190013 Taiwan
發展安全且可靠的身份辨識技術是當今的重要議題,而指靜脈因其高安全性及難以偽造特性成為我們的主題。本研究提出一種基於Transformer模型架構的指靜脈辨識模型稱為GLA-FD,旨在解決現有技術對指靜脈影像特徵表示與提取的局限性。透過開發特徵解耦與重建模組(FDRM),模型能夠有效區分指靜脈的背景資訊與紋理特徵,並將其重新組合以提升辨識準確度。此外,本研究開發的全域-局部注意力模組(GLAM)能同時捕捉影像的全域與局部特徵,進一步強化模型對指靜脈特徵的理解。GLA-FD在FV-USM、PLUSVein-FV3、MMCBNU-6000、UTFVP、NUPT-FPV資料集中的正確辨識率(CIR)達到100%、98.47%、99.75%、96.11%、99.82%,展現卓越的穩定性與泛化能力。此外,本模型在處理不同年齡層、國籍與影像模糊度的資料下,仍能保持高辨識準確度,顯示其在需要高安全性辨識的應用場景中具備廣泛的實用性。