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1. Introduction 

 

The size and quality of datasets are vital factors in the 

effective training of neural networks. Under ideal 

circumstances, datasets are elaborate and large enough to 

improve the generalization of the neural network. 

Realistically, however, obtaining such datasets may not be 

practical or feasible especially when the dataset may be 

given as a function of time or is too large to run at once.  

Online machine learning is employed to overcome these 

impediments by sequentially utilizing the dataset. If a 

dataset is limited by time, the neural network is initially 

optimized with the original dataset and incrementally 

trained as more data become available. If a dataset is too 

large, a stream-based online learning algorithm is used 

[1,2]. In these cases, stochastic gradient descent (SGD) is 

normally chosen as the online machine learning algorithm 

because of its simplicity, increased update frequency, and 

low cost-per-literation [3,4]. This method, however, is 

susceptible to noisy gradient signals and variance, which 

diminish its convergence speed. Additionally, SGD gives 

priority to the most recent training cases, which reduces 

the value that previous training cases provide, and hence 

becomes prone to catastrophic forgetting [5]. A case in 

point is when the neural network is first optimized using a 

high-quality dataset and subsequently with a lower-quality 

data stream; the neural network will likely show suboptimal 

performance because the lower-quality training cases 

generate noise and cause the neural network to forget the 

old data. Due to these factors, SGD is not an ideal learning 

algorithm; there is a need for a more streamlined approach 

to online/stream-based machine learning.  

Prior approaches have attempted to overcome the 

aforementioned limitations of SGD by improving SGD with 

rehearsal/pseudo-rehearsal methods [6,7,8,9] and 

regularization [10]. For example, one approach is locally 

weighted regression, a modeling technique centered around 

producing local models from subsets of the dataset and 

combining them into a single global model in order to 

reduce catastrophic forgetting. Another approach is 

rehearsal [6], which merges old data with newly received 

data for online learning. A variant of this is pseudo-

rehearsal [7,8,9], which combines randomly generated data 

with the online machine learning process. The advantage of 

this approach is that the neural network can avoid saving 

old data. All of these approaches do show improvements in 

online machine learning; however, these approaches, by no 

means, are perfect, each having their limitations.  

In this project, we suggest a low-cost learning algorithm 

that addresses the shortcomings of online SGD machine 

learning when the initial data are made accessible initially, 

and the remaining data are made available through a data 

stream. Specifically, we propose an adaptation of SGD that 

incorporates the backward queried samples of the initial 

data during the training of the remaining data. Through this 

algorithm, we aim to reduce catastrophic interference of 

online SGD while improving its ability to converge to 

minima. We benchmarked our learning algorithm using the 

Fashion-MNIST and Kuzushiji-MNIST datasets and then 

evaluated our results with those of the online SGD, using 

10,000 unknown test cases.  

2. Related Works 

 

The two foremost methods we would like to mention are 

rehearsal-based: rehearsal and pseudo-rehearsal. 

Rehearsal is a method which saves old data for the online 

training of the neural network [6], and pseudo-rehearsal is 

a method which pairs the data stream with replicated 

training cases generated using the current neural network 

[7,8,9]. The aim of both of these methods is to improve the 

neural network’s ability to retain previous data and its 

faculty to learn different concepts through a data stream. 

Recently, there has been success using rehearsal [11] and 

pseudo-rehearsal based methods for vision tasks [12,13]. 

Specific variants of rehearsal-based method includes 

Locally Weighted Regression Pseudo-Rehearsal (LW-PR2), 

a version of LWR, which attempts to mitigate catastrophic 

interference and improve SGD by retaining information 

through local models and combining them into a single 

global model; and Deep Generative Replay, which uses 

Abstract Stochastic gradient descent (SGD) is one of the preferred online optimization algorithms. However, one of its major 

drawbacks is its predisposition to forgetting previous data when optimizing through a data stream, also known as catastrophic 

interference. In this project, we attempt to mitigate this drawback by proposing a new low-cost approach which incorporates 

backward queried images with SGD during online training. Under this new approach, we propose that for every new training sample 

through the data stream, the neural network is optimized using the corresponding backward queried image from the initial dataset. 

After compiling the accuracy of the proposed method and SGD under a data-stream of 50,000 training cases with 10,000 test cases 

and comparing our algorithm to SGD, we see substantial improvements in the performance of the neural network with two different 

MNIST datasets (Fashion and Kuzushiji), classifying the MNIST datasets at a high accuracy for the mean, minimum, lower quartile, 

median, and upper quartile, while maintaining lower standard deviation in performance, demonstrating that our proposed algorithm 

can be a potential alternative to online SGD. 
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generative adversarial networks (GAN) to replicate past 

data with desired outputs. Unfortunately, all of these 

approaches are susceptible to the common limitations of 

rehearsal and pseudo-rehearsal due to the fact that 

rehearsal methods increasingly have to store training data 

while pseudo-rehearsal is computationally complex, 

making both methods relatively difficult implement into 

varying problems. Moreover, a unique drawback of LWR, 

which is employed by LW-PR2, is that it is computationally 

taxing and requires thousands of local models to be 

accurate, which also poses as a problem when the dataset 

is relatively large as the task becomes time intensive.  

Another way that SGD has been attempted to be 

improved is through regularization, which reduces the 

overfitting and catastrophic forgetting of the neural network 

through parameters [10].  

All of the previous works mentioned above can be 

classified into two categories: improving SGD in a 

parametric way (regularization) or by retaining information 

from the previous dataset (rehearsal-based). While it is 

difficult to assess which method is superior in online 

training, each has their own advantages and drawbacks. 

Since training cases provide more information than 

parameters, in some sense, rehearsal-based methods may 

be more beneficial. Having said that, saving old data or 

generating representative data can be computationally 

costly. In this project, we try to capitalize on the advantages 

of utilizing the previous dataset during online training while 

reducing the computational cost of saving such data: we 

propose a simple but effective approach of using 

representative data by using backward queried image per 

class and feeding this image with new received data during 

online learning. 

3. Proposed Method 

 

Our method comes in the form of combining regular SGD 

with backward queried data. In this section, we explain SGD, 

then backward query, and finally our proposed method in 

relation to the previous two concepts. 

 

3.1 Stochastic Gradient Descent 

SGD is preferred in online learning because of its 

characteristics of tuning the neural network for every 

single sample as in (1). 

 

𝑊𝑡+1 =  𝑊𝑡 −  𝜂 ⋅ ∇𝑤𝕁(𝑊; 𝑥(𝑖); 𝑦(𝑖)) (1) 

 

where 𝑊 denotes weights, 𝜂 denotes learning rate, and 

𝑥(𝑖)  denotes each training sample of label  𝑦(𝑖) . In this 

formula, we observe two specific characteristics of SGD: its 

simplicity and updating frequency. The single training case 

per iteration makes SGD relatively simple compared to 

other gradient descents, such as mini-batch or batch 

gradient descent (GD), which averages out the gradients of 

different training cases within a batch or whole dataset. 

Similarly, SGD possesses a relatively fast updating 

frequency since it optimizes the neural network for every 

training case, instead of batches.  

These characteristics make SGD distinct from other 

gradient descent. It is also the source behind SGD’s 

drawbacks. Since SGD is updated for every training case, 

training cases could generate noise within the neural 

network, especially when the quality of training cases is 

poor. Moreover, as SGD frequently updates with new 

training cases, it is likely to forget the changes made by 

previous training cases (catastrophic interference). 

  

3.2 Backward Query 

In a normal feedforward neural network, values are first 

given into the input/initial layer. Then, it is multiplied with 

weights. The manipulated values are thereafter combined 

and inputted into the activation function of their respective 

nodes. The output of the activation function forms the input 

of the next layer. This pattern recurs until it reaches the 

output layer, where it is classified using a criteria.  

To generate backward queried samples, this process of 

calculating values in a feedforward neural network is 

reversed. Instead of initially computing from the input layer, 

labels that represent a specific class are inputted into the 

output layer. It is then computed with the inverse of the 

activation function and multiplied with the weights to obtain 

new values corresponding with the previous layer. This 

process repeats until the values have backwardly 

propagated to the input layer. The final value becomes the 

backward queried sample of the aforementioned class.  

The significance behind backward query is that the 

backward queried samples, in essence, becomes the 

representative data of the class and provides insight into 

the neural network because the values provide an imprint 

of how the weights and activate function save and compute 

the input value internally. This is advantageous for online 

training since we can capture the value of the entire dataset 

into a single case, which can be later used to retain 

previous information.  

To derive an image of backward query, we train a neural 

network using 10,000 random samples out of the 60,000  

training cases within the Fashion-MNIST dataset. 

Specifically, we train a multilayer perceptron with layers, 

[784, 256, 128, 100, 10], and learning rate, 0.01, using 

mini- batch gradient descent of batch size 32 for 100 

epochs to find the backward queried sample. In [Fig. 1], the 

10 images represent the backward queried sample of each 
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class in the Fashion-MNIST dataset.  

 

3.3 Our Method 

In our approach, backward query was incorporated with 

SGD. We paired every training case with their 

corresponding backward queried data from the initial 

dataset. We then averaged the gradient of the two samples 

before updating the network. The proposed approach can 

be modeled using the formula in (2). 

 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂 ⋅
1

2
(∇𝑊𝕁(𝑊; 𝑥(𝑖); 𝑦(𝑖)) + ∇𝑊𝕁(𝑊; 𝑏(𝑦); 𝑦(𝑖)))  

(2) 

 

where 𝑊  denotes weights, 𝜂  denotes learning rate, 𝑥(𝑖) 

denotes each training sample of label 𝑦(𝑖) , and 𝑏(𝑦) 

denotes the backward queried data of label 𝑦. 

The advantage of our method is that it is capable of 

mitigating catastrophic forgetting similar to 

rehearsal/pseudo-rehearsal methods while remaining more 

computationally effective than retaining old data or 

generating data through complex modeling. 

 
[Fig. 1] Backward queried sample of Fashion-MNIST dataset.  

 

 

4. Experiment 

 

In evaluating the performance of SGD and our method, 

we establish our experimental settings and compare three 

gradient descents: GD, mini-batch, and SGD. Then, from 

these results, we determine mini-batch as the optimization 

algorithm for the initial dataset from the perspective of 

performance. Finally, we record the accuracy of SGD and 

the proposed method from 60,000 training samples, which 

are divided into the initial training set and streaming data. 

To measure the performance, 10,000 unknown samples are 

used. 

 

4.1 Experimental Settings 

I. Training & Test Data: We use two datasets, 

Fashion-MNIST and Kuzushiji-MNIST, both of 

which consists of 60,000 training cases and 

10,000 test cases of 28 by 28 gray-scale pixel 

maps with 10 classes.  

II. Neural Network Architecture: We implemented 

a multilayer perceptron (MLP) with Python and 

Numpy. The layers of the MLP are [784, 256, 

128, 100, 10] where 784 and 10 are input and 

output layer respectively. We use sigmoid as 

the activation function, 0.01 as the learning rate, 

and a quadratic loss function as the loss 

function. 

III. Initial Training Dataset and Data Stream: To 

emulate an online environment, the first 10,000 

training cases is allocated to the initial dataset 

while the final 50,000 training cases is allocated 

to the subsequent data stream. To measure the 

performance, a separate 10,000 unknown test 

samples are used. 

 

4.2 Implementation of Multilayer Perceptron and 

Proposed Method 

  The implementations of both the multilayer perceptron 

class and the proposed method can be seen in [Fig. 2]. 

 

4.3 Comparison among GD, SGD, and Mini-batch 

After implementing the multilayer perceptron class, we 

compared batch gradient descent, SGD, and mini-batch 

gradient descent using the total (60,000 training cases and 

10,000 test cases) Fashion-MNIST and Kuzushiji-MNIST 

dataset for 500 epochs and recorded the model’s accuracy 

for every 10 epochs. 

In evaluating [Fig. 3] and [Fig. 4], there are important 

observations we can consider in choosing our gradient 

descent for the initial dataset. First off, it is evident that 

batch gradient descent shows suboptimal performance for 

both Kuzushiji-MNIST and Fashion-MNIST for every 

recorded epoch in comparison to SGD and mini-batch. 

Next, comparing SGD and mini-batch for the Kuzushiji-

MNIST, we see that the two gradient descents show similar 

performance; however, over time, we see that mini-batch 

surpasses SGD in performance. For Fashion-MNIST, we 

can see that mini-batch is superior to SGD since mini-

batch consistently improves over each epoch while SGD 

seems to fluctuate due to noise. 

Through this comparison, we can see that although SGD 

is advantageous for online learning due to its low-cost-

per-iteration, it is easily affected by noise and shows poor 

convergence, which results from catastrophic interference. 

In contrast, the mini-batch shows less fluctuation due to the 

fact that the batch samples dampen noise from the data and 

alleviate catastrophic forgetting, making mini-batch the 

suitable optimization algorithm.  
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[Fig. 2] Implementation of Multilayer Perceptron and Proposed 

Method 

 
[Fig. 3] Performance of GD, SGD, and Mini-batch for Fashion-

MNIST over 500 epochs 

 
[Fig. 4] Performance of GD, SGD, and Mini-batch for Kuzushiji-

MNIST over 500 epochs  

 

4.4 Experiment with SGD and the Proposed Method 

As known, mini-batch is the most suitable choice when 

the entire dataset is given, so we used it as the optimization 

algorithm for the initial 10,000 samples, which will be 

optimized for 100 epochs after which mini-batch 

approaches saturation. After the initial training, we used the 

remaining 50,000 samples as the stream data and updated 

the model using SGD or the proposed method. 

During online training of the data stream, we measure 

the neural network’s performance every 10 new samples. 

[Fig. 5] and [Table 1] below show the results of SGD and 

our method for Fashion-MNIST while [Fig. 6] and [Table 2] 

below present the results for Kuzushiji-MNIST. Table 1 

and 2 display the statistics of SGD and the proposed 

method. 

From the graphs, box plots, and tables that have been 

extracted, it is perceivable that our proposed method 

performs to a greater standard than SGD.  

 

 
[Fig. 5] Performance of the proposed method and SGD over a data 

stream derived from Fashion-MNIST 

 

[Table 1] Comparison of SGD and Proposed Method with Fashion-

MNIST  

Statistic 
Iterative Method 

SGD Proposed Method 

Mean 0.77 0.81 

Standard 0.026 0.019 
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Statistic 
Iterative Method 

SGD Proposed Method 

Deviation 

Minimum 0.55 0.66 

Lower Quartile 0.76 0.81 

Median 0.77 0.82 

Upper Quartile 0.79 0.83 

Maximum 0.85 0.85 

 

 
[Fig. 6] Performance of the proposed method and SGD over a data 

stream derived from Kuzushiji-MNIST 

 

 

 

 

 

 

 

 

 

[Table 2] Comparison of SGD and Proposed Method with Kuzushiji-

MNIST 

Statistic 
Iterative Method 

SGD Proposed Method 

Mean 0.75 0.81 

Standard 

Deviation 
0.024 0.020 

Minimum 0.62 0.73 

Lower Quartile 0.73 0.80 

Median 0.75 0.82 

Upper Quartile 0.76 0.83 

Maximum 0.79 0.85 

 

First, assessing the graphs, our method was able to 

retain or improve the initial performance of the neural 

network at a greater rate than SGD. In the figure of 

Fashion-MNIST, when the performance of SGD dropped 

significantly after the first 5,000 samples, our method was 

able to stay relatively close to the original performance of 

the neural network. We can also see a similar conclusion in 

the figure of Kuzushiji-MNIST as SGD saw a significant 

decline in performance in the first few thousand samples 

while our method was generally able to improve on the 

previous neural network’s accuracy.  

The tables also display a similar verdict. In [Table 1] and 

[Table 2], we also precisely see that the proposed method 

performs more favorably than SGD in most aspects: our 

method had a higher accuracy than SGD for the mean, 

minimum, lower quartile, median, and upper quartile, while 

maintaining lower standard deviation, or fluctuation.  

In general, our method was more effective at improving 

the generalization of the neural network, reducing the loss 

in performance from the data-stream, and diminishing the 

variance in the performance of the neural network from 

catastrophic interference. 

 

5. Conclusion 

In this project, we proposed an online learning algorithm 

using backward queried data, and, from our results, we 

were able to validate the significance of our method for the 

application of online training. This is because we saw a 

reduction in the standard deviation of SGD and an 

improvement in its performance for both Fashion-MNIST 

and Kuzushiji-MNIST. Even more, the results demonstrate 

that our method is a viable option for real world 

applications of online machine learning due to the fact that 

we were able to enhance the ability of the neural network 

with relatively low cost and easy implementation. 

Still, it should be cautioned that our approach was 

exclusively benchmarked with the task of image 

classification using two datasets with fixed variables, such 

as the batch-size or the point during online training at 

which the backward-queried samples are derived. It is, 

hence, vital to continue investigating the effects of 

backward query on online training with different tasks, 

datasets, as well as different variables of backward query. 

Nevertheless, our project provides some optimistic insights 

into the potential of backward query in online machine 

learning. 
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【評語】190040 

This project uses backward queried images with SGD to 

enhance the online stochastic gradient descent method. Two 

experiments were conducted using Fashion-MINIST and 

Kuzushiji-MINIST datasets, and the results were presented and 

discussed. Overall, this work is technically sound and solid. It 

would be great if the proposed work could be applied to some 

real problems to further strengthen the impacts of this research. 
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