2023 年臺灣國際科學展覧會優勝作品專輯

作品編號 010049

参展科別 數學
作品名稱 Crossing Number of Join Product of Some
Graphs
得獎獎項 二等獎

國 家 Singapore
就讀學校 NUS High School of Math and Science
指導教師 Lee Chan Lye
作者姓名 Mario Tanijaya

關鍵詞 number，project，graph

作者照片

1 Introduction

A drawing of a graph G is a representation of G on a plane, with its vertices represented by distinct points, and its edges by arcs connecting the corresponding points. The crossing number of G is the minimum number of intersections between arcs across all possible drawings of G.

Finding the crossing number of a graph is known to be a difficult problem, with the exact values of crossing numbers known only for specific families of graphs. In particular, it has been conjectured by Zarankiewicz that the crossing number of the complete bipartite graph $K_{m, n}$ is $Z(m, n)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor[1]$, and has been proven for $\min (m, n) \leq 6[2]$, and cases $(m, n)=(7,7),(7,8),(7,9),(7,10),(8,8),(8,9),(8,10) .[3]$ More recently, it has been shown that $\lim _{n \rightarrow \infty} \frac{c r\left(K_{m, n}\right)}{Z(m, n)} \geq 0.83 \frac{m}{m-1}$. [4]

A natural extension is to investigate the crossing numbers of the join products of two graphs, which have a corresponding complete bipartite graph as a subgraph. The exact crossing numbers of $G+n K_{1}, G+P_{n}$ and $G+C_{n}$ for all graphs G of order 4 have been determined in [5], and for some graphs G of order 5 and 6 , such as in $[6,7,8,9,10,11]$. A more comprehensive review can be found in [12]. Many of these graphs are connected, and have a cycle going through 5 or 6 of the vertices. Notably, there have been several papers, including [7, 8, 9, 10, 11] using the idea of cyclic permutations to determine these crossing numbers.

In this report, we establish some bounds on the crossing number of the join product of two graphs, in particular, graphs G_{1}, G_{2}, where G_{1} is $2 C_{3}$ and G_{2} is $2 C_{3}$ with one edge between the cycles. We also use a counting argument to establish some inductive bounds (inducting on n) for join product of a general graph G and $n K_{1}$.

The choice of G_{1} and G_{2} was motivated by the result in [6] about the crossing number of $G+n K_{1}$, where G is $2 C_{3}$, with two edges between the cycles (two edges are connected to distinct vertices). We noticed that removing one or both of these edges (thus getting G_{1} and G_{2}) does not reduce the crossing number in the optimal drawing proposed. Furthermore, both G_{1} and G_{2} do not have a large cycle in them, and G_{1} is disconnected, which is not commonly seen in the literature.

2 Definitions

The join product of two graphs G_{1} and G_{2}, denoted by $G_{1}+G_{2}$, refers to the graph obtained from vertex disjoint copies of G_{1} and G_{2}, and adding all edges between each vertex in G_{1} and each vertex in G_{2}. In other words, $V\left(G_{1}+G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right), E\left(G_{1}+G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup K_{m, n}$,
where $\left|V\left(G_{1}\right)\right|=m,\left|V\left(G_{2}\right)\right|=n$.
$n K_{1}$ is the graph of n isolated vertices with no edges.
Consider some drawing D of a graph G. Let $c r_{D}(G)$ be the number of crossings between edges in G, and for any edge disjoint subgraphs H_{1} and H_{2} of G, let $c r_{D}\left(H_{1}, H_{2}\right)$ be the total number of crossings between an edge of H_{1} and an edge of H_{2}.

We assume that in a drawing:

1. Each edge only passes through two vertices, namely its end points
2. No two edges touch each other (and do not cross)

3 . No three edges cross at the same point
Note that in an optimal drawing of some graph G with minimum crossing number, we must also have:

1. No edge crosses itself
2. Any two edges cross at most once
3. Any two edges that share an end point do not cross

3 Graph G_{1}

The graph G_{1} is is the union of two vertex disjoint C_{3}, with no edge between the cycles.

$$
G_{1}
$$

We use x_{i} to denote the vertices of G_{1}, and z_{i} to denote the vertices of $n K_{1}$. Let T_{i} be the subgraph of the six edges from vertex z_{i} to each vertex of G_{1}.

3.1 Upper bound

For all n, we show $\operatorname{cr}\left(G_{1}+n K_{1}\right) \leq Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor$.

Drawing of $G_{1}+n K_{1}$

This is clear from the drawing above, where there are $\left\lfloor\frac{n}{2}\right\rfloor$ vertices of $n K_{1}$ on the right and $\left\lceil\frac{n}{2}\right\rceil$ vertices of $n K_{1}$ on the left. There are $Z(6, n)$ crossings from the bipartite graph $K_{6, n}$, and another $2\left\lfloor\frac{n}{2}\right\rfloor$ crossings on G_{1}.

In addition, for odd n, we show $\operatorname{cr}\left(G_{1}+n K_{1}\right) \leq Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor-2$.

Drawing of $G_{1}+n K_{1}$ for odd n
Consider the drawing above, where there are $\left\lfloor\frac{n-2}{2}\right\rfloor$ black vertices of $n K_{1}$ on the right and $\left\lceil\frac{n-2}{2}\right\rceil$ black vertices of $n K_{1}$ on the left. Let the vertices of G_{1} from top to bottom be x_{1}, \cdots, x_{6} respectively, and the red vertex in the centre and the right be z_{1}, z_{2} respectively.

There are $Z(6, n-2)+2\left\lfloor\frac{n-2}{2}\right\rfloor$ crossings between the edges of the black vertices.
The edges between z_{1} and x_{2}, x_{5} as well as z_{2} and x_{2}, x_{5} each cross one edge from each black vertex on the left, so they contribute $4\left\lceil\frac{n-2}{2}\right\rceil$ crossings in total.

The edges between z_{1} and x_{1}, x_{6} as well as z_{2} and x_{3}, x_{4} each cross two edges from each black vertex on the right, so they contribute $8\left\lfloor\frac{n-2}{2}\right\rfloor$ crossings in total.

The red edges cross each other twice, so for this drawing,

$$
\begin{aligned}
\operatorname{cr}_{D}\left(G_{1}+n K_{1}\right) & =Z(6, n-2)+2\left\lfloor\frac{n-2}{2}\right\rfloor+4\left\lceil\frac{n-2}{2}\right\rfloor+8\left\lfloor\frac{n-2}{2}\right\rfloor+2 \\
& =\left(6\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor+6\left\lfloor\frac{n-2}{2}\right\rfloor\right)+\left(4\left\lfloor\frac{n-2}{2}\right\rfloor+4\left\lceil\frac{n-2}{2}\right\rfloor\right)+2 \\
& =6\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+4(n-2)+2 \\
& =6\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+6\left\lfloor\frac{n-1}{2}\right\rfloor+n-5+2 \text { (when } n \text { is odd) } \\
& =6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor-2 \\
& =Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor-2
\end{aligned}
$$

Note that when n is even, number of crossings of this drawing is $Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor$.
Thus, we propose the following crossing number.

Conjecture 3.1: $\operatorname{cr}\left(G_{1}+n K_{1}\right)=Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor-2$ for odd n, and $\operatorname{cr}\left(G_{1}+n K_{1}\right)=$ $Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor$ for even n.

3.2 Small cases

Lemma 3.2: $\operatorname{cr}\left(G_{1}+2 K_{1}\right)=2$

Proof:

We show $\operatorname{cr}\left(G_{1}+2 K_{1}\right) \geq 2$.
Consider one C_{3} of G_{1} and the two vertices z_{1}, z_{2}.
If the subgraph induced by z_{1} and vertices of the C_{3} has at least two crossings, we are done. Otherwise, the possible drawings of C_{3} and the three edges from z_{1} to the vertices of the cycle are shown below.

Drawings of one C_{3} and z_{i}
Assume it is the first drawing, then if z_{2} lies within the C_{3}, consider the other three vertices of G_{1}. For each of them, one of the two edges between them and z_{1}, z_{2} will cross the C_{3} in the drawing (depending on whether it is inside or outside the C_{3}), then there will be at least 3 crossings.

Otherwise, z_{2} must lie in some other region, which all have at most two vertices of the C_{3} on their boundary, thus the edge from z_{2} to the vertex of C_{3} not on the boundary will have at least 1 crossing.

If it is the second drawing, there will be at least 1 crossing in this subgraph.
Similarly, we can consider the other C_{3} of G_{1}, and either we get $c r_{D}\left(G_{1}+2 K_{1}\right) \geq 3$, or there is at least 1 crossing in that subgraph, so $\operatorname{cr}_{D}\left(G_{1}+2 K_{1}\right) \geq 2$.

Thus $\operatorname{cr}\left(G_{1}+2 K_{1}\right) \geq 2$.
From the construction earlier, $\operatorname{cr}\left(G_{1}+2 K_{1}\right) \leq 2$, and so $\operatorname{cr}\left(G_{1}+2 K_{1}\right)=2$.

Lemma 3.3: $\operatorname{cr}\left(G_{1}+3 K_{1}\right)=6$

Proof:

Since $K(6,3)$ is a subgraph of $G_{1}+3 K_{1}, \operatorname{cr}\left(G_{1}+3 K_{1}\right) \geq \operatorname{cr}(K(6,3))=6$. From our construction above, $\operatorname{cr}\left(G_{1}+3 K_{1}\right) \leq 6$, and so $\operatorname{cr}\left(G_{1}+3 K_{1}\right)=6$.

We have also obtained lower bounds for $n=4,5,6,7,8$ in Section 3.4, using the properties of cyclic permutations.

3.3 Results

We suppose $\operatorname{cr}\left(G_{1}+n K_{1}\right)<Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor$ for some even $n \geq 4$, and $\operatorname{cr}\left(G_{1}+n K_{1}\right)<$ $Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor-2$ for some odd $n \geq 5$.

Lemma 3.4: There exists i such that $\operatorname{cr}_{D}\left(T_{i}, G_{1}\right)=0$

Proof:

Suppose otherwise. Then $c r_{D}\left(T_{i}, G_{1}\right) \geq 1$ for all i.

$$
\begin{aligned}
c r_{D}\left(G+n K_{1}\right) & =c r_{D}\left(\bigcup_{i=1}^{n} T_{i}\right)+c r_{D}\left(G, \bigcup_{i=1}^{n} T_{i}\right)+c r_{D}(G) \\
& \geq Z(6, n)+n \\
& \geq Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

which is a contradiction.

Lemma 3.5: $\quad c r_{D}\left(G_{1}\right)=0$

Proof:

Consider i such that $c r_{D}\left(T_{i}, G_{1}\right)=0$.
We can draw T_{i} as below, and let the vertices of G_{1} be $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ from top to bottom respectively.

Consider each grouping of the 6 vertices of G_{1} into two triples, with each triple of vertices forming one cycle.

For all drawings except $(1,2,3),(4,5,6)$ and $(1,2,6),(3,4,5) /(1,5,6),(2,3,4)$, we have $c r_{D}\left(G_{1}\right) \geq$ 1 , and each region has at most two vertices of G_{1} on its boundary, so $\operatorname{cr}_{D}\left(T_{j}, T_{i} \cup G_{1}\right) \geq 4$ for all $j \neq i$.

Drawing of T_{i}

$$
\begin{aligned}
c r_{D}\left(G_{1}+n K_{1}\right) & =c r_{D}\left(G_{1} \cup T_{i}\right)+c r_{D}\left(G_{1} \cup T_{i}, \bigcup_{j \neq i} T_{j}\right)+c r_{D}\left(\bigcup_{j \neq i} T_{j}\right) \\
& \geq 1+4(n-1)+Z(6, n-1) \\
& =n+3(n-1)+Z(6, n-1) \\
& \geq Z(6, n)+n \\
& \geq Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

which is a contradiction, so the drawing is either $(1,2,3),(4,5,6)$ or $(1,2,6),(3,4,5) /(1,5,6),(2,3,4)$. Notice these drawings are the same, so we can assume the drawing is $(1,2,3),(4,5,6)$, and as a result, $c r_{D}\left(G_{1}\right)=0$.

3.4 Cyclic permutations

We now use the properties of cyclic permutations, which have been used in [7] [8], to obtain some more results.

Let $\operatorname{rot}_{D}\left(T_{i}\right)$ be the clockwise order in which the edges leave vertex z_{i} to the vertices of G_{1}. Cyclic permutations are considered to be the same, and so we assume all $\operatorname{rot}_{D}\left(T_{i}\right)$ start from x_{1}.

Define $\overline{r o t_{A}}$ as the reverse permutation of rot_{A}, and $d\left(\operatorname{rot}_{A}, \operatorname{rot}_{B}\right)$ to be the minimum number of swaps between adjacent elements, to get from rot_{A} to rot_{B}.

It is known that $\operatorname{cr}\left(T_{i}, T_{j}\right) \geq d\left(\operatorname{rot}_{D}\left(T_{i}\right), \overline{\operatorname{rot}_{D}\left(T_{j}\right)}\right)$. [3]
We now establish the possible permutations of T_{i} for i such that $\operatorname{cr}\left(T_{i}, G_{1}\right) \leq 1$.
Assuming the drawing of G_{1} above, z_{i} must be in the region with all 6 vertices of G_{1} on its boundary (in view of the subdrawing of G_{1}), otherwise if it is inside one of the cycles, say $x_{1} x_{2} x_{3}$, then $z_{i} x_{4}, z_{i} x_{5}, z_{i} x_{6}$ will each cross the cycle $x_{1} x_{2} x_{3}$ at least once.

Thus $\operatorname{rot}_{D}\left(T_{i}\right)$ with respect to each cycle is fixed (up to rotation).

$(1,2,4),(3,5,6)$

$(1,2,6),(3,4,5)$ and $(1,5,6),(2,3,4)$

$(1,3,6),(2,4,5)$ and $(1,4,6),(2,3,5)$

$(1,2,5),(3,4,6)$ and $(1,3,4),(2,5,6)$

$$
(1,3,5),(2,4,6)
$$

$(1,4,5),(2,3,6)$

$$
(1,2,3),(4,5,6)
$$

Figure 1: Drawings of $T_{i} \cup G_{1}$

Consider the subgraph induced by z_{i} and the cycle $x_{1} x_{2} x_{3}$.
If any 2 of x_{4}, x_{5}, x_{6} are in different regions in view of this subgraph, the edge between them must cross some edge in this subgraph. From Lemma 3.5, it cannot cross an edge of G_{1}, so it must cross an edge between z_{i} and one of x_{1}, x_{2}, x_{3}.

If x_{4}, x_{5}, x_{6} are not all in the same region, there must be at least 2 pairs of them in different regions, and so $\operatorname{cr}\left(T_{i}, G_{1}\right) \geq 2$, which is a contradiction, thus they must all be in the same region.

For each $j=4,5,6$, the edge between x_{j} and z_{i} must start in the same region as x_{4}, x_{5}, x_{6}. Otherwise, since the edge must leave the region it started in, and cannot cross any edge with endpoint z_{i}, it must cross one of the edges of the cycle $x_{1} x_{2} x_{3}$. This means the edge enters the region inside the cycle $x_{1} x_{2} x_{3}$, but x_{j} is outside this cycle, so the edge must cross the boundary of the region again, thus this edge crosses G_{1} twice, which is a contradiction. (Note that by a similar argument, the entire edge must be contained in this region)

Similarly, each edge of the cycle $x_{4} x_{5} x_{6}$ must be fully contained within this region, otherwise since it must leave and enter the region, and it cannot cross an edge of G_{1}, it must cross the edges of T_{i} at least twice.

There are 3 ways to choose which region x_{4}, x_{5}, x_{6} are in, and 3 ways to permute x_{4}, x_{5}, x_{6}. (rotation matters here, for example 123456 compared to 123564)

We have 9 possible values for $\operatorname{rot}_{D}\left(T_{i}\right)$, namely $123456,123564,123645,124563,125643,126453$, $145623,156423,164523$. We label them $P_{1}, P_{2}, \cdots, P_{9}$ respectively.

Using a program (can be found in Appendix), we obtain the following table of values for each $d\left(P_{i}, \overline{P_{j}}\right)$.

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}	P_{8}	P_{9}
P_{1}	6	4	4	4	2	2	4	2	2
P_{2}	4	6	4	2	4	2	2	4	2
P_{3}	4	4	6	2	2	4	2	2	4
P_{4}	4	2	2	6	4	4	4	2	2
P_{5}	2	4	2	4	6	4	2	4	2
P_{6}	2	2	4	4	4	6	2	2	4
P_{7}	4	2	2	4	2	2	6	4	4
P_{8}	2	4	2	2	4	2	4	6	4
P_{9}	2	2	4	2	2	4	4	4	6

Lemma 3.6: $\operatorname{cr}\left(G_{1}+4 K_{1}\right) \geq 14$

Proof:

Case 1: For all $i=1,2,3,4, \operatorname{cr}_{D}\left(T_{i}, G_{1}\right) \leq 1$.
Thus $\operatorname{rot}_{D}\left(T_{i}\right)$ is one of P_{j}, and from table above, we can check that for any $4 P_{j}$, the sum of their pairwise distances is at least 16 , which means $\operatorname{cr}_{D}\left(T_{1} \cup T_{2} \cup T_{3} \cup T_{4}\right) \geq 16$.

Case 2: There exists i such that $\operatorname{cr}_{D}\left(T_{i}, G_{1}\right) \geq 2$.
Then we have $\operatorname{cr}\left(G_{1}+4 K_{1}\right) \geq Z(6,4)+2=14$.
Lemma 3.7: $\operatorname{cr}\left(G_{1}+5 K_{1}\right)=26$

Proof:

Case 1: For all $i=1,2,3,4, c r_{D}\left(T_{i}, G_{1}\right) \leq 1$.
Thus $\operatorname{rot}_{D}\left(T_{i}\right)$ is one of P_{j}, and from table above, we can check that for any $5 P_{j}$, the sum of their pairwise distances is at least 28 , which means $c r_{D}\left(T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5}\right) \geq 28$.

Case 2: There exists i such that $\operatorname{cr}_{D}\left(T_{i}, G_{1}\right) \geq 2$.
Then we have $\operatorname{cr}\left(G_{1}+5 K_{1}\right) \geq Z(6,5)+2=26$.
From the two cases, we have $\operatorname{cr}\left(G_{1}+5 K_{1}\right) \geq 26$, and from our construction in section 3.1, $\operatorname{cr}\left(G_{1}+5 K_{1}\right) \leq 26$, so $\operatorname{cr}\left(G_{1}+5 K_{1}\right)=26$.

As a result of Lemma 3.7, we have the following result.
Lemma 3.8: $\operatorname{cr}\left(G_{1}+6 K_{1}\right) \geq 39, \operatorname{cr}\left(G_{1}+7 K_{1}\right) \geq 55, \operatorname{cr}\left(G_{1}+8 K_{1}\right) \geq 74$

Proof:

This follows directly from Lemma 3.7 and Lemma 5.1 below.

4 Graph G_{2}

The graph G_{2} is the union of two vertex disjoint C_{3}, and with one edge between the cycles.

We denote the vertices similarly.

4.1 Upper bound

For all n, we show $\operatorname{cr}\left(G_{2}+n K_{1}\right) \leq Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor$.

This is the same drawing as for $G_{1}+n K_{1}$, but with one more edge in the centre that does not result in any additional crossings.

Since $G_{1}+n K_{1}$ is a subgraph of $G_{2}+n K_{1}$, we have $\operatorname{cr}\left(G_{2}+n K_{1}\right) \geq c r\left(G_{1}+n K_{1}\right)$.

4.2 Small case

Lemma 4.1: $\operatorname{cr}\left(G_{2}+2 K_{1}\right)=2$

Proof:

From the construction, $\operatorname{cr}\left(G_{2}+2 K_{1}\right) \leq 2$, and $\operatorname{cr}\left(G_{2}+2 K_{1}\right) \geq \operatorname{cr}\left(G_{1}+2 K_{1}\right)=2$.

4.3 Results

Consider the graph G_{3}, which is G_{2} but with one additional edge between the cycles, forming a C_{6}.

It is known that $c r\left(G_{3}+n K_{1}\right)=Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor .[6]$
Lemma 4.2: If $\operatorname{cr}\left(G_{2}+n K_{1}\right)<Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor$, then the two cycles of G_{2} do not intersect.

Proof:

This follows from Lemma 3.5, since G_{1} is a subgraph of G_{2}, and we suppose $\operatorname{cr}\left(G_{2}+n K_{1}\right)<$ $Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor$ here as well.

Theorem 4.3: $\operatorname{cr}\left(G_{2}+n K_{1}\right) \geq Z(6, n)+\left\lfloor\frac{n}{2}\right\rfloor$

Proof:

Suppose otherwise.
WLOG let the edge between the cycles be between vertices x_{3} and x_{4}, and let x_{3} be adjacent to x_{1}, x_{2} and x_{4} be adjacent to x_{5}, x_{6}.

We add an additional edge, by starting from vertex x_{1}, and tracing along the edge $x_{1} x_{3}, x_{3} x_{4}$, then along the edge from x_{4} to either x_{5} or x_{6}, only crossing edges that these three edges cross. We thus have a drawing of the graph $G_{3}+n K_{1}$.

Notice this new edge has at most as many crossings as G, and $c r_{D}(G)+c r_{D}\left(G, \cup T_{i}\right)<\left\lfloor\frac{n}{2}\right\rfloor$, so we have $\operatorname{cr}_{D}\left(G_{3}+n K_{1}\right)<Z(6, n)+\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor=Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor$, which is a contradiction.

Lemma 4.4: If $\operatorname{cr}\left(G_{1}+n K_{1}\right) \geq Z(6, n)+x$, then $\operatorname{cr}\left(G_{2}+n K_{1}\right) \geq Z(6, n)+\left\lfloor\frac{n}{2}\right\rfloor+\frac{x}{4}$.

Proof:

Suppose otherwise.

Tracing edges of G_{2}
Similarly, let the edge between the cycles be between vertices x_{3} and x_{4}, and let x_{3} be adjacent to x_{1}, x_{2} and x_{4} be adjacent to x_{5}, x_{6}.

Let $\operatorname{rot}_{G}\left(x_{i}\right)$ be the clockwise order in which the edges leave vertex x_{i} to the other vertices of G_{2}, and cyclic permutations are considered to be the same. Let $\operatorname{rot}_{G}\left(x_{3}\right)=124$ and $\operatorname{rot}_{G}\left(x_{4}\right)=356$.

Let the number of crossings on the edge between the two cycles in G_{2} be a. $a \leq\left\lfloor\frac{n}{2}\right\rfloor+\frac{x}{4}-x$, otherwise we can remove this edge and get $c r_{D}\left(G_{1}+n K_{1}\right)<Z(6, n)+x$.

After removing the edge between the cycles, there are at most $\left\lfloor\frac{n}{2}\right\rfloor+\frac{x}{4}-a$ crossings on G_{2}, and the remaining edges of G_{2} do not cross each other from Lemma 4.2. Consider the edges $x_{1} x_{3}, x_{4} x_{6}$ and the edges $x_{2} x_{3}, x_{4} x_{6}$, which in the diagram are the blue/red edges. One of these pairs have at most $\frac{\left\lfloor\frac{n}{2}\right\rfloor+\frac{x}{4}-a}{2}$ edges on them, say $x_{1} x_{3}, x_{4} x_{6}$.

By adding an additional edge from x_{1} to x_{6}, along this pair of edges and $x_{3} x_{4}$, we get at most

$$
\begin{aligned}
\frac{\left\lfloor\frac{n}{2}\right\rfloor+\frac{x}{4}-a}{2}+a & =\frac{\left\lfloor\frac{n}{2}\right\rfloor+\frac{x}{4}+a}{2} \\
& \leq \frac{2\left\lfloor\frac{n}{2}\right\rfloor-\frac{x}{2}}{2} \\
& =\left\lfloor\frac{n}{2}\right\rfloor-\frac{x}{4}
\end{aligned}
$$

more edges, so in total, $c r_{D}\left(G_{3}+n K_{1}\right)<Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor$, which is a contradiction.

We now obtain some slightly improved lower bounds for small n.
Lemma 4.5: $\operatorname{cr}\left(G_{2}+n K_{1}\right) \geq Z(6, n)+\left\lfloor\frac{n}{2}\right\rfloor+1$ for $n=4,5,6,7,8$.

Proof:

This follows from Lemma 4.4, and the results in Section 3.4.

4.4 Cyclic Permutations

Similar to Section 3.4 above, we establish possible permutations of $\operatorname{rot}\left(T_{i}\right)$ for i such that $\operatorname{cr}\left(T_{i}, G_{2}\right) \leq 1$, supposing that $\operatorname{cr}\left(G_{2}+n K_{1}\right)<Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor$.

We follow the arguments of Section 3.4, since $G_{1}+n K_{1}$ is a subgraph of $G_{2}+n K_{1}$, and so we have also supposed here that $\operatorname{cr}\left(G_{1}+n K_{1}\right)<Z(6, n)+2\left\lfloor\frac{n}{2}\right\rfloor$.

Consider the region, in the view of the subdrawing of the subgraph induced by $z_{i}, x_{1}, x_{2}, x_{3}$, where the vertices x_{4}, x_{5}, x_{6} are.

WLOG assume that there is an edge between x_{4} and x_{1}. By adding the edges $x_{4} x_{1}$ and $z_{i} x_{4}$, the region will be split into two regions. Note that the point where $x_{1} x_{4}$ crosses the boundary of the region (the point circled in blue in the diagrams) can be on any edge of the boundary, and also possibly the vertices of G_{2} on the boundary.

We consider two cases.

Case 1: $x_{1} x_{4}$ does not cross any edge of the cycle $x_{4} x_{5} x_{6}$
If $c r_{D}\left(T_{i}, G_{2}\right)=0, x_{5}, x_{6}$ must be in the same region (between the two regions created by the addition of $x_{4} x_{1}$ and $z_{i} x_{4}$), otherwise $x_{5} x_{6}$ either crosses $x_{4} x_{1}$ or $z_{i} x_{4}$.

Tracing edges of G_{2}

Depending on which region x_{5}, x_{6} are in, there is only one possible permutation for the order in which the edges $z_{i} x_{4}, z_{i} x_{5}, z_{i} x_{6}$ leave z_{i}, namely 456 and 564 respectively.

Case 2: $x_{1} x_{4}$ crosses an edge of the cycle $x_{4} x_{5} x_{6}$
$x_{1} x_{4}$ cannot cross $x_{4} x_{5}$ or $x_{4} x_{6}$, so it must cross $x_{5} x_{6}$ (once).
If $\operatorname{cr}_{D}\left(T_{i}, G_{2}\right)=0, x_{5}, x_{6}$ must be in different regions (two regions which region that x_{4}, x_{5}, x_{6} are in the view of subdrawing induced by $z_{i}, x_{1}, x_{2}, x_{3}$ has been divided into by the addition of $x_{4} x_{1}$ and $z_{i} x_{4}$), and so there is only one possible permutation for the order in which the edges $z_{i} x_{4}, z_{i} x_{5}, z_{i} x_{6}$ leave z_{i}, namely 645 .

We attempt to obtain some restrictions on the drawing, if $\operatorname{cr}\left(G_{2}+3 K_{1}\right)<8$.
We must have $\operatorname{cr}_{D}\left(T_{i}, G_{2}\right) \leq 1$ for all i.
For case 2 above, if $\operatorname{cr}_{D}\left(T_{i}, G_{2}\right)=0$ for all i, then $\operatorname{rot}_{D}\left(T_{i}\right)$ must be one of P_{3}, P_{6}, P_{9} in the table above and we can check that for any 3 of them, the sum of their pairwise distances is at least 12 (code used can be found in Appendix). Thus $\operatorname{cr}_{D}\left(T_{1} \cup T_{2} \cup T_{3}\right) \geq 12$.

Otherwise, there exists i with $c r_{D}\left(T_{i}, G_{2}\right)=1$, and $c r_{D}\left(G_{2}\right) \geq 1$, so $c r_{D}\left(G_{2}+3 K_{1}\right) \geq 8$.
For case 1 above, if $\operatorname{cr}_{D}\left(T_{i}, G_{2}\right)=0$ for all i, then $\operatorname{rot}_{D}\left(T_{i}\right)$ must be one of $P_{1}, P_{2}, P_{4}, P_{5}, P_{7}, P_{8}$ in the table above and we can check that for any 3 of them, the sum of their pairwise distances is at least 8. Thus $c r_{D}\left(T_{1} \cup T_{2} \cup T_{3}\right) \geq 8$.

Otherwise, there exists i with $c r_{D}\left(T_{i}, G_{2}\right)=1$, then $c r_{D}\left(G_{2}\right)=0$, and so x_{4} must be one of the vertices on the boundary of the region that x_{4}, x_{5}, x_{6} is in (in the view of subdrawing induced by $z_{i}, x_{1}, x_{2}, x_{3}$), and the edge $x_{1} x_{4}$ is fully contained within this region.
$\operatorname{rot}_{D}\left(T_{i}\right)$ cannot be one of $P_{1}, P_{2}, P_{4}, P_{5}, P_{7}, P_{8}$, otherwise we can follow a similar argument as above, and so $\operatorname{rot}_{D}\left(T_{i}\right)$ is one of P_{3}, P_{6}, P_{9}.

5 Counting Argument

Consider some graph G of order 6 , and suppose we know $\operatorname{cr}\left(G+n K_{1}\right) \geq Z(6, n)+x$ for some n and $x>0$.

Consider some drawing D of $G+(n+a) K_{1}$ where $a>0$, with $\operatorname{cr}_{D}(G)=m$. We want to find a lower bound for $c r_{D}\left(G+(n+a) K_{1}\right)$, so we let $c r_{D}\left(G, \bigcup_{i=1}^{n+a} T_{i}\right)=k$, and suppose $c r_{D}\left(G+(n+a) K_{1}\right) \leq Z(6, n+a)+m+b$, which means $k \leq b$.

We sum the crossings across all subgraphs $G+n K_{1}$, and the total is at least $\binom{n+a}{n}(Z(6, n)+x)$.
Each crossing between two edges of G are counted $\binom{n+a}{n}$ times. Each crossing between an edge of G and an edge of T_{i} is counted $\binom{n+a-1}{n-1}$ times. Each crossing between and edge of T_{i} and edge of T_{j} is counted $\binom{n+a-2}{n-2}$ times.

Thus we have

$$
\begin{aligned}
c r_{D}\left(G+(n+a) K_{1}\right) & =c r_{D}\left(\bigcup_{i=1}^{n+a} T_{i}\right)+c r_{D}\left(G, \bigcup_{i=1}^{n+a} T_{i}\right)+c r_{D}(G) \\
& =c r_{D}\left(\bigcup_{i=1}^{n+a} T_{i}\right)+k+m \\
& \geq \frac{1}{\binom{n+a-2}{n-2}}\left(\binom{n+a}{n}(Z(6, n)+x)-\binom{n+a}{n} m-\binom{n+a-1}{n-1} k\right)+k+m
\end{aligned}
$$

Lemma 5.1: If $\operatorname{cr}\left(G_{1}+n K_{1}\right) \geq Z(6, n)+x$, then $\operatorname{cr}\left(G_{1}+(n+1) K_{1}\right) \geq Z(6, n)+x-2$ when n is even, and $\operatorname{cr}\left(G_{1}+(n+1) K_{1}\right) \geq Z(6, n)+x+1$ when n is odd, assuming the crossing number is less than conjectured for even and odd n respectively.

Proof:

Suppose otherwise.
From Lemma 3.5, we have $c r\left(G_{1}\right)=0$. Putting in $m=0$ and $a=1$, we get

$$
\begin{aligned}
c r_{D}\left(G_{1}+(n+1) K_{1}\right) & \geq \frac{1}{n-1}((n+1)(Z(6, n)+x)-n k)+k \\
& =\frac{(n+1)(Z(6, n)+x)-k}{n-1}
\end{aligned}
$$

For even n, when $k \leq b<x-2$ then

$$
\begin{aligned}
c r_{D}\left(G_{1}+(n+1) K_{1}\right) & \geq \frac{(n+1)(Z(6, n)+x)-k}{n-1} \\
& \geq \frac{(n+1)\left(\frac{3 n(n-2)}{2}+x\right)+3-x}{n-1} \\
& =\frac{\frac{1}{2}\left(3 n^{3}-3 n^{2}-6 n\right)+n x+x+3-x}{n-1} \\
& =\frac{3 n^{2}}{2}+\frac{(x-3) n+3}{n-1} \\
& =\frac{3 n^{2}}{2}+(x-3)+\frac{x-3+3}{n-1} \\
& >\frac{3 n^{2}}{2}+(x-3) \operatorname{since} x>0 \\
& =Z(6, n+1)+x-3 \\
& \geq Z(6, n+1)+b
\end{aligned}
$$

This is a contradiction, so $k \geq x-2$.
For odd n, when $k \leq b<x+1$ then

$$
\begin{aligned}
c r_{D}\left(G_{1}+(n+1) K_{1}\right) & \geq \frac{(n+1)(Z(6, n)+x)-k}{n-1} \\
& >\frac{\left.(n+1)\left(\frac{3(n-1)^{2}}{2}+x\right)-x\right)}{n-1} \\
& =\frac{3(n+1)(n-1)}{2}+\frac{n x+x-x}{n-1} \\
& =\frac{3(n+1)(n-1)}{2}+\frac{n x}{n-1} \\
& =\frac{3(n+1)(n-1)}{2}+x+\frac{x}{n-1} \\
& >\frac{3(n+1)(n-1)}{2}+x \text { since } x>0 \\
& =Z(6, n+1)+x \\
& \geq Z(6, n+1)+b
\end{aligned}
$$

This is a contradiction, so $k \geq x+1$.
Note that this implies if Conjecture 3.1 holds for some n which is even, it holds for $n+1$.

6 Conclusion

We have used various methods to obtain lower and upper bounds for the crossing numbers of $G_{1}+n K_{1}$ and $G_{2}+n K_{1}$. Some of the methods could potentially be used for other families of graphs, particularly the double counting argument in Section 5, and the tracing argument
in Lemma 4.4. Interestingly, we have also found two different optimal drawings for $G_{1}+n K_{1}$ depending on the parity of n.

Appendix A Code for Cyclic Permutations

The following code was used to generate the table of distances for the permutations in Section 3.4 and Section 4.4, as well as to find the minimum pairwise sum of distances for some sets of permutations.

The adjacency matrix between permutations was found by iterating through each permutations and doing all possible swaps. The Floyd-Warshall algorithm is then used to find all pairs shortest paths.

```
#include <bits/stdc++.h>
using namespace std;
string reverse(string s){
    string ans = "1";
    return ans+s[5]+s[4]+s[3]+s[2]+s[1];
}
int main(){
    freopen("input.txt", "r", stdin);
    freopen("output.txt", "w", stdout);
    string s = "23456";
        sort(s.begin(), s.end());
        //permutations as strings
        string permutations [120];
        permutations[0] = "1"+s;
        int count = 1;
        while(next_permutation(s.begin(), s.end())){
            permutations[count] = "1"+s;
            count++;
        }
        //permutations index
        map<string, int> m;
    for(int i=0;i<120;i++)
        m[permutations[i]] = i;
    //initialise distances
    int distance[120][120];
    for(int i=0;i<120;i++){
        for(int j=0;j<120;j++){
            if(i!=j)distance[i][j] = 1000000;
            else distance[i][j] = 0;
        }
    }
    //find adjacency matrix
    for(int i=0;i<120;i++){
        for(int j=0;j<4;j++){
            s = permutations[i];
```

```
        swap(s[j+1],s[j+2]);
        distance[i][m[s]] = 1;
    }
    s = "1";
    s = s+permutations[i][2]+permutations[i][3]+permutations[i][4]+permutations[i
    ][5]+permutations[i][1];
    distance[i][m[s]] = 1;
    s = "1";
    s = s+permutations[i] [5]+permutations[i][1]+permutations[i] [2]+permutations[i
    ][3]+permutations[i][4];
    distance[i][m[s]] = 1;
}
//find all pair shortest path
for(int k=0;k<120;k++){
    for(int i=0;i<120;i++){
        for(int j=0;j<120;j++){
            distance[i][j] = min(distance[i][j],distance[i][k]+distance[k][j]);
        }
    }
}
//possible permutations
int index[9];
index[0] = m["123456"];
index[1] = m["123564"];
index[2] = m["123645"];
index[3] = m["124563"];
index[4] = m["125643"];
index[5] = m["126453"];
index[6] = m["145623"];
index[7] = m["156423"];
index[8] = m["164523"];
//print table
int table[9][9];
for(int i=0;i<9;i++){
    for(int j=0;j<9;j++){
        table[i][j] = distance[index[i]][m[reverse(permutations[index[j]])]];
        cout<<table[i][j]<<" ";
    }
    cout<<"\n";
}
//find minimum total of pairwise distance for 4 permutations
int four = 1000000;
    for(int i=0;i<9;i++){
    for(int j=i;j<9;j++){
        for(int k=j;k<9;k++){
            for(int l=k;l<9;l++){
            for(int z=1;z<9;z++){
                    four = min(four, table[i][j]+table[i][k]+table[i][l]+table[j][k]+table
    [j][l]+table[k][l]+table[z][i]+table[z][j]+table[z][k]+table[z][l]);
```

```
                }
            }
        }
    }
}
cout<<four<<"\n";
//find minimum total of pairwise distance for 5 permutations
int five = 1000000;
    for(int i=0;i<9;i++){
    for(int j=i;j<9;j++){
        for(int k=j;k<9;k++){
            for(int l=k;l<9;l++){
                for(int z=1;z<9;z++){
                    for(int q=z;q<9;q++){
                            five= min(five, table[i][j]+table[i][k]+table[i][l]+table[j][k]+
        table[j][l]+table[k][l]+table[z][i]+table[z][j]+table[z][k]+table[z][l]+table[
        q][i]+table[q][j]+table[q][k]+table[q][l]+table[q][z]);
            }
                }
            }
        }
    }
}
cout<<five<<"\n";
//new index for G2
int index1[9];
index1[0] = m["123456"];
index1[1] = m["123564"];
index1[2] = m["124563"];
index1[3] = m["125643"];
index1[4] = m["145623"];
index1[5] = m["156423"];
index1[6] = m["123645"];
index1[7] = m["126453"];
index1[8] = m["164523"];
//print table
int table1[9][9];
for(int i=0;i<9;i++){
    for(int j=0;j<9;j++){
        table1[i][j] = distance[index1[i]][m[reverse(permutations[index1[j]])]];
        cout<<table1[i][j]<<" ";
    }
    cout<<"\n";
}
//find minimum total of pairwise distance for 3 permutations among restricted
    set of 6 permutations
int three1 = 1000000;
```

```
    for(int i=0;i<6;i++){
    for(int j=i;j<6;j++){
        for(int k=j;k<6;k++){
            three1 = min(three1, table1[i][j]+table1[i][k]+table1[j][k]);
        }
    }
}
cout<<three1<<"\n";
//find minimum total of pairwise distance for 3 permutations among restricted
    set of 3 permutations
three1 = 1000000;
    for(int i=6;i<9;i++){
    for(int j=i;j<9;j++){
        for(int k=j;k<9;k++){
            three1 = min(three1, table1[i][j]+table1[i][k]+table1[j][k]);
        }
    }
}
cout<<three1<<"\n";
```

\}

References

[1] Casimir Zarankiewicz. "On a problem of P. Turan concerning graphs". eng. In: Fundamenta Mathematicae 41.1 (1955), pp. 137-145. URL: http://eudml.org/doc/213338.
[2] Daniel J. Kleitman. "The crossing number of K5,n". In: Journal of Combinatorial Theory 9.4 (1970), pp. 315-323. ISSN: 0021-9800. DOI: https : / / doi . org / 10. 1016/S00219800 (70) 80087-4. URL: https://www. sciencedirect. com/science/article/pii/ S0021980070800874.
[3] Douglas R. Woodall. "Cyclic-order graphs and Zarankiewicz's crossing-number conjecture". In: J. Graph Theory 17 (1993), pp. 657-671.
[4] E. de Klerk et al. "Improved Bounds for the Crossing Numbers of Km,n and Kn". In: SIAM Journal on Discrete Mathematics 20.1 (2006), pp. 189-202. DOI: 10.1137/S0895480104442741. eprint: https://doi.org/10.1137/S0895480104442741. URL: https://doi.org/10. 1137/S0895480104442741.
[5] Marián Klešč and Štefan Schrötter. "The crossing numbers of join products of paths with graphs of order four". In: Discussiones Mathematicae Graph Theory 31 (Jan. 2011), pp. 321-331. DOI: $10.7151 / \mathrm{dmgt} .1548$.
[6] Marián Klešč. "The crossing numbers of join of the special graph on six vertices with path and cycle". In: Discrete Mathematics 310 (May 2010), pp. 1475-1481. DoI: 10.1016/j. disc.2009.08.018.
[7] Marián Klešč and Michal Staš. "Cyclic permutations in determining crossing numbers". In: Discussiones Mathematicae Graph Theory (Jan. 2020). DOI: 10.7151/dmgt. 2351.
[8] Michal Staš. "The Crossing Numbers of Join Products of Paths and Cycles with Four Graphs of Order Five". In: Mathematics 9.11 (2021). ISSN: 2227-7390. DOI: 10 . 3390 / math9111277. URL: https://www.mdpi.com/2227-7390/9/11/1277.
[9] Marián Klešč and Štefan Schrötter. "The Crossing Numbers of Join of Paths and Cycles with Two Graphs of Order Five". In: Mathematical Modeling and Computational Science. Ed. by Gheorghe Adam, Ján Buša, and Michal Hnatič. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 160-167. ISBN: 978-3-642-28212-6.
[10] Michal Staš. "Determining Crossing Number of Join of the Discrete Graph with Two Symmetric Graphs of Order Five". In: Symmetry 11.2 (2019). ISSN: 2073-8994. DOI: 10. 3390/sym11020123. URL: https://www.mdpi.com/2073-8994/11/2/123.
[11] Michal Staš. "On the crossing number of join product of the discrete graph with special graphs of order five". In: Electronic Journal of Graph Theory and Applications (EJGTA) 8.2 (2020), pp. 339-351.
[12] Kieran Clancy, Michael Haythorpe, and Alex Newcombe. A survey of graphs with known or bounded crossing numbers. 2019. DOI: $10.48550 /$ ARXIV . 1901.05155. URL: https : //arxiv.org/abs/1901.05155.

【評語】010049

The author considers a problem in graph theory related to a conjecture by Zarankiewicz，i．e．，finding the crossing number for a family of special graphs．The author has an organized presentation style and knows the material inside out．The writing is clean．Several upper and lower bounds are obtained．

