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This is a continuation of my original application for the Jonk Fuerscher competition in 

Luxembourg (see “Original Report for the Jonk Fuerscher competition”), since which I have 

added and continued to work on my project and overall aim to expand my programming 

knowledge across multiple fields of chemistry and extend that to principles of maths as well. 

I have also added these chemistry and maths programmes to a website to allow other 

people to use, using the Flask python library as well as countless others. 

  

Summary of Programmes mentioned in the Original 

I began my project with the creation of a valency manipulator in order to obtain the 

smallest possible combination between any permutation of elements or compounds. The 

valency of an element or a compound is its willingness to react with other compounds or 

elements, essentially its combining capability. The valency value reflects how many 

electrons an element or compound needs to lose or gain in order to have a full outer shell 

for example oxygen has a valency of 2 since it needs to gain 2 electrons in order to have a 

full outer shell. In order to find the smallest possible combination, we were taught the 

“Swap and Drop” method at GCSE, which involves swapping the two valences of the 

compounds or elements involved, dividing them by a common factor and “dropping” them 

for use, as seen in an example here:  

 

This yields a result of 𝑁𝐻3, as there are no common factors by which to divide. More 

complex forms, such as the combination of manganese and phosphate are mentioned in the 

first document.  

In order to store all the information for each element and relevant compound for GCSE, I 

created a dictionary database in python storing each element’s symbol, valency/valences, 

molar mass, diatomic Boolean, electron structure, and number of electrons. This is because 

storing the valences locally would make run times for the programme much quicker and it 

would be useful to store a diatomic Boolean value for future use. 
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The subsequent programme I created was one which balances chemical equations. Chemical 

equations such as 𝑁2 + 𝐻2 → 𝑁𝐻3 follows the swap and drop method, and produces the 

correct compound, it does not follow the law of conservation of mass or the law of 

conservation of energy, since the number of nitrogen and hydrogen atoms are different in 

the reactants to the products. In order to balance an equation, a coefficient must be added 

to each compound to make the number of atoms per element the same for both the 

reactants and products, in the above example 𝑁2 + 3𝐻2 → 2𝑁𝐻3. In order to do this 

algebraically, meaning it will work for any inputted equation, the programme uses Gaussian-

Jordan matrix elimination in order to obtain those coefficients. Firstly, the equation needs to 

be converted into a matrix, where the columns are the compounds and the rows reflect 

each element in the equation, e.g.  

 

  

 

This should then be converted through reduced row echelon form to form the identity 

matrix with 1 column spare to keep the coefficients, using 3 principles: row multiplication – 

multiplying by a constant; row addition and row multiplication, defined as the formula; 
𝑅2 + (−𝑥𝑅1) ↦ 𝑅2 

and row switching – switching rows in order to get a non-zero value in a position where a 1 

must be created. Using these rules, the matrix should be converted to: 

[
1 0 0 ∗
0 1 0 ∗
0 0 1 ∗

] 

The stars represent the coefficients of the balanced equation, which can be then placed in the 

equation to make it balanced. If these numbers are fractions, the programme will find the greatest 

common denominator between them all and multiply them in order to get all integer values. If the 

matrix is square, the above matrix is desired. However, if the number of rows is greater than the 

number of columns, the last row is discarded as it is not necessary. If the number of columns is 

greater than the number of rows, an extra row is added all with 0’s except for the last value which is 

a 1.  

(See original document for more information) 

 

 

Changes to the Balancing Equations Function 

The first thing I changed after the Jonk Fuerscher competition was the matrix builder for the 

balancing function, which would turn a string equation into the matrix in order for reduced 

row echelon form. Originally, it was many If and Elif statements checking the conditions of 

each character and the next character next to it, sometimes checking 3 characters ahead 

[
2 0 1
0 2 3

] 
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and becoming incredibly inefficient. It dealt with brackets very poorly, as equations can 

contain brackets and the number after the bracket is what all elements should be multiplied 

by, such as (𝑆𝑂4)2, in this case everything inside the bracket is multiplied by two. The 

function also didn’t take into account multiple brackets and double brackets, [()], as well as 

multiple occurrences of the same element in a single compound, which made many errors 

when compounds and equations in A level chemistry are much more complex. Instead of 

many If statements, I created an algebraic and recursive function in order to deal with an 

infinite number of nested brackets and multiple occurrences of the same element in the 

same compound, an example of this is: TiCl2[As2[Ag2(CH3)2]2]2[As(CH4)2]3; many nested 

brackets and the use of multiple carbon, hydrogen, and astatine atoms.  

The function checks whether there are any brackets, and will then create a list with the 

outermost brackets and the remaining elements outside of any brackets, in the above case 

[“TiCl2”, “[As2[Ag2(CH3)2]2]2”, “[As(CH4)2]3”]. It will then create a dictionary which will 

house all of the brackets and replace them in the list as (n, 0) which is a tuple. It will do the 

same for each of the elements in the dictionary, taking each layer of lists, putting them in 

the dictionary, and will replace them in their originating list with a tuple of the index they 

are positioned at in the dictionary, as shown in the example: ["TiCl2", ("0", ), ("3", )], 

{"0":[["As2", ("1", )],2], "1":[["Ag2", ("2", )], 2], "2": [["CH3"], 2], "3":[["As", ("4", )], 3], 

"4":[["CH4"], 2]}. The tuples act as a placeholder to signify to the other elements in the 

dictionary that the number in the tuple is the corresponding index in the dictionary. By 

design, the function will take out the bracket coefficient and make that its own value in each 

index of the dictionary. This will only stop once every single index in the dictionary is of type 

string or tuple, in order to eliminate all lists. For each string, the function will take that string 

and split every capital letter, as every element begins with a capital letter, so the number of 

atoms will always correspond to the correct element, as seen in the example [“TiCl2”] -> 

[[“Ti”, 1], [“Cl”, 2]. The function then works from right to left of the dictionary, filling in the 

placeholders with split values, until the list is purely 1 dimensional, meaning there are no 

lists and no placeholders, purely elements with the number of atoms of that specific 

element, as shown through: [['As', 4], ['Ag', 8], ['C', 8], ['H', 24], ['As', 3], ['C', 6], ['H', 24], ['Ti', 

1], ['Cl', 2]]. This also solves the problem of multiple occurrences of the same element, seen 

through this programming snippet: 

 for j in elems: 

    temp=0 

    for x in lst: 

        if j==x[0]: 

            temp+=x[1] 

        tlist.append(temp) 

    matrix.append(tlist) 

This searches through each element in the equation, and if the x[0] value (the element 

symbol) is the same as the element being searched for, the total adds the x[1] value (the 

number of atoms).  

Overall, this tackles the 2 problems from the previous parsing function: permitting multiple 

occurrences of the same element and allows for multiple brackets and multiple nested 

brackets in any number of list dimensions to be parsed. This parsing function is also useful 
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for displaying extra information about the compounds being used in the equation, as the 

number of atoms for each element can be used – along with the relative atomic mass – to 

calculate the molar mass of each compound present.  

 

New Programmes Created to Solve Mathematical Problems 

After the creation of the 2 chemistry programmes, I decided to create some programmes to 

help me in my further maths iGCSE studies, the first of which is a programme to solve 

algebraic divisions. This can be used to divide a polynomial of degree 𝑛 by a polynomial of 

degree 1, for example: 

2𝑥3 − 𝑥2 − 13𝑥 − 6

𝑥 + 2
 

where 2𝑥3 − 𝑥2 − 13𝑥 − 6 is the dividend and 𝑥 + 2 is the divisor. 

The process taught at iGCSE is to use algebraic long division, which can be seen here: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in the demonstration above, the first step is to divide the first term of the 

dividend 2𝑥3 by the first term of the divisor 𝑥, which yields 2𝑥2. This is then multiplied by 

the constant in the divisor, 2, to make 4𝑥2, and the section of the dividend, 2𝑥3  -  𝑥2, 

subtract  2𝑥3 + 4𝑥2 in order to cancel out the 𝑥3 terms and leave the 𝑥2 term to be used 

and the process is repeated again until the quotient is a constant; if this constant is non-
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zero, it is the remainder, but if the constant is zero, then the divisor divides the dividend 

perfectly and there is no remainder.  

The quotient of algebraic division can be represented by an initial term and then a sum for 

the remaining terms of the polynomial, which I defined as: 

 

𝑎0 =
𝑚0

𝐶𝑠
𝑥𝐸−1 

 

where 𝑎0 is the initial term, 𝐸 is the length of the dividend,  𝑚0 is the coefficient of the first 

term in the dividend, and 𝐶𝑠 is the coefficient of the 𝑥 term in the divisor. The sum can then 

be represented as: 

 

∑
mn − (m0 ∗ an−1)

Cs

E

n=1

𝑥𝐸−𝑛−1 

  

where 𝑚𝑛 is the 𝑛th coefficient of the dividend, and 𝑎𝑛−1 is the previous term in the series. 

The final term in this series is the remainder, whose 𝑥 index is -1, but this can be 

disregarded and considered the remainder constant. 

In order to solve these equations, a parser also had to be made in order to split each 𝑥𝑛 

along with their corresponding coefficient. This also involved combining any terms where 

the indices were the same in order to get a total coefficient for each 𝑥𝑛.  

The aim for the future of this programme is to allow for 𝑛 degree polynomials as the divisor, 

so it can be an overall 𝑛 degree polynomial divided by 𝑛 degree polynomial calculator. Also, 

the aim is to be able to completely factorise up to 4th degree polynomials with this 

calculator and display all roots, since there is a quadratic and cubic formula, so in order to 

display the roots for higher degree polynomials would be an interesting challenge.  

 

 

Binomial Theorem Calculator 

After completing the algebraic long division programme, I began to create a programme to 

solve binomial expansions. The binomial theorem expansion is commonly known as the 

following sum:  
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∑ (
𝑛

𝑘
) 𝑥(𝑛−𝑘)

𝑛

𝑘=1

𝑦𝑘 = (𝑥 + 𝑦)𝑛 

 

This equation is true for all values where 𝑛 ≥ 0, 𝑛 ∈ ℤ, but the aim of a programmer and 

mathematician is to be able to solve every possible input, in this case where n can be a 

fraction or negative number. This requires a new formula in order to accommodate for 

these extra conditions:  

 

𝑎0 = 𝐶 

 

where C is the constant before the binomial, such as 2(1 + 𝑥)(1/2). The sum can then be 

represented as:  

 

𝐶 ∑
an−1(s − n − 1)𝑥𝑛

n

M

n=1

C0
n = 𝐶(𝐶0 + 𝑥)𝑠 

 

where 𝐶0
𝑛 is the constant 𝐶0 raised to the power of 𝑛,  and M either the limit chosen by the 

user of how many coefficients they desire if 𝑠 is a fraction or negative; otherwise, it is 𝑠 + 1 

for 𝑠 ≥ 0, 𝑠 ∈ ℤ. 

In order to harvest the values inside of the binomial, the parser from the algebraic division 

can be reused to create a list of the powers of x involved and the coefficients as well.  

The area for improvement in the future which I intend to fix is the ability to remove surds 

and other roots from the equation if the power 𝑠 is a fraction, in order to multiply the terms 

of the sum by that surd instead of a fraction approximation made by python. Also, if the 

value 𝐶0 < 0 and 𝑠 ∈ ℚ, 𝑠 ∉ ℤ, this will lead to complex 𝑎 + 𝑏𝑖 values for 𝐶0, which will 

cause issues in the programme.  

 

 

Website 

In order to hold all of these programmes in one place, as well as making them readily 

available for the public to use, I have created a website using the Flask python library. This 

involves using routes in order to navigate between web locations and rendering HTML 

templates at each location. Using python as a backend language is also very useful, since all 
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the programmes are written in python, so it is very easy to integrate the programmes to the 

routes. Data can be passed through web pages to the backend python script, where it is 

passed through the corresponding programme’s function, and the answers and other 

relevant information is sent back at its own unique URL. My website has 1 unique factor 

compared to other calculator website in the fact that whenever an input is registered by the 

backend server, it stores that input in a database called “Archive”, which acts as a personal 

archive of calculations for each user, and this is spread over all current programmes, 

meaning that a user can switch back and forth from multiple calculations over multiple 

programmes with ease. This is facilitated by the “SQLAlchemy” section of the Flask library, 

which is an integrated SQL database manager in python, making it very easy to manage 

functions. Also, these archives are stored on each user’s profile, meaning they are not 

deleted after logging out. The process of building a website has also improved my HTML, 

CSS, Javascript and JQuery skills, improving my overall skillset as a programmer. Each of the 

HTML templates used for each of the programmes uses “forms” to submit information to 

the backend, and these templates are also written in a combination of HTML and Jinja, 

which is a Flask tool to write python code in HTML. The current link to the website is 

govac.eu, but the site is currently down for maintenance and management. 

Conclusion 

In conclusion, there are 4 main programmes I have created: one to determine the smallest 

possible combination of two compounds or elements; one to balance a chemical equation 

using a parser programme I wrote myself, in conjunction with Gaussian-Jordan matrix 

elimination and reduced row echelon form in order to obtain coefficients for chemical 

equations; a programme to solve algebraic division using sums I derived and a parser for 

mathematical equations; finally, a programme to solve binomial equations of power 𝑠 ∈ ℚ. 

It has been a two year process that originated as a way to improve my programming skills 

for my computer science GCSE, but my passion for programming, as well as chemistry and 

maths, inspired me to take all of those skills to a new level and create a full website to 

house all the programmes I made so that others can appreciate them as well, and use them 

to help them with their maths and chemistry problems which is what I intended my 

programmes to do: help myself and others understand the underlying principles of all these 

interesting topics. The aims I have set myself for the binomial programme, along with the 

aims for the algebraic division and balancing equations as well, are a testament that this 

project is always ongoing and never finished, as there is always so much more to delve into 

and expand one’s knowledge and add to a programme in order to refine it and generalise it 

as much as possible.  

 

  

file:///C:/Users/cutes/OneDrive/Documents/國際科展_2022/作品原稿/2022國外作品-專輯/190041/govac.eu
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Original Document in case it is not available on the TISF website:  

Chemistry Programme 

by Max Gold 

This programme is a combination of two particularly important chemistry topics we 

must study for iGCSE: balancing chemical equations and valency operations. Firstly, 

balancing chemical equations involves calculating the correct number of products is the 

same as the number of reactants. For example, N₂ + H₂ -> NH₃ is correct in the fact that 

the compounds are correct, but the number of reactants is larger to the number of 

products, meaning it breaks the rule of conservation of mass. This can be rectified by 

adding coefficients multiplying the compounds to get an equal number of elements, N₂ 

+ 3H₂ -> 2NH₃.  

Valences are the combining capabilities of an element or a compound – how many 

electrons it has on its outer shell. For example, the valency of carbon is 4, since it has 4 

electrons on its outer shell, and is coincidentally in group 4. The purpose of coding this 

is to allow for the smallest possible combination of 2 elements or compounds together, 

such as N₂ + H₂ -> NH₃, which takes the 2 elements Nitrogen and Hydrogen, and uses 

their valences to produce NH₃, the simplest possible compound. 

In order to facilitate the needs of the valency calculator, I have also developed a 

database to locally store all the data pertinent to each element: its full name, its symbol, 

the number of electrons, its electron structure, whether it is diatomic (paired with 

another atom of the same element as a molecule), and its molar mass. Each element has 

the same “keys”, but the value in each “key” is different depending on the element. For 

valences, I have also created a database to store equivalent categories for certain 

compounds as well, such as ammonium, sulfate, and ethanoate, saving their symbols, 

valency, and molar mass.  

Splitting an equation for balancing 

In order to begin balancing an equation, python cannot deal with an entire equation, or string, 

and therefore needs to split up the equation in a way that can easily be converted into a matrix. 

Let’s suppose we are working with the equation Mn + PO₄ = Mn(PO₄)₂. Firstly, the equation 

must be split along the = sign into reactants and products, to make it easier to simplify: [Mn + 

PO₄, Mn(PO₄)₂] is an array with the reactants in one value, and the product in another. 

Secondly, the products must be split into individual compounds to trace for certain elements, 

causing a 2 dimensional array: {[Mn, PO₄], [Mn(PO₄)₂]. This, however, is not simplified enough 

for python, so it needs to obtain an array of just elements to look through the final equation, so 

it checks capitalisations and changes between uppercase and lowercase letters, making sure 

there are no duplicate elements: [Mn, P, O]. The array then cycles through the equation, 

assigning a number to the element per compound depending on the number shown, for example 

Mn would have a 1 in the first column, since there is 1 manganese, and Oxygen, for example, 

would have a 0, since there is no oxygen. The one other thing that the programme is trained to 

do is to check if there are any brackets in the compound, such as in Mn(PO₄)₂, since the 

subscript number multiplies everything by 2, so it cycles through and takes the values, then for 

the ones with brackets it multiplies those numbers by 2. 
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This successfully returns the matrix 

Balancing an Equation using Matrices and Reduced Row Echelon Form: 

Convert an equation into a matrix – e.g., C3H8 + O2 = CO2 + H2O  

 

                                                                              [
3 0 1 0
8 0 0 2
0 2 2 1

] 

 

The matrix M can be written as (m⋅n). When 𝑚 < 𝑛:  

Convert to Row Echelon Form, REF goes Downwards and Rightwards, in that order 

 

Aim =                                                   where * indicates any number 

 

 

To get 1 in the first section, one divides the row by the inverse, in this case  
𝟏

𝒙
 where x is 

equal to the number at that position (this is known as row multiplication):  

 

Then we move downwards to 8, where we need a 0 as determined by the objective 

above. Therefore, we multiply the row with the column position directly above with a 1 

by -x, where x is equal to number, then add it to the existing row (R). This is a 

combination of row addition and row multiplication.         

C                                                                                  

H                                                                              

O 

[
1 0

1

3
0

8 0 0 2
0 2 2 1

] 

[
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗

]         

[
1 0 1
0 1 2
0 4 8

] 
Mn                                                                            

P                                                                           

O 
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So, this can be visualised in row 2 in the matrix as: 

The matrix can then be updated to:   

We then continue downwards, checking that the number is correct – a 0 in this case. It is 

correct, and after seeing that all numbers are complete for this row, we move on to the next row, 

starting from position number y, where y is equal to the value in the position where the row 

number is equal to the column number.  

 

 

 

 

In this scenario, y is equal to 0, which is not the intended answer. We can use a matrix function 

to bypass this issue: we can swap rows 2 and 3 to get a positive number in the intended position 

(this is known as row switching).   

 

 

𝑅2 + (−𝑥𝑅1) ↦ 𝑅2 

𝑥𝑅1 = [−8(1),−8(0),−8 (
1

3
) , −8(0)] 

𝑥𝑅1 = [−8, 0, −
8

3
, 0] 

𝑅2 + 𝑥𝑅1 = [(8 − 8), (0 + 0), (0 −
8

3
) , (2 + 0)] 

𝑅2 = [0, 0, −
8

3
 , 2 ] 

[
 
 
 
 1 0

1

3
0

0 0 −
8

3
2

0 2 2 1]
 
 
 
 

 

[
 
 
 
 1 0

1

3
0

0 0 −
8

3
2

0 2 2 1]
 
 
 
 

 

[
 
 
 
 1 0

1

3
0

0 2 2 1

0 0 −
8

3
2]
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This then allows for the entire row to be multiplied by 
1

2
 in order to get 1 in position y.  

Column 2 is now complete since the value in position 2,3 is already 0. The final value to be 

manipulated is 3,3 as it is the only other value needed to be changed in order to obtain a desired 

Row Echelon Form. The row is multiplied by the inverse, which is −
3

8
.  

Row Echelon Form has now been achieved, and the next step is to create Reduced Row Echelon 

Form, which involves: 

                                                           [
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗

]   ->  [
1 0 0 ∗
0 1 0 ∗
0 0 1 ∗

]         

Converting the * numbers to 0 for all * except for the last column. RREF works in the opposite 

way to REF, going from right to left, down to up. The first element to be changed is (2,3), whose 

row can be multiplied and added (row 3 can be multiplied by -1 and added to row 2).  

The 2nd row is now finished, and now the final number to be manipulated in this scenario is 

(1,3), since (1,2) is already 0. The same process can be done to (1,3) as (2,3), which involves 

multiplying the last row by -1/3 and adding it to row 1. The general rule is multiplying the row 

where the column 1 is located to the negative current value, then adding.  

 

[
 
 
 
 
1 0 1/3 0

0 1 1
1

2

0 0 −
8

3
2]
 
 
 
 

 

[
 
 
 
 
1 0 1/3 0

0 1 1
1

2

0 0 1 −
3

4]
 
 
 
 

 

[
 
 
 
 
1 0 1/3 0

0 1 0
5

4

0 0 1 −
3

4]
 
 
 
 

 

[
 
 
 
 
1 0 0 1/4

0 1 0
5

4

0 0 1 −
3

4]
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 This matrix has now been fully converted into reduced row echelon form. In the case where 

m<n, an extra row must be added in order to retrieve 4 values to represent each compound. 

However, this extra row must also conform to the rules of reduced row echelon form, meaning 

the first values must be 0, and the last value must be 1. 

The last row can now be used to obtain the balanced values for each compound. The absolute 

value of each component in the last row is placed into an array.  

1/4 5/4 3/4 1 

In order to obtain the balanced coefficients, each value needs to be an integer, so the least 

common denominator must be obtained, which in this case is 4. Each value is then multiplied by 

the least common denominator, which returns the result: 

1 5 3 4 

The final equation is:                            C3H8 +5 O2 = 3 CO2 + 4 H2O 

In the cases of m=n, such as S + HNO₃ -> H₂SO₄ + NO₂ + H₂O, there is no need to add an extra 

row since it conforms to reduced row echelon form. In the cases of m>n, such as NH₄ + SO₄ -> 

(NH₄)₂SO₄, the last row is discarded, since there is no use for an extra value. 

 

Valency Method 

The method taught at GCSE chemistry and the one I have decided to implement is called 

the “Swap and Drop method”. It involves obtaining the valences of any combination of 2 

elements (either its oxidation state or its group number) or 2 compounds, for example 

combining nitrogen and hydrogen. The valence for nitrogen is 3, since it is group 5, and 

the valence for hydrogen is 1. The valences are then swapped: 

 

Element: 

 

Valences: 

 

 

 

 

Swapped: 

[
 
 
 
 
 
1 0 0 1/4

0 1 0
5

4

0 0 1 −
3

4
0 0 0 1 ]

 
 
 
 
 

 

H N 

1 3 

1

 
3 



13 

 

After swapping the valences, the programme checks whether the numbers can be simplified, 

since it aims to find the smallest possible combination. In this case, it cannot be simplified, so 

the result is the element with its new corresponding amount – since these 2 elements are also 

diatomic, the full equation must show them as such: 

N₂ + H₂ -> NH₃ 

Another, more complex equation is manganese (VI) and phosphate. Manganese is a transition 

element, and therefore has many oxidation states, but for this equation we will use 6+, or Mn 

(VI). The same swap and drop method is used – phosphate has a valency of 3-, as stored in the 

database: 

Element: 

 

Valences: 

 

 

 

Swapped: 

 

This is an example of where the values can be simplified – both divided by 3 – in order to make 

the product the smallest possible combination. 

 

  

Since the second value is a compound, we put the compound in brackets: (PO₄) and then add the 

subscripted amount next to it: 

Mn + PO₄ = Mn(PO₄)₂ 

 

References: 

MyWhyU’s informative video on Gaussian Elimination: 

https://www.youtube.com/watch?v=2GKESu5atVQ 

Desmond Stephen’s mention of gaussian elimination:       

https://youtu.be/yCxDAj87W8M?t=227 

3 6 

3

 

6 

Mn PO₄ 

1 2 

https://www.youtube.com/watch?v=2GKESu5atVQ


【評語】190041 

This project tries to solve mathematical and chemical 

equations using Python. The topic is very interesting, and the 

proposed work is technically sound and solid. Overall, this is 

good work, and it would be great if the authors could provide 

additional experiments and performance discussions to further 

strengthen the depth of this research. 

C:\Users\cutes\OneDrive\Documents\國際科展_2022\排版\190041-評語 

 


	190041-封面
	190041

	190041-作者照片
	190041-本文
	Summary of Programmes mentioned in the Original
	Changes to the Balancing Equations Function
	New Programmes Created to Solve Mathematical Problems
	Binomial Theorem Calculator
	Website
	Conclusion

	190041-評語



