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Abstract
This research studies two generalizations of the nim game, called the trail-removing
game and the star-removing game. There are two players in the game. At the beginning,
there is a simple graph G. The two players take turns removing the edges of a trail of at
least one edge or a nonempty star subgraph of the graph. The one who cannot move
loses the game and the other wins.
In the edge-removing game, | first compute the Grundy numbers of special graphs and
give an upper bound on k-stars in general. | then define a new kind of graphs known as
nice graphs and determine that all nice graphs are N-positions. Using this, | give a
solution of the join product of any two non-empty graphs, solving the trail-removing
game on complete k-partite graphs in the process.
As for the Cartesian product of graphs, | give a solution of the Cartesian product of two
non-empty graphs that satisfy certain conditions and discover that the Cartesian product
of a fully nice graph and any other connected graph with at least 2 vertices is also fully
nice. By this, | am able to solve the trail-removing game on r-dimensional grids.
As for the star-removing game, my greatest achievement is the introduction of a
concept known as symmetry. Using this concept, 1 am able to give more generalized
results that can be used to analyze the star-removing game on Cartesian products of
certain graphs effectively. Using these results, | am able to determine the winner on r-
dimensional grids.
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1 Study background

In a book named “More Joy of Mathematics,” [6] there is an interesting two-
playergame called “the game of squayles,” described as follows.

At the beginning, 31 sticks are arranged as in Figure 1.
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Figure 1: The arrangement of 31 sticks.

The game has two players: Alice and Bob. They take turns (Alice goes first)
making moves as follows. In each move, a player removes as many (but at least
one) sticks as she/he wants, providing that the head of one stick is adjacent to
the tail of the previous one in sequence as numbered in the two examples in
Figure 2; while the two examples in Figure 3 are illegal. The player unable to
make a move loses the game, and the other wins. In other words, the player who
removes the last stick wins.
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Figure 2: Two legal moves, where the sticks marked red are removed.
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Figure 3: Two illegal moves, where the sticks marked red are removed.
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This article generalizes the game of squayles into a game which is referred
to as the trail-removing game described below.

Let G be any graph. The two players, Alice and Bob, take turns removing
the edges of a trail (a walk without repeating edges) of at least one edge from G.
Also, for the sake of convenience, if a vertex has degree 0, this vertex is
automatically removed. The player who takes away the last edge wins. Notice
that the game of squayles is equivalent to the trail-removing game on the
graph in Figure 4.



Figure 4: The graph on which the game of squayles is played.

This article also introduces another game called the star-removing game.
The rules of the star-removing game are similar to those of the trail-removing
game, exceptthat in the star-removing game the players take turns removing the
edges of a star subgraph instead of the edges of a trail.

The aim of this article is to determine which player has a winning strategy
in these games under optimal play, i.e. when both players play the game
perfectly.

2 Preliminaries

Combinatorial game theory is a branch of mathematics that studies certain
games with perfect information. These games are typically two-player games
that have a position the players take turns changing in defined ways or moves to
achieve a defined winning condition.

We first give a quick review on some basic definitions, concepts and
theorems in combinatorial game theory.

First, for the sake of convenience, a game in later paragraphs refers to a
finite two-player game with perfect information, and any move available to one
player must be available to the other as well. It is easy to see that the trail-
removing game, the star-removing game and the matching-removing game are
all such games.

Next are some terms in combinatorial game theory.

Definition 2.1. A P-position is a position which secures a win for the previous
player (the player who has just moved). An N-position is a position which
secures a win for the next player (the player who is going to move). A terminal
position isa position in which the following player has no legal moves.

The nim game is one of the most classic combinatorial games in history.
Inthe game, two players take turns removing stones from distinct piles of stones.
On each turn, a player must remove at least one stone, and may remove any
number of stones provided they all come from the same pile. The player who
takes the last stone wins.

The nim game is specified by the numbers of stones in the piles. We
use N (n(), n(2),. .., n(M) to denote the position with r piles of n(1), n(@), ..., n(®
stones, where any number equal to 0 can be ignored. For convenience, N(0) denotes
the position of no stones.



The nim game is completely solved by Bouton [3] in 1901, who

established the foundation on this line. To describe his result, we need some
notations.

Fist, for any nonnegative integer n, we may write it as a binary representation
n=n/2r+n,_12m1 +... + ng2% which is denoted by NMr-1...No(p) for short,

where r = 0 and each n; € {0, 1}. In this notation, we allow leading zero(s).
Forinstance, 5 = 101(2) = 01012y = 000101 2.

Next, we define a binary operation on {0, 1} by
0D0=1P1=0and 0 P1=1D0=1

Then extend it to the set of nonnegative integers No := {0, 1, 2,...} as follows.
Letn = nrnr1...nozyand m= mymy_1 ... Mo(z). Then the nim sum of n and m,
denoted as n @©m, is defined to be

P = PrPr-1-..Poczy With p;i = n; ©m; for r zi z0.
Notice that (No, ©©) is an abelian group. Namely the following conditions hold.
(1) The operation &@is commutative, i.e.,, n ©m = m &n for n,m € N,.
(2) The operation is associative, i.e., (n m) Pp = n DS(m Sp) for n,m, p € No.

(3) There is an identity, i.e.,, n €©0 = n for n € No.
(4) Each element n € Nohas an inverse element, i.e, n © n=0.

With the above notation in mind, Bouton’s result is as

follows.

Theorem 2.2. (Bouton [3]) In the nim game, N(n(1), n(2), ..., n() is an N-
position if and only if N ©n®@ &b bn®/= 0.

From then on, variations of the nim game have been studied extensively.
For a subset S € Ny, define mex(S) to be the smallest nonnegative integer not
in S. For instance, mex{0, 1, 5, 6} = 2 and mex{1, 5, 6} = 0. An useful tool for
studying the nim game is the Grundy number of a position N(n), n(?,..., n(),
which isdefined recursively as follows.

Definition 2.3. gnim(N (0)) = 0. As for any position N(n(), n®, ..., n(7) not
equivalent to N(0),
Inim(N (n), n), ..., n())
= meX{gnim(N(m®), mQ2),..., m»)) : N(m1), m®,..., m®»)

can be obtained from N (n(), n(2,..., n") by one move}.

An alternatively way to describe Bouton’s result is that
Inim(N (N, n2,..., n(0)) = n) Bn@ P--- HSn.

And so N (n(1), n(, ..., nM) is an N-position if and only if its Grundy number
is not zero.

For x € {trail, star, matching}, we may also define the Grundy number for
the x-removing game at position G as follows.



Definition 2.4. (Grundy number of the x-removing game) The Grundy
number of the null graph Ko with no vertices nor edges is g<(Ko) = 0. And the
Grundy number of a graph G with at least one edge is

9x(G) = mex{gx(H) : H can be obtained from G by one move}.

It is also the case that G is an N-position if and only if gx(G)=0. Also,
the same as Bouton’s result, we have the following result.

Theorem 2.5. (Sprague-Grundy Theorem) For x € {trail, star} and
any twographs G and H, we have gx(G \_H) = g«(G) PDgx(H).

Below are two lemmas.

Lemma 2.6. For x € {trail, star, matching} and any two graphs G and H, if H
can be obtained by G in one move, then |E(H)| < |E(G)|.

Proof. Since in any move a player removes at least one edge from the original
graph,the above inequality is obviously true. O

Although very simple, Lemma 2.6 plays a very important role in many
logicaldeductions we shall see in later parts. It also helps us prove the
following lemma.

Lemma 2.7. For x € {trail, star, matching} and any graph G, we have g«(G) <
|E(G)-

Proof. We shall prove the lemma by mathematical induction on |E(G)|.
For the case of |[E'(G)| = 0, we have gx(G) = 0 by definition, and so gx(G) <
|E(G)].
Suppose G has at least one edge and gx(G') < |E'(G')| for any graph with

|E'(G")| < |E(G)|. For any subgraph H obtained from G by a move, by Lemma 2.6,
|[E(H)| < |E(G)|- By the induction hypothesis, gx(H) < |E(H)| < |E(G)|-
Then by definition, gx(G) <|E(G)|.

Therefore, by mathematical induction, the lemma is true. O

3 Trail-removing game

The trail-removing game is the game generalized from the game of squayles,
where the players take turns taking away the edges of a trail of at least one edge
from the previous graph and the last player to make a move wins.

First, we discuss the Grundy numbers of some special graphs. We can
quickly obtain the following propositions.

Proposition 3.1. (Paths) If n is a positive integer, then guai(Pn) = n -1.



Proof. We shall prove the lemma by induction on n.

When n = 1, notice that P, consists of only one vertex with degree 0.
There- fore, this vertex is automatically removed, and so by Definition 2.4,
gtrail(Pl) =0=n-1.

Suppose n = 2 and the lemma is true for n' < n. Notice that P, can be
turned into P; in one move for all 1 < i < n - 1. By the induction hypothesis,
gwail(P) =i—1for 1 <i<n-1and so gwil(Ps) 2 n — 1. Also, we have gcrail(Pr)
<|E(Pn)| = n-1. Therefore, girai(Pn) = n -1.

The lemma then holds by induction. O

Proposition 3.2. (Cycles) If n =3 is an integer, then guwai(Cn) = n.

Proof. It is easy to see that by taking away the edges of Px.1(1 < k < n) from C,
(which can be done in one single move), the graph turns into Pp-«+1. Therefore,
we have girail(Crn) =2 n. Also, we have guaii(Crn) < |E(Cn)| = n. Therefore,

Jerait(Cn) = n for all integers n = 3. .

For any nonnegative integer n, the star graph S, is the graph with n
vertices vy, V2, ..., Vs adjacent to a special vertex vy, called the center of the
star. TheGrundy numbers of stars are as follows.

Proposition 3.3. (Stars) If n is a nonnegative integer, then gwain(Sn) = r, where
re{0,1,2} and r =n (mod 3).

Proof. First, since the edges taken away must be the edges of an Eulerian
graph, one can (and must) take 1 or 2 edges from S, in one move.

Also, note that no matter how many edges are taken away from a star
graph, the remaining graph is still a star graph. Therefore, the only 2 graphs that
can be obtained from S, by one move are S,-1 and S,-».

We shall prove the proposition by induction on n.

When n <1, S, = Pur1 and soO gwail(Sn) = Gwait(Pns1) = n, where n €
{0,1,2} and n =n (mod 3).

Therefore, the proposition is true when n=0 and n = 1.

Suppose the proposition is true when n = kand n = k+ 1. Then

when n = k + 2, the only 2 graphs that can be obtained from Si.2 by one
move are Sk.1and Sk. Therefore, girail(Sk+2) = mex{grai(Sk+1), Grrai(Sk)}.

Therefore, if k= 0 (mod 3), i.e., k + 2 = 2 (mod 3), then geai(Sk+2) =
mex{0, 1} = 2;

if k=1 (mod 3), i.e, k+2 =0 (mod 3), then guii(Sk+2) = mex{1, 2} = 0;

if k =2 (mod 3), i.e,, k+2 =1 (mod 3), then guail(Sk+2) = mex{2, 0} =

1.Hence the proposition is true by induction. 0
Definition 3.4. (Double stars) We define a double star S, as the union of

two stars S, and Snm (h, m € Ny), with their centers joined together by one
additional edge.



Notice that S0 = Sh+1 for all n € No whose Grundy numbers are given
above. We now consider other double stars in two cases.

Lemma 3.5. If n is a positive integer, then gw.i(Sn1) = r + 2, where r € {1, 2, 3}

and r =n (mod 3).

Proof. Consider the set M = {Sy0, Sn-1,1, Sn-21, Sn L51, Sn 50, Sn-1 51, Sn-1 U

So}. It is easy to see that these the graphs in M are exactly the only ones S,1 can
be turned into in one move. Also, by Proposition 3.1, we have guil(So1) =
gtrail(P3)2-

When n =1, by Proposition 3.1, gwai(S1,1) = gwrai(Pa) = 3.

When n = 2, gtrail(SZ,l) = mex{gtrail(SZ,O):gtrail(sl,l)/gtrail(SO,l)lgtrail(sz U

S$1), Grait(S2 LS0), erait(S1 L51), gwait(S1 LS0)} = mex{0, 3,2,3,2,0,1} = 4.

Suppose n = 3, and the lemma is true for n - 1 and n - 2. It is easy to see
that we have gtrail(Sn,l) = mex{gtrail('sn,o): gtrail('sn—l,l)f gtrail(sn—Z,l)f gtrail(Sn
Lzlgl)/gtrail('sn LJ'So)lgtrail(sn—l L'51)fgtrail(5‘n—1 Lﬁo)}

Therefore, if n = 0 (mod 3), guil(Sn1) = Mmex{gwrail(Sno0), Gerait(Sn-1,1),
Grrail(Sn-2,1), Grrait(Sn L$1), Grait(Sn LS0), Gerait (Sn-1 LS1), Grrait(Sn-1 LSo0)}
=mex{1,4,3,1,0,3,2}=5;

ifn =1 (mod 3), Gtrail(Sn,1) = Mex{Gtrai1(Sn,0) Gtrail(Sn-1,1), Grrait (Sn-2,1),
Grail(Sn L81), geran(Sn LS0), Gwan(Sn-1 LS1), Gerait(Sn-1 LS0)}
=mex{2,54,0,1,1, 0} = 3;

ifn =2 (mod 3), gtrail(Sn,1) = Mex{girail(Sn,0), trait(Sn-1,1), Gtrait (Sn-2,1),
Grrail(Sn L81), gerait (S LS0), Gerait(Sn-1 LS1), Gerait(Sn-1 LISo)}
= mex{0, 3,5,3,2,0,1} = 4.

The lemma then holds by induction.

After we have proven the lemma, here is the result on double stars in general.

Theorem 3.6. (Double stars) For all integers ni, nz = 2,

if n1 = nz =0 (mod 3) or n1 = nz =2 (mod 3), then guail(Snn,) = 1;

if nt =n2 =1 (mod 3), then Giai(Snyny) = 2;

if (n1 =1 (mod 3), n =2 (mod 3)) or (n1 =2 (mod 3), n2 =1 (mod
3)).then gwai(Sni,n;) = 4;

if (n1 =0 (mod 3), nz =1 (mod 3)) or (n1 =1 (mod 3), n2 =0 (mod
3)):then gtrail(SnLHZ) = 5;'

if (n1 =0 (mod 3), n; =2 (mod 3)) or (n1 =2 (mod 3), n, =0 (mod
3)),then gai(Snyn,) = 6.

Proof. Consider the set M = {Sn;-1,ny Snyna-1 Sni-2,n2 Sninz-2, Sni WSny Sni-1 U
Snzs Smi USnp-1, Sni-1 USh,-1}. It is easy to see that these the graphs in M are

exactly the only ones Sy;,n,can be turned into in one move.

Notice that girail(Snynz ) = Grrail(Snpn; ) for all n1 and n.. We then only need
to verify the theorem by the following cases. Suppose gerail(Sn),n;) is known

forn'y +n', <ni+na.
Case 1. 2 <nyn; <4:
gtrail(SZ,Z) = mex{4, 4'; 0; O: O: 3/ 3/ 0} = 1;

7



Jwail(S23) = mex{5,1,4,1,2,1,0,3} = 6;

Jail(S24) = mex{3,6,2,0,3,0, 2,1} = 4;

grail(S33) = mex{6,6,5,5,0,2,2,0}=1;

Jail(S34) = mex{4,1,3,6,1,3,0,2} = 5;

Jrail(Ss4) = mex{5,5,4,4,0,1,1, 0} = 2.

Case 2. n1 >4 withri =0 and 2 <n; <4:

Jrail(Sni,2) = mex{1,5,4,1,2,0,1, 3} = 6;

Grrail(Sny,3) = mex{6,6,5,5,0,2,2,0}=1;

Grrail(Sni,4) = mex{4,1,2,6,1,3,0,2} = 5.

Case 3. n1 >4 withri =1 and 2 <n; <4:

Gail(Sny,2) ={6,3,1,2,3,2,0,1} = 4;

gail(Sn,3) ={1,4,6,3,1,0,3,2}=5;

Gerail(Sn,4) = {5,5,4,4,0,1,1,0} = 2.

Case 4. n1 >4 withr1 =2 and 2 <n; <4:

Guail(Sny,2) ={4,4,0,0,0,3,3,0} = 1;

Guai(Sn,3) ={5,1,4,1,2,1,0,3} = 6;

wail(Sn,a) ={3,6,2,0,3,0,2,1} = 4.

Case 5. ny, nz > 4:

if ri =rz =2, then guai(Sn,n,) ={4,4,6,6,0,3,3,0}=1;

2 and r; = 0, then guai(Snin,) ={51,1,42,1,0,3} = 6;
if i =2 and r; = 1, then guwail(Snynz) = {2,6,5,1,3,0,2,1} = 4;
if r1 =r2 =0, then guai(Snyn,) ={6,6,5,5,0,2,2,0}=1;

if r1 =0 and r2 = 1, then guwai(Snyn) = {4 1,2,6,1,3,0,2} = 5;
if ri =r; =1, then guwaitl(Snynz) ={55,4,4,0,1,1,0} = 2.

By induction, the theorem then holds for all integers ni, n; = 2. 0

ifr1

Afterwards, let us introduce the concept of a special kind of graphs we
now call k-stars.

Definition 3.7. (k-stars) For nonnegative integers ni, n, . .., ni the k-star
Snina,..n 1S the graph obtained from the union of k stars Sy, Sny, . . ., Sn, With centers vy,
vy, ..., vkby adding k -1 edges vivz, vavs,..., Vi 1V

From Proposition 3.3, Lemma 3.5, and Theorem 3.6, we can see that the
upper bound of the Grundy number of a star is 2, while that of a double star is 6.
What about the Grundy number of k-stars in general? Before continuing, here is
aremark about certain properties the operation & has.

Remark 3.8. The following properties hold for all nonnegative integers a and b.
(1) If azb and 21 <a <2k -1, then a D b <2k -1.



(2) a®b<a+hbh.

With this remark in mind, we now have the following upper bound for the
Grundy number of k-stars as follows.

Theorem 3.9. (Grundy numbers of k-stars) In the trail-removing game,
for all integers k = 3, an upper bound of the Grundy number of a k-star is k2 + 4k - 7.
(Notice that this upper bound is likely not tight for some k.)

Proof. First, for convenience, let the tight upper bound of a m-star be an.
Thenwe know that a; = 2 and az = 6.

When k = 3, a 3-star can be turned into the following graphs in one move:
another 3-star, the union of a 2-star and a star, and the union of 3 stars. Then by
Remark 3.8, the Grundy number of the union of 3 stars has maximum value 3,
and the Grundy number of the union of a 2-star and a star has maximum value 7.
Also, notice that the number of distinct possible 3-stars the original 3-star can
be turned into in one move is at most 3 x2 = 6. Therefore, a3 <7+ 6+ 1 = 14.

When k = 4, let the upper bound hold for all integers less than k. It is
easy to see that a k-star can be turned into another k-star, or the union of an
hi-star, an hy-star, and (k — h1 - h2) stars (where hi, h, 21 and hi1 + h; <k) in
one move. Notice that the number of distinct possible k-stars the original k-star
can be turned into in one move is at most 2k. I shall now prove that the
Grundy number of the union of an hi-star, an hy-star, and (k - h: - hz) stars
has maximum valuek? + 2k - 8.

Notice that if h1 = hy = 1, the Grundy number of the union of multiple
starshas maximum value 3;

ifhi1=1,h,= k-1 or hi = k-1,h, = 1, since the upper bound holds
for all integers less than k, the Grundy number in this case has maximum
value2 + (k-1)2+4(k-1)-7 = k2 + 2k - 8;

otherwise, we must have hi + h; < k - 4. Then the Grundy number of the
union of an hi-star, an hp-star, and (k —h1 —h2) stars has maximum value

3+ h%+4h; — 7+ h3 +4h, —7 =11+ 4(h, + h,) + hi + h3
<11+4k-4)+(*k—-4)>=11+4k — 16 + k? — 8k + 16 = k>,

Then since k =4, we have 19 < 6k, and thus k2 -4k + 11 < k2 + 2k - 8.

Therefore, ax < (k2 + 2k —-8) + 2k + 1 = k2 —4k + 11. The theorem then
holds by induction. O

Definition 3.10. A graph G is nice if it has an Eulerian subgraph Go with at
least one edge such that V (G) — V (Go) is an independent set. If, in addition, Gy is a
spanning subgraph of G, then G is called a fully nice graph.

Theorem 3.11. In the trail-removing game, nice graphs are all N-positions.



Proof. Suppose G is a nice graph with an Eulerian subgraph Go such that V (G)
-V (Go) is an independent set. For any vertex w € V (Go), the edge set E(Go)
formsa w-w trail Ty in G. Consider the graph G - E(To).

For the case when G - E(T)) is a P-position, the first player can remove the
edges of Ty, making the remaining graph G - E(To) a P-position. Therefore, G
isan N-position.

For the case when G-E(To) is an N-position, G-E(To) has a u-v trail T of
at leat one edge such that (G - E(To)) — E(T) is a P-position. Since V (G) - V (Go)
is independent, T has at least one vertex w in Go. As E(T) n E(To) = @, we
have that T':= T (uto w)ToT (w to v) is a trail from u to v. Thus, the first player
can remove the edges of T ', making the remaining graph G - E(T ") a P-
position. Therefore, G is an N-position.

Remark 3.12. If H is a subgraph of G, V (H) = V (G), and H is a fully nice grap%
then G is also a fully nice graph. This is obvious because if Ho is a fully nice
subgraph of H, then it must also be a subgraph of G. Then since V (Ho) = V
(H) = V (G) and Hy is an Eulerian graph with 0 odd vertices, Hy is also a fully
nice subgraph ofG, and therefore G is also a fully nice graph.

In other words, if a graph G satisfies that after deleting some edges in G, the
remaining graph is a fully nice graph, then G must also be a fully nice graph.

Below is an operation done on two graphs that results in another graph,
called the join product of two graphs.

Definition 3.13. (Join product of two graphs) The join product of two graphs
G and H is the graph GVH whose

vertex set V(GVH) =V (G) WV (H) and

edge set E(GVH) = {vu: v € V(G) and u € V (H)} LE(G) LE(H).

Here is the result for the join of two graphs.

Theorem 3.14. (Trail-removing game on GVH) The join GVH of two nonempty
graphs G and H is an N-position, except when (G = K1 and H = mK,) or

(G =mK; and H = K1), where m is a positive integer with m =0 (mod 3).

Proof. Let V(G) = {vy, vz, ..., va} and V (H) = {uy, uy, . .., un}. Without loss of
generality, we may assume that 1 <n <m.

If G = K1 and H = mK;, then GVH = S,,. By Proposition 3.3, GVH is a P-
position if and only if m =0 (mod 3).

We then consider the remaining case when either n = 1 with H having at
leat one edge or else 2 <n <m.

For the case when n = 1 with H having at least one edge, choose a
maximal matching M = {xixz, x3Xs, ..., X2r-1X2r} of H, where r 2 1. Then M U
{vix;: 1 <i< 2r} induces an Eulerian subgraph Go of GVH such that V(GVH) -V
(Go) is independent. By Theorem 3.11, GVH is an N-position.

For the case when 2 <n <m, choose a maximal matching M = {x1xz, x3xa,

v, X2r1X2r} Of H—={uq, Uz, ..., un}, where r =2 0. Then {viuy, uivz, vaup, uzvs, .. .,
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Valy, Unv1} UM Lfvix;: 1 < i< 2r} induces an Eulerian subgraph Go of GVH such
that V (GVH) - V (Go) is independent. Again, by Theorem 3.11, GVH is an N-
position. -

Another special kind of graphs is called complete k-partite graphs, defined
as follows.

Definition 3.15. (Complete k-partite graphs) A graph G is complete k-
partite if there exists a partition V (G) = Vi(G) UV2(G) U.. UVkG) such that
for allu, v € V (G), u and v are not adjacent if and only if u and v are in the
same Vi(G)for some 1 <i <k

Let |V;(G)| = n; for all integers 1 <i <n. We then denote G as Kni,n,,.,n;-

.....

product of the graphs N, VN,,V ... VN,,, where the graph N,, called the edgeless
graph, has n vertices and no edges. By this observation and Theorem 3.14, the
following corollary immediately follows.

Corollary 3.16. (Complete k-partite graphs) A complete k-partite

graph is a P-position ifand only if k=1 or (k=2,n1=1,n,=0 (mod 3))
or (k=2,n2=1,n1 =0 (mod 3)).

Next, we define another operation on graphs, called the Cartesian product
oftwo graphs, as follows.

Definition 3.17. (Cartesian product of two graphs) The Cartesian product
of two graphs G and H is the graph GTH whose

vertex set V(GH) = V (G) xV (H) and
edge set E(GH) = {(vy u)(V, u') : (v =V, uu € E(H)) or (v € E(G),u = u')}.

The following is an example of the Cartesian product of two graphs.

Figure 5: The Cartesian product P4+Ps.

We introduce a notation first.

Definition 3.18. (v-rows and u-columns) Let G and H be graphs. For every
vertex v € V (G), the v-row of GtH, denoted by R,(GTH), is the subgraph induced
by {(v,u) : u € V(H)}. Notice that the v-row R,(GH) is isomorphic to H.

Similarly, for every vertex u € V (H), the u-column of GH, denoted by
C.(GTH), is the subgraph induced by {(v, u) : v € V (G)}. Notice that the u-column
C.(GOH) is isomorphic to G.
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In the following, for any graph G, let V¢(G) and V,(G) be the sets of
even-degree vertices and odd-degree vertices, respectively, in G.

Theorem 3.19. If G and H are connected graphs with at least two vertices, then
GOH is an N-position in the trail-removing game if any one of the following con-
ditions holds.

(1) G is a fully nice graph. A special case is when V (G) = V.(G).

(2) V(H) = Vo(H).
(3) G has an edge xy with x,y € V.(G) and |V (H)| is even.

Proof. (1) Suppose G is a fully nice graph with a spanning Eulerian subgraph
Go. (For the special case of V (G) = V.(G), choose Go = G.) In this case, Go has
an edge xy such that Go - xy is connected. And so the subgraph G,
isomorphic toGo —xy in the column C,(GrH) is connected.

Consider the subgraph 7 of GH which is the union of the connected sub-
graphs R(GH), R,(GH), and G', for u € V (H). Then I is a connected spanning
subgraph of GH. Also, every vertex (v, u) of I is of even degree:

degg, (v if vZ1ix y};
deg; (v, u)= degggo((v)j + degy (u), if v'e x,))ll}}and u € V.(H);

degg,(v) + degy(u) -1, if v € {x, y} and u € V,(H).

Hence [ is a spanning Eulerian subgraph of GH. By Theorem 3.11, GrH is
an N-position.

(2) Consider the case when V (H) = V,(H). By the result in (1), we may
assume that V (G) # V.(G), i.e, Vo,(G)* @.

Let I be the subgraph of GriH which is the union of rows R,(GrH) forv
€ Vo(G) and columns C,(GrH) for u € V (H). Then I is connected spanning
subgraph of GrH. Also, every vertex (v, u) of I is of even degree:

deg;(v), if v € Ve(G);

deg (v, u) =
G WU = o) + degy(u), if v € Vo(G).

Hence / is a spanning Eulerian subgraph of GH. By Theorem 3.11, GH is
anN-position.

(3) Consider the case when G has an edge xy with x,y € V,(G) and |V (H)|
is even. By the result in (1), we may assume that V (G) V.(G), i.e, Vo(G)/=§;
and by the result in (2), we may assume that V (H)/= V,(H), i.e., V.(H)/=0.

Assume that V.(H) = {uy, uy, ..., uzm}. For 1 < i < m, choose a path P;
between u; and um+;. If some P; and P; have common edges, we may replace
them by two edge-disjoint paths between pairs of vertices of the four end
vertices of these two paths. Repeating the process if necessary, we then may
assume paths Py, Py, ..., Pn are edge-disjoint. Let T be the subgraph of H
induced by the union of these m paths. Then H - E(T) is a graph in which all
vertices are of odd degree.

Let I be the subgraph of GoH which is the union of the subgraph of R,(GH)
isomorphic to H - E(T) for v € V,(G), rows R,(GH) for v € {x, y}, and columns

Cu.(GH) for u € V (H) but deleting edges (x, u)(y, u) for u € V,(H). To see
that /
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is connected, we consider the following steps. First rows Ry(GrH) and
R,(GH) are connected, and they are connected by the edges (x, u)(y, u) for u €
Ve(H). Secondly, any edge-deleted-column C,(GH) - (x,u)(y, u), if not connected,
has two connected components, each with a common vertex (x, u) with row
R«(GH) or (y, u) with row R,(GH). And these rows and edge-deleted-columns
cover all vertices of GrH. Hence I is connected spanning subgraph of GrH.
Also, every vertex (v, u) of I is of even degree:

deg;(v), if v eVe(G) -{xy};

deg(v, u)= degg(v) + degy (u), if v e{x y}and u € V.(H);
degg(v) +degy(u) -1, ifve{xy}and u € V,(H);
degg(v) + degn_gcry(u), if v € Vo(G).

Hence [/ is a spanning Eulerian subgraph of GH. By Theorem 3.11, GrH is
an N-position. 0

Remark 3.20. In fact, from the first part of the proof of Theorem 3.19, we
can see that the Cartesian product of a fully nice graph and any connected graph
with at least 2 vertices must also be a fully nice graph.

We now use the approach of nice graphs to solve the trail-removing game on
r-dimensional grids P,,P,,1.. &@P,.. For a path P, let its vertex set V(P;) =
{1, 2,...,r} and edge set E(P;) = {12,23,...,(r - 1)r}.

Lemma 3.21. For n, m 2 2, the 2-dimensional grid P,Py is fully nice, except
for P3P3, which is only nice.

Proof. For the case when n=m=3, the vertex set {(1, 1), (3, 3)} is independent
in P3P3. And the other vertices induce an Eulerian subgraph of P;aP3;. Hence
P3Pz is a nice graph.

For the case when n or m is even, we may assume that n is even. Then
the following form a spanning Eulerain subgraph of P,tPy:

row Ri(PnPnm),
one-edge-deleted-row R;(PncPn) - (i, 1)(i 2) for 2 <i <n-1,row
Ru(PniPn),
column Ci(PnPnm),
edges (i, 2)(i + 1, 2) for even i with 2 <i<n-2,
edges (i, m)(i + 1, m) for odd i with 1 <i<n-1.
Therefor, P,P,, is fully nice.

For the case when n and m are both odd, we may assume that n = 5.
Thenthe following form a spanning Eulerain subgraph of P,cPm:

edge (1,1)(1, 2) and edges (1,j)(1,j + 1) for even j with 2 <j <m -1,
edges (2,j)(2,j+ 1) for odd j with 1 <j <m -2,

row R3(PnPn),

one-edge-deleted-row Ri(PncPn) - (i, 1)(i, 2) for 4 <i<n-1,
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row R,(PnrPnm),

one-edge-deleted-column C1(P,Pn) - (2, 1)(3, 1),

edges (1,/)(2,j) for 3<j<sm-1,

edge (n,1)(n, 2) and edges (n,j)(n,j + 1) for even j with 2 <i<m-1.
Therefore, P,Pn is fully nice. 0

Lemma 3.22. The graph PsP3Ps is a fully nice graph.

Proof. The subgraph induced by the following edges is a spanning Eulerian
sub-graph: (1,1, k)(1, 2, k), (1, 2, k)(2, 2, k), (2,2, k)(2, 1, k) for k = 1,2; (1,1,
1)(1, 1, 2);

(2,1,1)(21,2). O

From Theorems 3.11 and 3.19, and Lemmas 3.21 and 3.22, and Remark
3.20, we have the following result for r-dimensional grids.

Corollary 3.23. If ny, ny,..., n- 2 2, then the r-dimensional grid Pp,t0Pp,1 .. TP,
is an N-position.

4 Star-removing game

The star-removing game is a game where the players take turns taking away the
edges of a star graph from the previous graph and the last player to make a
move wins. I later found several results other people have gotten before on the
star- removing game (a more common name for it is “Graph Nim”) [1] [2] [4]

[5].
Similar to the procedure of the trail-removing game, I tried to calculate

the Grundy numbers of special graphs like paths and cycles first, but found it
quite difficult to find a pattern.

Remark 4.1. In fact the Grundy numbers of paths, stars and double stars
(undera number of special cases) have already been computed by others before.

I shall not go into details here (Interested readers are directed to [1] [2] [4]
[5]), but note that the pattern of Grundy numbers of paths and double stars are
quite complicated.

Although unable to compute the Grundy numbers of said graphs, I was
able to determine the player who has a winning strategy, as shown below.

Proposition 4.2. (Paths) In the star-removing game, P, is an N-position for all
nz2,n €N, and a P-position when n = 1.

Proof. First, let V(Pn) = {vi,Vv2,...,vn}and E(Pn) = {vivis1|1 <i<n-1}.
Then, we consider the following three cases.

Case 1. n = 1. In this case, since P: consists of only 1 vertex of degree
0, itis automatically removed and the first player loses.

Case 2. n is odd and n > 1. In this case, let n = 2k + 1. Then the
firstplayer can take away the edges vivi.+1 and vi+1Vi+2 (notice that this can
always be
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done since these edges share a common vertex vi:1), making the remaining
graph 2P, securing a win for the first player.

Case 3. nis even. In this case, let n = 2k. Then the first player can take
away the edge vivi:1, making the remaining graph 2Pi-1, securing a win for
the first player.

Therefore, P, is an N-position for all n 2 2,n € N, and a P-position when
n=1. O

Proposition 4.3. (Cycles) In the star-removing game, C, is a P-position
for all integers n = 3.

Proof. It is easy to see that the first player can (and must) take away 1 edge
or 2 edges that share a common vertex from C, in their first turn, making the
remaining graph P, or P,-1. Then, by Proposition 4.2, the second player has a
winning strategy.

Therefore, C, is a P-position for all integers n = 3. O

Proposition 4.4. (Double stars) In the star-removing game, S,m (Wheren =
m) is an N-position for all n,m € Ny,

Proof. The first player can take away n — m edges from the sub-graph S, and the
edge connecting the centers of the two stars.

Then, the remaining graph becomes 25, securing a win for the first player.
O

An isomorphism of a graph G is a bijection f: V (G) — V (G) that preserves
adjacency. That is, vu € E(G) implies f(v)f(u) € E(G).

A bijection f: V = Vis of order 2 if fo fis the identity function but f
itself is not unless |V | = 1. Notice that for a bijection f: V — V of order 2, it is
allowed that f(v) = v for some element v in V, but not for all elements
unless |V | = 1. Also, f(v) = u if and only if f(u) = v; that is, vand u = f(v)
form a mapping pair.

Definition 4.5. (Symmetric graph) A graph is symmetric if it has an isomor-
phism f of order 2, called a symmetric function of G, which satisfies the
followingconditions for all vertices v.

(S1) f(v) w.
(52) vf(v) £ E(G).

Notice that a symmetric graph has an even number of vertices.
Examples ofsymmetric graphs include Czn, Kzny,2n,,..,2n, and 2G.

Definition 4.6. (Semi-symmetric graph) A graph is semi-symmetric if it
has an isomorphism f of order 2, called a semi-symmetric function of G, which
satisfies the following conditions for all vertices v.

(S1) f(v)/=w.
(SS2) vf(v) £ E(G), except v:f(v*) € E(G) for exactly one mapping pair.
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Notice that a semi-symmetric graph has an even number of vertices.
Examples of semi-symmetric graphs including P, and DS,, and more
generally 2G addingand edge between two corresponding vertices.

Definition 4.7. (Pseudo-symmetric graph) A graph is pseudo-symmetric
if it has an isomorphism f of order 2, called a pseudo-symmetric function of G,
which satisfies the following conditions for all vertices v.

(PS1) f(v) =v, except f(v*) = v* for exactly one vertex v-.
(52) vf(v) & E(G).

Notice that a pseudo-symmetric graph has an odd number of vertices.
Examples of pseudo-symmetric graphs including Pzn+1 and Ki+zny,2ny,.,2n,, and
more generally the graph obtained from 2G by identifying two corresponding
vertices.

Next, I am going to discuss the properties of these special graphs
introduced above. We have the theorem below:

Theorem 4.8. Suppose that G is symmetric/semi-symmetric/pseudo-
symmetric. Then, in the star-removing game, the following properties hold.

(1) If G is symmetric, then G is a P-position.
(2) If G is semi-symmetric, then G is an N-position.

(3) If G is pseudo-symmetric, f is one of its pseudo-symmetric functions,
andv € V (G) such that f (v) = v, then G is a P-position if and only if v has
degree 0.

Proof. (1) Let f'be a symmetric function of G. I shall now propose a strategy
for the second player:

The second player takes away f (v1)f (v2) in their turn if and only if the first
player took away vyv; in the previous turn.

Now, I am going to prove that this strategy can be done under any circum-
stances, and that it secures a win for the second player.

In the first move the first player makes, let v denote the center of the star
sub-graph whose sides they remove. Assume that the first player takes away the
sides vvi, vy, ..., vva. Then we have

(i) v is adjacent to v; for all 1 < i < h. Therefore, f(v) is adjacent to f{vi)
forall 1 <i<h.

(ii) v is not adjacent to f(v). Then,

{vvi, vz, w0V fva), SVIf(v2), ... f(V)f(va) } = @.

Therefore, the second player is able to take away the edges f (v)f (vi), f (V)f
(v2), . . ., f (v)f (vn). Also, it is obvious that the remaining graph is still
symmetric (in factthe restriction of f on it is still its symmetry function).

Thus, as long as the first player has a move, the second player also has a
move, which means that the second player cannot lose. And since the game is
finite, the second player will eventually win.
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(2) Let f be a semi-symmetric function of G. According to Definition 4.6,
exactly two vertices vy, v2 € V (G) exist such that f (v1) = v, and vi and v are
adjacent.

Then the first player can take away the edge vivz.. Therefore, in the
remaining graph G, no two vertices uj, uz € V (G') exist such that f(u1) = u,
and u; and uzare adjacent.

Notice that the restriction of f on G’ is a symmetric function of G'. Therefore,
G' is symmetric and thus a P-position (see the case above).

Therefore, G is an N-position.

(3) If v has degree 0, it is easy to see that the restriction of fon G -v
is a symmetric function of G - v. Therefore, G — v is a symmetric graph and
thus a P-position. Also, since v has degree 0, it will be automatically removed,
and therefore G is a P-position.

Otherwise, the first player can remove all the edges with v as one of its
vertices (notice that since v has degree greater than 0, the first player can at
least remove one edge). Notice that this move makes deg(v) = 0, causing v to be
automatically removed. Therefore, in the remaining graph G, f (u)#u for all u
evV(a).

Therefore, the restriction of f on G' is a symmetric function of G. G is
thensymmetric and thus a P-position, and therefore G is an N-position. dJ

Theorem 4.9. Suppose the graphs Gi and G, are symmetric/semi-symmetric/pseudo-
symmetric.

(1) If either G1 or G is symmetric, or if G and G, are both semi-
symmetric,then G10G, is symmetric.

(2) If one of G1 and G: is semi-symmetric and the other is pseudo-
symmetric,then G10G> is semi-symmetric.

(3) If G1 and G are both pseudo-symmetric, then G10G- is pseudo-symmetric.

Proof. Suppose for i = 1, 2, the bijection f; : V (G)) = V (G)) is a
symmetric/semi-symmetric/pseudo-symmetric function of G;. Define

f 1V (GioG2) - V (GiG2) by f(vy, v2) = (fi(vi), f2(v2)).

Since f1 and f; are bijections, so is f.

For any (vy, v2)(uy, uz) € E(Gi1G2), either vi = ui with vouz € E(G2)
or else viui € E(G1) with v, = uz. For the former case, fi(v1) = fi(u1) with
f2(v2)fz2(uz) € E(Gz2) and so f(vy, v2)f (u1, uz) € E(G1G2). For the latter case,
fi(vi)fi(u1) € E(G1) with f2(v2) = f2(uz) and so f(v4, v2)f (us, uz) € E(G101G2).
Therefore f preserves adjacency and so is an isomorphism of G1(>.

For any vertex (vi, v2) in the graph GioG, since fi and f; are of

order 2, we have (fi © fi)(v1) = viand (2 ° f2)(v2) = vy, i.e, fi(fai(v1)) =
vi and f2(f2(v2)) = v2. Therefore,

(f ° vy vz) = f(fi(va), f2(v2)) = (i1 (v1)), f2(f2(v2))) = (vi, v2).
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Also, if GiG2 has more than one vertex, then either G: or Gz has more than
one vertex; thus, either f1 or f; is not an identity function and sois fe f. Hence
f is of order 2.

Finally, we check the last two conditions (S1)-(S2) / (S1)-(SS2) /
(PS1)-(S2) for f. Consider all vertices (vy, v2) of GiXo.

First consider (S1) and (PS1). Notice that f'(v4, v2) = (v4, v2) is the same
as fi(vi) = vi and f2(v2) = vz. This is possibly only when G: and G> are both
pseudo- symmetric, and v1 is the only exceptional vertex vi in (PS1) for G1
and vz is the only exceptional vertex v; in (PS1) for G2. Therefore, (PS1)
holds for G1oG> with the only exceptional vertex (vi,v;) when G1 and G- are
both pseudo-symmetric. And for the other cases (S1) holds for GiGo.

Next consider (S2) and (SS2). Notice that (v, v2)f(vy, v2) € E(G10G2)
isthe same as either vi = fi(v1) with vyf2(v2) € E(G2) or else vifi(vi) € E(G1)
with v2 = f>(v2). The former case is possibly only when G; is pseudo-
symmetric with vi is the only exceptional vertex vi in (PS1) for G4, and G: is
semi-symmetric with v, f2(v;) is the only mapping pair in (SS2) for Go.
Therefore, (SS2) holds for G10G2> with the only exceptional mapping pair
(vi,v3), f(vi,v3) when G: is pseudo-symmetric and Gz is semi-symmetric.
Similarly, for the latter case, (SS2) holds for G10G> with the only exceptional
mapping pair (vi, v;), f (v, v5) when G1 is semi-symmetric and G is pseudo-
symmetric. And for the other cases (S2) holds for Gi1G».

These complete the proof of the theorem. O

Now, using the results above, we are going to solve the star-removing
game on Py, Pp, ... O0Py,, namely the r-dimensional grid. But before that, we
have totake notice of the following properties of P,.

Corollary 4.10. P, is semi-symmetric when n is even, and pseudo-symmetric
when n is odd.

Proof. Consider the function f: V (P,) —— V (P,) defined as follows: f (vi) = va-j,
where 1 <i <n.

Then, when n is even, it is easy to see that f'is a semi-symmetric function of
Pp, and P, is therefore semi-symmetric.

When n is odd, it is easy to see that f'is a pseudo-symmetric function of
Pp,and P, is therefore pseudo-symmetric. d

Then, using Corollary 4.10, I shall now solve the star-removing game on the
r-dimensional grid, as follows.

Corollary 4.11. (r-dimensional grid) In the star-game, Pp, 0P, O. .. TP,
isan N-position if and only if at most one of niy, ny, ..., nris even, or if n1 = n,

..=n,=1.

Proof. By Corollary 4.10, if at least two of ny, ny, ..., n, is even, then P,, 0P, .. Py,
is symmetric (see Theorem 4.9) and therefore a P-position (see Theorem 4.8).
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On the other hand, if at most one of ny, ny, ..., n, is even, then P, 0P, ... &P,
is either pseudo-symmetric or semi-symmetric (see Theorem 4.9). Then since
the only pseudo-symmetric graphs that are P-positions are those without edges,
and the rest of pseudo-symmetric graphs and semi-symmetric graphs are N-
position, P,,Pp,.. 0Py, is a P-position if n1 = n2 =... = n,= 1, and
otherwise an N-position.

5 Results

In this section, I shall summarize the results I have above.

Here are the results on the trail-removing game.

(1) geran(Pn) = n =1 for n € N. (Proposition 3.1)

(2) gerait(Crn) = n for n 23 and n €N. (Proposition 3.2)

(3) gwait(Sn) = r for all n € N, where r € {0, 1, 2} and r = n (mod 3).
(Proposition 3.3)

(4) If n is a positive integer, then gui(Sn1) = r + 2, where r € {1, 2,3} and
r =n (mod 3).

As for all integers nq, nz 22,

if n1 =n2, =0 (mod 3) or n1 = nz =2 (mod 3), then guai(Snynz) = 1;

if n1 =n2 =1 (mod 3), then Gerail(Sny,ny) = 2;

if (n1 =1 (mod 3), nz = 2 (mod 3)) or (n1 = 2 (mod 3), n2 = 1 (mod 3)),
then girail(Sni,n.) = 4;

if (n1 =0 (mod 3), n2 =1 (mod 3)) or (n1 = 1 (mod 3), nz = 0 (mod 3)),
then giail(Sni,n;) = 5;

if (n1 = 0 (mod 3), nz = 2 (mod 3)) or (n1 = 2 (mod 3), n2 = 0 (mod 3)),
then girail(Sny,n,) = 6. (Lemma 3.5 and Theorem 3.6)

(5) For all integers k = 3, an upper bound of the Grundy number of a k-
staris kz + 4k -7. (Theorem 3.9)

(6) Nice graphs are all N-positions. (Theorem 3.11)

(7) The join GVH of two nonempty graphs G and H is an N-position,
exceptwhen (G = K1 and H = mKi) or (G = mK; and H = K;), where mis a
positive integer with m =0 (mod 3). (Theorem 3.14)

(8) A complete k-partite graph is a P-position if and only if k= 1 or
(k=2,n1=1n2=0 (mod 3)) or (k=2,n2 =1,n1 =0 (mod 3)). (Corollary
3.16)

(9) If G and H are connected graphs with at least two vertices, then GrH is
an N-position if any one of the following conditions holds.

(i) G is a fully nice graph. A special case is when V (G) = V.(G).

(i) V (H) = Vo(H).
(iii) G has an edge xy with x,y € V¢(G) and |V (H)| is even.
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(Theorem 3.19)

(10) The Cartesian product of a fully nice graph and any connected
graphwith at least 2 vertices must also be a fully nice graph. (Theorem 3.19)

(11) For n,m = 2, the 2-dimensional grid P,0Pn, are fully nice, except for
P300P3, which is only nice. (Lemma 3.21)

(12) P;PsPs is a fully nice graph. (Lemma 3.22)

(13) If nq, ny,..., n, 2 2, then the r-dimensional grid Pp,Pp,1.. 0Py isan
N-position. (Corollary 3.23)

Notice that by (11) I have solved the original game of squayles, which is a
trail-removing game on P.Ps.

Instead of computing the Grundy numbers of graphs in the star-removing
game, I proposed winning strategies in order to determine the player with a
winning strategy. My results are as follows.

(1) P, is an N-position for all integers n =2 and a P-position when n =
1.(Proposition 4.2)

(2) C, is a P-position for all integers n = 3. (Proposition 4.3)

(3) Sim is an N-position for all n, m € No. (Proposition 4.4)

(4) symmetric graphs are P-positions, semi-symmetric graphs are N-
positions, and pseudo-symmetric graphs are N-positions except for the ones
without edges. (Theorem 4.8)

(5) The Cartesian product of symmetric graphs, semi-symmetric graphs
and pseudo-symmetric graphs with one another follow a special rule, which is
summarized in the table below.

[] Symmetric Semi-symmetric | Pseudo-symmetric
Symmetric Symmetric Symmetric Symmetric
Semi-symmetric Symmetric Symmetric Semi-symmetric
Pseudo-symmetric Symmetric Semi-symmetric | Pseudo-symmetric

Figure 6: The Cartesian product of special graphs.

(6) Pnis semi-symmetric when n is even, and pseudo-symmetric when n is
odd. (Corollary 4.10)

(7) The r-dimensional grid Pp,P,,1.. 0Py, is an N-position if and only
ifat most one of ny, ny,...,n, is even or if n1 = n; =... = n, = 1. (Corollary
4.11)

6 Conclusions

In this research, I start by giving two basic but important lemmas; afterwards, I
analyze special graphs in the trail-removing game and the star-removing game,
and aim to give a more generalized result.

20




In the trail-removing game, [ successfully compute the Grundy
numbers of special graphs such as paths, cycles, stars, and double stars, I
also give an upper bound on k-stars in general. Afterwards, I define a new
kind of graphs, known as nice graphs. Using a non-constructive proof, [ am
able to determine that all nice graphs are N-positions. Using this, I give a
solution of the join product of any two non-empty graphs, solving the trail-
removing game on complete k-partite graphs in the process. As for the
Cartesian product of graphs, I give a solution of the Cartesian product of two
non-empty graphs that satisfy certain conditions, and discover that the
Cartesian product of a fully nice graph and any other connected
graph with at least 2 vertices is also fully nice. By this, I am able to
completely solve the trail-removing game on the r-dimensional grid
Pp, 0Py, .. OOPn,.

As for the star-removing game, my greatest achievement is, without a
doubt, the results I get by introducing a concept known as symmetry. Using
this concept, I am able to give more generalized results that can be used to
analyze the star- removing game on Cartesian products of certain graphs
effectively. Using these results, I successfully determine the winner on the r-
dimensional grid P, t0Pp,1.. C3Pny,.
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