

190029-封面
2023年臺灣國際科學展覽會

優勝作品專輯

作品編號 190029

參展科別 電腦科學與資訊工程

作品名稱 Adversarial Attacks Against Detecting Bot

Generated Text

得獎獎項 三等獎

國 家 Singapore

就讀學校 Raffles Institution

指導教師 Lee Chan Lye

作者姓名 Evan Lim Hong Jun

關鍵詞 adversarial、attack、bot

i

作者照片

1 Introduction

With the introduction of the transformer architecture by Vaswani et al. (2017), contemporary

Text Generation Models (TGMs) have shown incredible capabilities in generating neural text

that, for humans, is nearly indistinguishable from human text (Radford et al., 2019; Zellers et

al., 2019; Keskar et al., 2019). Although TGMs have many potential positive uses in writing,

entertainment and software development (Solaiman et al., 2019), there is also a significant

threat of these models being misused by malicious actors to generate fake news (Uchendu et

al., 2020; Zellers et al., 2019), fake product reviews (Adelani et al., 2020), or extremist content

(McGuffie & Newhouse, 2020).

TGMs like GPT-2 generate text based on a given prompt, which limits the degree of control

over the topic and sentiment of the neural text (Radford et al., 2019). However, other TGMs

like GROVER and CTRL allow for greater control of the content and style of generated text,

which increases its potential for misuse by malicious actors (Zellers et al., 2019; Keskar et al.,

2019). Additionally, many state-of-the-art pre-trained TGMs are available freely online and

can be deployed by low-skilled individuals with minimal resources (Solaiman et al., 2019).

There is therefore an immediate and substantial need to develop methods that can detect misuse

of TGMs on vulnerable platforms like social media or e-commerce websites.

Several methods have been explored in detecting neural text. Gehrmann et al. (2019) developed

the GLTR tool which highlights distributional differences in GPT-2 generated text and human

text, and assists humans in identifying a piece of neural text. The other approach is to formulate

the problem as a classification task to distinguish between neural text and human text and train

a classifier model (henceforth a ‘detector’). Simple linear classifiers on TF-IDF vectors or

topology of attention maps have also achieved moderate performance (Solaiman et al., 2019;

Kushnareva et al., 2021). Zellers et al. (2019) propose a detector of GROVER generated text

based on a linear classifier on top of the GROVER model and argue that the best TGMs are

also the best detectors. However, later results by Uchendu et al. (2020) and Solaiman et al.

(2019) show that this claim does not hold true for all TGMs. Consistent through most research

thus far is that fine-tuning the BERT or RoBERTa language model for the detection task

achieves state-of-the-art performance (Radford et al., 2019; Uchendu et al., 2020; Adelani et

al., 2020; Fagni et al., 2021). I will therefore be focussing on attacks against a fine-tuned

RoBERTa model.

Although extensive research has been conducted on detecting generated text, there is a

significant lack of research in adversarial attacks against such detectors (Jawahar et al., 2020).

However, the present research that does exist preliminarily suggests that neural text detectors

are not robust, meaning that the output can change drastically even for small changes in the

text input and thus that these detectors are vulnerable to adversarial attacks (Wolff, 2020).

In this paper, I extend on Wolff’s (2020) work on adversarial attacks on neural text detectors

by proposing a series of attacks designed to counter detectors as well as an algorithm to

optimally select for these attacks without compromising on the fluency of generated text. I do

this with reference to a fine-tuned RoBERTa detector and on two datasets: (1) the GPT-2

WebText dataset (Radford et al., 2019) and (2) the Tweepfake dataset (Fagni et al., 2021).

Additionally, I experiment with possible defences against these attacks, including (1) using

count-based features, (2) stylometric features and (3) adversarial training.

1

2 Related Work

Attacks in natural language processing (NLP)

Adversarial attacks have been extensively explored primarily in computer vision tasks, where

extremely minor perturbations on select pixels can easily trick the model whilst remaining

unnoticeable to humans (Carlini & Wagner, 2016). However, adversarial attacks on natural

language present a greater challenge due to its discrete nature, meaning all changes to the text

are noticeable and can result in jarring issues in the syntax or coherence of the entire sentence.

There have been multiple attempts at generating adversarial examples for various language

tasks, including sentiment analysis and textual entailment (Iyyer et al., 2018; Alzantot et al.,

2018). These attacks generally formulate the problem as generating adversarial text that

remains semantically and syntactically similar to the original text. Alzantot et al. (2018) do this

by randomly selecting a word in the current sentence, and considering a set of candidate

synonyms that fit in the context of the word, before selecting the synonym that will maximise

the target label prediction probability. This general framework remains consistent across many

adversarial attacks in NLP (Alzantot et al., 2018; Jin et al., 2019; Li et al., 2019).

Attacks on neural text detectors

Although there is some research into adversarial attacks in NLP, there is very little research

specifically about attacks against neural text detectors, which could become a significant tool

for malicious actors to evade detection (Jawahar et al., 2020). Wolff (2020) explores two

attacks on detectors: replacing characters with unicode homoglyphs (swapping English “a”s to

Cyrillic “a”s) and words with commonly misspelt words (swapping ‘except’ to ‘exept’). He

randomly modifies a percentage of words in the neural text of the GPT-2 WebText dataset to

attack a fine-tuned RoBERTa detector. Although the homoglyph attack achieved close to 100%

success rate and would be indistinguishable from regular characters to a human, such attacks

could be easily defended in the real world setting by banning homoglyphs or flagging accounts

that use them. As such, I will not be exploring homoglyph attacks in this paper. Additionally,

the misspelling attack is reliant on the size of the misspelling dictionary, significantly limiting

potential attacks. Instead, I extend on Wolff’s (2020) work by (1) suggesting alternative

character-level and word-level attacks, (2) proposing a score to measure sentence fluency and

(3) an algorithm to optimally select words to attack.

Context of the attack

Similar to work by Alzantot et al. (2018), I better simulate the real world by using the black-

box setting, meaning the attacker has no prior knowledge of or access to model architecture,

parameters or training data. Thus, the attacker may only query the model and get the model

prediction and confidence scores. The attacker seeks to (1) fool the detector with an adversarial

attack while (2) ensuring that the text remains recognisable and comprehensible to humans.

3 Method

3.1 Datasets

(1) GPT-2 WebText Dataset: Similar to Wolff (2020), I use 5000 test samples generated by

GPT-2 large with top-k 40 sampling provided by Solaiman et al. (2019). The texts in this

dataset have an average length of 2091 words.

2

(2) Tweepfake: Fagni et al. (2021) compiled real-world tweets taken from known human and

bot accounts. It includes text generated by a variety of TGMs, which Fagni et al. (2021)

separate into GPT-2, RNN, and others (Markov chains, LSTM). The Tweepfake dataset is

marked by a few characteristics that contrast the GPT-2 WebText dataset, namely the text is

(1) very short, (2) has many rare and out-of-vocab words, (3) does not always comply with

standard sentence structure and grammar, and (4) is ‘real’ in the sense that all the tweets were

actually posted to Twitter. I use the Tweepfake dataset in conjunction with the GPT-2 WebText

dataset to gain more realistic and generalisable results for adversarial attacks in the real world.

It is overall balanced between human and bot text and is split to 20712 training, 2558 test and

2302 validation samples. The texts in this dataset have an average length of 110 words.

3.2 Neural Text Detector

For the GPT-2 WebText dataset, I only use the pre-trained RoBERTa model provided by

Solaiman et al. (2019) due to the cost constraints of fine-tuning a model on the large training

set.

For the Tweepfake dataset, I fine-tune a RoBERTa model and train for 3 epochs, similar to

Fagni et al. (2021).

3.3 Problem formulation

Given a pre-trained classification model 𝐹: 𝑋 → 𝑌 , which maps from input text 𝑋 to a

corresponding set of labels 𝑌 , for a particular input text 𝑥 ∈ 𝑋 , we have to find a valid

adversarial example 𝑥𝑎𝑑𝑣 such that

𝐹(𝑥) ≠ 𝐹(𝑥𝑎𝑑𝑣), and 𝑆(𝑥) − 𝑆(𝑥𝑎𝑑𝑣) ≤ 𝜖

where 𝑆: 𝑋 → ℝ is a function that measures the fluency of input text 𝑋 and 𝜖 ∈ ℝ+
. In other

words, for a given input text 𝑋, we have to search for an adversarial text 𝑋𝑎𝑑𝑣 which fools the

detector to giving a different prediction label and decreases in fluency by less than 𝜖.

In conventional adversarial attacks in NLP, the attacker seeks to, as far as possible, preserve

semantic similarity between the original text and the adversarial text (Alzantot et al., 2018; Jin

et al., 2019). In our case, since the specific meaning of 𝑥 is originally generated by the TGM

on which the attacker has limited control, the attacker is not concerned with preserving the

specific semantics of 𝑥. Semantics is also less of a concern if the TGM is being used to generate

some posting history over time, so that the corresponding social media account looks credible.

Consequently, we can treat 𝑥𝑎𝑑𝑣 as generated text on its own. Although we can assume that

𝑥𝑎𝑑𝑣 will generally share a similar overall meaning to 𝑥 , we do not have to measure and

preserve specific semantic similarity between 𝑥 and 𝑥𝑎𝑑𝑣 in our algorithm. Instead, the primary

objective of 𝑥𝑎𝑑𝑣 is to fool the detector whilst seeming fluent and ‘natural’ to humans. Thus,

unlike previous work, I measure and preserve the change in fluency instead of semantic

similarity.

Fluency scoring

In this paper, I define fluency as linguistic acceptability, which generally measures the

syntactic and semantic validity of the text (Schütze, 1996). I use pseudo-log-likelihood (PLL)

scores as proposed by Salazar et al. (2021) to measure fluency. In masked language modelling,

a token 𝑤𝑡is replaced by the [MASK] token and predicted by the model using all preceding

and succeeding tokens. I define the new tokenized sentence 𝑊/𝑡 =

(𝑤1, . . . , 𝑤𝑡−1, 𝑤𝑡+1, . . . 𝑤|𝑊|), and 𝑃𝑀𝐿𝑀(𝑤𝑡 | 𝑊/𝑡) as the probability that the masked language

model predicts 𝑤𝑡 as the mask token in the new sentence 𝑊/𝑡. Iterating through all tokens, the

3

pseudo-log-likehood score for the sentence is then given as the sum of log probabilities for

each token 𝑤𝑡:

𝑃𝐿𝐿(𝑊) = ∑ 𝑙𝑜𝑔𝑃𝑀𝐿𝑀(𝑤𝑡 | 𝑊/𝑡)

|𝑊|

𝑡=1

This serves as a good approximation for the acceptability and thus fluency of the text as

determined by a masked language model. I use the BERT masked language model to compute

the PLL score. In table 1, we observe that by switching the order of words in the second and

third examples to make the sentence grammatically incorrect, the PLL score drops.

Text PLL Score

My friend is a citizen of Singapore. -16.3 (Most fluent)

A citizen of Singapore my friend is? -24.7

My friend is a Singapore of citizen. -49.9 (Least fluent)

Table 1: Examples for PLL fluency scoring

3.4 Attacks

I propose four character-level attacks and two word-level attacks for neural text detection. (1)

Space Insertion (Cspace): Inserts a space randomly in the target word. (2) Character swap

(Cswap): Randomly swaps two adjacent characters in the target word. (3) Character deletion

(Cdel): Randomly deletes a character in the target word. (4) Character substitute (Csub):

Randomly swaps a character in the word with visually similar characters or characters nearby

on a QWERTY keyboard. These four character-level attacks can be commonly found in real-

world settings in human typos which serves both to mimic human text to detectors whilst

remaining natural to other humans. The two word-level attacks are (5) Misspelling (Mis):

Randomly replace the target word with a corresponding commonly misspelt word. This is the

same attack performed by Wolff (2020) and uses the Wikipedia list of commonly misspelt

words1. (6) Synonym (Syn): Randomly replace the target word with a synonym. I use NLTK’s

interface to wordnet2 to find a list of synonyms for a given target word. I also do not consider

stopwords. A limitation of this attack is that the synonym chosen may not take into account the

context of the target word, which could result in synonyms that are semantically similar but

incoherent with the entire sentence. I show a list of examples of each attack in table 2.

Original Cspace Cswap Cdel Csub Mis Syn

heredity hered ity heerdity herediy herrdity heridity genetic

endowment

familiar fam iliar fmailiar famliar familisr familliar companion

Table 2: Examples of attacks used

Attack Algorithm

My attack algorithm follows the general framework proposed by previous work (Jin et al.,

2019). The critical part of the algorithm is calculating the importance score of target words.

1 https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
2 https://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html

4

The importance score of word 𝑤𝑡 is calculated as the change in confidence of the model after

removing word 𝑤𝑡:

𝑐𝑡 = 𝐹(𝑤1, . . . , 𝑤|𝑊|) − 𝐹(𝑤1, . . . , 𝑤𝑡−1, 𝑤𝑡+1, . . . , 𝑤|𝑊|)

where |𝑊| is the total number of tokens and 𝐹(𝑊) returns the confidence that the input text

𝑊 is generated by a TGM. Tokens with higher importance scores mean that they make the

detector more confident that the text is bot generated. Since we hope to fool the detector into

thinking the text is human written, we should focus on tokens with higher importance first.

The algorithm works by first calculating the importance scores of every word in the given text.

Then, we target the words from most important to least important. For every target word, we

try different attacks on the target word and chooses the attack which decreases confidence the

most. After every attack on a target word, we check if the fluency score for the perturbed text

has decreased below a threshold 𝜖 compared to the original. We continue the attacks until the

prediction for the perturbed text switches to the human label or the fluency score change drops

below the threshold.

For the GPT-2 WebText dataset, due to the length of the text, I first split the text into individual

sentences. I find the importance of each sentence similar to the method discussed above, only

instead of removing a single word, I remove the entire sentence. I iterate through each sentence

from most important to least important and run the same algorithm as described above.

3.5 Defense

I study two approaches to defend against adversarial attacks. Previous work has shown that

adding TF-IDF features (Prakash & Madabushi, 2020) and stylometric features (Sari et al.,

2018) can enhance detector performance. Hence, my first approach pre-trains a simple

classifier based on these features, then concatenates the final hidden layer with the outputs from

RoBERTa before feeding that into another classifier.

Figure 1: Architecture of ensemble model with TF-IDF or stylometric features

I also experiment with adversarial training, where I augment the training set with pre-generated

adversarial text so that the detector can learn to be robust to such noise. I first generate 6000

adversarial examples from the training set, then append these examples back to the existing

training set. In order to ensure that the training set remains balanced between bot and human

text, I also random sample for 6000 human text and duplicate it back into the training set. I

then use the updated training set to adversarially train a new detector.

5

4 Results

4.1 WebText Dataset

 Original All Conly Cspace Cswap Cdel Csub Mis Syn

Recall 99.0 0.4 0.4 1.6 1.4 1.0 0.8 2.4 19.8

Avg.

perturb
0 6.4 6.7 9.1 8.2 8.5 6.7 8.3 13.8

Table 3: Results of adversarial attack on GPT-2 WebText dataset. ‘All’ is an optimised attack

where all word and character-level attacks are performed, whereas ‘Conly’ only performs the

character-level attacks. ‘Avg. perturb’ is the average number of words perturbed in each

successful attack.

All attacks were conducted with a fluency score change threshold 𝜖 of 100, which was

determined experimentally through qualitative analysis of adversarial text at different

thresholds. From table 3, the adversarial attack with all 6 attacks causes the recall to drop from

99% to 0.4% with only minimal perturbations. Additionally, I achieved a far higher drop in

recall with the misspelling attack at 2.4% compared Wolff’s (2020) reported 22.68%, likely

due to the inclusion of importance scoring. Finally, character substitution has the best

performance with a recall at 0.8%, suggesting that imitating human typos in text can

successfully fool detectors.

Tweepfake Dataset

 Original All Conly Cspace Cswap Cdel Csub Mis Syn

Overall 93.0 33.9 43.7 68.1 67.5 66.3 63.2 78.2 81.4

GPT2 86.1 15.8 20.3 37.5 38.8 39.0 37.5 54.9 59.3

RNN 98.7 66.5 75.4 92.7 93.4 91.9 91.0 95.1 97.0

Others 93.5 20.6 35.1 71.4 68.1 66.1 60.1 82.4 85.7

Avg.

perturb
0 4.2 3.3 2.4 3.5 3.9 2.8 7.2 5.4

Table 4: Results of adversarial attack on Tweepfake dataset. ‘Overall’ is bot recall, i.e.

percentage of bot text correctly detected as bot. ‘GPT2’, ‘RNN’, ‘Others’ is the percentage of

text generated by each respective TGM that was detected.

From table 4, although misspelling and synonym attacks individually decrease bot recall by a

small amount relative to the character attacks (93% to 78.2% and 81.4% respectively), adding

these two word-level attacks to ‘character only’ attack further decreases recall from 43.7% to

33.9%. However, this also increases the average number of perturbations. This indicates that

word-level attacks are critical to the overall algorithm, possibly because they mimic human

error better than character-level attacks. Additionally, we see that GPT-2 generated neural text

drops in recall (86.1% to 15.8%) more than RNN generated neural text (98.7% to 66.5%). This

6

is sensible since GPT-2 text is more human-like than RNN text, which makes it easier to be

augmented to fool the detector.

 Overall GPT2 RNN Others
Avg.

perturb

With importance

scoring
33.9 15.8 66.5 20.6 4.2

Without

importance scoring
38.2 21.3 69.4 25.2 4.7

Table 5: Comparison of running adversarial attack algorithm with importance scoring and

without importance scoring (i.e. random selection of target words) on Tweepfake dataset.

From table 5, we clearly see that importance scoring is critical to improve the performance of

the adversarial attack compared to without importance scoring. However, the performance of

the attack without importance scoring at 38.2% recall also suggests that randomly selecting

target words is enough to achieve considerable results with minimal perturbations.

Defending against attacks

 Overall GPT2 RNN Others
Avg.

perturb

RoBERTa 33.9 15.8 66.5 20.6 4.2

RoBERTa + TF-

IDF
24.2 6.2 47.0 19.0 4.5

RoBERTa + Stylo 21.4 5.5 50.9 8.8 4.2

Adversarial training

on RoBERTa
64.8 37.2 93.9 61.9 2.9

Table 6: Results of running adversarial attack on standard RoBERTa model, ensemble model

with TF-IDF and Stylometric features, and adversarially trained RoBERTa model on

Tweepfake dataset.

I investigate the effects of defending against adversarial attacks in Table 6. We observe that

including TF-IDF and stylometric features does not defend against adversarial attacks. In fact,

the detectors with TF-IDF and stylometric features perform significantly worse compared to

the standard RoBERTa detector, with recall dropping from 33.9% to 24.2% and 21.4%

respectively. However, adversarial training is shown to greatly improve the robustness of the

detector, with recall increasing to 64.8%.

5 Discussion

GPT2 WebText vs. Tweepfake.

It is expected that the adversarial attack on the GPT2 WebText dataset is more successful than

the attack on the Tweepfake dataset. This is because the GPT-2 WebText dataset is much longer

than the Tweepfake dataset, giving the attacker more space to perform augmentations to the

7

text. Additionally, the Tweepfake dataset includes other TGMs like RNNs which produce text

that is less coherent and human-like than GPT-2.

Attack performance.

A small number of augmentations to neural text is shown to achieve a very high success rate

at fooling detectors. Four simple character-level attacks and two word-level attacks can cause

recall to drop near 0% for long text (GPT-2 WebText) and 33.9% even for very short, irregular

and ‘real-world’ text (Tweepfake). This suggests that although a lot of previous work

demonstrate high performance of detectors at classifying neural text near or above 90%, these

detectors are very vulnerable to simple attacks.

Importance scoring.

Although importance scoring is shown to improve the success rate of the adversarial attack, it

is not essential to the attack. In fact, a simple attack that randomly selects target words can

achieve very good results. This suggests that a malicious actor could easily make random minor

changes to the neural text and still fool a detector.

Possible Defences.

Although past work has shown that adding count-based and stylometric features to a classifier

can enhance performance (Prakash & Madabushi, 2020; Sari et al., 2018), they are not

successful and are in fact significantly detrimental in defending against adversarial attacks.

This is likely because the adversarial attacks are designed to produce what would be interpreted

as ‘rare’ words by the detector, which could disproportionately skew results towards classifying

the text as human. My results also indicate that adversarial training can significantly improve

the robustness of detectors against attacks. However, this approach requires the defender to

know the types of attacks employed by the attacker and may be difficult to employ in practice.

Future work could explore using language models that are also character-aware as detectors,

as they could be more robust against character-level augmentations in the text.

6 Conclusion

In this paper, I propose adversarial attacks on neural text detectors, including an algorithm to

optimally fool detectors whilst remaining fluent to other humans. My findings suggest that

current neural text detectors are not robust against adversarial attacks and highlight a significant

vulnerability in existing defences against bot generated text, given the ease at which malicious

actors could evade detectors. This represents a significant threat to many real-world

applications. I also experiment with various possible defences against the attacks. Further

research should explore improving the robustness of neural text detectors.

References

Adelani, D., Mai, H., Fang, F., Nguyen, H., Yamagishi, J., & Echizen, I. (2020). Generating

sentiment-preserving fake online reviews using neural language models and their

human-and machine-based detection. International Conference on Advanced

Information Networking and Applications, 1341–1354.

Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.-J., Srivastava, M., & Chang, K.-W. (2018).

Generating Natural Language Adversarial Examples. Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, 2890–2896.

8

Carlini, N., & Wagner, D. (2016). Towards Evaluating the Robustness of Neural Networks.

CoRR, abs/1608.04644.

Fagni, T., Falchi, F., Gambini, M., Martella, A., & Tesconi, M. (2021). Tweepfake: about

detecting deepfake tweets. PLoS ONE, 16(5).

Gehrmann, S., Strobelt, H., & Rush, A. (2019). GLTR: Statistical Detection and Visualization

of Generated Text. Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics: System Demonstrations, 111–116.

Iyyer, M., Wieting, J., Gimpel, K., & Zettlemoyer, L. (2018). Adversarial Example Generation

with Syntactically Controlled Paraphrase Networks. Proceedings of NAACL.

Jawahar, G., Muhammad, A.-M., & Lakshmanan, L. (2020). Automatic Detection of Machine

Generated Text: A Critical Survey. The 28th International Conference on

Computational Linguistics (COLING).

Jin, D., Jin, Z., Zhou, J., & Szolovits, P. (2019). Is BERT Really Robust? A Strong Baseline

for Natural Language Attack on Text Classification and Entailment. CoRR,

abs/1907.11932.

Keskar, N., McCann, B., Varshney, L., Xiong, C., & Socher, R. (2019). CTRL: A Conditional

Transformer Language Model for Controllable Generation.

Kushnareva, L., Cherniavskii, D., Mikhailov, V., Artemova, E., Barannikov, S., Bernstein,

A., . . . Burnaev, E. (2021). Artificial Text Detection via Examining the Topology of

Attention Maps. Proceedings of the 2021 Conference on Empirical Methods in

Natural Language Processing, 635–649.

Li, J., Ji, S., Du, T., Li, B., & Wang, T. (2019). TEXTBUGGER: Generating Adversarial Text

Against Real-world Applications. Network and Distributed Systems Security (NDSS)

Symposium 2019.

McGuffie, K., & Newhouse, A. (2020). The Radicalization Risks of GPT-3 and Advanced

Neural Language Models.

Prakash, A., & Madabushi, H. (2020). Incorporating Count-Based Features into Pre-Trained

Models for Improved Stance Detection. Proceedings of the 3rd NLP4IF Workshop on

NLP for Internet Freedom: Censorship, Disinformation, and Propaganda, 22--32.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language

Models are Unsupervised Multitask Learners.

Salazar, J., Liang, D., Nguyen, T., & Kirchhoff, K. (2021). Masked Language Model Scoring.

CoRR, abs/1910.14659.

Sari, Y., Stevenson, M., & Vlachos, A. (2018). Topic or Style? Exploring the Most Useful

Features for Authorship Attribution. Proceedings of the 27th International Conference

on Computational Linguistics, 343–353.

Schütze, C. T. (1996). The empirical base of linguistics: Grammaticality judgments and

linguistic methodology. Language Science Press.

Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-Voss, A., Wu, J., . . . Wang, J.

(2019). Release Strategies and the Social Impacts of Language Models. OpenAI

Report.

Uchendu, A., Le, T., Shu, K., & Lee, D. (2020). Authorship attribution for neural text

generation. Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), 8384–8395.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., N. Gomez, A., . . .

Polosukhin, I. (2017). Attention Is All You Need. Advances in neural information

processing systems, 5998–6008.

9

Wolff, M. (2020). ATTACKING NEURAL TEXT DETECTORS. CoRR. Retrieved from

abs/2002.11768

Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., & Choi, Y. (2019).

Defending Against Neural Fake News. Advances in Neural Information Processing

Systems, 9054–9065.

10

190029-評語

【評語】190029

This project proposes an adversarial attack algorithm against

detecting bot generated text. This is a complete work. The

experiments are complete. The problem formulation is clear. The

method is described clearly. It is easy to follow up the idea

proposed in this project. Some comments are given below:

The topic is not a new one. It is suggested to have a literature

survey on the works that target on the same issue. More

comparison between the proposed idea in this work and the one

in the previous works is suggested.

C:\Users\cutes\OneDrive\Documents\國際科展_2022\排版\190029-評語

	190029-封面
	190029-作者照片
	190029-Abstract
	1 Introduction
	2 Related Work
	3 Method
	4 Results
	5 Discussion
	6 Conclusion
	References

	190029-評語

