗設計的結果。最後應用

推廣部分，可更多的說明該實驗對於市場上商品有何特殊創新試

驗或貢獻等，會更加完整。  
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