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Abstract 

This study presents a real-time dynamic gesture recognition technique with millimeter-wave 

radar, which operates the application by several simple dynamic gestures instead of keyboard and 

mouse, thus providing a more friendly and intuitive Human-computer Interaction (HCI). We 

conducted gesture attribute analysis, sensor data representation evaluation, learning model 

efficiency evaluation, and system live testing performance analysis to improve the usability and 

maneuverability of the gesture control human-machine interface. Our learning model is based on a 

hybrid model (1DCNN+LSTM) of size 415 KB for four dynamic gestures and runs gesture 

recognition at a sampling rate of 30 FPS on a Texas Instruments FMCW radar evaluation board. We 

achieved 94.5% accuracy for media player application among seven users, including five right-

handers and two left-handers. In addition, our approach enables interoperable applications in 

complex spaces outside the controlled laboratory environment without significant misidentification. 

 

本研究提出了一個毫米波雷達即時動態手勢辨識技術，透過幾個簡單的手勢取代鍵盤和

滑鼠來操作應用程序，從而提供更生活化和直覺化的人機介面。我們透過手勢屬性分析、手

勢訓練資料格式選擇評估、學習模型效能評估和系統實測性能分析，以提高手勢控制人機界

面的實用性。我們的學習模型採用一大小為 415 KB 的 1DCNN+LSTM 混合模型支持四個動

態手勢，並在德州儀器的 FMCW雷達評估板上以 30 FPS的採樣速度進行手勢識別。我們在

7 個用戶（包括 5 個右撇子和 2 個左撇子）的多媒體撥放實際測試中達到 94.5%的操控準確

率。此外，我們的方案在實驗室環境之外的複雜空間中操控應用程序，也不會有明顯的辨識

錯誤的情況發生。 
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1. Introduction 

Human-computer Interaction (HCI) has progressed from keyboards, mice, and touch to more 

diverse and intuitive control methods, while gesture interactions have been studied in the HCI 

community by many researchers. Millimeter-wave radar sensor uses radio waves, which is not 

interfered by sound and light sources, to achieve excellent sensing capabilities to measure the distance, 

speed and direction of moving objects. With advancements in machine learning, incorporating gesture 

recognition and gesture tracking technology with millimeter-wave frequency modulated continuous 

wave (FMCW) radar has extremely important application value in the HCI community.  

We consider the following design requirements to design a gestural interaction system for 

selected applications, making the application easier to use in all environments. 

l Usability 

How easy is it to perform the gesture. Users feel natural and easy to pick up on with a short 

learning curve. 

l Accessibility 

Ensure users can interact with devices easily without any difficulty. 

l Comfortability 

Consider the human body ergonomics, if a gesture is uncomfortable or too repetitive, the 

experience will not be great for users. 

l Intuitiveness 

Avoid using complex gestures which are hard to learn, instead, choose gestures that allow users 

understand them instinctively. 

 

 

Through millimeter-wave radar detection and real-time dynamic gesture recognition technology, 

a more user-friendly and intuitive human-machine interface is provided, thereby making the 
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communication between humans and machines more barrier-free. Our main contributions are 

summarized as follows: 

l A qualitative analysis approach based on quantity, function support, complexity and attributes 

is proposed to design a user-friendly gesture set to interact with the selected application. 

l Discussing strategies for selecting sampling rates and sensor data representations during the data 

acquisition phase to improve model efficiency and performance. 

l Discussing strategies for model layer construction and sliding window selection to achieve high 

recognition accuracy and performance. 

l Real-time and power-saving implementation on a 60GHz FWCW radar solution to evaluate the 

proposed gestural interaction system efficiency and readiness. 

l Measuring the reliability of millimeter-wave radar sensors to external environmental 

interferences, including four different types of interference: Bluetooth, electromagnetic waves (hair 

dryer), fan swiping and millimeter-wave radar. 

 

The rest of this paper is organized as follows. In Section 2, we present the study of gesture 

recognition technology in the HCI community. In Section 3, we demonstrate an efficient millimeter-

wave radar dynamic gesture control system for the selected application. The design flow and its 

performance evaluation are described in Section 4. The interaction with the selected application 

snapshots is presented in Section 5. The conclusions of this study are described in Section 6. 

 

2. Related Work 

Existing gesture interaction methods use image sensors [1, 2, 3] to capture the gesture movement 

and there is significant breakthrough among them. However, image sensor suffers from several 

difficulties such as sensitive to light and atmospheric conditions, which resulting in insufficient 

sensing capabilities. By overcoming many of the problems with camera-based approaches, 
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millimeter-wave radar has the potential to become the basis for gesture recognition. Most gesture-

sensing work uses millimeter-wave FMCW radar, builds training datasets using spectrograms of 

range-Doppler images generated from raw data, and captures features from images using machine 

learning models capable of recognizing gestures [4, 5, 6]. Furthermore, since dynamic gestures are 

time-series data, a sliding-window preprocessing layer needs to be added to the learning model to 

trade off accuracy and inference time [7]. A qualitative and quantitative analysis of novel radar-based 

recognition solutions relevant to HCI applications are reviewed in [8]. 

 

In this paper, we used Cartesian coordinates instead of the spectrogram of the range Doppler 

image as the inference basis for the learning model. Our learning model performs gesture detection 

and classification based on a hybrid model consisting of four 1D-CNNs and one LSTM network. 

Furthermore, we evaluated model performance through live system testing on real-world applications 

in complex spaces outside the controlled laboratory environment. 

 

3. Proposed Method 

Gestures are quite primitive and natural expressions in daily life. It has become a trend for 

wearables to incorporate dynamic gestures to make them easier to use. Dynamic gestures are the 

changes of gestures in continuous time, including the changes in gesture shape and trajectory. Using 

FMCW technology to detect the position, speed and direction of moving objects ahead through 

millimeter-wave is the most popular short-range gesture recognition method today.  

 

3.1  Overview of gesture interaction system 

The FMCW radar gesture recognition system first converts the complex dynamic gesture 

information from three-dimensional space into one-dimensional data points to reduce the computing 

time, and calculates the features of each gesture through a learning algorithm, which is used as a 

recognition basis to identify different gestures to achieve real-time human-computer interaction effect. 
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3.2  Design flow and system performance metrics 

First, we proposed a systematic design flow for the selected applications, including gesture design 

(number of gestures, gesture attribute analysis and the function mappings between gestures and the 

application, etc.) and model design (gesture recognition rate, inference time, model size and window 

size, etc.), as shown in Figure 1. Next, we deployed the model with best performance on the 

IWR6843AOPEVM board for system live testing efficiency evaluation. Then, users with different 

dominant hand tested the board to measure several performances: (1) Is the interaction between the 

gestures and application conforms to human natural habits? (2) Is the gesture easy to perform and 

remember? (3) How fast is the response time? Finally, according to the evaluation results of the 

system, we refined the gesture and the model iteratively to achieve better performance. 

 

 

 

 

Figure 1: Dynamic gesture control system design flow. 

 

3.3  Toolchains and hardware setup 

This study uses TI IWR6843AOPEVM (Table 1), and the relevant hardware parameter settings 

are shown in Table 2. The software tools and firmware versions used are listed in Table 3. 

 

Table 1: TI IWR6843AOPEVM specifications. 

Number of transmit antennas 3 

Number of receiving antennas 4 
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Transmit power 12 dbm 

Frequency 60 ~ 64 GHz 

Peripheral communication interface I2C、LVDS、QSPI、SPI、UART 

 

Table 2: TI IWR6843AOPEVM millimeter wave radar settings. 

Number of transmit antennas 3 

Number of receiving antennas 4 

Frequency 60 GHz 

 

Table 3: Software tools and TI IWR6843AOPEVM firmware versions. 

Imagimob Studio Version 3.3.480 

Python Version 3.6.7 

AutoIt Version 3.3.16.0 

IWR6843AOPEVM Firmware SDK 16.9.6.LTS 

 

4. Finding 

Based on the user experience design principles, this study divides the design flow of the gestural 

interaction system into six stages: gesture design, gesture attribute analysis, data collection and pre-

processing, model design and efficiency evaluation, system design, and system performance metrics 

and analysis. 
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4.1  Gesture design 

Taking a gesture-controlled multimedia player application as an example, the control functions 

are divided into three categories, play/pause, track control, and volume control. Here we design two 

sets of gesture A and B. Group A has three gestures, one-tap, double-tap and triple-tap. Group B 

(Figure 2) has four gestures, double-clockwise, right-swipe, left-swipe and push. Based on the 

simplified gestures for common interactions mechanism, the gestures and control function mappings 

of Group A and Group B are shown in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Group B gestures. 

 

 

 

        
▲ Double-clockwise             ▲ Push 

          

▲ Left-swipe             ▲ Right-swipe 
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Table 4: Mapping table between gestures and multimedia player functions. 

 

 

 

 

 

 

 

4.2  Gesture attribute analysis  

Gesture design should strive to be intuitive, easy to use, and ergonomic. More complex and 

excessive gestures, in addition to increasing the complexity and computing time of the machine 

learning model, not only make it difficult for users to get started, but also reduce usability. This study 

proposes four gesture attributes to evaluate the strengths and weaknesses of the gesture sets, as shown 

below. 

l Uniqueness 

The similarity between gestures is low. Taking one-tap and double-tap as an example, double-

tap is unique in that a one-tap is not mistaken for a double-tap. 

l Logical 

The mapping between gestures and functions is intuitive and easy to remember. For example, 

the functions of previous track and next track are logically opposite, and their mapping gestures also 

need to have opposite semantics like right-swipe and left-swipe.  

l Calibration 

Gestures need to be pre-calibrated. For example, the long and short swiping in the same direction 

are different for radar detection, and this must be taken into account during data collection phase to 

capture data at different speeds. 

 Gesture Function support Complexity 
(Duration, ms) 

Group A 
One-tap Play / Pause Low (825) 

Double-tap Next track Middle (970) 
Triple-tap Previous track High (1683) 

Group B 

Double-clockwise Mode switch Middle (1223) 

Right-swipe Next track / 
Volume increase Low (523) 

Left-swipe Previous track / 
Volume decrease Low (775) 

Push Play / Pause Low (675) 
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l Prefix code 

A gesture is a subset of another gesture. For example, one-tap is the prefix code of double-tap, 

which increase the likelihood that double-tap will be recognized as one-tap twice. 

 

  Figure 3 shows the Cartesian waveforms and durations of Group A gestures. Gesture durations 

in Group A range from 0.5s to 1.7s, with triple-tap having the longest duration. The y-axis (yellow 

line) waveform of one-tap shows one peak, the y-axis (yellow line) waveform of double-tap shows 

two peaks, and the y-axis (yellow line) waveform of triple-tap shows three peaks. From the waveform 

point of view, there is also a prefix code relationship between this group of gestures, which increases 

the possibility that double-tap is recognized as one-tap and triple-tap is recognized as double-tap. 

Although this group of gestures is simple, it does not have any logicality and semantics, and users 

need to spend more time remembering the mapping between gestures and functions.  

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Cartesian waveforms and gesture durations of Group A. There is a prefix-code relationship 

between this group of gestures, which increases the possibility of misidentifications. 

 

                     
 

970 ms 825 ms 1683 ms 
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  Figure 4 shows the Cartesian waveforms and durations of Group B gestures. Gesture durations 

in Group B range from 0.4s to 1.5s, with double-clockwise having the longest duration. Right-swipe 

and left-swipe have their x-axis (green line) as the main feature, push has their z-axis (red line) as 

their main feature. In double-clockwise, the x, y, and z axes are all changed, and is more unique to 

distinguish from others. In addition, right-swipe and left-swipe in this group have opposite meanings, 

and it is not only intuitive but also easy to remember to use them to do track control and volume 

control. However, here we use millimeter-wave to detect gestures, both right-swipe and left-swipe 

require more data captured by different dominant hands at different speeds to make the model more 

robust. 

 

 

 

 

 

 

 

 

 

 
Figure 4: Cartesian waveforms and gesture durations of Group B. Swiping left and right are 

characterized by the x-axis, while push is characterized by the z-axis. Also, swiping left and right 

have opposite meanings, making them intuitive for track and volume control. 

 

  Table 5 shows the qualitative analyzing results of Groups A and B based on the above proposed 

gesture attributes. From the results, From the results, there is a prefix code relationship in group A, 

              

1223 ms 775 ms 675 ms 523 ms 

x 
y 
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which increases the possibility of misidentification. Group B has good logic, and there is no subset 

relationship between gestures, which is better than group A. We will use Group B to control the media 

player. 

 

Table 5: Qualitative analysis results of gesture attributes for Group A and Group B.  

 

 

 

 

 

 

 

 

4.3  Gesture data collection and pre-processing 

Data collection is one of the most time-consuming processes in machine learning stages. We 

used the Imagimob studio tool to capture the radar signals of TI IWR6843AOPEVM as training data. 

The toolchain provides four kinds of captured information: Cartesian coordinate, polar coordinate, 

velocity and noise, where Cartesian and polar coordinates are the positions of moving objects, 

expressed in different coordinate systems under the same origin, velocity is the speed of the moving 

object, and noise is the interference data. In addition, the detection range is centered on the radar, 

with a plane of 30cm and a depth of 30cm. It can detect up to four moving objects and offers the 

closest and fastest options. In data collection phase, we need to consider the sensor data format, 

sampling rate, and label strategy. 

 

 

 Gesture Prefix code Calibration Uniqueness Logical 

Group A 
One-tap No No No No 

Double-tap Yes No No No 
Triple-tap Yes No Yes No 

Group B 

Double-clockwise No No Yes No 
Right-swipe No Yes No Yes 
Left-swipe No Yes No Yes 

Push No No No No 
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l Data representation 

In the beginning, we used four data types and four closest objects, but the motion trajectories of 

the 4 closest objects are similar, as shown in Figure 5, one closest object data point is sufficient for 

model training. Figure 6 is the waveform of the push gesture captured at different speeds. The velocity 

waveform is in a state of high variation, and adding velocity data limits the user to test the system at 

the same speed during the data collection phase. In Figure 7, the range data (blue line) in polar 

coordinate is almost unchanged, one less feature than in Cartesian coordinate. Table 6 shows that 

adding noise does not improve F1 score or miss rate. Based on the results of the above analysis and 

discussion, we chose the Cartesian coordinates of the closest object as the features of our training 

data. 

 

 

 

 

 

 

 
Figure 5: Cartesian coordinate waveform of left-swipe and right-swipe, the left side is one object and 

the right side is four objects. The finger movements for left-swipe and right-swipe are similar. 
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Figure 6: Cartesian coordinate and velocity (blue line) waveform of push gesture at different speeds. 

Velocity waveform is not a key feature. 

 

 

 

 

 

 

 

 

 
Figure 7: Gesture waveform of left-swipe and right-swipe, the left side is Cartesian coordinate and 

the right side is polar coordinate. The range data (blue line) in polar coordinate shows little change. 
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Table 6: F1-score and miss rate comparisons between Cartesian and Cartesian + noise. Adding 

noise does not improve F1 score or miss rate. 

 
 
 
 

  

 

l Sampling rate 

In our first attempt, we captured data at a sampling rate of 10 FPS, but some important features 

are lost if the gesture moves too fast, as shown in Figure 8. Furthermore, by comparing the F1 scores 

for 10 FPS and 30 FPS sampling rates, high data sampling rates can improve model performance by 

6.7%, especially for left-swipe and right-swipe, as shown in Figure 9. Here, all training datasets are 

captured at a sampling rate of 30 FPS by three testers at slightly different speeds. 

 
 

 

 

 

 

 

 

 

 
Figure 8: The waveform of left-swipe at 10 FPS sampling rate. The left side is normal and the right 

side shows that some key features are lost at high-speed hand motion.  

 

Data type Cartesian Cartesian + Noise 

 F1 Score Miss Rate F1 Score Miss Rate 

Double Clockwise 97.04% 1.88% 97.93% 1.98% 

Left 96.20% 3.63% 94.08% 4.49% 

Push 93.62% 2.81% 95.27% 2.98% 

Right 96.28% 3.80% 96.98% 2.01% 

           



 
15 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: F1-score comparisons between 10 FPS and 30 FPS sampling rate. 6.7% improvement at 30 
FPS, especially for left-swipe and right-swipe. 
 
 

l Data labeling 

At the end of the data collection phase, we annotate a label to each waveform with a gesture 

category in the data track. With the help of video, the captured data points are labeled as gesture 

categories by human inspection for each data track, as shown in Figure 10. Unlabeled data points in 

the data track are treated as unknown gestures. Also, if there is an ambiguous waveform in the data 

track, this data track will be discarded.  
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Figure 10: Data labeling, the left is the video track and the right is the waveform track. Labels are 

annotated by human inspection with the aid of video to avoid mislabeling. 

 

 

4.4  Model design 

Since dynamic gestures are a series of motion data points, we use a hybrid model consisting of 

Convolutional Neural Network (CNN) layers and Long Short-Term Memory (LSTM) layers. CNN 

helps to extract the features of the gesture data, while LSTM helps to memorize the long sequence of 

the data. The model design is divided into the following three steps: 

 

l Model building 

According to the gesture data points of Group B, Imagimob tool provides multiple simple models 

based on CNN, and then determines the best model structure by comparing the F1-score performance 

of each gesture under different models. However, due to the time-series data of dynamic gestures, we 

added an LSTM layer and turned on its bi-direction option for comparison. As shown in Table 7, 

CNN-LSTM performs best in terms of F1 score and miss rate compared to CNN and CNN-BiLSTM. 

We choose CNN-LSTM model for the final system performance metrics and evaluation. Figure 11 

shows the number of layers of the final CNN-LSTM model and the parameters of each layer. 
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Table 7: F1 score and miss rate comparisons among CNN, CNN-LSTM and CNN-BiLSTM. CNN-

LSTM performs best in terms of F1 score and miss rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11: A hybrid model consisting of four 1D-CNNs and one LSTM network for gesture 

recognition. Since the gesture durations in group B range from 0.4s to 1.5s, a multi 1D-CNN is used 

to filter key features.  

 

l Sliding window 

Since the gesture durations in Group B range from 0.4s to 1.5s, a sliding window preprocessing 

layer needs to be added to trade off accuracy and inference time. We measured both F1 score and 

miss rate of CNN-LSTM model under different window sizes to determine the most suitable window 

Model CNN CNN-LSTM CNN-BiLSTM 

 F1 Score Miss Rate F1 Score Miss Rate F1 Score Miss Rate 

Double Clockwise 96.03% 2.74% 97.04% 1.88% 96.23% 1.88% 

Left 96.39% 4.72% 96.20% 3.63% 96.26% 4.96% 

Push 92.56% 7.63% 93.62% 2.81% 94.19% 2.41% 

Right 96.37% 3.63% 96.28% 3.80% 95.96% 3.63% 
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size. According to the comparison results in Table 8, the most appropriate window size is 15 in terms 

of F1 score and miss rate. In addition, the inference time of window size 15 is less than 2ms during 

system live test. 

 
Table 8: F1 score (left) and miss rate (right) comparisons between different window sizes. A window 

size of 15 (0.5s) is in terms of F1 score and miss rate, and also accommodates the shortest gesture 

duration. 

 

 

 

 

 

 

l Dataset distribution 

We trained the model using the distribution ratios (60%, 20%, 20%) of the training, validation, 

and test sets, as shown in Table 9, and the dataset is automatically distributed. Furthermore, after 

finding the best model, we fixed the dataset distribution for all other performance evaluations to 

achieve a fair result. 

Table 10 is the confusion matrix of the final CNN-LSTM model, the accuracy of each gesture 

can achieve higher than 96%. According to the convergence plot in Figure 12, 2191 pieces of data are 

enough to train the model without underfitting. In addition, the validation loss is greater than or equal 

to the training loss during the training process and there is no overfitting situation.  

 

 

 

Window size 10 15 20 

  F1 Score Miss Rate F1 Score Miss Rate F1 Score Miss Rate 

Double Clockwise 96.12% 1.27% 97.04% 1.88% 96.15% 1.96% 

Left 96.51% 4.89% 96.20% 3.63% 93.35% 4.62% 

Push 96.09% 2.41% 93.62% 2.81% 80.68% 22.83% 

Right 96.81% 4.62% 96.28% 3.80% 92.34% 9.21% 
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Table 9: Redistribute training, validation, and test datasets by 60, 20, 20 for model performance 

optimization. Swipe left and right are mainly characterized by the x-axis, requiring more datasets to 

improve accuracy. 

 

 

 

 

 

 

 

Table 10: Confusion matrix for CNN-LSTM model. Each gesture is more than 96% accurate. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Convergence plot for CNN-LSTM model.  
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4.5  System design 

The prototype of the proposed gesture recognition system is shown in Figure 13. First, we 

deployed the model on the IWR6843AOPEVM board through the TI UniFlash tool. The millimeter-

wave radar sensor device will output its gesture recognition results to the teraterm terminal through 

UART interface, then use the python script to parse the UART output to obtain the gesture ID. Finally, 

run the AutoIt script to operate the mapping function according to the gesture ID.  

 

 

 

 

Figure 13: The proposed gesture recognition system prototype. 

 

 

Figure 14 is the firmware flow chart. The device is initially in sleep power saving mode. To enter 

wake-up mode, simply perform a random gesture within the detection range. Next, the model will 

calculate the current window data every 0.75s and perform gesture prediction, and finally output the 

recognition results to the teraterm terminal through the UART interface. In addition, if no gesture 

appears within the detection range for more than 10s, the device will enter sleep mode again. 

Furthermore, we found that the delay gap between gesture detection and gesture prediction must be 

set to be greater than 0.75s, otherwise the double-clockwise may be recognized twice since its 

duration is greater than 1.0s. 
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Figure 14: Firmware flow. From the system point of view, the interval between two consecutive 

gestures is at least 1s, we simply use a delay strategy for gesture spotting. 

 

 

4.6  System performance metrics and analysis 

The actual performance of the trained model is measured by counting the correct manipulation 

of VLC multimedia player. By arranging seven testers, five of whom are first-time users, explain and 

demonstrate the operation to the testers for ten minutes before the test, and let the testers practice for 

five minutes after the explanation, and finally let the users operate each gesture 10 times and count 

the number of correct manipulations. The gesture control status of Group B is shown in Figure 15. 

The average accuracy rate is 94.5%. Since the two first-time users are left-handed persons, the 

accuracy rate is about 2% lower than that of other users. 

In order to further measure the robustness of millimeter-wave radar to external environmental 

interference as shown in Figure 16, we test it under four different types of disturbance, Bluetooth 

(headset), electromagnetic waves (hair dryer) and fan swiping. As shown in Figure 17, the recognition 

accuracy drops by less than 5%. If there is electromagnetic wave or millimeter wave interference 
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around, the recognition accuracy will be reduced within 5%. Left-swipe and right-swipe are a bit 

sensitive to environmental disturbances. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Group B live testing recognition accuracy results among seven users for media player 

application. The average accuracy rate is 94.5%. 

 

 

 

 

 

 

Figure 16: Four types environmental interference scenarios. From left to right are Bluetooth (headset), 

electromagnetic waves (hair dryer), fan swiping and millimeter-wave radar. 
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Figure 17: Recognition accuracy of different environmental interference scenarios. Accuracy drops 

by up to 5% in complex spaces. 

 

 

5. Demo 

Figure 18 is the snapshots of the gesture interaction with VLC media player and the gesture 

manipulation of the PDF presentation. In PDF presentation operation, we assigned left-swipe for 

previous slide control, right-swipe for next slide control and double-clockwise for presentation mode 

switching. According to the live testing results, compared with other gesture recognition accuracy in 

Group B, left-swipe is a bit sensitive to gesture actions, such as the hand position is lower than the 

radar, the gesture movement is too fast, etc. 
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Figure 18: Snapshots of interaction with VLC media player (top) and PDF presentation manipulation 

(bottom). 

 

6. Conclusion 

We proposed an efficient millimeter-wave radar dynamic gesture control system for the selected 

application based on the user experience design principle. Through iterative gesture qualitative 

analysis and performance quantitative evaluation, which improved gesture usability and learning 

model efficiency, respectively, the algorithm achieved high accuracy (94.5% on average) on 4 hand 

gestures across 7 users. Additionally, we provided a real-time and power-saving radar-based gesture 

recognition solution to interoperate applications in complex space without significant 

misidentification. This work can also be extended to control car multimedia systems, wearables and 

smart home devices by extending the gesture set to support continuous finger gesture recognition. 
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190006-評語 

【評語】190006 

本研究是一個很好的嘗試。建議階段性目標是辨識聽障者溝通

的手語，終極的目標能夠辨識遠端的手語、身體姿態語言，及辨識

遠端的唇語。  

此作品用 Millimeter-wave Radar 來量測四種手勢的運動資

料，之後利用三種機器學習模型（CNN、 CNN-LSTM、和 CNN-

BiLSTM）來進行訓練和辨識正確率的測試。技術上只是使用 

Millimeter-wave Radar 來量測手部運動資料和使用一些機器學習

模型來進行訓練，這些機器學習模型的技術並無改進之處。目前辨

識正確率可達到 90%左右，但目前需要辨識的不同手勢只有四種因

此容易達成高辨識率。建議未來增加不同手勢的數目來探討不同手

勢數目對辨識率的影響。英語報告流暢自然。 
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