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1 Introduction 
 

With the introduction of the transformer architecture by Vaswani et al. (2017), contemporary 

Text Generation Models (TGMs) have shown incredible capabilities in generating neural text 

that, for humans, is nearly indistinguishable from human text (Radford et al., 2019; Zellers et 

al., 2019; Keskar et al., 2019). Although TGMs have many potential positive uses in writing, 

entertainment and software development (Solaiman et al., 2019), there is also a significant 

threat of these models being misused by malicious actors to generate fake news (Uchendu et 

al., 2020; Zellers et al., 2019), fake product reviews (Adelani et al., 2020), or extremist content 

(McGuffie & Newhouse, 2020).  

 

TGMs like GPT-2 generate text based on a given prompt, which limits the degree of control 

over the topic and sentiment of the neural text (Radford et al., 2019). However, other TGMs 

like GROVER and CTRL allow for greater control of the content and style of generated text, 

which increases its potential for misuse by malicious actors (Zellers et al., 2019; Keskar et al., 

2019). Additionally, many state-of-the-art pre-trained TGMs are available freely online and 

can be deployed by low-skilled individuals with minimal resources (Solaiman et al., 2019). 

There is therefore an immediate and substantial need to develop methods that can detect misuse 

of TGMs on vulnerable platforms like social media or e-commerce websites. 

 

Several methods have been explored in detecting neural text. Gehrmann et al. (2019) developed 

the GLTR tool which highlights distributional differences in GPT-2 generated text and human 

text, and assists humans in identifying a piece of neural text. The other approach is to formulate 

the problem as a classification task to distinguish between neural text and human text and train 

a classifier model (henceforth a ‘detector’). Simple linear classifiers on TF-IDF vectors or 

topology of attention maps have also achieved moderate performance (Solaiman et al., 2019; 

Kushnareva et al., 2021). Zellers et al. (2019) propose a detector of GROVER generated text 

based on a linear classifier on top of the GROVER model and argue that the best TGMs are 

also the best detectors. However, later results by Uchendu et al. (2020) and Solaiman et al. 

(2019) show that this claim does not hold true for all TGMs. Consistent through most research 

thus far is that fine-tuning the BERT or RoBERTa language model for the detection task 

achieves state-of-the-art performance (Radford et al., 2019; Uchendu et al., 2020; Adelani et 

al., 2020; Fagni et al., 2021). I will therefore be focussing on attacks against a fine-tuned 

RoBERTa model. 

 

Although extensive research has been conducted on detecting generated text, there is a 

significant lack of research in adversarial attacks against such detectors (Jawahar et al., 2020). 

However, the present research that does exist preliminarily suggests that neural text detectors 

are not robust, meaning that the output can change drastically even for small changes in the 

text input and thus that these detectors are vulnerable to adversarial attacks (Wolff, 2020). 

 

In this paper, I extend on Wolff’s (2020) work on adversarial attacks on neural text detectors 

by proposing a series of attacks designed to counter detectors as well as an algorithm to 

optimally select for these attacks without compromising on the fluency of generated text. I do 

this with reference to a fine-tuned RoBERTa detector and on two datasets: (1) the GPT-2 

WebText dataset (Radford et al., 2019) and (2) the Tweepfake dataset (Fagni et al., 2021). 

Additionally, I experiment with possible defences against these attacks, including (1) using 

count-based features, (2) stylometric features and (3) adversarial training.  
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2 Related Work 

 
Attacks in natural language processing (NLP) 

Adversarial attacks have been extensively explored primarily in computer vision tasks, where 

extremely minor perturbations on select pixels can easily trick the model whilst remaining 

unnoticeable to humans (Carlini & Wagner, 2016). However, adversarial attacks on natural 

language present a greater challenge due to its discrete nature, meaning all changes to the text 

are noticeable and can result in jarring issues in the syntax or coherence of the entire sentence. 

 

There have been multiple attempts at generating adversarial examples for various language 

tasks, including sentiment analysis and textual entailment (Iyyer et al., 2018; Alzantot et al., 

2018). These attacks generally formulate the problem as generating adversarial text that 

remains semantically and syntactically similar to the original text. Alzantot et al. (2018) do this 

by randomly selecting a word in the current sentence, and considering a set of candidate 

synonyms that fit in the context of the word, before selecting the synonym that will maximise 

the target label prediction probability. This general framework remains consistent across many 

adversarial attacks in NLP (Alzantot et al., 2018; Jin et al., 2019; Li et al., 2019). 

 

Attacks on neural text detectors 

Although there is some research into adversarial attacks in NLP, there is very little research 

specifically about attacks against neural text detectors, which could become a significant tool 

for malicious actors to evade detection (Jawahar et al., 2020). Wolff (2020) explores two 

attacks on detectors: replacing characters with unicode homoglyphs (swapping English “a”s to 

Cyrillic “a”s) and words with commonly misspelt words (swapping ‘except’ to ‘exept’). He 

randomly modifies a percentage of words in the neural text of the GPT-2 WebText dataset to 

attack a fine-tuned RoBERTa detector. Although the homoglyph attack achieved close to 100% 

success rate and would be indistinguishable from regular characters to a human, such attacks 

could be easily defended in the real world setting by banning homoglyphs or flagging accounts 

that use them. As such, I will not be exploring homoglyph attacks in this paper. Additionally, 

the misspelling attack is reliant on the size of the misspelling dictionary, significantly limiting 

potential attacks. Instead, I extend on Wolff’s (2020) work by (1) suggesting alternative 

character-level and word-level attacks, (2) proposing a score to measure sentence fluency and 

(3) an algorithm to optimally select words to attack. 

 

Context of the attack 

Similar to work by Alzantot et al. (2018), I better simulate the real world by using the black-

box setting, meaning the attacker has no prior knowledge of or access to model architecture, 

parameters or training data. Thus, the attacker may only query the model and get the model 

prediction and confidence scores. The attacker seeks to (1) fool the detector with an adversarial 

attack while (2) ensuring that the text remains recognisable and comprehensible to humans. 

 

3  Method 

 
3.1 Datasets 

(1) GPT-2 WebText Dataset: Similar to Wolff (2020), I use 5000 test samples generated by 

GPT-2 large with top-k 40 sampling provided by Solaiman et al. (2019). The texts in this 

dataset have an average length of 2091 words. 
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(2) Tweepfake: Fagni et al. (2021) compiled real-world tweets taken from known human and 

bot accounts. It includes text generated by a variety of TGMs, which Fagni et al. (2021) 

separate into GPT-2, RNN, and others (Markov chains, LSTM). The Tweepfake dataset is 

marked by a few characteristics that contrast the GPT-2 WebText dataset, namely the text is 

(1) very short, (2) has many rare and out-of-vocab words, (3) does not always comply with 

standard sentence structure and grammar, and (4) is ‘real’ in the sense that all the tweets were 

actually posted to Twitter. I use the Tweepfake dataset in conjunction with the GPT-2 WebText 

dataset to gain more realistic and generalisable results for adversarial attacks in the real world. 

It is overall balanced between human and bot text and is split to 20712 training, 2558 test and 

2302 validation samples. The texts in this dataset have an average length of 110 words. 

 

3.2 Neural Text Detector 

For the GPT-2 WebText dataset, I only use the pre-trained RoBERTa model provided by 

Solaiman et al. (2019) due to the cost constraints of fine-tuning a model on the large training 

set. 

 

For the Tweepfake dataset, I fine-tune a RoBERTa model and train for 3 epochs, similar to 

Fagni et al. (2021).  

 
3.3 Problem formulation 

Given a pre-trained classification model 𝐹: 𝑋 → 𝑌 , which maps from input text 𝑋  to a 

corresponding set of labels 𝑌 , for a particular input text 𝑥 ∈ 𝑋 , we have to find a valid 

adversarial example 𝑥𝑎𝑑𝑣 such that 

𝐹(𝑥)  ≠ 𝐹(𝑥𝑎𝑑𝑣), and 𝑆(𝑥)  − 𝑆(𝑥𝑎𝑑𝑣)  ≤ 𝜖 

where 𝑆: 𝑋 → ℝ  is a function that measures the fluency of input text 𝑋 and 𝜖 ∈ ℝ+
. In other 

words, for a given input text 𝑋, we have to search for an adversarial text 𝑋𝑎𝑑𝑣 which fools the 

detector to giving a different prediction label and decreases in fluency by less than 𝜖.  

 

In conventional adversarial attacks in NLP, the attacker seeks to, as far as possible, preserve 

semantic similarity between the original text and the adversarial text (Alzantot et al., 2018; Jin 

et al., 2019). In our case, since the specific meaning of 𝑥 is originally generated by the TGM 

on which the attacker has limited control, the attacker is not concerned with preserving the 

specific semantics of 𝑥. Semantics is also less of a concern if the TGM is being used to generate 

some posting history over time, so that the corresponding social media account looks credible. 

Consequently, we can treat 𝑥𝑎𝑑𝑣 as generated text on its own. Although we can assume that 

𝑥𝑎𝑑𝑣  will generally share a similar overall meaning to 𝑥 , we do not have to measure and 

preserve specific semantic similarity between 𝑥 and 𝑥𝑎𝑑𝑣 in our algorithm. Instead, the primary 

objective of 𝑥𝑎𝑑𝑣 is to fool the detector whilst seeming fluent and ‘natural’ to humans. Thus, 

unlike previous work, I measure and preserve the change in fluency instead of semantic 

similarity.  

 

Fluency scoring 

In this paper, I define fluency as linguistic acceptability, which generally measures the 

syntactic and semantic validity of the text (Schütze, 1996). I use pseudo-log-likelihood (PLL) 

scores as proposed by Salazar et al. (2021) to measure fluency. In masked language modelling, 

a token 𝑤𝑡is replaced by the [MASK] token and predicted by the model using all preceding 

and succeeding tokens. I define the new tokenized sentence 𝑊/𝑡 =

(𝑤1, . . . , 𝑤𝑡−1, 𝑤𝑡+1, . . . 𝑤|𝑊|), and 𝑃𝑀𝐿𝑀(𝑤𝑡 | 𝑊/𝑡) as the probability that the masked language 

model predicts 𝑤𝑡 as the mask token in the new sentence 𝑊/𝑡. Iterating through all tokens, the 
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pseudo-log-likehood score for the sentence is then given as the sum of log probabilities for 

each token 𝑤𝑡: 

𝑃𝐿𝐿(𝑊)  = ∑ 𝑙𝑜𝑔𝑃𝑀𝐿𝑀(𝑤𝑡 | 𝑊/𝑡)

|𝑊|

𝑡=1

 

This serves as a good approximation for the acceptability and thus fluency of the text as 

determined by a masked language model. I use the BERT masked language model to compute 

the PLL score. In table 1, we observe that by switching the order of words in the second and 

third examples to make the sentence grammatically incorrect, the PLL score drops. 

Text PLL Score 

My friend is a citizen of Singapore.  -16.3 (Most fluent) 

A citizen of Singapore my friend is? -24.7 

My friend is a Singapore of citizen. -49.9 (Least fluent) 

Table 1: Examples for PLL fluency scoring 

 

3.4 Attacks 

I propose four character-level attacks and two word-level attacks for neural text detection. (1) 

Space Insertion (Cspace): Inserts a space randomly in the target word. (2) Character swap 

(Cswap): Randomly swaps two adjacent characters in the target word. (3) Character deletion 

(Cdel): Randomly deletes a character in the target word. (4) Character substitute (Csub): 

Randomly swaps a character in the word with visually similar characters or characters nearby 

on a QWERTY keyboard. These four character-level attacks can be commonly found in real-

world settings in human typos which serves both to mimic human text to detectors whilst 

remaining natural to other humans. The two word-level attacks are (5) Misspelling (Mis): 

Randomly replace the target word with a corresponding commonly misspelt word. This is the 

same attack performed by Wolff (2020) and uses the Wikipedia list of commonly misspelt 

words1. (6) Synonym (Syn): Randomly replace the target word with a synonym. I use NLTK’s 

interface to wordnet2 to find a list of synonyms for a given target word. I also do not consider 

stopwords. A limitation of this attack is that the synonym chosen may not take into account the 

context of the target word, which could result in synonyms that are semantically similar but 

incoherent with the entire sentence. I show a list of examples of each attack in table 2. 

 

Original Cspace Cswap Cdel Csub Mis Syn 

heredity hered ity heerdity herediy herrdity heridity genetic 

endowment 

familiar fam iliar fmailiar famliar familisr familliar companion 

Table 2: Examples of attacks used 

 

Attack Algorithm 

My attack algorithm follows the general framework proposed by previous work (Jin et al., 

2019). The critical part of the algorithm is calculating the importance score of target words. 

 
1 https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines 
2 https://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html 
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The importance score of word 𝑤𝑡 is calculated as the change in confidence of the model after 

removing word 𝑤𝑡: 

𝑐𝑡 = 𝐹(𝑤1, . . . , 𝑤|𝑊|)  −  𝐹(𝑤1, . . . , 𝑤𝑡−1, 𝑤𝑡+1, . . . , 𝑤|𝑊|)  

where |𝑊| is the total number of tokens and 𝐹(𝑊)  returns the confidence that the input text 

𝑊 is generated by a TGM. Tokens with higher importance scores mean that they make the 

detector more confident that the text is bot generated. Since we hope to fool the detector into 

thinking the text is human written, we should focus on tokens with higher importance first. 

 

The algorithm works by first calculating the importance scores of every word in the given text. 

Then, we target the words from most important to least important. For every target word, we 

try different attacks on the target word and chooses the attack which decreases confidence the 

most. After every attack on a target word, we check if the fluency score for the perturbed text 

has decreased below a threshold 𝜖 compared to the original. We continue the attacks until the 

prediction for the perturbed text switches to the human label or the fluency score change drops 

below the threshold. 

 

For the GPT-2 WebText dataset, due to the length of the text, I first split the text into individual 

sentences. I find the importance of each sentence similar to the method discussed above, only 

instead of removing a single word, I remove the entire sentence. I iterate through each sentence 

from most important to least important and run the same algorithm as described above. 

 

3.5 Defense 

I study two approaches to defend against adversarial attacks. Previous work has shown that 

adding TF-IDF features (Prakash & Madabushi, 2020) and stylometric features (Sari et al., 

2018) can enhance detector performance. Hence, my first approach pre-trains a simple 

classifier based on these features, then concatenates the final hidden layer with the outputs from 

RoBERTa before feeding that into another classifier. 

 
Figure 1: Architecture of ensemble model with TF-IDF or stylometric features 

 

I also experiment with adversarial training, where I augment the training set with pre-generated 

adversarial text so that the detector can learn to be robust to such noise. I first generate 6000 

adversarial examples from the training set, then append these examples back to the existing 

training set. In order to ensure that the training set remains balanced between bot and human 

text, I also random sample for 6000 human text and duplicate it back into the training set. I 

then use the updated training set to adversarially train a new detector. 
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4 Results 

 
4.1 WebText Dataset 

 Original All Conly Cspace Cswap Cdel Csub Mis Syn 

Recall 99.0 0.4 0.4 1.6 1.4 1.0 0.8 2.4 19.8 

Avg. 

perturb 
0 6.4 6.7 9.1 8.2 8.5 6.7 8.3 13.8 

Table 3: Results of adversarial attack on GPT-2 WebText dataset. ‘All’ is an optimised attack 

where all word and character-level attacks are performed, whereas ‘Conly’ only performs the 

character-level attacks. ‘Avg. perturb’ is the average number of words perturbed in each 

successful attack. 

 

All attacks were conducted with a fluency score change threshold 𝜖  of 100, which was 

determined experimentally through qualitative analysis of adversarial text at different 

thresholds. From table 3, the adversarial attack with all 6 attacks causes the recall to drop from 

99% to 0.4% with only minimal perturbations. Additionally, I achieved a far higher drop in 

recall with the misspelling attack at 2.4% compared Wolff’s (2020) reported 22.68%, likely 

due to the inclusion of importance scoring. Finally, character substitution has the best 

performance with a recall at 0.8%, suggesting that imitating human typos in text can 

successfully fool detectors. 

 

Tweepfake Dataset 

 Original All Conly Cspace Cswap Cdel Csub Mis Syn 

Overall 93.0 33.9 43.7 68.1 67.5 66.3 63.2 78.2 81.4 

GPT2 86.1 15.8 20.3 37.5 38.8 39.0 37.5 54.9 59.3 

RNN 98.7 66.5 75.4 92.7 93.4 91.9 91.0 95.1 97.0 

Others 93.5 20.6 35.1 71.4 68.1 66.1 60.1 82.4 85.7 

Avg. 

perturb 
0 4.2 3.3 2.4 3.5 3.9 2.8 7.2 5.4 

Table 4: Results of adversarial attack on Tweepfake dataset. ‘Overall’ is bot recall, i.e. 

percentage of bot text correctly detected as bot. ‘GPT2’, ‘RNN’, ‘Others’ is the percentage of 

text generated by each respective TGM that was detected. 

 

From table 4, although misspelling and synonym attacks individually decrease bot recall by a 

small amount relative to the character attacks (93% to 78.2% and 81.4% respectively), adding 

these two word-level attacks to ‘character only’ attack further decreases recall from 43.7% to 

33.9%. However, this also increases the average number of perturbations. This indicates that 

word-level attacks are critical to the overall algorithm, possibly because they mimic human 

error better than character-level attacks. Additionally, we see that GPT-2 generated neural text 

drops in recall (86.1% to 15.8%) more than RNN generated neural text (98.7% to 66.5%). This 

6 



is sensible since GPT-2 text is more human-like than RNN text, which makes it easier to be 

augmented to fool the detector. 

 

 Overall GPT2 RNN Others 
Avg. 

perturb 

With importance 

scoring 
33.9 15.8 66.5 20.6 4.2 

Without 

importance scoring 
38.2 21.3 69.4 25.2 4.7 

Table 5: Comparison of running adversarial attack algorithm with importance scoring and 

without importance scoring (i.e. random selection of target words) on Tweepfake dataset. 

 

From table 5, we clearly see that importance scoring is critical to improve the performance of 

the adversarial attack compared to without importance scoring. However, the performance of 

the attack without importance scoring at 38.2% recall also suggests that randomly selecting 

target words is enough to achieve considerable results with minimal perturbations. 

 

Defending against attacks 

 Overall GPT2 RNN Others 
Avg. 

perturb 

RoBERTa 33.9 15.8 66.5 20.6 4.2 

RoBERTa + TF-

IDF 
24.2 6.2 47.0 19.0 4.5 

RoBERTa + Stylo 21.4 5.5 50.9 8.8 4.2 

Adversarial training 

on RoBERTa 
64.8 37.2 93.9 61.9 2.9 

Table 6: Results of running adversarial attack on standard RoBERTa model, ensemble model 

with TF-IDF and Stylometric features, and adversarially trained RoBERTa model on 

Tweepfake dataset. 

 

I investigate the effects of defending against adversarial attacks in Table 6. We observe that 

including TF-IDF and stylometric features does not defend against adversarial attacks. In fact, 

the detectors with TF-IDF and stylometric features perform significantly worse compared to 

the standard RoBERTa detector, with recall dropping from 33.9% to 24.2% and 21.4% 

respectively. However, adversarial training is shown to greatly improve the robustness of the 

detector, with recall increasing to 64.8%.  

 

5 Discussion 

 
GPT2 WebText vs. Tweepfake.  

It is expected that the adversarial attack on the GPT2 WebText dataset is more successful than 

the attack on the Tweepfake dataset. This is because the GPT-2 WebText dataset is much longer 

than the Tweepfake dataset, giving the attacker more space to perform augmentations to the 
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text. Additionally, the Tweepfake dataset includes other TGMs like RNNs which produce text 

that is less coherent and human-like than GPT-2. 

 

Attack performance. 

A small number of augmentations to neural text is shown to achieve a very high success rate 

at fooling detectors. Four simple character-level attacks and two word-level attacks can cause 

recall to drop near 0% for long text (GPT-2 WebText) and 33.9% even for very short, irregular 

and ‘real-world’ text (Tweepfake). This suggests that although a lot of previous work 

demonstrate high performance of detectors at classifying neural text near or above 90%, these 

detectors are very vulnerable to simple attacks. 

 

Importance scoring.  

Although importance scoring is shown to improve the success rate of the adversarial attack, it 

is not essential to the attack. In fact, a simple attack that randomly selects target words can 

achieve very good results. This suggests that a malicious actor could easily make random minor 

changes to the neural text and still fool a detector. 

 

Possible Defences. 

Although past work has shown that adding count-based and stylometric features to a classifier 

can enhance performance (Prakash & Madabushi, 2020; Sari et al., 2018), they are not 

successful and are in fact significantly detrimental in defending against adversarial attacks. 

This is likely because the adversarial attacks are designed to produce what would be interpreted 

as ‘rare’ words by the detector, which could disproportionately skew results towards classifying 

the text as human. My results also indicate that adversarial training can significantly improve 

the robustness of detectors against attacks. However, this approach requires the defender to 

know the types of attacks employed by the attacker and may be difficult to employ in practice. 

Future work could explore using language models that are also character-aware as detectors, 

as they could be more robust against character-level augmentations in the text. 

 

6 Conclusion 

 
In this paper, I propose adversarial attacks on neural text detectors, including an algorithm to 

optimally fool detectors whilst remaining fluent to other humans. My findings suggest that 

current neural text detectors are not robust against adversarial attacks and highlight a significant 

vulnerability in existing defences against bot generated text, given the ease at which malicious 

actors could evade detectors. This represents a significant threat to many real-world 

applications. I also experiment with various possible defences against the attacks. Further 

research should explore improving the robustness of neural text detectors. 
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190029-評語 

【評語】190029 

This project proposes an adversarial attack algorithm against 

detecting bot generated text. This is a complete work. The 

experiments are complete. The problem formulation is clear. The 

method is described clearly. It is easy to follow up the idea 

proposed in this project. Some comments are given below: 

The topic is not a new one. It is suggested to have a literature 

survey on the works that target on the same issue. More 

comparison between the proposed idea in this work and the one 

in the previous works is suggested.  
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