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摘要 
本研究是關於 nim 遊戲的兩種推廣（其中一種是一個稱為 the game of squayles 的

遊戲的推廣），稱為 edge-removing game 和 star-removing game。此遊戲為兩人遊

戲。在遊戲的一開始，有一個簡單圖 G。兩個玩家輪流刪除該圖的非空路徑或非

空星子圖的邊。首先不能移動的一方輸掉遊戲。 

在 edge-removing game 中，我成功計算出某些特殊圖的 Grundy numbers，並給出

了一般 k 星的 Grundy numbers 上界。接著我定義了一種新的圖，稱為 nice graphs，

並發現所有 nice graphs 都是 N-position。我由此給出了任意兩個非空圖的 join 

product 的解。至於圖的 Cartesian product，我給出了兩個滿足一定條件的非空圖

的 Cartesian product 的解，並發現一個 fully nice graph 和任何至少有 2 個頂點的連

通圖的  Cartesian product 也是  fully nice 的。使用這個性質，我給出了  r-

dimensional grids 上的 edge-removing game 的解。 

至於 star-removing game，我最大的突破是構思出對稱性這個概念。使用這個概念，

我給出更一般化的結論，可以用來有效分析某些圖的 Cartesian product 上的的 star-

removing game。使用這些結果，我給出了 r-dimensional grids 的解。 

 

 

 

Abstract 

This research studies two generalizations of the nim game, called the trail-removing 

game and the star-removing game. There are two players in the game. At the beginning, 

there is a simple graph G. The two players take turns removing the edges of a trail of at 

least one edge or a nonempty star subgraph of the graph. The one who cannot move 

loses the game and the other wins. 

In the edge-removing game, I first compute the Grundy numbers of special graphs and 

give an upper bound on k-stars in general. I then define a new kind of graphs known as 

nice graphs and determine that all nice graphs are N-positions. Using this, I give a 

solution of the join product of any two non-empty graphs, solving the trail-removing 

game on complete k-partite graphs in the process. 

As for the Cartesian product of graphs, I give a solution of the Cartesian product of two 

non-empty graphs that satisfy certain conditions and discover that the Cartesian product 

of a fully nice graph and any other connected graph with at least 2 vertices is also fully 

nice. By this, I am able to solve the trail-removing game on r-dimensional grids. 

As for the star-removing game, my greatest achievement is the introduction of a  

concept known as symmetry. Using this concept, I am able to give more generalized 

results that can be used to analyze the star-removing game on Cartesian products of 

certain graphs effectively. Using these results, I am able to determine the winner on r-

dimensional grids.  
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1 Study background 
 

In a book named “More Joy of Mathematics,” [6] there is an interesting two-

player game called “the game of squayles,” described as follows. 

At the beginning, 31 sticks are arranged as in Figure 1. 
 

 

Figure 1: The arrangement of 31 sticks. 
 

The game has two players: Alice and Bob. They take turns (Alice goes first) 

making moves as follows. In each move, a player removes as many (but at least 

one) sticks as she/he wants, providing that the head of one stick is adjacent to 

the tail of the previous one in sequence as numbered in the two examples in 

Figure 2; while the two examples in Figure 3 are illegal. The player unable to 

make a move loses the game, and the other wins. In other words, the player who 

removes the last  stick wins. 
 

 

Figure 2: Two legal moves, where the sticks marked red are removed. 
 
 

 

Figure 3: Two illegal moves, where the sticks marked red are removed. 

 
This article generalizes the game of squayles into a game which is referred 

to as the trail-removing game described below. 

Let G be any graph. The two players, Alice and Bob, take turns removing 

the edges of a trail (a walk without repeating edges) of at least one edge from G. 

Also, for the sake of convenience, if a vertex has degree 0, this vertex is 

automatically removed. The player who takes away the last edge wins. Notice 

that the game of squayles is equivalent to the trail-removing game on the 

graph in Figure 4. 
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Figure 4: The graph on which the game of squayles is played. 
 

This article also introduces another game called the star-removing game. 

The rules of the star-removing game are similar to those of the trail-removing 

game, except that in the star-removing game the players take turns removing the 

edges of a star subgraph instead of the edges of a trail. 

The aim of this article is to determine which player has a winning strategy 

in these games under optimal play, i.e. when both players play the game 

perfectly. 

 

2 Preliminaries 
 

Combinatorial game theory is a branch of mathematics that studies certain 

games with perfect information. These games are typically two-player games 

that have a position the players take turns changing in defined ways or moves to 

achieve a defined winning condition. 

We first give a quick review on some basic definitions, concepts and 

theorems  in combinatorial game theory. 

First, for the sake of convenience, a game in later paragraphs refers to a 

finite two-player game with perfect information, and any move available to one 

player must be available to the other as well.   It is easy to see that the trail-

removing game, the star-removing game and the matching-removing game are 

all such games. 

Next are some terms in combinatorial game theory. 
 

Definition 2.1. A P-position is a position which secures a win for the previous 

player (the player who has just moved). An N-position is a position which 

secures a win for the next player (the player who is going to move). A terminal 

position is a position in which the following player has no legal moves. 

 
The nim game is one of the most classic combinatorial games in history. 

In the game, two players take turns removing stones from distinct piles of stones. 

On each turn, a player must remove at least one  stone, and may remove any 

number of stones provided they all come from the same pile. The player who 

takes the last stone wins. 

The nim game is specified by the numbers of stones in the piles. We 

use N (n(1), n(2), . . . , n(r)) to denote the position with r piles of n(1), n(2), . . . , n(r) 

stones, where any number equal to 0 can be ignored. For convenience, N(0) denotes 

the position of no stones. 
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The nim game is completely solved by Bouton [3] in 1901, who 

established the foundation on this line. To describe his result, we need some 

notations. 

Fist, for any nonnegative integer n, we may write it as a binary representation 
 

n = nr2r + nr−12r−1 + . . . + n020 which is denoted by nrnr−1 . . . n0(2) for short, 

where r ≥ 0 and each ni ∈ {0, 1}. In this notation, we allow leading zero(s). 
For instance, 5 = 101(2) = 0101(2) = 000101(2). 

Next, we define a binary operation on {0, 1} by 

0 ⊕ 0 = 1 ⊕ 1 = 0 and 0 ⊕ 1 = 1 ⊕ 0 = 1. 

Then extend it to the set of nonnegative integers N0 := {0, 1, 2, . . .} as follows. 
Let n = nrnr−1 . . . n0(2) and m = mrmr−1 . . . m0(2). Then the nim sum of n and m, 
denoted as n ⊕ m, is defined to be 

p = prpr−1 . . . p0(2) with pi = ni ⊕ mi for r ≥ i ≥ 0. 

Notice that (N0, ⊕) is an abelian group. Namely the following conditions hold. 

(1) The operation ⊕ is commutative, i.e., n ⊕ m = m ⊕ n for n, m ∈ N0. 

(2) The operation ⊕ is associative, i.e., (n ⊕ m) ⊕ p = n ⊕ (m ⊕ p) for n, m, p ∈ N0. 

(3) There is an identity, i.e., n ⊕ 0 = n for n ∈ N0. 

(4) Each element n ∈ N0 has an inverse element, i.e., n ⊕ n = 0. 

With the above notation in mind, Bouton’s result is as 

follows. 

Theorem 2.2. (Bouton [3]) In the nim game, N(n(1), n(2), . . . , n(r)) is an N- 
position if and only if n(1) ⊕ n(2) ⊕ · · · ⊕ n(r) ̸= 0. 

From then on, variations of the nim game have been studied extensively.  

For a subset S ⊆ N0, define mex(S) to be the smallest nonnegative integer not 

in S. For instance, mex{0, 1, 5, 6} = 2 and mex{1, 5, 6} = 0. An useful tool for 

studying the nim game is the Grundy number of a position N(n(1), n(2), . . . , n(r)), 

which is defined recursively as follows. 

Definition 2.3. gnim(N (0)) = 0. As for any position N(n(1), n(2), . . . , n(r)) not 

equivalent to N (0), 

gnim(N (n(1), n(2), . . . , n(r))) 

= mex{gnim(N (m(1), m(2), . . . , m(r))) : N (m(1), m(2), . . . , m(r)) 

can be obtained from N (n(1), n(2), . . . , n(r)) by one move}. 

An alternatively way to describe Bouton’s result is that 

gnim(N (n(1), n(2), . . . , n(r))) = n(1) ⊕ n(2) ⊕ · · · ⊕ n(r). 

And so N (n(1), n(2), . . . , n(r)) is an N-position if and only if its Grundy number 

is not zero. 

For x ∈ {trail, star, matching}, we may also define the Grundy number for 
the x-removing game at position G as follows. 
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Definition 2.4. (Grundy number of  the  x-removing  game)  The  Grundy 

number of the null graph K0 with no vertices nor edges is gx(K0) = 0. And the 

Grundy number of a graph G with at least one edge is 

 
gx(G) = mex{gx(H) : H can be obtained from G by one move}. 

It is also the case that G is an N-position if and only if  gx(G)≠0. Also,  

the same as Bouton’s result, we have the following result. 
 

Theorem 2.5. (Sprague-Grundy Theorem) For x ∈ {trail, star} and 
any two graphs G and H, we have gx(G ∪ H) = gx(G) ⊕ gx(H). 

Below are two lemmas. 

Lemma 2.6. For x ∈ {trail, star, matching} and any two graphs G and H, if H 

can be  obtained  by  G  in  one  move,  then  |E(H)| < |E(G)|. 

Proof. Since in any move a player removes at least one edge from the original 

graph, the above inequality is obviously true. 
 

Although very simple, Lemma 2.6 plays a very important role in many 

logical deductions we shall see in later parts. It also helps us prove the 

following lemma. 

Lemma 2.7.  For  x ∈ {trail, star, matching} and  any  graph  G,  we  have  gx(G) ≤ 

|E(G)|. 

Proof.  We shall prove the lemma by mathematical induction on |E(G)|. 

For  the  case  of  |E(G)| = 0,  we  have  gx(G) = 0  by  definition,  and  so  gx(G) ≤ 

|E(G)|. 

Suppose  G  has  at  least  one  edge  and  gx(G′)  ≤ |E(G′)| for  any  graph  with 

|E(G′)| < |E(G)|.  For any subgraph H  obtained from G by a move, by Lemma 2.6, 
|E(H)| <  |E(G)|.   By  the  induction  hypothesis,  gx(H)  ≤ |E(H)| <  |E(G)|.   
Then by definition, gx(G) ≤ |E(G)|. 

Therefore, by mathematical induction, the lemma is true. 
 
 

3 Trail-removing game 
 

The trail-removing game is the game generalized from the game of squayles, 

where the players take turns taking away the edges of a trail of at least one edge 

from the previous graph and the last player to make a move wins. 

First, we discuss the Grundy numbers of some special graphs. We can 

quickly obtain the following propositions. 

Proposition 3.1. (Paths) If n is a positive integer, then gtrail(Pn) = n − 1. 
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Proof. We shall prove the lemma by induction on n. 

When n = 1, notice that P1 consists of only one vertex with degree 0. 
There- fore, this vertex is automatically removed, and so by Definition 2.4, 
gtrail(P1) = 0 = n − 1. 

Suppose n ≥ 2 and the lemma is true for n′ < n. Notice that Pn can be 
turned into Pi in one move for all 1 ≤ i ≤ n − 1. By the induction hypothesis, 
gtrail(Pi) = i − 1 for 1 ≤ i ≤ n − 1 and so gtrail(Pn) ≥ n − 1. Also, we have gtrail(Pn) 
≤ |E(Pn)| = n − 1.  Therefore, gtrail(Pn) = n − 1. 

The lemma then holds by induction. 

Proposition 3.2. (Cycles) If n ≥ 3 is an integer, then gtrail(Cn) = n. 

Proof. It is easy to see that by taking away the edges of Pk+1(1 ≤ k ≤ n) from Cn 
(which can be done in one single move), the graph turns into Pn−k+1. Therefore, 
we have gtrail(Cn) ≥ n.  Also, we have gtrail(Cn) ≤ |E(Cn)| = n.  Therefore, 
gtrail(Cn) = n for all integers n ≥ 3. 

For any nonnegative integer n, the star graph Sn is the graph with n 

vertices v1, v2, . . . , vn adjacent  to  a  special vertex v0, called the center  of  the  

star. The Grundy numbers of stars are as follows. 

Proposition 3.3. (Stars) If n is a nonnegative integer, then gtrail(Sn) = r, where 

r ∈ {0, 1, 2} and r ≡ n (mod 3). 

Proof. First, since the edges taken away must be the edges of an Eulerian 

graph, one can (and must) take 1 or 2 edges from Sn in one move. 

Also, note that no matter how many edges are taken away from a star 

graph, the remaining graph is still a star graph. Therefore, the only 2 graphs that 

can be obtained from Sn by one move are Sn−1 and Sn−2. 

We shall prove the proposition by induction on n. 

When n ≤ 1, Sn = Pn+1 and so gtrail(Sn) = gtrail(Pn+1) = n, where n ∈ 

{0, 1, 2} and n ≡ n (mod 3). 

Therefore, the proposition is true when n = 0 and n = 1. 

Suppose the proposition is true when n = k and n = k + 1. Then 
when n = k + 2, the only 2 graphs that can be obtained from Sk+2 by one 
move are Sk+1 and Sk. Therefore, gtrail(Sk+2) = mex{gtrail(Sk+1), gtrail(Sk)}. 

Therefore, if k ≡ 0 (mod 3), i.e., k + 2 ≡ 2 (mod 3), then gtrail(Sk+2) = 
mex{0, 1} = 2; 

if k ≡ 1 (mod 3), i.e., k + 2 ≡ 0 (mod 3), then gtrail(Sk+2) = mex{1, 2} = 0; 

if k ≡ 2 (mod 3), i.e., k + 2 ≡ 1 (mod 3), then gtrail(Sk+2) = mex{2, 0} = 

1. Hence the proposition is true by induction. 

Definition 3.4. (Double stars) We define a double star Sn,m as the union of 
two stars Sn and Sm (n, m ∈ N0), with their centers joined together by one 
additional edge. 
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Notice that Sn,0 = Sn+1 for all n ∈ N0  whose Grundy numbers are given 
above. We now consider other double stars in two cases. 

Lemma 3.5. If n is a positive integer, then gtrail(Sn,1) = r + 2, where r ∈ {1, 2, 3} 

and r ≡ n (mod 3). 

Proof. Consider the set M = {Sn,0, Sn−1,1, Sn−2,1, Sn ∪ S1, Sn ∪ S0, Sn−1 ∪ S1, Sn−1 ∪ 
S0}. It is easy to see that these the graphs in M are exactly the only ones Sn,1 can 
be turned into in one move. Also, by Proposition 3.1, we have gtrail(S0,1) = 
gtrail(P3)2. 

When n = 1, by Proposition 3.1, gtrail(S1,1) = gtrail(P4) = 3. 

When  n  =  2,  gtrail(S2,1)  =  mex{gtrail(S2,0), gtrail(S1,1), gtrail(S0,1), gtrail(S2  ∪ 

S1), gtrail(S2 ∪ S0), gtrail(S1 ∪ S1), gtrail(S1 ∪ S0)} = mex{0, 3, 2, 3, 2, 0, 1} = 4. 

Suppose n ≥ 3, and the lemma is true for n − 1 and n − 2. It is easy to see 
that   we   have   gtrail(Sn,1)   =   mex{gtrail(Sn,0), gtrail(Sn−1,1), gtrail(Sn−2,1), gtrail(Sn    

∪ S1), gtrail(Sn ∪ S0), gtrail(Sn−1 ∪ S1), gtrail(Sn−1 ∪ S0)}. 

Therefore, if n ≡ 0 (mod 3), gtrail(Sn,1) = mex{gtrail(Sn,0), gtrail(Sn−1,1),  

gtrail(Sn−2,1), gtrail(Sn∪S1), gtrail(Sn ∪ S0), gtrail(Sn−1 ∪ S1), gtrail(Sn−1 ∪ S0)} 

= mex{1, 4, 3, 1, 0, 3, 2} = 5; 

if n ≡ 1 (mod 3), gtrail(Sn,1) = mex{gtrail(Sn,0), gtrail(Sn−1,1), gtrail(Sn−2,1), 

 gtrail(Sn∪S1), gtrail(Sn ∪ S0), gtrail(Sn−1 ∪ S1), gtrail(Sn−1 ∪ S0)} 

= mex{2, 5, 4, 0, 1, 1, 0} = 3; 

if n ≡ 2 (mod 3), gtrail(Sn,1) = mex{gtrail(Sn,0), gtrail(Sn−1,1), gtrail(Sn−2,1), 

 gtrail(Sn∪S1), gtrail(Sn ∪ S0), gtrail(Sn−1 ∪ S1), gtrail(Sn−1 ∪ S0)} 

= mex{0, 3, 5, 3, 2, 0, 1} = 4. 

The lemma then holds by induction. 
 

After we have proven the lemma, here is the result on double stars in general. 

Theorem 3.6. (Double stars) For all integers n1, n2 ≥ 2, 

if n1 ≡ n2 ≡ 0 (mod 3) or n1 ≡ n2 ≡ 2 (mod 3), then gtrail(Sn1,n2 ) = 1; 

if n1 ≡ n2 ≡ 1 (mod 3), then gtrail(Sn1,n2 ) = 2; 

if (n1 ≡ 1 (mod 3), n2 ≡ 2 (mod 3)) or (n1 ≡ 2 (mod 3), n2 ≡ 1 (mod 
3)), then gtrail(Sn1,n2 ) = 4; 

if (n1 ≡ 0 (mod 3), n2 ≡ 1 (mod 3)) or (n1 ≡ 1 (mod 3), n2 ≡ 0 (mod 
3)), then gtrail(Sn1,n2 ) = 5; 

if (n1 ≡ 0 (mod 3), n2 ≡ 2 (mod 3)) or (n1 ≡ 2 (mod 3), n2 ≡ 0 (mod 
3)), then gtrail(Sn1,n2 ) = 6. 

 
Proof. Consider the set M = {Sn1−1,n2 , Sn1,n2−1, Sn1−2,n2 , Sn1,n2−2, Sn1 ∪Sn2 , Sn1−1∪ 
Sn2 , Sn1 ∪ Sn2−1, Sn1−1 ∪ Sn2−1}. It is easy to see that these the graphs in M are 
exactly the only ones Sn1,n2 can be turned into in one move. 

Notice that gtrail(Sn1,n2 ) = gtrail(Sn2,n1 ) for all n1 and n2.  We then only need 
to  verify  the  theorem  by  the  following  cases.   Suppose  gtrail(Sn′1,n′2 

)  is  known  

for n′
1 + n′

2 < n1 + n2. 

Case 1. 2 ≤ n1, n2 ≤ 4: 

gtrail(S2,2) = mex{4, 4, 0, 0, 0, 3, 3, 0} = 1; 
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gtrail(S2,3) = mex{5, 1, 4, 1, 2, 1, 0, 3} = 6; 

gtrail(S2,4) = mex{3, 6, 2, 0, 3, 0, 2, 1} = 4; 

gtrail(S3,3) = mex{6, 6, 5, 5, 0, 2, 2, 0} = 1; 

gtrail(S3,4) = mex{4, 1, 3, 6, 1, 3, 0, 2} = 5; 

gtrail(S4,4) = mex{5, 5, 4, 4, 0, 1, 1, 0} = 2. 

Case 2. n1 > 4 with r1 = 0 and 2 ≤ n2 ≤ 4: 

gtrail(Sn1,2) = mex{1, 5, 4, 1, 2, 0, 1, 3} = 6; 

gtrail(Sn1,3) = mex{6, 6, 5, 5, 0, 2, 2, 0} = 1; 

gtrail(Sn1,4) = mex{4, 1, 2, 6, 1, 3, 0, 2} = 5. 

Case 3. n1 > 4 with r1 = 1 and 2 ≤ n2 ≤ 4: 

gtrail(Sn1,2) = {6, 3, 1, 2, 3, 2, 0, 1} = 4; 

gtrail(Sn1,3) = {1, 4, 6, 3, 1, 0, 3, 2} = 5; 

gtrail(Sn1,4) = {5, 5, 4, 4, 0, 1, 1, 0} = 2. 

Case 4. n1 > 4 with r1 = 2 and 2 ≤ n2 ≤ 4: 

gtrail(Sn1,2) = {4, 4, 0, 0, 0, 3, 3, 0} = 1; 

gtrail(Sn1,3) = {5, 1, 4, 1, 2, 1, 0, 3} = 6; 

gtrail(Sn1,4) = {3, 6, 2, 0, 3, 0, 2, 1} = 4. 

Case 5. n1, n2 > 4: 

if r1 = r2 = 2, then gtrail(Sn1,n2 ) = {4, 4, 6, 6, 0, 3, 3, 0} = 1; 

if r1 = 2 and r2 = 0, then gtrail(Sn1,n2 ) = {5, 1, 1, 4, 2, 1, 0, 3} = 6; 

if r1 = 2 and r2 = 1, then gtrail(Sn1,n2 ) = {2, 6, 5, 1, 3, 0, 2, 1} = 4; 

if r1 = r2 = 0, then gtrail(Sn1,n2 ) = {6, 6, 5, 5, 0, 2, 2, 0} = 1; 

if r1 = 0 and r2 = 1, then gtrail(Sn1,n2 ) = {4, 1, 2, 6, 1, 3, 0, 2} = 5; 

if r1 = r2 = 1, then gtrail(Sn1,n2 ) = {5, 5, 4, 4, 0, 1, 1, 0} = 2. 

By induction, the theorem then holds for all integers n1, n2 ≥ 2. 

Afterwards, let us introduce the concept of a special kind of graphs we 

now call k-stars. 

Definition 3.7.  (k-stars) For nonnegative integers n1, n2, . . . , nk, the k-star 
Sn1,n2,...,nk is the graph obtained from the union of k stars Sn1 , Sn2 , . . . , Snk with centers v1, 
v2, . . . , vk by adding k − 1 edges v1v2, v2v3, . . . , vk−1vk. 

From Proposition 3.3, Lemma 3.5, and Theorem 3.6,  we can see that the 
upper bound of the Grundy number of a star is 2, while that of a double star is 6. 
What about the Grundy number of k-stars in general? Before continuing, here is 
a remark about certain properties the operation ⊕ has. 

Remark 3.8. The following properties hold for all nonnegative integers a and b. 

(1) If a ≥ b and 2k−1 ≤ a ≤ 2k − 1, then a ⊕ b ≤ 2k − 1. 
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(2) a ⊕ b ≤ a + b. 

With this remark in mind, we now have the following upper bound for the 

Grundy number of k-stars as follows. 

Theorem 3.9. (Grundy  numbers  of  k-stars)  In  the  trail-removing  game,  
for all integers k ≥ 3, an upper bound of the Grundy number of a k-star is k2 + 4k − 7. 
(Notice that this upper bound is likely not tight for some k.) 

 
Proof. First, for convenience, let the tight upper bound of a m-star be am. 

Then we know that a1 = 2 and a2 = 6. 

When k = 3, a 3-star can be turned into the following graphs in one move: 

another 3-star, the union of a 2-star and a star, and the union of 3 stars. Then by 

Remark 3.8, the Grundy number of the union of 3 stars has maximum value 3, 

and the Grundy number of the union of a 2-star and a star has maximum value 7. 

Also, notice that the number of distinct possible 3-stars the original 3-star can 

be turned into in one move is at most 3 × 2 = 6. Therefore, a3 ≤ 7 + 6 + 1 = 14. 

When k ≥ 4, let the upper bound hold for all integers less than k. It is 

easy to see that a k-star can be turned into another k-star, or the union of an 

h1-star, an h2-star, and (k − h1 − h2) stars (where h1, h2 ≥ 1  and  h1 + h2  ≤ k)  in  

one move. Notice that the number of distinct possible k-stars the original k-star 

can be turned into in one move is at most 2k. I shall now prove that the 

Grundy number of the union of an h1-star, an h2-star, and (k − h1 − h2) stars 

has maximum value k2 + 2k − 8. 

Notice that if h1 = h2 = 1, the Grundy number of the union of multiple 

stars has maximum value 3; 

if h1 = 1, h2 =  k − 1  or  h1  =  k − 1, h2  =  1,  since  the  upper  bound  holds 
for all integers less than k, the Grundy number in this case has maximum 
value 2 + (k − 1)2 + 4(k − 1) − 7 = k2 + 2k − 8; 

otherwise, we must have h1 + h2 ≤ k − 4. Then the Grundy number of the 
union of an h1-star, an h2-star, and (k − h1 − h2) stars has maximum value 

3 + ℎ1
2 + 4ℎ1 − 7+ ℎ2

2 + 4ℎ2 − 7 = 11+ 4(ℎ1 + ℎ2) + ℎ1
2 + ℎ2

2 

≤ 11 + 4(𝑘 − 4) + (𝑘 − 4)2 = 11 + 4𝑘 − 16 + 𝑘2 − 8𝑘 + 16 = 𝑘2. 

Then since k ≥ 4, we have 19 < 6k, and thus k2 − 4k + 11 < k2 + 2k − 8. 

Therefore, ak ≤ (k2 + 2k − 8) + 2k + 1 = k2 − 4k + 11. The theorem then 
holds by induction. 

 
 
 

Definition 3.10. A graph G is nice if it has an Eulerian subgraph G0 with at 
least one edge such that V (G) − V (G0) is an independent set. If, in addition, G0 is a 
spanning subgraph of G, then G is called a fully nice graph. 

 

Theorem 3.11. In the trail-removing game, nice graphs are all N-positions. 
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Proof. Suppose G is a nice graph with an Eulerian subgraph G0 such that V (G) 
− V (G0) is an independent set. For any vertex w ∈ V (G0), the edge set E(G0) 
forms a w-w trail T0 in G. Consider the graph G − E(T0). 

For the case when G − E(T0) is a P-position, the first player can remove the 
edges of T0, making the remaining graph G − E(T0) a P-position. Therefore, G 
is an N-position. 

For the case when G−E(T0) is an N-position, G−E(T0) has a u-v trail T of 
at leat one edge such that (G − E(T0)) − E(T ) is a P-position. Since V (G) − V (G0) 
is independent, T  has at least one vertex w in G0.  As E(T ) ∩ E(T0) = ∅, we 
have that T ′ := T (u to w)T0T (w  to v) is a trail from u to v.  Thus, the first player 
can remove the edges of T ′, making the remaining graph G − E(T ′) a P-
position. Therefore, G  is an N-position. 

 

Remark 3.12. If H is a subgraph of G, V (H) = V (G), and H is a fully nice graph, 

then G is also a fully nice graph. This is obvious because if H0 is a fully nice 

subgraph of H, then it must also be a subgraph of G. Then since V (H0) = V 

(H) = V (G) and H0 is an Eulerian graph with 0 odd vertices, H0 is also a fully 

nice subgraph of G, and therefore G is also a fully nice graph. 

In other words, if a graph G satisfies that after deleting some edges in G, the 

remaining graph is a fully nice graph, then G must also be a fully nice graph. 
 

Below is an operation done on two graphs that results in another graph, 

called  the join product of two graphs. 

Definition 3.13. (Join product of two graphs) The join product of two graphs 

G and H is the graph G∇H whose 

vertex set V (G∇H) = V (G) ∪ V (H) and 

edge set E(G∇H) = {vu: v ∈ V (G) and u ∈ V (H)} ∪ E(G) ∪ E(H). 

Here is the result for the join of two graphs. 

Theorem 3.14. (Trail-removing game on G∇H) The join G∇H of two nonempty 
graphs G and H is an N-position, except when (G = K1 and H = mK1) or 

(G = mK1 and H = K1), where m is a positive integer with m ≡ 0 (mod 3). 

Proof. Let V (G) = {v1, v2, . . . , vn} and V (H) = {u1, u2, . . . , um}. Without loss of 
generality, we may assume that 1 ≤ n ≤ m. 

If G = K1 and H = mK1, then G∇H = Sm. By Proposition 3.3, G∇H is a P-
position if and only if m ≡ 0 (mod 3). 

We then consider the remaining case when either n = 1 with H having at 
leat one edge or else 2 ≤ n ≤ m. 

For the case when n = 1 with H having at least one edge, choose a 
maximal matching M  = {x1x2, x3x4, . . . , x2r−1x2r} of H, where r ≥ 1.  Then M ∪ 
{v1xi : 1 ≤ i ≤ 2r} induces an Eulerian subgraph G0 of G∇H such that V (G∇H) − V 
(G0) is independent. By Theorem 3.11, G∇H is an N-position. 

For the case when 2 ≤ n ≤ m, choose a maximal matching M = {x1x2, x3x4, 

. . . , x2r−1x2r} of H −{u1, u2, . . . , un}, where r ≥ 0.  Then {v1u1, u1v2, v2u2, u2v3, . . ., 
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vnun, unv1} ∪ M ∪ {v1xi : 1 ≤ i ≤ 2r} induces an Eulerian  subgraph  G0  of  G∇H such 
that V (G∇H) − V (G0) is independent. Again, by Theorem 3.11, G∇H is an N-
position. 

 

Another special kind of graphs is called complete k-partite graphs, defined 

as follows. 

Definition 3.15. (Complete k-partite graphs) A graph G is complete k-
partite if there exists  a  partition  V (G)  =  V1(G)  ∪ V2(G)  ∪ . . .  ∪ VkG)  such  that  
for  all u, v ∈ V (G), u and v are not adjacent if and only if u and v are in the 
same Vi(G) for some 1 ≤ i ≤ k. 

Let  |Vi(G)| = ni  for  all  integers  1 ≤ i ≤ n.  We  then  denote  G  as  Kn1,n2,...,nk . 

It is easy to see that Kn1,n2,...,nk can also be described as the join 

product of the graphs Nn1 ∇Nn2 ∇ . . . ∇Nnk , where the graph Nn, called the edgeless 

graph, has n vertices and no edges. By this observation and Theorem 3.14, the 

following corollary immediately follows. 
 

Corollary 3.16. (Complete k-partite graphs) A complete k-partite 
graph is a P-position if and only  if  k = 1  or  (k = 2, n1 = 1, n2 ≡ 0  (mod  3))  
or  (k = 2, n2 = 1, n1 ≡ 0 (mod 3)). 

Next, we define another operation on graphs, called the Cartesian product 

of two graphs, as follows. 

Definition 3.17. (Cartesian product of two graphs) The Cartesian product 

of two graphs G and H is the graph G□H whose 

vertex set V (G□H) = V (G) × V (H) and 

edge set E(G□H) = {(v, u)(v′, u′) : (v = v′, uu′ ∈ E(H)) or (vv′ ∈ E(G), u = u′)}. 

The following is an example of the Cartesian product of two graphs. 

 

 

Figure 5: The Cartesian product P4□P6. 

We introduce a notation first. 
 

Definition 3.18. (v-rows and  u-columns) Let G and H  be graphs.  For every 
vertex v ∈ V (G), the v-row of G□H, denoted by Rv(G□H), is the subgraph induced 
by {(v, u) : u ∈ V (H)}. Notice that the v-row Rv(G□H) is isomorphic to H. 

Similarly, for every vertex u ∈ V (H), the u-column of G□H, denoted by 
Cu(G□H), is the subgraph induced by {(v, u) : v ∈ V (G)}. Notice that the u-column 
Cu(G□H) is isomorphic to G. 
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degG0 

(v), if v ∈/ {x, y}; 

In the following, for any graph G, let Ve(G) and Vo(G) be the sets of 

even- degree vertices and odd-degree vertices, respectively, in G. 

Theorem 3.19. If G and H are connected graphs with at least two vertices, then 
G□H is an N-position in the trail-removing game if any one of the following con- 
ditions holds. 

 

(1) G is a fully nice graph. A special case is when V (G) = Ve(G). 

(2) V (H) = Vo(H). 

(3) G has an edge xy with x, y ∈ Ve(G) and |V (H)| is even. 

Proof. (1) Suppose G is a fully nice graph with a spanning Eulerian subgraph 

G0. (For the special case of V (G) = Ve(G), choose G0 = G.)  In this case, G0 has 

an edge xy such that G0 − xy is connected. And so the subgraph G′
u 

isomorphic to G0 − xy in the column Cu(G□H) is connected. 

Consider the subgraph I of G□H which is the union of the connected sub- 

graphs Rx(G□H), Ry(G□H), and G′
u for u ∈ V (H). Then I is a connected spanning 

subgraph of G□H. Also, every vertex (v, u) of I is of even degree: 
 

degI (v, u)=  degG0 (v) + degH (u), if v ∈ {x, y} and u ∈ Ve(H); 
degG0 (v) + degH (u) − 1, if v ∈ {x, y} and u ∈ Vo(H). 

Hence I is a spanning Eulerian subgraph of G□H. By Theorem 3.11, G□H is 
an N-position. 

(2) Consider the case when V (H) = Vo(H). By the result in (1), we may 
assume that V (G) ≠ Ve(G), i.e., Vo(G)≠ ∅. 

Let I be the subgraph of G□H which is the union of rows Rv(G□H) for v 
∈ Vo(G) and columns Cu(G□H) for u ∈ V (H). Then I is connected spanning 
subgraph of G□H. Also, every vertex (v, u) of I is of even degree: 

deg (v, u) = 

    
degG(v), if v ∈ Ve(G); 

degG(v) + degH (u),    if v ∈ Vo(G). 

Hence I is a spanning Eulerian subgraph of G□H. By Theorem 3.11, G□H is 
an N-position. 

(3) Consider the case when G has an edge xy with x, y ∈ Ve(G) and |V (H)| 

is  even.  By  the  result  in  (1),  we  may  assume  that  V (G) Ve(G),  i.e.,  Vo(G) ̸= ∅; 

and by the result in (2), we may assume that V (H) ̸= Vo(H), i.e., Ve(H) ̸= ∅. 

Assume that Ve(H) = {u1, u2, . . . , u2m}. For 1 ≤ i ≤ m, choose a path Pi 
between ui and um+i. If some Pi and Pj have common edges, we may replace 
them by two edge-disjoint paths between pairs of vertices of the four end 
vertices of these two paths. Repeating the process if necessary, we then may 
assume paths P1, P2, . . . , Pm  are edge-disjoint.  Let T  be the subgraph of H  
induced by the union of these m paths. Then H − E(T ) is a graph in which all 
vertices are of odd degree. 

Let I be the subgraph of G□H which is the union of the subgraph of Rv(G□H) 
isomorphic to H − E(T ) for v ∈ Vo(G), rows Rv(G□H) for v ∈ {x, y}, and columns 
Cu(G□H) for u ∈ V (H) but deleting edges (x, u)(y, u) for u ∈ Vo(H). To see 
that I 

I 
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is connected, we consider the following steps. First rows Rx(G□H) and 
Ry(G□H) are connected, and they are connected by the edges (x, u)(y, u) for u ∈ 
Ve(H). Secondly, any edge-deleted-column Cu(G□H) − (x,u)(y, u), if not connected, 
has two connected components,  each with a common vertex (x, u) with row  
Rx(G□H) or (y, u) with row Ry(G□H). And these rows and edge-deleted-columns 
cover all vertices of G□H. Hence I is connected spanning subgraph of G□H. 
Also, every vertex (v, u) of I is of even degree: 

 

 
 

deg(v, u)=  

degG(v), if v ∈ Ve(G) − {x, y}; 

degG(v) + degH (u), if v ∈ {x, y} and u ∈ Ve(H); 
 degG(v) + degH (u) − 1, if v ∈ {x, y} and u ∈ Vo(H); 

degG(v) + degH−E(T )(u), if v ∈ Vo(G). 

Hence I is a spanning Eulerian subgraph of G□H. By Theorem 3.11, G□H is 
an  N-position. 

 

Remark 3.20. In fact, from the first part of the proof of Theorem 3.19, we 

can see that the Cartesian product of a fully nice graph and any connected graph 

with at  least 2 vertices must also be a fully nice graph. 

 
We now use the approach of nice graphs to solve the trail-removing game on 

r-dimensional grids Pn1 □Pn2 □ . . . □Pnr .  For a path Pr, let its vertex set V (Pr) = 

{1, 2, . . . , r} and edge set E(Pr) = {12, 23, . . . , (r − 1)r}. 

Lemma 3.21. For  n, m ≥ 2,  the  2-dimensional  grid  Pn□Pm  is  fully  nice,  except 
for P3□P3, which is only nice. 

Proof. For the case when n=m=3, the vertex set {(1, 1), (3, 3)} is independent 
in P3□P3. And the other vertices induce an Eulerian subgraph of P3□P3.  Hence 
P3□P3 is a nice graph. 

For the case when n or m is even, we may assume that n is even. Then 
the   following form a spanning Eulerain subgraph of Pn□Pm: 

row  R1(Pn□Pm), 

one-edge-deleted-row Ri(Pn□Pm) − (i, 1)(i, 2) for 2 ≤ i ≤ n − 1, row 

Rn(Pn□Pm), 

column C1(Pn□Pm), 

edges (i, 2)(i + 1, 2) for even i with 2 ≤ i ≤ n − 2, 

edges (i, m)(i + 1, m) for odd i with 1 ≤ i ≤ n − 1. 

Therefor, Pn□Pm is fully nice. 

For the case when n and m are both odd, we may assume that n ≥ 5. 
Then the following form a spanning Eulerain subgraph of Pn□Pm: 

edge (1, 1)(1, 2) and edges (1, j)(1, j + 1) for even j with 2 ≤ j ≤ m − 1, 

edges (2, j)(2, j + 1) for odd j with 1 ≤ j ≤ m − 2, 

row R3(Pn□Pm), 

one-edge-deleted-row Ri(Pn□Pm) − (i, 1)(i, 2) for 4 ≤ i ≤ n − 1, 
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row Rn(Pn□Pm), 

one-edge-deleted-column C1(Pn□Pm) − (2, 1)(3, 1), 

edges (1, j)(2, j) for 3 ≤ j ≤ m − 1, 

edge (n, 1)(n, 2) and edges (n, j)(n, j + 1) for even j with 2 ≤ i ≤ m − 1. 

Therefore, Pn□Pm is fully nice. 

Lemma 3.22. The graph P3□P3□P3 is a fully nice graph. 

Proof. The subgraph induced by the following edges is a spanning Eulerian 

sub- graph: (1, 1, k)(1, 2, k), (1, 2, k)(2, 2, k), (2, 2, k)(2, 1, k) for k = 1, 2; (1, 1, 

1)(1, 1, 2); 

(2, 1, 1)(2, 1, 2). 
 

From Theorems 3.11 and 3.19, and Lemmas 3.21 and 3.22, and Remark 

3.20, we have the following result for r-dimensional grids. 

Corollary 3.23. If n1, n2, . . . , nr ≥ 2, then the r-dimensional grid Pn1 □Pn2 □ . . . □Pnr 

is an N-position. 
 
 

4 Star-removing game 
 

The star-removing game is a game where the players take turns taking away the 

edges of a star graph from the previous graph and the last player to make a 

move wins. I later found several results other people have gotten before on the 

star- removing game (a more common name for it is “Graph Nim”) [1] [2] [4] 

[5]. 

Similar to the procedure of the trail-removing game, I tried to calculate 

the Grundy numbers of special graphs like paths and cycles first, but found it 

quite difficult to find a pattern. 

Remark 4.1.  In fact, the Grundy numbers of paths, stars and double stars 

(under a number of special cases) have already been computed by others before. 

 
I shall not go into details here (Interested readers are directed to [1] [2] [4] 

[5]), but note that the pattern of Grundy numbers of paths and double stars are 

quite complicated. 

Although unable to compute the Grundy numbers of said graphs,  I was 

able to determine the player who has a winning strategy, as shown below. 

Proposition 4.2. (Paths) In the star-removing game, Pn is an N-position for all 

n ≥ 2, n ∈ N, and a P-position when n = 1. 

Proof.  First, let V (Pn) = {v1, v2, . . . , vn} and E(Pn) = {vivi+1|1 ≤ i ≤ n − 1}. 

Then, we consider the following three cases. 

Case 1. n = 1. In this case, since P1 consists of only 1 vertex of degree 

0, it is automatically removed and the first player loses. 

Case 2. n is odd and n > 1. In this case, let n = 2k + 1. Then the 

first player can take away the edges vkvk+1 and vk+1vk+2 (notice that this can 

always be 
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done since these edges share a common vertex vk+1), making the remaining 

graph 2Pk−1, securing a win for the first player. 

Case 3. n is even. In this case, let n = 2k. Then the first player can take 

away the edge vkvk+1, making the remaining graph 2Pk−1, securing a win for 

the first player. 

Therefore, Pn is an N-position for all n ≥ 2, n ∈ N, and a P-position when 

n = 1. 
 

Proposition 4.3. (Cycles) In the star-removing game, Cn is a P-position 
for all integers n ≥ 3. 

Proof. It is easy to see that the first player can (and must) take away 1 edge 

or 2 edges that share a common vertex from Cn in their first turn, making the 

remaining graph Pn or Pn−1. Then, by Proposition 4.2, the second player has a 

winning strategy. 

Therefore, Cn is a P-position for all integers n ≥ 3. 

Proposition 4.4.  (Double stars) In the star-removing game, Sn,m  (where n ≥ 
m) is an N-position for all n, m ∈ N0. 

Proof. The first player can take away n − m edges from the sub-graph Sn and the 
edge connecting the centers of the two stars. 

Then, the remaining graph becomes 2Sm, securing a win for the first player. 

 

An isomorphism of a graph G is a bijection f : V (G) → V (G) that preserves 
adjacency. That is, vu ∈ E(G) implies f (v)f (u) ∈ E(G). 

A bijection f : V → V is of order 2 if f ◦  f is the identity function but f 
itself is not unless |V | = 1. Notice that for a bijection f : V → V of order 2, it is 
allowed that f (v) = v for some element v in V , but not for all elements 
unless |V | = 1. Also, f (v) = u if and only if f (u) = v; that is, v and u = f (v) 
form a mapping pair. 

 

Definition 4.5. (Symmetric graph) A graph is symmetric if it has an isomor- 

phism f of order 2, called a symmetric function of G, which satisfies the 

following conditions for all vertices v. 
 

(S1)  f (v) v. 

(S2)  vf (v) ∈/ E(G). 

Notice that a symmetric graph has an even number of vertices. 

Examples of symmetric graphs include C2n, K2n1,2n2,...,2nr and 2G. 

Definition 4.6. (Semi-symmetric graph)  A  graph  is  semi-symmetric  if  it  

has an isomorphism f of order 2, called a semi-symmetric function of G, which 

satisfies the following conditions for all vertices v. 

(S1)  f (v) ̸= v. 

(SS2)  vf (v) ∈/ E(G),  except  v∗f (v∗) ∈ E(G)  for  exactly  one  mapping  pair. 
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Notice that a semi-symmetric graph has an even number of vertices. 

Examples of semi-symmetric graphs including P2n and DSn,n, and more 

generally 2G adding and edge between two corresponding vertices. 

Definition  4.7.  (Pseudo-symmetric  graph) A graph is pseudo-symmetric 

if it has an isomorphism f of order 2, called a pseudo-symmetric function of G, 

which  satisfies the following conditions for all vertices v. 
 

(PS1)  f (v) = v, except f (v∗) = v∗  for exactly one vertex v∗. 

(S2)  vf (v) ∈/ E(G). 

Notice that a pseudo-symmetric graph has an odd number of vertices. 
Examples of pseudo-symmetric graphs including P2n+1 and K1+2n1,2n2,...,2nr , and 

more generally the graph obtained from 2G by identifying two corresponding 

vertices. 

Next, I am going to discuss the properties of these special graphs 

introduced above. We have the theorem below: 

Theorem 4.8. Suppose that G is symmetric/semi-symmetric/pseudo-

symmetric. Then, in the star-removing game, the following properties hold. 
 

(1) If G is symmetric, then G is a P-position. 

(2) If G is semi-symmetric, then G is an N-position. 

(3) If G is pseudo-symmetric, f is one of its pseudo-symmetric functions, 
and v ∈ V (G) such that f (v) = v, then G is a  P-position  if  and  only  if  v  has 
degree 0. 

 
Proof. (1) Let f be a symmetric function of G. I shall now propose a strategy 

for the second player: 

The second player takes away f (v1)f (v2) in their turn if and only if the first 

player took away v1v2 in the previous turn. 

Now, I am going to prove that this strategy can be done under any circum- 

stances, and that it secures a win for the second player. 

In the first move the first player makes, let v denote the center of the star 

sub-graph whose sides they remove. Assume that the first player takes away the 

sides vv1, vv2, . . . , vvh. Then we have 

(i) v is adjacent to vi for all 1 ≤ i ≤ h. Therefore, f (v) is adjacent to f(vi)  
for all 1 ≤ i ≤ h. 

(ii) v is not adjacent to f (v). Then, 
 

{vv1, vv2, . . . , vvh} ∩ {f (v)f (v1), f (v)f (v2), . . . , f (v)f (vh)} = ∅. 

Therefore,  the second player is able to take away the edges f (v)f (v1), f (v)f 

(v2), . . ., f (v)f (vh). Also, it is obvious that the remaining graph is still 

symmetric (in fact, the restriction of f on it is still its symmetry function). 

Thus, as long as the first player has a move, the second player also has a 

move, which means that the second player cannot lose. And since the game is 

finite, the second player will eventually win. 
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(2) Let f be a semi-symmetric function of G. According to Definition 4.6, 
exactly two vertices v1, v2 ∈ V (G) exist such that f (v1) = v2, and v1 and v2 are 
adjacent. 

Then the first player can take away the edge v1v2. Therefore, in the 
remaining graph G′, no two vertices u1, u2 ∈ V (G′) exist such that f (u1) = u2, 
and u1 and u2 are adjacent. 

Notice that the restriction of f on G′ is a symmetric function of G′. Therefore, 

G′ is symmetric and thus a P-position (see the case above). 

Therefore, G is an N-position. 

(3) If v has degree 0, it is easy to see that the restriction of f on G − v 

is a symmetric function of G − v. Therefore, G − v is a symmetric graph and 

thus a P-position. Also, since v has degree 0, it will be automatically removed, 

and therefore G is a P-position. 

Otherwise, the first player can remove all the edges with v as one of its 
vertices (notice that since v has degree greater than 0, the first player can at 
least remove one edge). Notice that this move makes deg(v) = 0, causing v to be 
automatically removed. Therefore, in the remaining graph G′, f (u)≠u for all u 
∈ V (G′). 

Therefore, the restriction of f on G′ is a symmetric function of G′. G′ is 

then symmetric and thus a P-position, and therefore G is an N-position. 
 

Theorem 4.9. Suppose the graphs G1 and G2 are symmetric/semi-symmetric/pseudo- 

symmetric. 
 

(1) If either G1 or G2 is symmetric, or if G1 and G2 are both semi-
symmetric,   then G1□G2 is symmetric. 

(2) If one of G1 and G2 is semi-symmetric and the other is pseudo-
symmetric,  then G1□G2 is semi-symmetric. 

(3) If G1 and G2 are both pseudo-symmetric, then G1□G2 is pseudo-symmetric. 

Proof. Suppose for i = 1, 2, the bijection fi : V (Gi) → V (Gi) is a 
symmetric/semi- symmetric/pseudo-symmetric function of Gi. Define 

 

f : V (G1□G2) → V (G1□G2) by f (v1, v2) = (f1(v1), f2(v2)). 

Since f1 and f2 are bijections, so is f . 

For  any  (v1, v2)(u1, u2)  ∈  E(G1□G2),  either  v1  =  u1  with  v2u2  ∈  E(G2) 
or else v1u1 ∈ E(G1) with v2 = u2. For the former case, f1(v1) = f1(u1) with 
f2(v2)f2(u2) ∈ E(G2) and so f (v1, v2)f (u1, u2) ∈ E(G1□G2). For the latter case, 
f1(v1)f1(u1) ∈ E(G1) with f2(v2) = f2(u2) and so f (v1, v2)f (u1, u2) ∈ E(G1□G2). 
Therefore f preserves adjacency and so is an isomorphism of G1□G2. 

For  any  vertex  (v1, v2)  in  the  graph  G1□G2,  since  f1  and  f2  are  of  
order 2, we have (f1 ◦  f1)(v1) = v1 and (f2 ◦  f2)(v2) = v2, i.e., f1(f1(v1)) = 
v1 and f2(f2(v2)) = v2. Therefore, 

 

(f ◦  f )(v1, v2) = f (f1(v1), f2(v2)) = (f1(f1(v1)), f2(f2(v2))) = (v1, v2). 
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Also, if G1□G2 has more than one vertex, then either G1 or G2 has more than 
one vertex; thus, either f1 or  f2  is  not an identity function  and so is f ◦  f .  Hence  
f  is    of order 2. 

Finally, we check the last two conditions (S1)-(S2) / (S1)-(SS2) / 
(PS1)-(S2) for f . Consider all vertices (v1, v2) of G1□G2. 

First consider (S1) and (PS1). Notice that f (v1, v2) = (v1, v2) is the same 

as f1(v1) = v1 and f2(v2) = v2. This is possibly only when G1 and G2 are both 

pseudo- symmetric,  and  v1  is  the  only  exceptional  vertex  v1
∗   in  (PS1)  for  G1  

and  v2  is  the only exceptional vertex v2
∗  in (PS1) for G2.  Therefore, (PS1) 

holds for G1□G2  with the  only  exceptional  vertex  (v1
∗, v2

∗)  when  G1  and  G2  are  

both  pseudo-symmetric. And for the other cases (S1) holds for G1□G2. 

Next consider (S2) and (SS2). Notice that (v1, v2)f (v1, v2) ∈ E(G1□G2) 
is the same as either v1  = f1(v1)  with  v2f2(v2)  ∈ E(G2)  or  else  v1f1(v1)  ∈ E(G1) 
with v2 = f2(v2). The former case is possibly only when G1 is pseudo-
symmetric with v1  is the only exceptional vertex v1

∗  in (PS1) for G1, and G2  is 

semi-symmetric with  v2
∗, f2(v2

∗)  is  the  only  mapping  pair  in  (SS2)  for  G2.   

Therefore,  (SS2)  holds for  G1□G2  with  the  only  exceptional  mapping  pair  
(v1

∗, v2
∗), f (v1

∗, v2
∗)  when  G1  is pseudo-symmetric and G2 is semi-symmetric. 

Similarly, for the latter case, (SS2) holds for G1□G2 with the only exceptional 
mapping pair (v1

∗, v2
∗), f (v1

∗, v2
∗) when G1 is semi-symmetric and G2 is pseudo-

symmetric. And for the other cases (S2) holds for G1□G2. 

These complete the proof of the theorem. 
 

Now, using the results above, we are going to solve the star-removing 
game on Pn1 □Pn2 □ . . . □Pnr , namely the r-dimensional grid. But before that, we 
have to take notice of the following properties of Pn. 

Corollary 4.10. Pn is semi-symmetric when n is even, and pseudo-symmetric 

when n is odd. 

 
Proof. Consider the function f : V (Pn) −→ V (Pn) defined as follows: f (vi) = vn−i, 
where 1 ≤ i ≤ n. 

Then, when n is even, it is easy to see that f is a semi-symmetric function of 

Pn, and Pn is therefore semi-symmetric. 

When n is odd, it is easy to see that f is a pseudo-symmetric function of 

Pn, and Pn is therefore pseudo-symmetric. 
 

Then, using Corollary 4.10, I shall now solve the star-removing game on the 

r-dimensional grid, as follows. 

Corollary 4.11. (r-dimensional grid) In the star-game, Pn1 □Pn2 □ . . . □Pnr 

is an N-position if and only if at most one of n1, n2, . . . , nr is even, or if n1 = n2 
= 

. . . = nr = 1. 
 

Proof. By Corollary 4.10, if at least two of n1, n2, . . . , nr is even, then Pn1 □Pn2 □ . . . □Pnr 

is symmetric (see Theorem 4.9) and therefore a P-position (see Theorem 4.8). 
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On the other hand, if at most one of n1, n2, . . . , nr is even, then Pn1 □Pn2 □ . . . □Pnr 

is either pseudo-symmetric or semi-symmetric (see Theorem 4.9). Then since 
the only pseudo-symmetric graphs that are P-positions are those without edges, 
and the rest of pseudo-symmetric graphs and semi-symmetric graphs are N-
position, Pn1 □Pn2 □ . . . □Pnr is a P-position if n1 = n2 = . . . = nr = 1, and 

otherwise an N-position. 
 
 
 

5 Results 
 

In this section, I shall summarize the results I have above. 

Here are the results on the trail-removing game. 

(1) gtrail(Pn) = n − 1 for n ∈ N. (Proposition 3.1) 

(2) gtrail(Cn) = n for n ≥ 3 and n ∈ N. (Proposition 3.2) 

(3) gtrail(Sn) = r for all n ∈ N, where r ∈ {0, 1, 2} and r ≡ n (mod 3). 
(Proposition 3.3) 

(4) If n is a positive integer, then gtrail(Sn,1) = r + 2, where r ∈ {1, 2, 3} and 

r ≡ n (mod 3). 

As for all integers n1, n2 ≥ 2, 

if n1 ≡ n2 ≡ 0 (mod 3) or n1 ≡ n2 ≡ 2 (mod 3), then gtrail(Sn1,n2 ) = 1; 

if n1 ≡ n2 ≡ 1 (mod 3), then gtrail(Sn1,n2 ) = 2; 

if (n1 ≡ 1 (mod 3), n2 ≡ 2 (mod 3)) or (n1 ≡ 2 (mod 3), n2 ≡ 1 (mod 3)), 
then gtrail(Sn1,n2 ) = 4; 

if (n1 ≡ 0 (mod 3), n2 ≡ 1 (mod 3)) or (n1 ≡ 1 (mod 3), n2 ≡ 0 (mod 3)), 
then gtrail(Sn1,n2 ) = 5; 

if (n1 ≡ 0 (mod 3), n2 ≡ 2 (mod 3)) or (n1 ≡ 2 (mod 3), n2 ≡ 0 (mod 3)), 
then gtrail(Sn1,n2 ) = 6. (Lemma 3.5 and Theorem 3.6) 

(5) For all integers k ≥ 3, an upper bound of the Grundy number of a k-
star is k2 + 4k − 7. (Theorem 3.9) 

(6) Nice graphs are all N-positions. (Theorem 3.11) 

(7) The join G∇H of two nonempty graphs G and H is an N-position, 
except when (G = K1 and H = mK1) or (G = mK1 and H = K1), where m is a 
positive integer with m ≡ 0 (mod 3). (Theorem 3.14) 

(8) A complete k-partite graph is a P-position if and only if k = 1 or 
(k = 2, n1 = 1, n2 ≡ 0 (mod 3)) or (k = 2, n2 = 1, n1 ≡ 0 (mod 3)). (Corollary 
3.16) 

(9) If G and H are connected graphs with at least two vertices, then G□H is 
an N-position if any one of the following conditions holds. 

 

(i) G is a fully nice graph. A special case is when V (G) = Ve(G). 

(ii) V (H) = Vo(H). 

(iii) G has an edge xy with x, y ∈ Ve(G) and |V (H)| is even. 
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(Theorem 3.19) 

(10) The Cartesian product of a fully nice graph and any connected 

graph with at least 2 vertices must also be a fully nice graph. (Theorem 3.19) 

(11) For n, m ≥ 2, the 2-dimensional grid Pn□Pm are fully nice, except for 

P3□P3, which is only nice. (Lemma 3.21) 

(12) P3□P3□P3 is a fully nice graph. (Lemma 3.22) 

(13) If n1, n2, . . . , nr ≥ 2, then the r-dimensional grid Pn1 □Pn1 □ . . . □Pnr is an 
N-position. (Corollary 3.23) 

Notice that by (11) I have solved the original game of squayles, which is a 
trail-removing game on P4□P5. 

Instead of computing the Grundy numbers of graphs in the star-removing 

game, I proposed winning strategies in order to determine the player with a 

winning  strategy. My results are as follows. 

(1) Pn is an N-position for all integers n ≥ 2 and a P-position when n = 
1. (Proposition 4.2) 

(2) Cn is a P-position for all integers n ≥ 3. (Proposition 4.3) 

(3) Sn,m is an N-position for all n, m ∈ N0. (Proposition 4.4) 

(4) symmetric graphs are P-positions, semi-symmetric graphs are N-

positions, and pseudo-symmetric graphs are N-positions except for the ones 

without edges. (Theorem 4.8) 

(5) The Cartesian product of symmetric graphs, semi-symmetric graphs 

and pseudo-symmetric graphs with one another follow a special rule, which is 

summarized in the table below. 
 

 

Figure 6: The Cartesian product of special graphs. 
 

(6) Pn is semi-symmetric when n is even, and pseudo-symmetric when n is 

odd. (Corollary 4.10) 

(7) The r-dimensional grid Pn1 □Pn2 □ . . . □Pnr is an N-position if and only 
if at most one of n1, n2, . . . , nr is even or if n1 = n2 = . . . = nr = 1. (Corollary 
4.11) 

 

6 Conclusions 
 

In this research, I start by giving two basic but important lemmas; afterwards, I 

analyze special graphs in the trail-removing game and the star-removing game, 

and aim to give a more generalized result. 
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In the trail-removing game, I successfully compute the Grundy 

numbers of special graphs such as paths, cycles, stars, and double stars, I 

also give an upper bound on k-stars in general. Afterwards,  I define a new 

kind of graphs,  known as nice graphs. Using a non-constructive proof, I am 

able to determine that all nice graphs are N-positions.  Using this, I give a 

solution of the join product of any two non-empty graphs, solving the trail-

removing game on complete k-partite graphs in the process. As for the 

Cartesian product of graphs, I give a solution of the Cartesian product of two 

non-empty graphs that satisfy certain conditions, and discover that the 

Cartesian product of a fully nice graph and any other connected 

graph with at least 2 vertices is also fully nice. By this, I am able to 
completely         solve the trail-removing game on the r-dimensional grid  
Pn1 □Pn2 □ . . . □Pnr . 

As for the star-removing game, my greatest achievement is, without a 

doubt, the results I get by introducing a concept known as symmetry. Using 

this concept, I am able to give more generalized results that can be used to 

analyze the star- removing game on Cartesian products of certain graphs 

effectively. Using these results, I successfully determine the winner on the r-

dimensional grid Pn1 □Pn2 □ . . . □Pnr . 
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010042-評語 

【評語】010042 

本作品主要是探討在圖形上的兩種 nim game (捻)。一種是兩

個玩家輪流在一個簡單圖上，移走一個路徑(trail)；另一種是兩個玩

家輪流在簡單圖上移走星子圖(star)，取走最後一個邊的玩家得勝。 

作者在這些圖上定義並計算某些簡單例子的 Grundy number。在

這樣兩種特殊取法的設定之下，Grundy number 的計算，基本上

都可以採用數學歸納法去完成(Prop. 3.1 & Theorem 3.9)。至於作

者新定義的  nice graphs，會使得  nice graph 拿掉後變成 

independent set，所以 Theorem 3.11 也是一個不難預見的結果。

第四節基本上和之前的作品結果一樣，只是給了完整的證明。本作

品數學不難，但是作品說明書寫得不錯，是一個有趣的題目。 
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