On the Number of Special Subgraphs in an Edge 2-Colored or an Oriented Com plete Graph
Abstract Suppose there are n persons. We call three persons a monochromatic tri an gle if either
any two of them know each other, or do not know each other. As a spe cial case of Ramsey
Theorem, we know that if n=6 then there exists a mono chro mat ic triangle. Naturally when n
is large, there are many mono chro mat ic triangles. We shall determine the least number of
mono chro mat ic ones among any n persons. Besides, suppose there are n persons and each two
of them play a game on ta ble tennis. We say three persons A, B, C, form a directed triangle if A
beats B, B beats C and C beats A. We say four persons A, B, C, D, form a di rect ed square if A
beats B, B beats C, C beats D and D beats A. We shall de ter mine the larg est number of
directed triangles and squares among any n persons. The solution for the largest number of
directed tri an gles also gives an answer to the ques tion of least number of transitive
subtournaments of or der 3 in an n-element tournament. We shall also give an upper bound for
the least of transitive subtournaments of order 4 in an n-element tournament. 1.Introduction
According to Ramsey Theorem, for any integer &, there exists an integer m,
such that for any n 2z m, if the edpes of a complete graph K, are colored by &
colors then there is at least a monochromatic triangle, Maturally, the larger is the
number n, the more monochromatic trangles there are. We ask the question “what is
the least number of monochromatic triangles in an edge k-colored K7 In this study,
I determine the least number of monochromatic triangles in an edge 2-colored £, .
Another topic [ studied 15 the largest number of directed trangles in an n-element
tournament T,. From the results [ shall obtain the larpest number of directed
quadrilaterals in an #n-clement tournament 7, .
While obtaining the results of directed triangles, the least number of transitive
triangles can be determined. So 1 tried to investigate the related problem, the least
number of transitive sub-tournaments 7T, in an n-glement tournament T, .

Procedures

First, I use a double-counting method to obtain the minimum number of
monochromatic triangles in an edge 2-colored complete graph K, and the maximum
number of directed ones in an n-element tournament T, . From the results, I determine
the largest number of directed quadrilaterals in a tournament T, . Finally, 1 try to
study the lcast number of transitive sub-tournaments 77, ,

A. Definitions and Notations

A graph G =(F,E) consists of a set V' of vertices and a set £ of edges. Each edge
i5 an unordered pair of distinct vertices. An oriented graph is obtained from a graph by
assigning an orientation to each edge. Thus any edge of an oriented graph is an
ordered pair of vertices. A complete graph with a vertices, denoted by K, is a graph
with 1 vertices, and each pair of distinct vertices is joined by an edge. A tournament
of order n, denoted by T,, is an oriented graph obtaned from K, by assigning an
orientation to each edge. Thus an #-clement tournament has n vertices and edge pair
of distinct vertices is joined by exactly one oriented edge. Usually the vertices of

K,or T, arechosentobe 1,2,..., 1 2.Procedures



In the first topic, suppose the edges of K, are colored by two colors, blue and red.
Denote by G, and G, the two subgraphs induced by blue edges and red ones
respectively, We shall denote by (d.d3,.....4,) the degree sequence of (7, .

Foran n-clement tounament T, let ¥ ={vi 2 v,)(i=12 .0),and &, =|V|.

Then (d).d;......d,) is called the out degree sequence of T,.

Weuse (i, j,k) to denote the directed triangle i j & i So (f,k,0)and (k,i, j)
denote the same directed triangle. See Figure 1.

The form of a transitive triangle is “i — j — & " and ¥ = £ . See Figure 2. It is
obvious that a triangle in a tournament is either a directed one or a transitive one.
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Figure Figurs 2 Figure 3

B. Counting Monochromatic Triangles in an Edge 2-Colored K,

In this section, we consider the least number of monochromatic triangles in an
edge 2-colored K, . (Mote that the maximum number of monechromatic triangles in
an edge 2-colored K, is trivially (3, which ocours when all the edges are colored

the sgame. )
Theorem 1: Suppose the edges of K, are 2-colored and ( dy,d5.....d, ) is the degree

sequence of the subgraph &) induced by blue edges. Then the
L

mumber of monochromatic triangles =C3 —%Zd,{n—i—u}} ;
i=

Proof: Suppose X' is the number of monochromatic triangles,
then C§ - X is the number of non-monochromatic triangles.

We count the number of 2-colored paths of length 2 in two different ways.
Firstly, for each vertex i the number of 2-colored paths of length 2 with § as the

H
central vertex is d,(n—1-d;). Therefore the total is 3 d,(n—1—d;).

i=l
On the other hand, each monochromatic triangle contains no 2-colored paths
of length 2, while each non-monochromatic triangle contains two 2-colored
paths of length 2. Therefore the total noumber of 2-colored paths of length 2 is
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2(Cy - X). Thus, 2(C -X)= id;[n—l—n'..},

i=]
[,
>X=C! —%En‘,{n “1-d,). (Q.E.D.)
i=l

Theorem 2:
(1) When »n =4k +1,(n & N), the least number X of monochromatic triangles

in edge 2-colored K, is %Ht—m& +1). This bound is attained if and

only if the degree sequence of Gy is (2k,24,.....2k) .
(2) When n=4k+3,(n e Nw {0}), the least number X of monochromatic

triangles in an edge 2-colored K, is ;Hkﬂj{dk—]}.l'hisbnundis

altained if and only if the & degree sequence (or &, degree sequence)

can become (2k +1,2% +1,.... 2k + 1,2%) by arranging the seriz] mumbers.
—— ¥
a2

(3) When n = 2k,(k & N), the least number X of monochromatic triangles in
an edge 2-colored K, is %k{k—l}(ﬁ—Z}.This bound is attained if and
only if id} is evenand o; € {k.k-1}.
=
By Theorem 1, to determine the minimum of X is equivalent to determine the
maximum of id!(n—l—dr}. It is related to the following lemmas:
il
Lemma 1: Suppose p, g, p', g’ are positive integers such that p+g = p'+g".
If |p-q|<[p’~q'. then pg2p'q’.
Lemma 2: l‘id, A It 5 because upon calculating the sum of 4, we have
i=|
counted each edge for two times. So the sum is even.)
Proof: (1)n =4k +1,(n € N): By Lemma 1, the maximum of id‘,(ﬂ—]—d;}

=l

is achieved by letting &; = 2%, and the sum of 4, is an even number.
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Besides, a graphon n vertices with degree sequence (2k,24,....2k) can

be constructed as follows: (i, j) is colored blue < i /| =0 or | (mod 4).

The condition for & =2 is as Figure 4-1. Therefore, we shall obtain:
- min X-—;w + 1)k 4k — ij—%m +1M2k)? = i k(k —1)(4k +1)

» Figure 4-2 shows that another graph (on nine vertices) has the mimimum
nmumhber of monochromatic triangles but different structures.

n
(2)n =4k +3,(n € N): Originally, the maximum of ¥ d;(n-1-d;) is

i=l

achieved by letting d; = 2k + |. However, to ensure that the sum of d;

'mmevmmmber,nn:nfth:nmidi{n-h—dj]isa:hie\redbjr letting
il
d; =2k +1 for i=12,..,n—1 and letting d, =2k Besides, a graph on
nvertices with & degree sequence (2k + 1,2k + 1,2k + 1,2k} can be
Ak
constructed on the previous condition n =4k +1 as follows:

Add two vertices into a complete graph on n—2 vertices and with
special G degree sequence 1k, &,....k}. Call these new two vertices
4k +2, 4k +3. Then, choose any 2k +1 vertices connecting 4k + 2
with blue edges, and the other 2& vertices connecting 4k + 3 with blue
edges also, The rest edges are colored red. By this construction, we
obtain a graph with 7, degree sequence (2k +1.2k +1,...2k +1.2k) .

vl
Figure 5-1is for k=1. Therefore we shall obtain:

- min X=C3F —%{n—l]{ﬂ: +1)* -%{Zk}[zk +2)
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= é{'ﬁ: + 3Nk + 2}{4k+1}a§{4k + 202k +1)° —k(2k+2)

=§Ir|[k+l}{-ﬂr—1}

* It is easy to know, the graph is not unique the degree sequence. See
Figure 5-2 for another graph of the same degree sequence.
&

(3m=2k,(k &€ N): By Lemma 1, the maximum of id,—{n-:‘a—d}] s
=
achieved by letting 4; =& or k-1, and the sum of &, is an even number.
Besides, a graph on n vertices with degree sequence (k.k,....k) of G
can be constructed as follows: (i, /) is colored blue <= i = j (mod 2)
The construction would make all monochromatic triangles contained in
the subgraph ). Figure 6 is for & = 4. Then we can obtain:

. min X=C2 -%n&{k—l} - é(lﬂ(ik—:l}(lt—l}— IE[lt]k(k—l]

=% kik =1}k -2) (QED.)
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C. Counting Directed Triangles in an n-element Tournament T,

This section investigates the largest number of directed triangles in an #-element
tournament. First we observe that the minimum number of directed triangles in an n-
element tournament is zero. Theorem 3 below characlerizes tournaments that contain
no directed triangles.

Thearem 3: A tournament T, containg no directed triangle if and only if the out

degree sequence can become (0,1,2,..n=1).

Proof: (=) Suppose d; =i—1{i =1,2,...,n) . Assume to the contrary that T, contains
a directed triangle, then this triangle does not contain the vertex n. Because n
has out-degree n —1, there is no vertex directing to n. Similarly, the directed
triangle does not contain s —1, as n is the only vertex directing to n—1. By
induction, we prove that no vertex is contained in a directed triangle. (—&)
Above hints the triangles in this kind of graph are all transitive ones.

(=) Suppose d; =dy = =d,, [tsulfices o prove: ¥ i# j=d, #d;.
Supposed i # j, a; =d; . By symmctry we may assume { —» f. Then from

d;~l<d; weknow: 3h3 f=>hand i h. Therefore i— j—h—i

i.e, (hi,j) is a directed triangle. (—»4) (QED)
Remark: We can know the structure of such graph is unique by induction.
Thearem 4: Suppose T, is a tournament with out-degree sequence (d,,d5,....d,) ,

L]
then the number of directed triangles = %[{Ed, m—1-d;1-C7]
i=1

Proof: Suppose ¥ the number of directed triangles, then €7 =¥ is the number of

transitive oncs. We count the number of directed paths of length 2 (Figure7)
in T,. Each dirccted triangle contains three directed paths of length 2,
and each transitive triangle contains one directed path of length 2.

So the total number of directed paths of length 2 is 3¥ +1(Cy - ¥).

Figure 7
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On the other hand, consider the vertex i, there are d;(n—1-d,) directed
paths of length 2 with i as the central point. So the total number of directed

A n
paths of length 2 is Y d,(n~1-d,). Therefore, 2Y +C5 =3 d;(n~1-d;)

i=1 =1

=F=%[{Edi(n—l—d,)}—Ci'] (QE.D.)

be=]

Theorem 5:
(1) When n=2k+1,ikeN), the maximum number ¥ of directed triangles is

%k{i’ + 132k +1), the bound is attained if and only if the out degrec

sequence 15 (K, &, k) .
(2) When n=2k,(k e N), the maximum number ¥ of directed triangles is
; k(k —1)(k + 1), the bound is attained if and only if the out degree sequence
can become (k. k..., k, k- 1k —L...k —1) by arranging the serial numbers.
& X
By Theorem 4, to determine the maximum of ¥ is eguivalent to determine the

L
maximum of Edj{n—l—d,]. We shall combine Lemma 1 and the following lemma
=l

to provve Theorem 5.

Lemma 3: E'r"dl = % n(n—1) (It is because each edge devotes once
=l

to the sum of ;. So the sum equals the number of edges.)

LJ
Proof: (1) n=2k+1: By Lemma 1, the maximum of ¥ d,(n—1-d,) is achieved
il
by letting o, =k . On the other hand, a graph on n vertices with out
degree sequence [k, k..., k) can be constructed as follows:
Wovertex §:i—rv;e v € {i+ L+ 2.0+ &), denote by v the vertex
¥; —(2k+1) when v; > 2k+1. Figure 8-1 is for & =3. We can obtain:

- max ¥ =%{r:.i:2 -ch)= %[m +1k? —%mu}m}m -1)]

= lﬁk{k +1(2k +1)

R
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- Figure 8-2 shows that another graph (on seven vertices) has the maximum
of directed triangles but different structures.

Figure 8- Figure B-2

{(2) When n =2k, we choose d, i:u{“-—:}-! ur(“'-;-:'l' ie. k—lork

in order that d;(n—1-4d;) is the maximum.

Suppose there are ¢ d; = k=1, n=t(ie2k—t) d; = k. From Lomma 3,
the cocfficient ¢ should Gt (k— 10+ k(2k -t} = K2k -1) =t = k.
Without loss of generosity, we can assume d) =dy =..=d; =k,

dyej = dpes = . =dgp =k —1. A feasible construction is as follows:
Vie{ld.. 4l iy v efi+lit2. itk

Vyekk+l 2kl e joy Sy Efj+L i+, i+k=1]
Denote v; =v;=2k when v,>2k.
The econdition for £ =4 is as Figure 7-1. Then we can obtain:
1
. ma.::}'-é{ni[k—l}—f-'h=E[11"l'2ﬂf'1}—é{2kH2k—|KH—zﬂ
;k{i -1k +1)

- Figure 7-2 shows thal another graph (six vertices) has maximum number
of directed triangles but different structure. [QED.)
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D. The Largest Mumber of Directed Quadrilaterals

A directed quadrilateral in a tournament T, is a subgraph with 4 vertices and 4
edges, which form a directed cycle, i.e. the out degree of each vertex in it is 1.

Similarly we consider the minimum and the maximum number of directed
quadrilaterals. [t is easy to see that the least number of the directed quadrilaterals is
zero! The construction in the proof of Theorem 3 gives an example of such
tournaments, and there are other tournaments without directed quadrilaterals. So the
main problem is the maximum number of directed quadrilaterals in & tournament T, .
Theorem 6: The maximum number (M) of the quadrilaterals in T, is

(1) %,t{j;_n(.tﬂ}{z.t +1) for n=2k+1(keN)

(2) ém-nik + 102k =) for n=2k,(keN).

Proof; Suppose there are respectively x, v, 2 sub-graphs as Figure 10-1, 10-2, 10-3,
Motice that the directed quadrilateral only oceur in the Figure 8-1 and there is
only one in each of it, 50 M = max x ; Suppose there are ¥ directed triangles.
Motice that there are respectively two, zeéro, and one directed triangle in Figure
10-1, 10-2 and 10-3, respectively.

X1 1Y

Besides, while calculating the number of the directed triangles by these three
kinds of sub-graphs, each directed triangle have been counted for (n—3)
times. Thus 2x+z={n=3)¥ hence 2x S (n=3)¥.

Consider n=2k+1. Let }"=§.t{.& +1)(2k + 1) , the inequality becomes

2< ;,zk-z)[é k(k + 102k +1)], e, x< %Ic{k — Ik + 12k +1).

To prove Theorem 6, we shall construct a graph for which the equality holds,
Fortunately, the construction that we gave earlier for the directed triangle cases
serve this purpose as well. The reason s according to the following lemma:
Lemma 4: In any graph constructed in the previous construction, each directed triangle
with any other vertex can form a directed quadnlaterals. [t is because as o
any directed tnangle (e, /., g), we choose k for the forth vertex. Then:

v
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(I.If h<eorh>g,wehave g—+h—e(and e— > g), 50
e f=rg—2h—e;
(20.1f e<he f,wehave e—h— f (and f =+ g > €], 50
= h—s frg—e;
(0.If f<h<g,wehave foh—og(and g—se— f) 50
e+ +hag—e.
 In each of the three cases above, the vertices make a directed quadrilateral!
By this lemma, we have 2x = (n—3)¥ . As it was proved before that
{2x = {8 -3 ), we conclude that 2x = (n—3)¥ . Thus,

M=]Ek(k—1]{£+lj{zk+l‘] for m=2k+1(keN). Asto n=2k (ke N),

the proof is the same. We omit the details. {QED.)
Remark: We may think of the question: Are there two graphs having the same out
degree sequence but different numbers of quadrilaterals?
By Figure 6 and Figure 7 before, we know the answer is positive. (Take
Figure 6 for example, there are respectively twelve and eight in the left
and right graph. Thus we have an casy proof why the graphs are different.)
Thus, we cannot use the double counting method to determine x again.

E. Discussion on Transitive Sub-tournaments T7T,,

In this section, we consider another gencralized problem: the minimum number
of transitive sub-tournaments TT, i a graph T, First, we give a definition to the
transitive sub-tournament: If any three vertices in a tournament form a fransitive
triangle, we call this a transitive one. Especially, if the graph is a subgraph of another,
w call this a transitive sub-tournament. Denote by TT,, a transitive sub-tournament
on m vertices. Obviously, TTy is just the transitive triangle. Theorem 3 gives that the

maximum number of transitive subtournaments 7T, ina T, is €, 50 we focus on

the minimum. First, we prove the existence of TT,,, which is similar to what Ramsey
Theorem shows in a large edge k-colored complete graph.

Theorem 7: If = 2™, then there exists a transitive subgraph TT,, ina graph T,.

Proof: We prove it by induction. When m =3, it is casy to see there are at least two
transitive triangles in a tournament Ty Now, suppose this theorem holds for

n = k, then consider the condition m = k + 1. To any vertex i in a graph Tz’“

gither it directs to 2% vertices or it is directed by 257 omes at least, Without
loss of generality, assume § —» I..!z,...,sz . By the hypothesis of

R
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m =k, we know there is at least a transitive subgraph TT} in the tournament
Ti!*" formed by the vertices i;,i3,....i gy and edges among them. Combine

one transitive subgraph T, with vertex {, we shall find a transitive sub-
tournament T, . Therefore, the theorem holds for m=4&+1. (Q.E.D.)

When we have proved the existence of the transitive sub-tournaments, we shall
nal.u.m]]y.l::unsiim' the next problem, “What is the least number of transitive subgraphs
TT,, inan n-clement tournament T, ™ We have completely solved the condition for
m =13, It is because while the number of directed triangles is the largest, it is relative
that the number of the transitive one is the least. By easy calculation, we shall obtain:
Theorem 8: The minimum of transitive triangles in an a-element tournament T, is

m C‘i‘——ék{k +I){Ik+|}:%.&(&—]}[2k +1), for n=2k+1,(k e N).

@ -%k{k-l}{kq-l}:ﬂk—ljz, for n=2k,(keN).

For m =4, we can obtain some upper and lower bounds by the previous results:
Theorem 9: Let min § be the least number of transitive sub-tournaments TT,, ina

: M n
tournament T, , then min S{EM-LC‘"‘

-1 .

Ye>0,3Im,eN:Vnzn,, minS}[ﬁ

Proof: The first inequality is obtained by counting the transitive sub-tournaments I'T,,,
in the tounaments made by the constructions in the proof for Theorem 5.
Besides, notice that the relation berween the transitive sub-tournaments 77T,
and 17y, used in the proof for Theorem 7. Then, we shall obtain the second
one from Theorem 8 after some calculations,

Remark: It is not difficult to improve the upper bound- we just need a construction to
replace that in Theorem 3, but | can’t make the upper bound very close (o the
lower bound so far. The main problem is that 1 have not found a systematic
method to count the number of TT,, for m=4. If we consider the graph
with vertices directing to the same ones relatively (Figure 9-1 is an example),
the distance between upper and lower bounds may be difficult to shorten.
Besides, the larger the number m is, the more difficulty we have. If we
consider other kinds of graph, it is natural that we have much more trouble
estimating the number of 17T, . Therefore, the direction for further study will

be the deeper discussion on this topic.

v

77

T



Conclusion

In this project, | have completely determined

(1) the minimum number of monochromatic triangles in an edge 2-colored graph K,
(Theorem 2);

(2) the maximum number of directed triangles and the minimum number of transitive
triangles in a tournament T, (Theorem 5 & Theorem §);

(3} the largest number of directed guadrilaterals in a tournament T, {Theorem 6).
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