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Abstract—Lower limb amputations affect about 28.9 million
people worldwide, influencing normal human functions, we are
developing a conscious brain mind-controlled Cybonthitic cyborg
bionic-leg to provide a professional solution for this problem,
which is classified as restricted knee movement, short-term
solution, limited pressure bearing, unspecific analog reading
of EMG; Because the output voltage measured in nano-volts,
resulting in unspecific knee movement. The functionality of these
modern gadgets is still limited due to a lack of neuromuscular
control (i.e. For movement creation, control relies on human
efferent neural signals to peripheral muscles). Electromyographic
(EMG) or myoelectric signals are neuromuscular control signals
that can be recorded from muscles for our engineering goals.
We worked on a sophisticated prosthetic knee design with a
100-degree angle of motion. We also used a specific type of
coiled spring to absorb abrupt or unexpected motion force. In
addition, we amplified the EMG output from (Nano-Voltage)
to (Milli-Voltage) using customized instrumentation amplifiers
(operational amplifiers). We used a full-wave rectifier to convert
AC to DC, as a consequence of these procedures, sine-wave output
voltage measures in millivolts, and the spring constant indicates
the most force for every lcm. Von mises Stress analysis shows
bearing as 3000N is the maximum load for the design. Detecting
the edge of a stairwell using the first derivative. The benefit of
a system that controls the prosthetic limb is activated by the
patient’s own EMG impulses, rather than sensors linked to the
body.

[. INTRODUCTION

A prosthesis is a term that refers to an artificial device
that replaces a physical component or organ. A prosthetic
leg replaces a lower limb that has been amputated for many
reasons. The National Limb Loss Information Center supplied
the amputation data in that there are roughly 1.7 million people
living with limb loss in the United States [5]. A Myoelectric
A prosthetic leg, as the name indicates, is a prosthetic leg
which employs myoelectric (EMG) impulses for control. This
is feasible owing to the fact that the neuro-muscular system of
amputees remains intact even after amputation. The remaining
signals are made use of, and they are adequate enough to
control the movement of the leg after proper processing [6].
Actuators such as motors are employed to replace the function
that muscles perform by delivering force for movement of the
leg. Myoelectric prosthetic legs stand apart from externally
powered legs, which rely on external power for controlling
the limb from pulses that are sent from your brain.

II. METHODS
A. SEMG Signal Processing

Electromyography signals are used to determine the electri-
cal activity of muscle fibres during contraction and rest. Two
approaches are used to capture these myoelectric signals: inva-
sive and noninvasive. Invasive methods use needle electrodes
to record the sSEMG signal. However, noninvasive is often
preferable, since it is positioned right above the skin surface
without requiring the electrode to be inserted into the patient’s
body. Numerous issues such as motion artefacts, electrode
misplacement, and noise interpolation all have an effect on
the EMG signal. To extract additional information, signal pro-
cessing techniques including as filtering, rectification, baseline
drifting, and threshold levelling are used to EMG signals. The
block diagram of the EMG signal processing is depicted in
(figure 1).

Fig. 1. Neural network for signal processing. Adapted from Medical and
Biological Engineering and Computing
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As shown in (fig 1) The fast Fourier transform (FFT)
steadily transforms a time-domain signal into different fre-
quency scales. Hence, the FFT was selected to extract EMG
features in this study. The statistical parameter of FFT energy
coefficients can be obtained using the following equation:

> Y =1,2,34) (1)
=1

Three pre-gelled surface electrodes are used to capture
EMG data for limb rotational movement. Two electrodes
are inserted into the limb’s acromial and clavicular portions
of the central deltoid muscle (anterior fibers). For efficient
grounding, the other portion is equipped with a ground



electrode. Surface electrodes are used to detect EMG signals.
However, the selected signal has an amplitude of microvolts.
Thus, a preamplifier is required to convert the microvoltage
EMG signal (¢V) to millivoltage (mV). The EMG signal is
delivered into the preamplifier directly from the electrode.
Using Instrumentation Amplifier (IA) as shown in (fig 2)
cause having a high CMRR, a high input impedance, fixed
gain for amplification, and high-low pass filtering.

Fig. 2. Instrumentation amplifier and its gain

T

As An instrumentation amplifier (IA) is used to provide a
large amount of gain for very low-level signals, often in the
presence of high noise levels. The major properties of IAs are
high gain, large common-mode rejection ratio (CMRR), and
very high input impedance
Features : Instrumentation amplifiers are precision, integrated
operational amplifiers that have differential input and single-
ended or differential output. Some of their key features include
very high common mode rejection ratio (CMRR), high open
loop gain, low DC offset, low drift, low input impedance, and
low noise.

B. High and Low pass filtration

In order to eliminate the high frequency signal, the output
of the preamplifier is fed into low pass filter. To design
an effective filter, comparison is done with various filter
topologies. as shown in (fig 3) that HPF and LPF are critical
in filtering pulses that have been amplified. The EMG signals
that have been saved are processed. To eliminate motion
artefacts and external noise from the collected EMG data, a
high pass filter with a cutoff frequency of 20 Hz is used. For
stop band attenuation, a fourth order Butterworth high pass
filter has been used. When examining muscular contraction,
it is recommended to select dominant EMG signals with a
frequency range of 20 Hz - 500 Hz. The EMG signals are
corrupted by noise.

Fig. 3. Schematic diagram for sEMG PCB

C. RECTIFICATION AND AMPLIFICATION

A corrected signal is required. The goal of rectification is
to eliminate the signal’s negative components. By eliminating
the negative components, the negative amplitude is converted
to a positive value by squaring the total signal. As predicted,
this step also squares the amplitude value. Additionally, if the
amplitude is less than one, squaring would shift the amplitude
away from one toward zero, lowering the value. Amplification
is used to increase the signal’s amplitude to a suitable level.
The signal is multiplied by a constant value, which increases
the amplitude of the whole signal by that amount. The output
of this step is a positive signal (devoid of negative components)
with an amplitude within the specified range.

D. Smoothening

After the first few processing stages, the signal in hand
still resembles an EMG signal in terms of contraction and
relaxation phases, with the most noticeable difference being
the conversion of negative components to positive ones after
rectification. As previously stated, the contraction phase of
the signal is the most interesting; thus, it must be separated
from the remainder of the signal. This is accomplished by
sending the signal through a low-pass filter that detects just
the signal’s envelope. Smoothing produces a signal with blunt
peaks precisely during contraction stages.

E. Prosthetic Leg Model

Making a prosthetic limb with a high bearing capacity,
flexibility, comfort, and shock absorption for long-term usage
requires considerable effort. When fabricating a prosthetic
limb, it should be lightweight for ease of control and have
a good load bearing capability. The prosthetic limb is con-
structed from lightweight but robust materials. The limb may
or may not have functioning knee and ankle joints, depending
on the site of the amputation. The socket is a very accurate
cast of your residual limb that fits snugly over it. It assists
in the prosthetic leg’s attachment to your body. Suspension
systems are used to secure the prosthesis, whether by sleeve
suction, vacuum suspension/suction, or distal locking by pin
or lanyard. As shown in (fig 4), numbers of models that are



Fig. 4. 3D design of prosthetic limb
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created for achieving engineering goals such as high bearing
capacity, light, and long-term use.

Following the selection of your prosthetic leg’s components,
you will need rehabilitation to strengthen your legs, arms,
and cardiovascular system as you learn to walk with your
new limb. You’ll work closely with rehabilitation experts,
physical therapists, and occupational therapists to develop a
rehabilitation plan that is customised to your unique mobility
requirements. Maintaining a healthy leg is a critical
component of this routine.

Fig. 5. Angel of rotation

Real-life ration modeling for the prosthetic leg with 100 angel
of movement as shown in (fig 5).

F. Machine Learning for Amputees

1) Detection Stairs: Using canny detection algorithm to
detect edge as shown in (fig 6), and it analyzed data:
Noise Reduction:
Edge detection is sensitive to image noise, the first step is to
eliminate the noise with a 5x5 or 3x3 Gaussian filter.

Finding the Image’s Intensity Gradient:

The smoothed picture is then filtered in both the horizontal
and vertical directions with a Sobel kernel to obtain the
first derivative in both the horizontal (Gy) and vertical (Gx)

directions.
Edgegradient(G) = \/m 2)

We can find the edge gradient and direction for each pixel
using equation(2).
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Fig. 6. A convolution of a 5x5 image with a 3x3 kernel.

2) Pattern recognition Algorithm: To estimate the intended
joint trajectory, myoelectric signals and a pattern recognition
algorithm may be used to forecast the user’s locomotor mode.
The intended locomotor activity may be anticipated by recog-
nising patterns in the EMG data (i.e., since various locomotor
activities can be assessed using distinct joint trajectories).
Mechanical signals, in addition to EMG signals, may be
analysed and utilised for pattern recognition. To discover
patterns in myoelectric data, pattern recognition methods such
as linear discriminant analysis and dynamic Bayesian networks
have been applied. However, these algorithms may introduce
significant delays, particularly when switching between loco-
motor activities. Successful intent classifiers have been created
employing the forces at the human-socket connection, foot-
ground contacts, myoelectric signals, and contralateral limb
kinematics. It has been shown that including EMG signals and
time history data into the control system considerably reduces
classification mistakes during human prosthesis locomotion.
Researchers have shown that unilateral transtibial amputees
can forecast locomotor activity using myoelectric signals from
the undamaged biological knee joint. By collecting signals and
identifying the greatest and minimum values for data visualisa-
tion, we can foresee the appearance and movement of muscles
using the candlestick technique for pattern recognition. As the
largest value is considered resistance, while the least value



is considered support. Max and Min values are gathered and
used as reference points for prediction, as they are included
into the formula for prediction:

- (x; —maz(X)) + (z; — min(X)) 3)

Ty = .

max(X) — min(X)

As data converted from 2d into 1D. Then, The segmented 1D
data of the original time series are defined in this equation(3).

ELECTRICAL SIGNALS 1987-11-05 00.00.00 - 2022.03-10 00-00.00

Fig. 7. Outputs of pattern recognition algorithm
As shown in (fig 7), By analyzing data, we can create a
candlestick algorithm that predicts and recognizes any pattern.
This is for the most exact movements of the bionic limb, since
it is an excellent technique to forecast your movement and
electrical pulse patterns.

III. DIAGNOSTIC DYSTONIA USING SEMG

Runner’s dystonia (RD) is a task-specific focal dystonia of
the lower limbs that occurs when running to diagnostic
of dystonia. In this retrospective case series, we present
surface electromyography (EMG) and joint kinematic data
from thirteen patients who underwent instrumented gait anal-
ysis (IGA) at the Functional and Biomechanics Laboratory
at the National Institutes of Health[1]. Four cases of RD
are described in greater detail to demonstrate the potential
utility of EMG with kinematic studies to identify dysto-
nia muscle groups in RD. Lateral heel whip, a proposed
novel presentation of lower-limb dystonia, is also described.

Walking

o
|
wo 2%
o
;
Foul [ o2 0z
] |
4 g ‘
Fast - £ 1‘ .
Walking [ =1 I
P i \ 0oLk o 3
h : @ % : c)
oo wiCen
o o

Running ou)

Fig. 8. sEMG of a patient with runner’s dystonia presenting as task-specific.
Adapted from ncbi.nlm.nih.gov

Surface EMG is showing continuous activity in the left ham-
strings (b) and early activity in the left tibialis anterior during
running (a). Showing how left leg delayed in activation of
motor neuron with respect to other leg as shown in (fig 8).

(A) SEMG Signal in Time Domain (B) SEMG Signal in Frequency Domain
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Fig. 9. Surface electromyography (SEMG) signal of the Vastus Lateralis

during wholebody vibration at 30 Hz illustrated in (A) the time domain and
(B) the frequency fo domain. In the frequency domain, excessive spikes are
visible at the vibration frequency and its multiple harmonics.

(A) in the time domain and in (B) in the frequency domain.
The signal was recorded from the vastus lateralis (VL) muscle
during Whole body vibration (WBV) at 30 Hz. While the
SEMG signal in the time domain does not highlight any
specific characteristics to WBV. The sEMG signal in the fre-
quency domain clearly shows excessive spikes at the vibration
frequency and at a few multiple harmonics and that means
how dystonia is diagnostic obviously. At the same time, and
also for preliminary purposes, the electrophysiological signal
was recorded from the patella during WBV. Such a signal
obtained during WBYV at 30 Hz is shown in Figure 9. In the
time domain, the patella signal resembles a sinusoidal wave
at 30 Hz. In frequency domain, excessive spikes are observed
at the vibration frequency and to a lower extent at its multiple
harmonics. No myoelectrical activity is shown for all the other
frequencies.
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Fig. 10. sEMG signal processing methods in dystonia diagnostic. Adapted

from Universite De Nice Sophia Antipolis

A surface electromyography (SEMG) spectrum of the Vastus
Lateralis during whole-body vibration at 30 Hz. SEMG signals
were processed using the no-filter method (black solid line),
linear interpolation (grey solid line), band-stop filter (grey
dotted line) and band-pass filter (black dashed line). As shown
in Figure 10, The crucial role of filter especially High Pass
filtration (HPF) and Low Pass filtration (LPF).



IV. MUSCLE RE-INNERVATION PATTERNS

Strong EMG signals were elicited by the re-innervated ham-
string muscles, notably during contractions related to ankle
motions. When the patient flexed his knees, he noticed a lot
of co-activation of re-innervated muscles (Fig.11).
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Fig. 11. Evaluation of Muscle Re-innervation Patterns, electrical pulses were
conveyed in both amputees and normal humans. Adapted from The new
England Journal of medicine.

Each attempted move resulted in different EMG signal pat-
terns, implying that precise pattern recognition control was
possible. With a virtual system configured to regulate ankle
plantarflexion and dorsiflexion, as well as knee flexion and
extension, the classification accuracy of the patient’s attempted
movements was 96.0 percent, and 92.0 percent with a system
built to control tibial rotations and femoral rotation. In non-
TMR amputees, classification accuracies for these attempted
movements were 91.0 £ 4.7% and 86.8 + 3.0%, Correspond-
ingly. This amounts to a 5.0 percent and 5.2 percentage point
boost in complete precision, correspondingly. TMR enhances
real-time pattern-recognition control by 44 percent and 39
percent, respectively; these data imply that TMR improves
real-time pattern-recognition control. Virtual movements were
likewise completed more faster by the TMR amputees than
by the non-TMR amputees. EMG data from the residual limb
and mechanical-sensor data produced a unique stride pattern
for each ambulation mode. The inclusion of EMG information
increased the accuracy of the control system. With the use of
mechanical-sensor data only.

V. RESULTS

For finding the factors that may affect results. It is tested
in various conditions. Test on 3 channels of EMG that collect
electrical pulses. This shows how movement and shaking of
your body affect and make noise in data when it collects. As
shown in this graph when there is no cable movement, there is
no noise in data. But when slow or fast cable movements, this
makes spike, and noise in data. So, by using p300 algorithm,
and low-pass filtration, it removes noise and spike to return to
original value of it as shown in (Fig. 12).
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Fig. 12. Low Pass Filtration for reject and filter noise in background.

As shown in (Fig. 13), How electrical impulses from an
EMGs sensor are gathered, and how to display the data. It
became negative and positive sides as it accumulated without
any invert in waves. We employ Ins Amp and Op Amp to
invert and integrate these data to address the problem. Then, to
convert it from ac to dc, we utilize full wave rectifiers, which
will make it easier to store the data. Low pass and high pass
filters are crucial in cancelling any noise when data collected.
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Fig. 13. Mechanism of electrical pulses From sEMG to captured it
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A. Piezoelectric and Voltage generator

Piezoelectric Effect is the ability of certain materials to gener-
ate an electric charge in response to applied mechanical stress.
When piezoelectric material is placed under mechanical stress,
a shifting of the positive and negative charge centers in the
material takes place, which then results in an external electrical
field. When reversed, an outer electrical field either stretches
or compresses the piezoelectric material. Using piezoelectric
devices to recharge batteries. It is necessary to test numerous
times to see if it is suitable to be main voltage generator.

© cous

2Kg load
—45Kg load

Fig. 14. Piezoelectric Results that differed by increase load

As demonstrated in the graph, as the load increases, so does
the voltage. The output was sufficient for being main voltage
generator.

B. Stress Analysis of Presthestic limbs

For Design Prosthetic limb needs to have a high bearing
capacity, flexibility, comfort, shock absorption, long-term use.
For design, a prosthetic limb needs to have a high bearing
capacity, flexibility, comfort, shock absorption, and long-term
use.

Won Mises (M/'m*2)
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Fig. 15. Von-Mises Stress analysis diagram, simulate the maximum load
which the leg can effort. As shown in figure, the Max load the leg can bear
approximately 3000 newtons.
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VI. CONCLUSION

In this study, EMG signal is successfully extracted from
the subject and the acquired EMG signal has two parts:
relaxation phase and contraction phase. The contraction phase
is what we are interested in for proceeding with the work.
In order to control the motor rotation using the EMG signal,
the contraction phase is made use of, for which it has to be
processed suitably to result in a pulse output whenever the
muscle is contracted. The steps involved in processing are
those which convert the EMG signal into pulsed output for
each contraction. The final output is a pulsed signal where each
pulse corresponds to muscle contraction. When considering
prosthetics limb, more degree of freedom is required. So our
future work extends to signal classification such as K-means
algorithm and support vector machine.
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1. The work presents the design of a prosthetic limb and the
use of EMG data for the motion control. A conscious brain
mind-controlled  Cybonthitic cyborg bionic-leg is

investigated to provide a professional solution for this

problem » which is classified as restricted knee movement -

short-term solution - limited pressure bearing * unspecific
analog reading of EMG; Because the output voltage
measured in nano-volts > resulting in unspecific knee

movement.

2. The functionality of these modern gadgets is still limited

due to a lack of neuromuscular control (i.e. For movement
creation > control relies on human efferent neural signals to

peripheral muscles). Electromyographic (EMG) or
myoelectric signals are neuromuscular control signals that

can be recorded from muscles for our engineering goals.

An overall diagram of the so-called brain control to bionic
leg is recommended to provide a sketch of the system and
highlight the new contribution (if any) of the proposed
work. A quantitative analysis about the positioning
accuracy and response time is also deemed useful to verify

the design.
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