Mathematics Game time, players select numbers be tween 1 and n. What are the natural numbers, "N", which will allow play er B to win?(3) Rules of the game is the same as (1) if the number selected at the tth time is at, and at +1 is not equal to f of at (mod n). What are the natural numbers "N" which will allow player B to win? 3.Research Process (A)Verification: After testing the numbers with a computer, we ver i fied the following results. (B)Speculation:

n	The form of winning numbers	n	The form of winning numbers
3	I	21	П
5	П	23	Ш
7	П	25	П
9	Ш	27	Ι
11	I	29	П
13	П	31	П
15	I	33	Ш
17	П	35	I
19	I	37	П

Definition: Let a let a

n represents the largest selectable nature number, NO represents NU(0)=(0,1,2,3,4,5.....): A set consists of nonnegative whole numbers Qdd= $(2n-1 | n \in N) = (1,3,5,7 \cdots)$: A set consists of positive odd numbers. <w_> is the numbers for which will allow player B to win the game If $n=2^{m}\times k$ (k \in Odd), then EP(n)=m, OP(n)=k are defined. EP(n): the highest power to 2 of n OP(n): the odd part of n. Type I : If EP(n+1)=2k ($k \in N_n$), then $w_n=w_{n+1}+n+1$ $(w_a=0, m \in \mathbb{N})$ Type II : If EP(n+1)=2k+1, and EP(OP(n+1)+n+2)=2t+1 (t∈N) then $w_{n-1} + n + 1 + \frac{1 + (-1)^{n-1}}{2}$ (W₉=0,m∈N) TypeⅢ : If EP(n+1)=2k+1, and EP(OP(n+1)+n+2)=2t <u>then</u> $w_{m} = w_{m-1} + n+1 + \left| 3[\frac{m+\frac{5}{2}}{3}] - m - 1 \right|$ (W₉=0, m \in N)

Make N=k(n+1), no matter what number *A* had selected, B will win. When N=(k+1) (n+1), ifa1=q, and then b1=(n+1)-q, the res will be k(n+1), so from the hy poth e six we know that no matter what number A ha selected, B will win. From MI, all of the elements of m(n+1), m being a whole number, no matter what number A had selected, B will win. In addition, if N is nc in the format of m(n+1), N=m(n+1)+p, an $\leq p \leq n$, a1=p, and B will be left with m (n+1), the previous proves that no mat ter what number B had selected, A will win. Therefore, it is not a winning number.

(C)Proof: (a) Consider the following game: there are two players, A and B,A be Therefore, the winning set is proved to be: the first player, both play ers take turns selecting any num- bers from 1 to n. Add $Wn = \{n+1,2(n+1),3(n+1),4(n+1),....\}$ (b) all the numbers selected, un til the first per son who ex ceeds the tar get number shall lose the game. As far as B is concerned, what numbers do N have to be for play er B to win, regard- less of what num bers play er A has selected? Left: the numbers which were left over. (c) **4.Research** Regardless of what numbers player A has selected, the set of numbers with which player B will win, N, is called winning members, Wn. To prove Wn = Winning condition: C1: When player A $\{n+1,2(n+1),3(n+1),4(n+1),.....\}$ definition : i represents the ith number selected selects the number, left =wm, then B will

未命名1

by player A, bi represents the ith number selected by play er B. When N=n+1, ifwin (by definition). C2: When player B a1=q, then b1=(n+1)-q, any num ber se lect ed by A will exceed N, Therefore, selects the number, left =wm, then A will no mat ter what number A had selected, B will win. win (by definition). (d) (e) Winning condition:

	C_1 :When player B selects the number, left $\in H_{\pi}$,	
	and the number selected by player A is $not \frac{n+1}{2}$.	
	then B will win.	
If m +(n+1) = W then simples at U + (m +(n+1) = W) is	C_2 When player A selects the number, $left \in \mathrm{H}_\pi,and$ the number	
If $w_m + (n+1) \notin w_n$, then singular set $H_n : \{w_m + (n+1) \notin w_n\}$ is defined.	selected by player B is not $\frac{n+1}{2}$, then A will win.	

Lemma 1.: $\mathbf{w}_{n} + \mathbf{q} \notin \mathbf{W}_{n}, \mathbf{l} \leq \mathbf{q} \leq \mathbf{n}$

Lemma 2.: If $w_n + (n+1) \in W_n$, then $a_{1=} \frac{n+1}{2}$

Collorary 1. If n is an even number, then $w_{m+1} = w_m + ($ Lemma 3 : If $w_m + (n+1) \notin W_n$, then $w_m + (n+2) \in W_n$ Collorary2: $w_{m+1} = w_m + (n+1)$ or $w_{m+1} = w_m + (n+2)$

C_2 When player A selects the number, left $\in {\rm H}_{_{\rm H}}$, and the number				
selected by player B is $\frac{n+1}{2}$, then B will win.				
$C_{6}{:}When player B selects the number, left \in H_{a}, and the number$				
selected by player A is $\frac{n+1}{2}$, then A will win.				

(f) Resistance : (g)Lemma 4. (h)Definition: 5. Conclusion (1) The special case n=5 : Suppose players are A and B, A takes the first turn and has to abide by the following rules: play ers must al ter nate ly select a number between 1 and 5. Player A selects a number. Then player B se lects a num ber but it can not be the same as the number which has just been selected by the

	R_1 : If left= $w_m + 2p = w_{m-1} + 2i$ and the m	number selected must not								
	be 2p $(1 \leq 2p, i \leq n)$, then the num	ber selected must be p or i								
	to keep the opposition from winni	ng.								
 R₂: If left= w_m+2p=w_{m-1}+(2i-1) and the number selected must not be 2p (1 ≤ 2p, i ≤ n), then the number selected must be p to keep the opposition from winning. R₂: If left= w_m+(2p-1)=w_{m-1}+2i and the number selected must 										
						not be 2p $(1 \leq 2p, i \leq n)$, then the number selected must be i				
					to keep the opposition from winning.					
						R_4 : If left= $w_m + (2p-1) = w_{m-1} + (2i-1)$ a	nd the number selected			
must not be 2p $(1 \leq 2p, i \leq n)$, then no number can keep the		n no number can keep the.	If $n+1=2^{2p} q$ ($q \in Odd$) [being EP($n+1$)=2p] then $w_1=n+1$							
other	opposition from winning.		If $n+1=2^{2p-1}q$ ($q \in Odd$) [being EP($n+1$)=2p-1] then $w_2=n+2$							
		Collorary 3. If n is an even number	, then $W_{\pi} \in I$							
		(From Collorary1 and Lemi	ma4)							
$ \begin{split} & \text{If } \mathbb{W}_n = \{ (n+1), 2(n+1), 3(n+1), \cdots (n+1) \cdots \}, \mathbb{W}_n \in \mathbb{I} \\ & \text{If } \mathbb{W}_n = \{ (n+2), (2n+3), (3n+5), 2(2n+3) \cdots \cdots \}, \mathbb{W}_n \in \mathbb{I} \\ & \text{If } \mathbb{W}_n = \{ (n+2), (2n+4), (3n+5), (4n+7), (5n+9), 2(3n+5), \cdots \}, \end{split} $		Theory 1.1f $EP(n{+}1){=}2p$, $p \in N,$ then $W_{\pi} \in \ I$								
		Theory 2.1f $EP(n+1)=2p-1$ and $EP[OP(n+1)+n+2]=2r+1, p, r \in N$,								
		then $W_n \in II$								
		Theory 3. If EP(n+1)=2p-1 and EP[Theory 3.If $EP(n+1)=2p-1$ and $EP[OP(n+1)+n+2]=2r$, p, $r \in N$, then							
	$W_n \in \mathbb{I}$	$I \qquad W_* \in II$	player. Thus the							

players con tin ue in the end, add all of the numbers selected by both players. The first player to reach the pre-des ig nat ed natural num ber "N" will be the winner. What are the natural numbers, "N" which will allow play er B to win? Let us define sequence (0=W0<....Wm<....)to be the num bers for which will all ow play er B to win the game. In this special case n=5, the num bers wm satisfies (2) The general case n: The results of the game is the same as in (1), but this time, players select number between 1 and n. We also define the sequence (0=W0<....Wm<....)to be the num bers for which will all low player B to win the game. In the gen er al case, the sequence is more complicated. The re sults are given as following: 6.Discussion (1) Change the rules of the game, and find its win- ning combination. (2) The discussions were from the point of view of two players. I hope this game can developed into a multiple player game. 7. Reference (1) Arithmetic, by Professor Zhi-Nong Hsu . (2) "A Nim-like Game and Dynamic Recurrence Relations", a dissertation by Professor Yeong -Nan Yeh. (3)
$$\begin{split} \text{Type I} &: \text{If EP}(n+1)=2p \text{ ,where } p \in \{0,1,2,3\cdots\} \text{ ,then } W_n \in I \\ \text{Type II} : \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r+1, \text{ where } \\ p \in \{1,2,3\cdots\} \text{ and } r \in \{1,2,3\cdots\} \text{ ,then } W_n \in II \\ \text{w}_0=0 \\ \text{Type II} : \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{Number Theory by George E Andrews. } w_m=w_{m-1}+6+[1+(-1)^{m-1}]/2 \\ p \in \{1,2,3\cdots\} \text{ , and } r \in \{1,2,3\cdots\} \text{ ,then } W_n \in II \\ p \in \{1,2,3\cdots\} \text{ , and } r \in \{1,2,3\cdots\} \text{ ,then } W_n \in II \\ \text{w}_0=0 \\ \text{Type II} : \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{Wole II} : \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{Wole II} : \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{Wole II} : \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{Wole II} : \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{Wole III} : \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{Wole III} : \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{Wole III} : \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{Wole III} : \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{If EP}(n+1)=2p-1 \text{ ,where } \\ \text{If EP}(n+1)=2p-1 \text{ and EP}[OP(n+1)+n+2]=2r \text{ ,where } \\ \text{If EP}(n+1)=2p-1 \text{ ,where$$