Synthesis of Nanocomposite Nanocellulose From Durio zibethinus L. and TiO2 NPs as Potential Food Packaging Antibacterial (E. coli Wild Type and Resistance)
According to the Indonesian Association of Olefin Aromatic and Plastic Industries/INAPLAS, 2019 national plastic consumption still relies on plastic packaging at 65% and surprisingly, around 60% of plastic waste is absorbed by the food and beverage industry. The waste has been widely sought to be environmentally friendly, one of which is by developing biodegradable packaging. The purpose of this research is to make durian peel cellulose nanocomposites impregnated with TiO2 NPs, to form antibacterial properties against E. coli wild type and resistance. In this research, there are research methods consisting of nanocomposite synthesis, PSA test, FTIR, physical characteristics test and resistance test. The results analyzed that the nanocomposite nanocellulose-TiO2 NPs was successfully made using a 1:1 ratio and had a particle size of 458.7 nm based on the PSA test, which is classified as a nano size. The success of nanocomposite synthesis was proven by the results of FTIR analysis, which showed the formation of 698.65 cm-1 and 1633.99 cm-1 spectra, indicating the peak of TiO2 NPs and O-H functional groups on TiO2 NPs, as well as 1028.98 cm-1 and 1158.42 cm-1 showing C-O and C-O-C bonds in cellulose. The antibacterial test performed showed no significant activity in disc diffusion and well diffusion tests against E. coli wild type and resistance. This is potentially caused by inhomogeneous particle size variation. Physical characteristics test showed that the tensile strength test (0.075 > 0.0125 MPa) Durio Nano-Pack is superior to styrofoam, but the compressive strength test (0.125 > 0.875 MPa) shows the opposite. In this study, nanocomposite has a potential innovation that provides good mechanical properties and has a dual function mechanically as bio-based food packaging and chemically as antibacterial. Further research is needed to improve the particle size homogeneity of nanocomposites, modify the impregnation method, so that it has the potential to develop multifunctional materials that excel in various applications.