
190042 
2022 年臺灣國際科學展覽會 

優勝作品專輯 

作品編號 190042 

參展科別 電腦科學與資訊工程 

作品名稱 Development of an Android Application for 

Triage Prediction in Hospital Emergency 

Departments 

得獎獎項  

 

國    家 Philippines 

就讀學校 Philippine Science High School–Main 

Campus 

指導教師 Donna Salve C. Hipolito 

作者姓名 Clyde Ambroz S. Acyatan 

Lucas Sebastian F. Khan 

Uriel Nathan D. Orpilla  

關鍵詞 triage、machine learning、Android 



 

i 

作者照片 

 



 

1 

ABSTRACT 

Triage is the process by which nurses manage hospital emergency 

departments by assigning patients varying degrees of urgency. While triage 

algorithms such as the Emergency Severity Index (ESI) have been standardized 

worldwide, many of them are highly inconsistent, which could endanger the lives 

of thousands of patients. One way to improve on nurses’ accuracy is to use machine 

learning models (ML), which can learn from past data to make predictions. We 

tested six ML models: random forest, XGBoost, logistic regression, support vector 

machines, k-nearest neighbors, and multilayer perceptron. These models were 

tasked with predicting whether a patient would be admitted to the intensive care 

unit (ICU), another unit in the hospital, or be discharged. After training on data 

from more than 30,000 patients and testing using 10-fold cross-validation, we 

found that all six models outperformed ESI. Of the six, the random forest model 

achieved the highest average accuracy in predicting both ICU admission (81% vs. 

69% using ESI; 𝑝 < 0.001) and hospitalization (75% vs. 57%; 𝑝 < 0.001). These 

models were then added to an Android application, which would accept patient 

data, predict their triage, and then add them to a priority-ordered waiting list. This 

approach may offer significant advantages over conventional triage: mainly, it has 

a higher accuracy than nurses and returns predictions instantaneously. It could also 

stand-in for triage nurses entirely in disasters, where medical personnel must deal 

with a large influx of patients in a short amount of time. 
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INTRODUCTION 

Background 

Hospital overcrowding has become a healthcare crisis in many nations (Pines et al., 

2011), especially during the ongoing COVID-19 pandemic. To manage their emergency 

departments (EDs), hospitals use triage, a method of assigning varying degrees of urgency to 

different patients based on the judgement of nurses. Every day, nurses must make life-or-death 

decisions when triaging different patients. The incorrect triage of a patient may result in either 

giving a higher priority to a less serious problem or giving a lower priority to a more serious 

problem. In some cases, an incorrect triage may cost the life of a patient. When using the 

Emergency Severity Index (ESI), which is the most used triage system in the U.S., nurse triage 

accuracy is approximately 60% (Emergency Nurses’ Association, n.d.) which means that there 

may be millions of patients being incorrectly triaged. 
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Figure 1. The procedure for the Emergency Severity Index, which gives patients a triage rating from 1 
(most severe) to 5 (least severe). Taken from Gilboy et al. (2011). 

 
This inaccuracy is often because triage is often reliant on nurses’ subjective judgement 

of pain and critical care needs, as seen in Step B of Figure 1. Additionally, the highly procedural 

nature of triage, which involves distilling a multitude of factors into a single numerical rating, 

may paint an incomplete picture of a patient’s condition. This could mean that even if a triage 

score is procedurally correct, it may overcompensate for or not meet a patient’s needs. For 

these reasons, triage may have high variation and low reliability (Kwon et al., 2018). 

One commonly proposed tool to aid nurses in triage is machine learning. Machine 

learning is commonly proposed for use as a tool in triage as it fixes many of its flaws 

concerning subjectivity or complexity. Unlike triage nurses, it has the benefit of hindsight: the 

final status of each patient (such as deceased or hospitalized), instead of triage score, is used to 

train the model. From here, it can detect trends in the data that led to various diagnoses. 

Objectives 

The specific objective of this study was to create machine learning models that achieve 

a significantly higher accuracy than nurses using the Emergency Severity Index in predicting 

both intensive care unit (ICU) admission and hospitalization. Our main objective, then, would 

be to implement the most accurate model in an Android application which would accept patient 

data, use it to predict their triage classification, and then add patients to a waiting list ordered 

according to priority. This allows the efficient management of patients in the emergency 

department while also allowing patients to see how long they must wait before being treated. 

Significance of the Study 

This project could help to reduce overcrowding in hospital emergency departments. 

Our application could classify patients with a level of accuracy comparable to or greater than 

that of nurses, and its ability to generate a prediction in a matter of seconds gives it a significant 

speed advantage. It could also be especially useful in emergency dispatch centers or at the 
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scene of a large-scale emergency or disaster, where medical personnel must deal with a large 

influx of patients in a very short amount of time. 

 

REVIEW OF RELATED LITERATURE 

Machine learning 

Artificial intelligence (AI) has become increasingly ubiquitous in the modern world, 

powering everything from web searches on the internet to user-tailored recommendations on 

e-commerce sites (LeCun et al., 2015). Unlike a normal computer program, which after a 

thousand runs that produce a wrong answer does not re-educate its handiwork (Michie, 1968) 

software that implements AI technology is able to learn on its own without being given explicit 

instructions on how to do so (Silver et al., 2017). 

Machine learning is a subset of artificial intelligence concerned with the study of 

algorithms that “improve automatically through experience” (Mitchell, 1997). These 

algorithms can learn from large amounts of sample data, from which it creates a mathematical 

model capable of making predictions or decisions. 

Machine learning in triage classification 

Machine learning has a variety of applications in various fields where solving some 

problems using conventional algorithms can be inaccurate, impractical, or even impossible. 

One such algorithm is triage. Researchers have created models with accuracy rates significantly 

greater than that of nurses, especially in predicting specific outcomes, such as intensive care 

unit (ICU) admission. Algorithms such as random forests and logistic regression have achieved 

higher true positive rates, and lower false negative rates, than triage systems such as the 

Modified Early Warning System (MEWS) and the Korean Triage and Acuity Scale (KTAS). 

However, deep learning algorithms have, in many studies, outperformed all of these (Kwon et 
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al., 2018; Raita et al., 2019). Possible reasons behind the success of these algorithms will be 

discussed in the next sections. 

Data preprocessing and data mining 

The success of the aforementioned triage prediction algorithms was highly dependent 

on the quality and quantity of their training data. Triage data on hundreds of thousands of 

patients is currently available for use from sources such as the U.S. Center for Disease Control 

and Prevention (Raita et al., 2019). However, to ensure the quality and consistency of training 

data, it must be preprocessed before being fed to a model. If data is not preprocessed, the 

predictions made by the machine learning model could be incorrect or unreliable. 

Data cleaning 

Data cleaning is a method of data preprocessing wherein data points that have null or 

incomplete values are removed (Chu et al., 2016). However, if a dataset is too small, null values 

may be replaced by the mean (for more homogenous datasets) or median (for skewed datasets) 

value of its corresponding variable (Elragby, 2019). This increases the accuracy of the machine 

learning model’s prediction as it ensures the quality of the data being fed to the model. 

Feature engineering 

Data mining is a method of finding patterns in datasets. Feature engineering is a method 

of data mining that uses general information about the target population to modify or create 

new dependent variables. This process is best understood in the context of a problem: for 

example, in making their triage classifier, Hong et al. (2018) edited their dataset’s recording of 

patients’ chief complaints, which initially had more than 1000 unique conditions. The top 200 

most frequent complaints, which comprised more than 90% of the dataset, were kept, while the 

rest were marked as “Other”. This made it easier for the machine learning model to 

mechanically determine patterns found inside the dataset – after all, it is easier to find a pattern 

when its repetitiveness, as well as its manner of repetitiveness, is distinguishable (Ng, 2013). 
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Classification algorithms 

In machine learning and statistics, classification is the process of sorting datapoints into 

two or more specific categories. This is done by first splitting a dataset into a training dataset 

and a testing dataset. The training dataset contains sample datapoints whose categories are 

known; from this, a machine learning model would attempt to derive why each datapoint was 

in its corresponding category. After training, the model is tested by having it predict the 

category of each datapoint on the testing dataset. 

Decision tree classifiers 

Decision tree classifiers are a commonly used classification algorithm. They are 

predictive models that function by automatically generating decision trees. These are 

essentially flowcharts that gradually narrow down an object’s possible category. 

 

Figure 2. A basic decision tree for predicting the survival of passengers aboard the Titanic. (“sibsp”: 
number of siblings) (Wikimedia Commons, 2020) 
 

Decision tree learning uses the divide-and-conquer algorithm (Wu et al., 2008), wherein 

the “flowchart” of sorts recursively branches out until doing so no longer enhances the decision 

tree’s predictive accuracy. This mechanism provides an insight into exactly how the model 

classifies patients, which could be very useful in the automation of procedural tasks such as 

triage. 
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A more complex and accurate form of decision trees are ensemble classifiers, which 

generate more than one decision tree. This literature review will discuss two ensemble methods: 

gradient boosted trees (XGBoost) and random forests. Gradient boosted decision trees create 

many weak decision trees and sequentially combine them, progressively making more accurate 

trees (Wu et al., 2008). Meanwhile, random forests operate by creating a multitude of decision 

trees and returning the most frequent prediction (Ho, 1995). 

Logistic regression 

Univariate logistic regression 

The logistic regression algorithm uses the logistic function to perform binary 

classification. It is defined by the equation 

𝜎(𝑡) =
1

1 + 𝑒−𝑡
 

In its simplest form, the algorithm is tasked with predicting the category of a single 

numeric variable 𝑡. Since the logistic function produces a value between 0 and 1 for all values 

of 𝑡, its predicted category is equal to 𝜎(𝑡), rounded up or down (Sperandei, 2014). If 𝜎(𝑡) <

0.5, the variable 𝑡 belongs to category 0, and if 𝜎(𝑡) ≥ 0.5, it belongs to category 1. 

Multivariate logistic regression 

To make predictions from large datasets, the algorithm represents each variable in the 

dataset as a feature vector 𝑥𝑖. Each feature vector is multiplied to a weight vector 𝑤𝑖 to produce 

a score 𝑡: 

𝑡 = ∑𝑤1𝑥1 + 𝑤2𝑥2 +⋯𝑤𝑖𝑥𝑖

𝑖

𝑛=1

 

After hundreds, or sometimes thousands, of iterations, the weights, which start as 

random values, are optimized to produce the most accurate result. The score 𝑡 is then passed 

through the logistic function, which returns a datapoint’s category (0 or 1). 

Neural networks 
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Neural networks are essentially layers of logistic regression classifiers stacked on top 

of each other. In a neural network, each neuron takes in a feature vector 𝑥𝑖 from the previous 

layer and sends the dot product 𝑤𝑖𝑥𝑖 to the next layer, which repeats the process (Castelvecchi, 

2016). After a multitude of iterations, the weights are slowly optimized. And, as data progresses 

through the layers, the output of each neuron is calculated by taking the weighted sum of all its 

inputs and passing it through an activation function, such as 𝑓(𝑥) = tanh 𝑥. This produces an 

output between 0 (false) and 1 (true), equal to the probability that a datapoint will fall into one 

of the classes. 

Support vector machines 

Support-vector machines (SVMs) use a geometric approach to classification or 

regression. In it, each feature is represented as an axis on a graph: as such, a dataset with three 

features would correspond to a three-dimensional graph. Each datapoint is then plotted on the 

graph: 

 

Figure 3. Support vector machine-based classification. Adapted from Noble (2006). 
 

The datapoints are separated by a hyperplane, which is positioned to maximize the 

space between itself and any datapoints near it. The datapoints on each side of the hyperplane 

generally correspond to their own category; however, outliers may be dealt with using a “soft 

margin”. This is a user-specified parameter that controls, roughly, “how many examples are 

allowed to violate the hyperplane and how far across they are allowed to go” (Noble, 2006, p. 

1566). 
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k-nearest neighbors 

These models predict the category of a datapoint by calculating the proximity – usually 

Euclidean distance – between itself and every other datapoint. From here, the model classifies 

a datapoint based on the categories of its k nearest neighbors, with k being a parameter 

(typically a small, odd, positive integer) set by the user. The predicted class is the most 

frequently occurring class among these neighbors (Altman, 1992); however, in some variations, 

the “vote” of each neighbor is weighted according to its distance from the datapoint. 

 

METHODOLOGY 

Data preprocessing 

This study made use of U.S. National Center for Health Statistics (2018) datasets, which 

contain data of ED patients collected during and after triage (see Appendix D). We combined 

8 different datasets – one from each year from 2011 to 2018, with each having the same 

variables – and excluded patients who had missing data, were dead upon arrival at the ED, left 

before being seen, or left against medical advice, leaving a total of 151,383 patients. Of this 

number, 2284 (1.50%) of patients were admitted to the ICU, 14160 (9.35%) were admitted to 

another hospital ward, and 134,939 (89.1%) were discharged after receiving treatment. Using 

the Python library pandas, we then cleaned the data, a process described in the diagram below: 
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Figure 4. The dataset was modified to reduce classification complexity. 
 

Feature Engineering 

Each patient’s age, sex, mode of arrival, initial vital signs, chief complaints, and prior 

chronic illnesses were used as predictor variables. Categorical variables, such as chief 

complaints, were one-hot encoded using the pandas get_dummies function: 

151

383 
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Figure 5. One-hot encoding of categorical variables. 
 

Training and evaluation of machine learning models 

Six machine learning models were tested: random forest, XGBoost, logistic regression 

with Lasso regularization, support vector machines, k-nearest neighbors, and multilayer 

perceptron (neural network). The Python library scikit-learn was used to train and test all 

models. To maximize the models’ accuracy, each one underwent grid-search hyperparameter 

tuning, which loops through all possible combinations of a model’s settings to find the 

combination that yields the highest accuracy. Then, each model was trained and tested using 

10-fold cross validation, from which their mean accuracy across all ten folds was calculated. 

The models were trained and tested on both datasets (see Figure 3). After testing, the most 

accurate model was ported (using the Python library sklearn-porter) to machine-readable Java 

code so that it could run on an Android application. 

Coding of Android Application 

The Android application was coded on Android Studio. It contains two Java classes, 

with one controlling the form input and the other controlling the list of patients. The first class 

receives user input when the user clicks a “submit” button and sends it to the next class. Upon 

receiving this information, the second Java class stores it in a data structure known as a priority 

queue, which sorts patients according to their triage rating. 
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RESULTS AND DISCUSSION 

Prediction of ICU admission 

As shown in Figure 4, each model that was tested substantially outperformed triage 

nurses in predicting intensive care unit (ICU) admission, with the random forest model 

performing best. 

 

Figure 6. Mean accuracy (%) (95% CI) for ICU admission prediction by all six models, compared to the 
Emergency Severity Index (ESI). Accuracy was averaged across N=10 folds, with 456 or 457 test 
samples in each fold, totaling 4568 samples. All models were significantly more accurate than ESI (𝑝 =
0.0024  for kNN; 𝑝 < 0.001  for all the others) (95% CL), although between models, none was 
significantly more accurate except between any of the first five and k-nearest neighbors. 
 
1 = Multilayer perceptron, 2 = Support vector machine, 3 = k-nearest neighbors 
 

This significant discrepancy in accuracy between our models and nurses may be 

explained by data in Table 1:  

Table 1. Mean accuracies, true negative rates, and true positive rates of all models, in addition to 
nurses using the Emergency Severity Index, in predicting ICU admission. 
 

Models Mean accuracy 
(%) (95% CI) 

Mean true 
negative rate 
(%) (95% CI) 

Mean true 
positive rate 

(%) (95% CI) 
Random forest 81.44 (80.29-82.58) 78.91 (77.31-80.52) 83.90 (82.19-85.61) 
XGBoost 80.19 (79.09-81.29) 79.76 (77.34-82.18) 80.72 (78.86-82.58) 
MLP 80.36 (79.41-81.32) 78.87 (76.77-80.95) 81.85 (80.12-83.57) 
Logistic 
regression 79.99 (78.29-81.69) 81.10 (78.72-83.48) 78.87 (77.21-80.53) 

Linear SVM 79.82 (78.53-81.10) 81.32 (79.46-83.19) 78.32 (75.91-80.73) 
kNN 72.50 (71.35, 73.66) 77.20 (74.83-79.58) 67.92 (65.61-70.22) 
ESI 68.97 89.09 49.25 
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Table 1 shows that triage nurses (ESI) have a superior false negative rate: for every 100 

patients who were not sent to the ICU, only 11 should have been sent to the ICU. However, 

nurses have a significantly worse false positive rate: for every 100 people they suggested to 

send to the ICU, approximately 49 – less than half – actually needed ICU treatment. This low 

true positive rate is alarming because it means that many patients who receive treatment at 

ICUs in the United States do not necessarily need it. This could needlessly lengthen the waiting 

time at ICUs, which could, by delaying treatment, cause some patients their lives. 

Our most accurate model, meanwhile, triaged 83.90% (95% CI 82.19-85.61) of these 

patients correctly – significantly (𝑝 < 0.001; 95% CL) higher than nurses’ true positive rate. 

The two decision tree models – gradient boosted trees (XGBoost) and random forest – were 

the most accurate models, with the random forest classifier being the more accurate of the two. 

This may be because triage itself can often come in the form of a decision tree – something 

that a random forest model, which builds multiple decision trees and chooses the most 

appropriate one, may be able to approximate. 

 

Prediction of hospitalization 

 

Figure 7. Mean accuracy (%) (95% CI) across 10 folds for prediction of hospitalization by all six models, 
compared to ESI. Accuracy was averaged across N=10 folds, with 2823 test samples in each fold, 
totaling 28230 samples. All models were significantly more accurate (𝑝 < 0.001; 95% CL) than nurses, 
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although between models, none was significantly more accurate except between any of the first five 
and k-nearest neighbors. 
 
1 = Multilayer perceptron, 2 = Support vector machine, 3 = k-nearest neighbors 
 
Table 2. Mean accuracies, true negative rates, and true positive rates of all models, in addition to 

nurses using the Emergency Severity Index, in predicting hospitalization. 
 

Models Mean accuracy 
(%) (95% CI) 

Mean true 
negative rate 
(%) (95% CI) 

Mean true 
positive rate 

(%) (95% CI) 
Random forest 75.18 (74.76-75.60) 73.59 (73.04-74.13) 76.78 (76.11-77.44) 
XGBoost 74.17 (73.43-75.05) 75.96 (75.33-76.59) 74.33 (73.40-75.27) 
MLP 74.18 (73.61-74.75) 73.22 (69.89-76.55) 75.13 (72.17-78.08) 
Logistic regression 74.39 (73.72-75.05) 75.96 (75.33-76.59) 72.83 (71.71-73.95) 
Linear SVM 74.38 (73.77-74.98) 76.35 (75.82-76.87) 72.40 (71.30-73.50) 
kNN 68.76 (68.33-69.20) 72.53 (72.13-72.92) 65.00 (64.24-65.76) 
ESI 56.57 53.21 59.92 

 

All our models significantly outperformed triage nurses in predicting hospitalization, 

as shown in Figure 5. Table 2, meanwhile, shows that every model we tested had significantly 

higher true positive and true negative rates than nurses. However, both achieved lower 

accuracy in predicting hospitalization compared to predicting ICU admission. One reason for 

this could be the datasets’ size: the dataset we used to train these models was approximately 

seven times larger than the one we used to train the models used for ICU admission. As a result, 

the former set of models may have been prone to overfitting, which happens when a model 

tries to fit exactly against its training dataset and consequently performs poorly on new, 

previously unseen testing data. Meanwhile, another reason for our models’ being better at 

predicting ICU admission is that ICU patients may have more anomalous vital signs, or tend 

to be older, making them easier to identify. This will be further explored in the next section, 

which discusses the influence of different predictor variables. 

Feature importances 
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Figure 8. The 15 most important features, along with their importances, in predicting ICU admission. 
 
1: yes/no categorical variables; 2: BP = blood pressure 
 

 

Figure 9. The 15 most important features, along with their importances, in predicting hospitalization. 
 
1: yes/no categorical variables; 2: BP = blood pressure; 3: NOS - Not otherwise specified, which means 
there were enough symptoms for a patient to be diagnosed with an illness, but no diagnosis was made 

 
After all the models were tested, the random forest model was used to calculate the 

feature importance of each variable in the dataset. Feature importance (on the x-axis in Figures 

6 and 7), in the context of this study, refers to a variable’s influence in predicting whether a 

patient will end up in the ICU (Figure 8) or hospitalized (Figure 9). 
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As seen in the figures, a patient’s age, as well as vital signs such as pulse rate and blood 

pressure, were some of the most important features in both categories. Age is a very common 

deciding factor in the strength of an individual, with ages in the lower or higher extrema being 

more prone to injuries and diseases. Meanwhile, vital signs are the basic measurements of one’s 

general health. Systolic blood pressure can also signify an individual’s pain level. Unique to 

ICU admission is a patient’s arrival by ambulance, a factor which is high on the list probably 

because only patients who would need critical care in the first place are brought in via 

ambulance. Meanwhile, the ranking of importance of body temperature is higher in 

hospitalization likely because while abnormally high body temperature is a cause for concern 

(and hospitalization), it alone is not enough to warrant something as dire as ICU admission. 

Lastly, rounding out the 15 most important features were categorical variables such as 

congestive heart failure, cerebrovascular disease, or cough. The first two, along with 

HIV/AIDS, were the only chronic illnesses included in the dataset – they refer to a patient’s 

medical history, rather than a recent diagnosis. However, it is important to note that patients 

with these diseases may be much more vulnerable than others, explaining their relatively high 

importance. Meanwhile, factors such as “cough” or “neck pain/discomfort” were likely good 

predictors of hospitalization because they are very common complaints – not necessarily 

because they make our models more accurate. While other complaints, such as “gastrointestinal 

bleeding”, could naturally be interpreted by nurses as more serious, complaints like those rarely 

appeared in the dataset. Instead, since complaints such as “cough” appear in the dataset more 

frequently, our machine learning models had a larger sample size from which to assess their 

influence on a patient’s disposition, which contributed to their relatively high importance. 

Android Application 
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Figure 10. The application's first screen, 
containing its input form. 

 

 

Figure 11. The application's waiting list, which 
sorts patients by priority. 

 

Our Android application contains two screens. On the main screen, the user inputs a 

patient’s age, sex, mode of arrival, vital signs, previously diagnosed chronic illnesses, and chief 

complaint (Figure 10). Upon clicking “submit”, this data is sent to our machine learning models, 

which make predictions. Each patient’s predicted triage classification is visible on the second 

screen, where the user may view the list of patients currently waiting in line for treatment 

(Figure 11). 

 

SUMMARY AND CONCLUSION 

This study met its major objective of creating an Android application that accepts 

patient data and uses it to predict their triage classification. Moreover, we met our specific 

objective of creating a model that has a significantly higher accuracy than nurses using the 

Emergency Severity Index in predicting both ICU admission and hospitalization. As such, our 
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Android application may offer significant advantages over conventional triage: its higher 

accuracy and ability to return predictions instantaneously could potentially help save lives. 

However, we do not intend for our application to replace nurses – instead, we intend for it to 

be used as a feedback tool to help them. 

In future studies, additional models, or different configurations of the models we used, 

may be more effective. Future researchers may also use techniques such as natural language 

processing or chatbots to facilitate a more patient-oriented triage experience. Lastly, more data 

may be available in the future, which could allow the creation of more accurate models. 
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APPENDICES 

APPENDIX A: SAMPLE SOURCE CODE 

#Code for training and testing machine learning models 

 

X = dataset.iloc[:, :-2].values 

y = dataset.iloc[:, -2].values #Dependent variable (to be predicted) 

val = dataset.iloc[:,-2:] 

 

val = val.dropna() #Get nurses’ predictions from dataset 

ytrue = val.iloc[:,-2].values 

ypred_esi = val.iloc[:,-1].values 

 

under = RandomUnderSampler(sampling_strategy=1) #Undersample the dataset 

X, y = under.fit_resample(X, y) 

plt.figure(figsize=(16,5)) 

 

def evaluate(classifier, axes, graph, name): 

    tprs = [] 

    aucs = [] 

    cv = KFold(n_splits=10, shuffle=True) #10-fold cross-validation 

    f1scores = [] 

    for i, (train, test) in enumerate(cv.split(X, y)): 

        classifier.fit(X[train], y[train]) #Feed the training datasets to 

the model for training 

        y_pred = classifier.predict(X[test]) #Test the model’s accuracy by 

having it predict values in the testing dataset 

        f1scores.append(f1_score(y[test], y_pred)) 

    plt.bar(name, np.mean(f1scores), color='#5a8cdb', label="{}: 

{:.3f}".format(name, np.mean(f1scores))) 

         

 

classifiers = [('Multilayer perceptron', MLPClassifier(alpha=0.1)), 

('Random forest', RandomForestClassifier()),('Logistic regression', 

LogisticRegression(max_iter=200,solver='liblinear',penalty='l1')), 

('Gradient boosted trees', XGBClassifier()), 

('Linear SVM', LinearSVC(dual=False)), 

('k-nearest neighbors', KNeighborsClassifier(n_neighbors=180))] 

#List of machine learning models to be tested 

axes = plt.gca() 

 

for name, classifier in classifiers: 

    evaluate(classifier, axes, plt, name) #Train each model 

 

f1esi = f1_score(ytrue, ypred_esi) 

plt.bar("ESI", f1esi, label="ESI: {:.3f}".format(f1esi), color='orange') 

axes.set_ylabel("$F_{1}$ scores") 

legend=plt.legend() 

 

plt.show() #Show bar graph containing each model’s F1 scores 

 

 

 

 

APPENDIX B: SAMPLE SOURCE CODE (cont.) 
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#Java code for Patient class (Patient.java) 

 

package com.example.triageprediction; 

 

import android.widget.CheckBox; 

 

import com.google.android.material.switchmaterial.SwitchMaterial; 

import com.google.android.material.textfield.TextInputEditText; 

 

import java.util.ArrayList; 

 

public class Patient { 

 

    public ArrayList<String> chronic; 

    public ArrayList<String> rfvs; 

    public String sex; 

    public int prediction; 

    public String name, age, temp, pulse, respr, sbp, dbp, popct, arrems, 

nochron; 

 

    Patient(String name, String age, String sex, String arrems, String 

temp, String pulse, String respr, String sbp, String dbp, String popct, 

String nochron, ArrayList<String> chronic, ArrayList<String> rfvs, int icu, 

int hospitalized) { 

        this.name = name; 

        this.age = age; 

        if (sex == "0.") this.sex = "Male"; 

        else this.sex = "Female"; 

        if (arrems == "0.") this.arrems = "No"; 

        else this.arrems = "Yes"; 

        this.temp = temp; 

        this.pulse = pulse; 

        this.respr = respr; 

        this.sbp = sbp; 

        this.dbp = dbp; 

        this.popct = popct; 

        if (nochron == "0.") this.nochron = "The patient has chronic 

illnesses."; 

        else this.nochron = "The patient has no chronic illnesses."; 

        this.chronic = chronic; 

        this.rfvs = rfvs; 

        if (icu == 1) this.prediction = 1; //ICU patient = 1, other 

hospitalization = 2, discharge = 3 

        //We assigned numbers so the priority queue can sort patients 

(minimum value = 1 – for ICU patients, who are at the head of the queue) 

        else if (hospitalized == 1) this.prediction = 2; 

        else if (icu == 0 && hospitalized == 0) this.prediction = 3; 

 

    } 

 

} 
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APPENDIX C: SAMPLE SOURCE CODE (cont.) 

Java code for the application’s waiting list (WaitingList.java) 

 

package com.example.triageprediction; 

 

import android.os.Bundle; 

import androidx.appcompat.app.AppCompatActivity; 

import androidx.fragment.app.Fragment; 

import android.view.LayoutInflater; 

import android.view.View; 

import android.view.ViewGroup; 

import android.widget.Button; 

import android.widget.LinearLayout; 

import android.widget.TextView; 

import static com.example.triageprediction.InputForm.queue; 

 

public class WaitingList extends Fragment { 

 

    @Override 

    public View onCreateView(LayoutInflater inflater, ViewGroup container, 

                             Bundle savedInstanceState) { 

        // Inflate the layout for this fragment 

        View view = inflater.inflate(R.layout.waitinglist, container, 

false); 

        final TextView patientName = view.findViewById(R.id.patientname); 

//Access text box containing patient name 

        final TextView designation = view.findViewById(R.id.designation); 

//Access text box containing patient designation 

 

        Button button = view.findViewById(R.id.nextpatient); 

        button.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View v) { 

                if (!queue.isEmpty()) { 

                    Patient next = queue.poll(); //If the queue is not 

empty, get the patient at the head of the queue 

                    patientName.setText(next.name); //Put patient name on 

screen 

                    int p = next.prediction; 

                    if (p == 1) designation.setText("Critical care unit – 

ESI 1/2"); //Put patient designation on screen 

                    else if (p == 2) designation.setText("Other 

hospitalization – ESI 2/3"); 

                    else if (p == 3) designation.setText("Discharge – ESI 

4/5"); 

                } else { 

                    System.out.println("Queue is empty"); 

                } 

            } 

        }); 

 

        return view; 

    } 

} 
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APPENDIX D: DATASETS 

The dataset used to train our machine learning models was built from 11 different 

datasets, one from each year from 2007 to 2018, from the U.S. National Center for Health 

Statistics (2018). Since each of these datasets contained approximately 30000 patients and 

more than 500 variables, there is no space to include them in this appendix.  

All eleven datasets were, however, compiled into a single dataset with 182230 

patients and 100 variables. This appendix will list down all 100 variables and include the 

data of the first five patients in the dataset. 

The first nine variables in the dataset consisted of basic patient information and 

initial vital signs. Categorical variables are marked as either “0” or “1”, with each of those 

numbers pertaining to a different category. 

Table 1. The first nine variables in the dataset (in order): age, biological sex (0: male; 1: female), arrival 
by ambulance (0: no; 1: yes), body temperature in degrees Fahrenheit, pulse rate, respiration 
rate, systolic blood pressure, diastolic blood pressure, and pulse oximetry (oxygen saturation). 

AGE SEX ARREMS TEMPF PULSE RESPR BPSYS BPDIAS POPCT 

40 1 1 99.1 90 16 129 75 99 

76 0 0 97.5 71 16 167 82 98 

27 1 0 98.4 89 20 118 76 98 

59 0 1 97.6 85 16 124 95 98 

33 0 0 98.2 80 18 156 92 98 

 

 The next four variables are categorical variables, saying whether a patient had a 

particular chronic illness: 

Table 2. The next four variables in the dataset. The first three refer to chronic illnesses: whether the 
patient has cerebrovascular disease, congestive heart failure, or HIV/AIDS (in that order). If the 
patient has none of these, then the fourth column, "NOCHRON”, for “no chronic illnesses”, is 
marked with a “1”. 

CEBVD CHF EDHIV NOCHRON 
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0 0 0 1 

0 0 0 1 

0 0 0 1 

0 0 0 1 

0 0 0 1 

 

 The next four variables pertain to a patient’s status in the emergency department. 

These were used to clean the data: if any patient was marked “1” in any of these categories, 

they were removed because they were not able to properly undergo triage.  

Table 3. The next four variables in the dataset, which say whether a patient left before being seen, left 
against medical advice, was dead on arrival, or died in the emergency department. 

LWBS LEFTAMA DOA DIEDED 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

 

 The remaining 83 variables in the dataset were one-hot encoded categorical 

variables containing patients’ reasons for visiting the emergency department. Due to the 

size of this section of the dataset, only three of them will be displayed here:  

Table 4. Three of the 83 reason for visit columns. A few more examples of these can be seen in Figures 
14 and 15. 

Chest pain General weakness Vomiting 

0 0 0 

0 0 0 
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0 0 0 

0 0 0 

 



【評語】190042 

This project develops an Android APP for triage prediction 

in hospital emergency departments. The topic is interesting, 

timely, and very important for hospitals. The authors conducted 

a set of experiments and compared the accuracy performance of 

several ML methods in this work. Overall, this is very nice work 

and of some practical value. It would be great if the authors 

could provide more detailed information about the datasets used 

in this research, as well as collect feedback from nurses/doctors 

to further enhance the proposed work. 
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