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1 Introduction

A drawing of a graph G is a representation of G on a plane, with its vertices represented by
distinct points, and its edges by arcs connecting the corresponding points. The crossing number
of G is the minimum number of intersections between arcs across all possible drawings of G.

Finding the crossing number of a graph is known to be a difficult problem, with the exact val-
ues of crossing numbers known only for specific families of graphs. In particular, it has been
conjectured by Zarankiewicz that the crossing number of the complete bipartite graph K, ,
is Z(m,n) = [2][™52][2][25*] [1], and has been proven for min(m,n) < 6[2], and cases
(m,n) = (7,7),(7,8),(7,9),(7,10), (8,8), (8,9), (8,10).[3] More recently, it has been shown that
limy, o0 Szn) > 0.83 1 [4]

A natural extension is to investigate the crossing numbers of the join products of two graphs,
which have a corresponding complete bipartite graph as a subgraph. The exact crossing numbers
of G+nK;y, G+ P, and G + C,, for all graphs G of order 4 have been determined in [5], and for
some graphs G of order 5 and 6, such as in [6, 7, 8, 9, 10, 11]. A more comprehensive review can
be found in [12]. Many of these graphs are connected, and have a cycle going through 5 or 6 of
the vertices. Notably, there have been several papers, including [7, 8, 9, 10, 11] using the idea of
cyclic permutations to determine these crossing numbers.

In this report, we establish some bounds on the crossing number of the join product of two
graphs, in particular, graphs G1, Go, where 1 is 2C3 and G5 is 2C3 with one edge between the
cycles. We also use a counting argument to establish some inductive bounds (inducting on n)
for join product of a general graph G and nKj.

The choice of G; and G5 was motivated by the result in [6] about the crossing number of G+nKj,
where G is 2C3, with two edges between the cycles (two edges are connected to distinct vertices).
We noticed that removing one or both of these edges (thus getting G; and G2) does not reduce
the crossing number in the optimal drawing proposed. Furthermore, both G; and G2 do not
have a large cycle in them, and G is disconnected, which is not commonly seen in the literature.

2 Definitions

The join product of two graphs G; and G2, denoted by G+ G, refers to the graph obtained from
vertex disjoint copies of G; and G2, and adding all edges between each vertex in G; and each ver-
tex in Go. In other words, V(G1+G2) = V(G1)UV(G2), E(G1+G2) = E(G1) UE(G2) UK, 1,



where |V(G1)| = m, |V (G2)| = n.
nK; is the graph of n isolated vertices with no edges.

Consider some drawing D of a graph G. Let ¢rp(G) be the number of crossings between edges
in G, and for any edge disjoint subgraphs Hy and Hs of G, let ¢rp(Hq, Ha) be the total number
of crossings between an edge of H; and an edge of Hs.

We assume that in a drawing:

1. Each edge only passes through two vertices, namely its end points
2. No two edges touch each other (and do not cross)

3. No three edges cross at the same point

Note that in an optimal drawing of some graph G with minimum crossing number, we must also
have:
1. No edge crosses itself

2. Any two edges cross at most once
3. Any two edges that share an end point do not cross

3 Graph G,

The graph G is is the union of two vertex disjoint C5, with no edge between the cycles.

G1

We use z; to denote the vertices of G, and z; to denote the vertices of nK;. Let T; be the
subgraph of the six edges from vertex z; to each vertex of G;.

3.1 Upper bound
For all n, we show cr(G1 +nkKy) < Z(6,n) +2[5].

Drawing of G; + nK;



This is clear from the drawing above, where there are | %] vertices of nK; on the right and
[5] vertices of nK; on the left. There are Z(6,n) crossings from the bipartite graph K, and

another 2| % | crossings on G1.

In addition, for odd n, we show cr(Gy +nkKy) < Z(6,n) +2[ 5| — 2.

Drawing of G; + nK; for odd n

Consider the drawing above, where there are | 252 | black vertices of nK; on the right and [252]
black vertices of nK; on the left. Let the vertices of G; from top to bottom be z1,--- , zg re-
spectively, and the red vertex in the centre and the right be z;, zo respectively.

There are Z(6,n — 2) + 2| 252 crossings between the edges of the black vertices.

The edges between z; and zo, x5 as well as zo and x2, x5 each cross one edge from each black
vertex on the left, so they contribute 4["7_21 crossings in total.

The edges between z; and x1,x¢ as well as zo and x3, x4 each cross two edges from each black
vertex on the right, so they contribute 8 252 | crossings in total.

The red edges cross each other twice, so for this drawing,
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Note that when n is even, number of crossings of this drawing is Z(6,n) + 2 L%J
Thus, we propose the following crossing number.

Conjecture 3.1: cr(Gy + nKi) = Z(6,n) +2|2| — 2 for odd n, and cr(Gy + nK;) =
Z(6,n) + 2| %] for even n.

3.2 Small cases

Lemma 3.2: cr(Gy; +2K;) =2

Proof:
We show cr(G1 +2K5) > 2.

Consider one C3 of (G; and the two vertices z1, z5.
If the subgraph induced by z; and vertices of the C3 has at least two crossings, we are done.

Otherwise, the possible drawings of C3 and the three edges from z; to the vertices of the cycle
are shown below.

Drawings of one C3 and z;

Assume it is the first drawing, then if zo lies within the C3, consider the other three vertices
of G;. For each of them, one of the two edges between them and zi, 25 will cross the C3 in
the drawing (depending on whether it is inside or outside the C3), then there will be at least 3
crossings.

Otherwise, zo must lie in some other region, which all have at most two vertices of the C3 on
their boundary, thus the edge from 25 to the vertex of Cs not on the boundary will have at least
1 crossing.

If it is the second drawing, there will be at least 1 crossing in this subgraph.

Similarly, we can consider the other C3 of G, and either we get crp(G1 + 2K7) > 3, or there is
at least 1 crossing in that subgraph, so c¢rp(G1 + 2K7) > 2.

Thus CT(Gl + 2K1) Z 2.

From the construction earlier, er(Gy + 2K7) < 2, and so er(G1 +2K;) =2. O



Lemma 3.3: ¢r(G; +3K;) =6

Proof:
Since K (6, 3) is a subgraph of G1 +3K71, ¢r(G1 +3K7) > cr(K(6,3)) = 6. From our construction
above, cr(G1 + 3K;) <6, and so ¢r(G1 +3K;) = 6. O

We have also obtained lower bounds for n = 4,5,6,7,8 in Section 3.4, using the properties of
cyclic permutations.

3.3 Results

We suppose cr(G1 + nKy) < Z(6,n) + 2| 5] for some even n > 4, and cr(Gy + nk;) <
Z(6,n)+ 2| 5] — 2 for some odd n > 5.

Lemma 3.4: There exists ¢ such that crp(T;,G1) =0

Proof:
Suppose otherwise. Then crp(T;,G1) > 1 for all 4.

i=1 i=1
> Z(6,n)+n
> Z(6,n) + 2 gJ

which is a contradiction. O

Lemma 3.5: c¢rp(G1) =0

Proof:
Consider ¢ such that crp(T;,G1) = 0.

We can draw T; as below, and let the vertices of Gy be x1, 2, T3, x4, x5, £ from top to bottom
respectively.

Consider each grouping of the 6 vertices of G into two triples, with each triple of vertices forming
one cycle.

For all drawings except (1,2, 3), (4,5,6) and (1,2,6), (3,4,5)/(1,5,6), (2, 3,4), we have crp(Gy) >
1, and each region has at most two vertices of G on its boundary, so c¢rp(T};,T; U G1) > 4 for
all j # 1.



Drawing of T;

crp(Gr+nkKy) =crp(GiUT;) +crp | G1UT;, U T; | +crp U T;
J#i J#i
>14+4(n—-1)+Z(6,n—1)
=n+3n—-1)+2Z(6,n—1)
> Z(6,n) +n
> Z(6,n) + 2 EJ
which is a contradiction, so the drawing is either (1,2, 3), (4,5,6) or (1,2,6), (3,4,5)/(1,5,6), (2, 3,4).
5

Notice these drawings are the same, so we can assume the drawing is (1,2, 3), (4,5,6), and as a
result, erp(G1) =0. O

3.4 Cyclic permutations

We now use the properties of cyclic permutations, which have been used in [7] [8], to obtain some
more results.

Let rotp(T;) be the clockwise order in which the edges leave vertex z; to the vertices of Gj.
Cyclic permutations are considered to be the same, and so we assume all rotp(T;) start from .

Define rot4 as the reverse permutation of rot 4, and d(rota,rotg) to be the minimum number
of swaps between adjacent elements, to get from rots to rotpg.

It is known that cr(T;,T;) > d(rotp(T;), rotp(Ty)). [3]

We now establish the possible permutations of T; for i such that cr(T;,G1) < 1.

Assuming the drawing of G; above, z; must be in the region with all 6 vertices of Gy on its
boundary (in view of the subdrawing of G;), otherwise if it is inside one of the cycles, say

T1Tox3, then z;x4, z;x5, 2,26 Will each cross the cycle x1xox3 at least once.

Thus rotp(T;) with respect to each cycle is fixed (up to rotation).
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6 ,(3,4,6) and (1,3,4),(2,5,6)
(1,2,6),(3,4,5) and (1,5,6), (2,3,4) (1,3,5),(2,4,6)
(1,3,6),(2,4,5) and (1,4,6),(2,3,5) (1,4,5),(2,3,6)



(1,2,3),(4,5,6)

Figure 1: Drawings of T; U G

Consider the subgraph induced by z; and the cycle x1x2x3.

If any 2 of x4, x5,z are in different regions in view of this subgraph, the edge between them
must cross some edge in this subgraph. From Lemma 3.5, it cannot cross an edge of Gy, so it
must cross an edge between z; and one of x1,xs, r3.

If x4, x5, 6 are not all in the same region, there must be at least 2 pairs of them in different
regions, and so ¢r(T;, G1) > 2, which is a contradiction, thus they must all be in the same region.

For each j = 4,5,6, the edge between x; and z; must start in the same region as x4, s, 6.
Otherwise, since the edge must leave the region it started in, and cannot cross any edge with
endpoint z;, it must cross one of the edges of the cycle zjzox3. This means the edge enters the
region inside the cycle x1x2x3, but x; is outside this cycle, so the edge must cross the boundary
of the region again, thus this edge crosses G; twice, which is a contradiction. (Note that by a
similar argument, the entire edge must be contained in this region)

Similarly, each edge of the cycle z4x52x6 must be fully contained within this region, otherwise
since it must leave and enter the region, and it cannot cross an edge of Gy, it must cross the
edges of T; at least twice.

There are 3 ways to choose which region x4, 5,26 are in, and 3 ways to permute x4, x5, x6.
(rotation matters here, for example 123456 compared to 123564)

We have 9 possible values for rotp(T;), namely 123456, 123564, 123645, 124563, 125643, 126453,
145623, 156423, 164523. We label them Py, Py, - - - , Py respectively.

Using a program (can be found in Appendix), we obtain the following table of values for each
d(P;, P;).



P P, Py P, P Ps P Py Py
Pl 6 4 4 4 2 2 4 2 2
Pl 4 6 4 2 4 2 2 4 2
Pl 4 4 6 2 2 4 2 2 4
Pil4 2 2 6 4 4 4 2 2
P52 4 2 4 6 4 2 4 2
Pl 2 2 4 4 4 6 2 2 4
Pl 4 2 2 4 2 2 6 4 4
Pl 2 4 2 2 4 2 4 6 4
Pl 2 2 4 2 2 4 4 4 6

Lemma 3.6: cr(Gy +4K;) > 14

Proof:

Case 1: For all i =1,2,3,4, crp(T;,G1) < 1.

Thus rotp(T;) is one of P;, and from table above, we can check that for any 4 P;, the sum of

their pairwise distances is at least 16, which means crp(Ty U Ty, UT3 U Ty) > 16.

Case 2: There exists ¢ such that crp(T;, G1) > 2.
Then we have cr(Gy +4K1) > Z(6,4) + 2 = 14. O

Lemma 3.7: ¢r(G; +5K;) = 26

Proof:

Case 1: For all i =1,2,3,4, crp(T;,G1) < 1.

Thus rotp(T;) is one of P;, and from table above, we can check that for any 5 P;, the sum of

their pairwise distances is at least 28, which means crp(Ty U Ty, U T3 U T, U Ts) > 28.

Case 2: There exists ¢ such that crp(T;, G1) > 2.
Then we have cr(Gy + 5K1) > Z(6,5) + 2 = 26.

From the two cases, we have cr(G; + 5K7) 26, and from our construction in section 3.1,

>
er(G1 +5K7) <26, s0 er(G1 +5K1) =26. O
As a result of Lemma 3.7, we have the following result.
Lemma 3.8: cr(Gy + 6K1) > 39,cr(Gy + TK1) > 55,cr(Gy + 8K,) > T4

Proof:
This follows directly from Lemma 3.7 and Lemma 5.1 below. O



4 Graph G5

The graph G5 is the union of two vertex disjoint C3, and with one edge between the cycles.

JAWAN

G

We denote the vertices similarly.

4.1 Upper bound
For all n, we show cr(G2 4+ nk1) < Z(6,n) 42| 5.

Drawing of G2 + nK;

This is the same drawing as for G; + nK;, but with one more edge in the centre that does not
result in any additional crossings.

Since G1 + nK; is a subgraph of G2 + nK, we have cr(Ge + nK1) > cr(Gy + nKy).
4.2 Small case
Lemma 4.1: cr(Gy +2K;) =2

Proof:
From the construction, ¢r(Gs + 2K;) < 2, and ¢r(Ga + 2K;) > er(G1 +2K;) =2. O

4.3 Results

Consider the graph G3, which is G5 but with one additional edge between the cycles, forming a
Cs.

10
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G3

It is known that cr(Gs +nkKy) = Z(6,n) + 2|5 ].[6]
Lemma 4.2: If cr(G2 +nkKy) < Z(6,n) + 2| 5], then the two cycles of G2 do not intersect.

Proof:
This follows from Lemma 3.5, since G; is a subgraph of G, and we suppose ¢r(Ga + nK;) <
Z(6,n) + 2| 5] here as well. [

Theorem 4.3: cr(Gy +nkKy) > Z(6,n) + [ 5]
Proof:

Suppose otherwise.

WLOG let the edge between the cycles be between vertices 3 and x4, and let z3 be adjacent to
1, T2 and x4 be adjacent to x5, xg.

We add an additional edge, by starting from vertex x;, and tracing along the edge x1x3, x324,
then along the edge from z4 to either x5 or xg, only crossing edges that these three edges cross.
We thus have a drawing of the graph G3 + nKj.

Notice this new edge has at most as many crossings as G, and crp(G) + crp(G,UT;) < [5],
so we have crp(Gs+nKy) < Z(6,n)+|5]+|5] = Z(6,n)+2| %], which is a contradiction. [

Lemma 4.4: If cr(G1 + nKy) > Z(6,n) + x, then er(G2 + nKy) > Z(6,n) + | 2] +

z
2 4

Proof:
Suppose otherwise.

N N

Tracing edges of G2

Similarly, let the edge between the cycles be between vertices x3 and x4, and let x3 be adjacent
to x1,x2 and x4 be adjacent to x5, xg.

Let rotg(x;) be the clockwise order in which the edges leave vertex x; to the other vertices of Ga,
and cyclic permutations are considered to be the same. Let rotg(z3) = 124 and rotg(z4) = 356.

11



Let the number of crossings on the edge between the two cycles in G5 be a. a < [§| + § — =,
otherwise we can remove this edge and get crp(Gy +nKy) < Z(6,n) + x.

After removing the edge between the cycles, there are at most |§] + § — a crossings on G,

and the remaining edges of G3 do not cross each other from Lemma 4.2. Consider the edges

2123, 2426 and the edges xox3, 426, which in the diagram are the blue/red edges. One of these

[31+%—
2

. a
airs have at most edges on them, say z123, T42¢.
) y 3 6

By adding an additional edge from x1 to xg, along this pair of edges and z3x4, we get at most

3l+5-a _|3l+5+a
T T s
c2lsl-3
- 2
n T
“lylmg

more edges, so in total, crp(Gs +nKy) < Z(6,n) + 2| %], which is a contradiction. O

We now obtain some slightly improved lower bounds for small n.
Lemma 4.5: cr(G2 +nKy) > Z(6,n) + | 5] + 1 for n =4,5,6,7,8.

Proof:
This follows from Lemma 4.4, and the results in Section 3.4. O

4.4 Cyclic Permutations

Similar to Section 3.4 above, we establish possible permutations of rot(T;) for i such that
cr(T;, Go) < 1, supposing that cr(Gz +nkKy) < Z(6,n) +2[5].

We follow the arguments of Section 3.4, since G; + nK; is a subgraph of G + nK;, and so we
have also supposed here that cr(Gy +nKy) < Z(6,n) + 2[5 ].

Consider the region, in the view of the subdrawing of the subgraph induced by z;,x1, 2, x3,
where the vertices x4, x5, xg are.

WLOG assume that there is an edge between x4 and z;. By adding the edges x4z, and z;x4,
the region will be split into two regions. Note that the point where x1x4 crosses the boundary of
the region (the point circled in blue in the diagrams) can be on any edge of the boundary, and
also possibly the vertices of G5 on the boundary.

We consider two cases.
Case 1: x1x4 does not cross any edge of the cycle x x5x4

If erp(T;,G2) = 0, 25,26 must be in the same region (between the two regions created by the
addition of x4z and z;z4), otherwise x5xs either crosses z4xq or z;24.

12



Tracing edges of Go

Depending on which region x5, ¢ are in, there is only one possible permutation for the order in
which the edges z;z4, z;x5, 2,26 leave z;, namely 456 and 564 respectively.

Case 2: x1x4 crosses an edge of the cycle x4x5x4

T1X4 CANNoOt Cross r4xs Or XT4Tg, SO it must cross xsg (once).

If erp(T;,Go) = 0, x5, x¢ must be in different regions (two regions which region that x4, x5, x¢
are in the view of subdrawing induced by z;,x1, x2, x3 has been divided into by the addition of
xz4x1 and z;x4), and so there is only one possible permutation for the order in which the edges
Zi%4, 2iTs5, 2iTg leave z;, namely 645.

We attempt to obtain some restrictions on the drawing, if ¢r(Ga + 3K;) < 8.

We must have crp(T;, G2) < 1 for all 1.

For case 2 above, if crp(T;, G2) = 0 for all 4, then rotp(7T;) must be one of Ps, Ps, Py in the table
above and we can check that for any 3 of them, the sum of their pairwise distances is at least 12
(code used can be found in Appendix). Thus crp(Ty U T, UTs) > 12.

Otherwise, there exists ¢ with c¢rp(T;,G2) =1, and erp(Ga) > 1, so erp(Go + 3K7) > 8.

For case 1 above, if crp(T;, G2) = 0 for all i, then rotp(T;) must be one of Py, Py, Py, Ps, P7, Py
in the table above and we can check that for any 3 of them, the sum of their pairwise distances
is at least 8. Thus crp(Th UTy UT3) > 8.

Otherwise, there exists ¢ with crp(T;, G2) = 1, then ¢rp(G2) = 0, and so 24 must be one of the
vertices on the boundary of the region that x4, x5, zs is in (in the view of subdrawing induced

by z;, 1, x2,x3), and the edge x1x4 is fully contained within this region.

rotp(T;) cannot be one of Py, Py, Py, P5s, P7, P3, otherwise we can follow a similar argument as
above, and so rotp(T;) is one of Ps, Ps, Py.

13



5 Counting Argument

Consider some graph G of order 6, and suppose we know cr(G + nK;) > Z(6,n) + x for some n
and = > 0.

Consider some drawing D of G + (n + a)K; where a > 0, with ¢rp(G) = m. We want to
find a lower bound for ¢rp(G + (n + a)K1), so we let erp(G,|J/""T;) = k, and suppose
erp(G+ (n+a)Ky) < Z(6,n + a) + m + b, which means k < b.

We sum the crossings across all subgraphs G +nK, and the total is at least ("/*)(Z(6,n)+z).

Each crossing between two edges of G are counted (”:“) times. Each crossing between an edge
n+a—1
n

1 ) times. Each crossing between and edge of T; and edge

of G and an edge of T; is counted (
n+a—2

M )times.

of T} is counted (

Thus we have

n+a n+a
crp (G+(n+a)Ky) =crp (U Ti> +crp <G, U ﬂ) +crp (G)

i=1 =1

n+a
=crp (U Ti> +k+m

(O TN oy S Gy e

Lemma 5.1: If cr(Gy +nKy) > Z(6,n) + x, then ¢r(G1 + (n+1)K1) > Z(6,n) +  — 2 when n
is even, and ¢r(G1 + (n+1)K;) > Z(6,n) + « + 1 when n is odd, assuming the crossing number
is less than conjectured for even and odd n respectively.

Proof:
Suppose otherwise.

From Lemma 3.5, we have ¢r(G1) = 0. Putting in m = 0 and a = 1, we get

nil (n+1)(Z(6,n) + z) — nk) + k

(n+1)(Z(6,n)+z)—k
n—1

Ccrp (Gl + (n =+ 1)K1) >

For even n, when k < b < x — 2 then



(n+ 1)(Z(6,n) +2) — &
n—1
3n(n—2)
(n+1) (%—l—x)—ki’)—m
n—1
1(3n®* —3n? —6n)+nz+z+3—a

crp (Gl + (n + 1)K1) >

v

n—1

_ﬁ (r—3)n+3
2 n—1

3n? r—34+3
_7+(‘r—3)+7n—1

32
>%+(33—3) since z > 0
=Z6,n+1)+xz—3

>Z(6,n+1)+b
This is a contradiction, so k > = — 2.

For odd n, when &k < b < x + 1 then

(n+1)(Z(6,n)+x)—k

erp (Gr+ (n+1)Ky) >

n—1
>(n+1)<3("2_1)i+x>—x)
_3(n+1)(n—-1) nxt+r—=x
B 2 M
_3(n+1)(n—-1) nx
B 2 M
_3n+1)(n—1)
= 5 tat

3n+1)(n—-1)

This is a contradiction, so k > = + 1.

Note that this implies if Conjecture 3.1 holds for some n which is even, it holds for n + 1.

6 Conclusion

We have used various methods to obtain lower and upper bounds for the crossing numbers of
G1 + nK; and G4 + nKy. Some of the methods could potentially be used for other families
of graphs, particularly the double counting argument in Section 5, and the tracing argument

15



in Lemma 4.4. Interestingly, we have also found two different optimal drawings for G; + nK;
depending on the parity of n.

16
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Appendix A Code for Cyclic Permutations

The following code was used to generate the table of distances for the permutations in Section
3.4 and Section 4.4, as well as to find the minimum pairwise sum of distances for some sets of
permutations.

The adjacency matrix between permutations was found by iterating through each permutations
and doing all possible swaps. The Floyd-Warshall algorithm is then used to find all pairs shortest
paths.

#include <bits/stdc++.h>
using namespace std;

string reverse(string s){

string ans = "1";

return ans+s[5]+s[4]+s[3]+s[2]+s[1];
}

int main(){

freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);

string s = "23456";
sort(s.begin(), s.end());

//permutations as strings
string permutations [120];

permutations [0] = "1"+s;
int count = 1;

while (next_permutation(s.begin(), s.end())){
permutations [count] = "1"+s;
count++;

}

//permutations index
map<string, int> m;

for(int i=0;i<120;i++)
m[permutations[i]] = i;

//initialise distances
int distance [120][120];

for(int i1=0;i<120;i++){
for(int j=0;3j<120; j++){
if (i!=j)distance[i][j] = 1000000;
else distancel[i][j] = 0;
}
}

//find adjacency matrix
for(int i=0;i<120;i++){
for(int j=0;j<4;j++){

s = permutations[il];

17



swap(s[j+1]1,s[j+2]1);
distance[i] [m[s]] = 1;

s =1 il

s = s+permutations[i][2]+permutations[i] [3]+permutations[i][4]+permutations[i

J[5]+permutations [1i][1];
distance[il[m[s]] = 1;

s = "qin;

s = s+permutations[i] [6]+permutations[i][1]+permutations[i] [2]+permutations[i

J[3]+permutations [i] [4];
distance[i]l][m[s]] = 1;
}

//find all pair shortest path
for(int k=0;k<120;k++){

for(int i=0;1i<120;i++){
for(int j=0;3j<120; j++){

distance[i][j] = min(distance[i][j],distance[i][k]+distance[k][j]);

}
}
}

//possible permutations
int index [9];

index [0] = m(["123456"];
index[1] = m["123564"];
index[2] = m["123645"];
index[3] = m["124563"];
index [4] = m["125643"];
index[5] = m["126453"];
index [6] = m["145623"];
index [7] = m["156423"];
index[8] = m["164523"];

//print table
int table [9][9];

for(int i=0;i<9;i++){
for (int j=0;3j<9;j++){

table[i][j] = distance[index[i]l][m[reverse(permutations[index[j11)1];

cout<<table[i][jl<<" ";
}
cout<<"\n";

}

//find minimum total of pairwise distance for 4 permutations

int four = 1000000;

for(int i=0;1i<9;i++){
for(int j=i;j<9;j++){
for(int k=j;k<9;k++){
for(int 1=k;1<9;1++){
for (int z=1;z<9;z++){

four = min(four, table[il[jl+tablel[il[k]l+table[i][1]+table[j]l[k]+table
[jl[1]+table[k][1]+table[z][i]l+table[z][jl+table[z][k]l+table[z][1]);
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110

111

130

132

134

cout <<four<<"\n";

//find minimum total of pairwise distance for 5 permutations
int five = 1000000;

for(int i=0;1i<9;i++){
for(int j=i;j<9;j++){
for(int k=j;k<9;k++){
for (int 1=k;1<9;1++){
for (int z=1;z<9;z++){
for (int q=z;9<9;q++){
five= min(five, table[i][jl+table[i][k]+table[i][1l]+table[j][k]l+

table[jl[1]+table[k][1]+table[z][i]l+table[z][jl+table[z][k]l+table[z][1]+tablel
ql[il+table[ql[jl+table[q]l [kl+table[ql[1]l+table[ql[z]);

}

cout<<five<<"\n";

//new index for G2

int index1[9];

index1[0] = m["123456"];
index1[1] = m["123564"];
index1[2] = m["124563"];
index1[3] = m["125643"];
index1[4] = m["145623"];
index1[5] = m["156423"];
index1[6] = m["123645"];
index1[7] = m["126453"];
index1[8] = m["164523"];

//print table
int tablel [9][9];

for(int i=0;i<9;i++){
for (int j=0;3j<9;j++){
tablel1[i][j] = distance[indexl1[i]]l[m[reverse(permutations[index1[j]1]1)1];
cout<<tablel [i][jl<<" ";
¥
cout<<"\n";

}

//find minimum total of pairwise distance for 3 permutations among restricted
set of 6 permutations
int threel = 1000000;
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170 for(int i=0;i<6;i++){
1 for (int j=i;j<6;j++){
72 for(int k=j;k<6;k++){

1

173 threel = min(threel, tablel[i][jl+tablel[i][k]+tablel[j][k]);
174 T

175 X

176 }

177

178 cout<<threel<<"\n";

179

180

181

182

183 //find minimum total of pairwise distance for 3 permutations among restricted

set of 3 permutations
184 threel = 1000000;

186

187 for(int i=6;i<9;i++){
188 for (int j=i;j<9;j++){
189 for(int k=j;k<9;k++){
190 threel = min(threel, tablel[i][jl+tablel[i][k]+tablel[j][k]);
191 T
192 }
193 }
194
195 cout <<threel1<<"\n";
196}
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The author considers a problem in graph theory related to a
conjecture by Zarankiewicz - i.e. » finding the crossing number for

a family of special graphs. The author has an organized
presentation style and knows the material inside out. The writing

is clean. Several upper and lower bounds are obtained.



	010049-封面
	010049-作者照片
	010049-Abstract
	Introduction
	Definitions
	Graph G1
	Upper bound
	Small cases
	Results
	Cyclic permutations

	Graph G2
	Upper bound
	Small case
	Results
	Cyclic Permutations

	Counting Argument
	Conclusion
	Code for Cyclic Permutations

	010049-評語

