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Abstract—In this project, we evaluate the effectiveness of 
Random Shuffling in the Cross Lingual Information Retrieval 
(CLIR) process. We extended the monolingual Word2Vec model 
to a multilingual one via the random shuffling process. We then 
evaluate the cross-lingual word embeddings (CLE) in terms of 
retrieving parallel sentences, whereby the query sentence is in a 
source language and the parallel sentence is in some targeted 
language. Our experiments on three language pairs showed that 
models trained on a randomly shuffled dataset outperforms 
randomly initialized word embeddings substantially despite its 
simplicity. We also explored Smart Shuffling, a more 
sophisticated CLIR technique which makes use of word 
alignment and bilingual dictionaries to guide the shuffling 
process. Due to the complexity of the implementation and 
unavailability of open source codes, we defer experimental 
comparisons to future work. 

I.  INTRODUCTION  
In monolingual information retrieval, the queries and answers 
for retrieval are in the same language. However, in Cross 
Lingual Information Retrieval (CLIR), queries and answers 
are in different languages. This increases the difficulty of 
retrieving answers that are actually of interest to the user. For 
example, the user may enter a query in English, while the 
system's goal is to return a ranked list of documents in French 
that the user is interested in. Existing CLIR approaches 
include document translation, query translation, as well as the 
mapping of a both document and query to a third language or 
medium for comparison. Of the three, query translation is 
generally considered the most suitable due to its simplicity and 
effectiveness [1]. However, the main problem is dealing with 
translation ambiguity, which becomes more pronounced when 
query sentences are shorter. With limited context, translations 
to related terms in the document’s language would be difficult 
and inaccurate. In comparison, document translation is 
computationally more expensive and harder to scale as the 
entire document has to be translated to query language. 
However, its allure resides in its increased probability of 
correct translation to a synonymous query word, especially 
amongst more common query words. More recently, Vulic 
and Moens [2] introduced the concept of the Cross-lingual 
Word Embeddings (CLE) approach, which converts randomly 
shuffled parallel sentences into word embeddings for 
comparison. This method proved much more accurate than a 
model trained with a simpler baseline(translation of query 
before matching) for several reasons, one of which is due to its 
ability to efficiently convert parallel texts into dense vectors 
and map their proximity. The Smart Shuffling method 
introduced by Hamed, Sheikh and Allen in July 2020[3] takes 
the CLE approach one step further with the help of a 
dictionary in the reordering process when shuffling the 
parallel sentences. In our exploration, we implemented our 
simplified interpretation of their algorithm and exemplified 
how it shuffles grouped words with similar definitions closer 
to each other. In traditional information retrieval, the queries 
and documents for retrieval are in the same language. 

However, in Cross Lingual Information Retrieval(CLIR), 
queries and documents are in different languages. This 
increases the difficulty of retrieving documents that are 
actually of interest to the user. Generally, Random Shuffling is 
used in the CLIR process. Hence we want to explore the 
effectiveness of this method. 

II. FRAMEWORK 

A. Word2Vec Model and its Parameters 
For this experiment, we used Word2Vec, a popular method 
used to construct word embeddings from words in a 
document’s vocabulary using a shallow neural network. It was 
developed by Tomas Mikolov in 2013 at Google [4]. The 
word embedding formed from each word is capable of 
capturing the context of a word in the document, as well as its 
semantic and syntactic similarity in relation to the other words. 
We chose to use the Skip-Gram model. According to 
Mikolov[5], this model has the ability to represent words well 
despite working with small amounts of data. Given a target 
word, the skip gram model tries to predict its context, i.e. the 
surrounding words. For each input word in the input layer, the 
input word is linearly transformed through a weight matrix to 
form its one-hot representation and activated with an 
activation function to create a hidden layer. Each word also 
goes through a backward pass(backpropagation) which re-
calculates the input and output weight matrices. This process 
is repeated for every word in the training dataset in order to 
create word embeddings for use later on in the experiment. For 
our Word2Vec model, we use hyper-parameters based on the 
default values. Our minimum count was 3, which meant that 
in the dataset, a word had to have a total frequency higher than 
3 before it would be used for training the model. Our window 
size was 5 for our skip-gram model, which meant that the 
maximum distance between the current and predicted word in 
a sentence would be 5. We set the embedding size to 100. 

B. Random Shuffling 
For the Random Shuffling approach, each parallel sentence 

pair in the data set was tokenized. The word tokens of each 
sentence pairs are then randomly shuffled. Thereafter, the 
shuffled sentence will be used for training Word2Vec. The 
random shuffling creates a coarse-grained bilingual context for 
each word and enable the creation of a cross-lingual 
embedding space. Cross-lingual contexts allows the learned 
representations to capture cross-lingual relationships. While 
adjacent words in the shuffled sentences may not be correct 
translations, or may not approximate the original context 
closely, we hypothesize that if the sentences are short, random 
shuffling may still work adequately. Figure 1 illustrates 
random shuffling. For Word2Vec training, if the contextual 
window is set high enough, randomly shuffled words can still 
have a chance of forming useful cross-lingual associations. For 
example, the word “calling” would form connections with the 
words around it based on the window size. Due to this, the 
word “appellant”, which is the corresponding French definition 
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of “calling”, would form a strong association with it as well. 
The random shuffling technique thus may be able to capture 
cross-lingual information despite its simplicity. The code used 
can be found in Appendix 1.  
French sentence: Appellant les knights des les d’Orient l’est 
English sentence: Calling the knights of the Oriental East 
Shuffled Sentence: de knights les of appellant calling east oriental knights les 
des the the d’Orient l’est 

Figure 1: Randomly shuffled French-English sentence. In the shuffled 
sentence, shaded words are from the French sentence, while unshaded words 
are form the English sentence.  

C. Smart Shuffling 
In comparison, for the Smart Shuffling approach, word tokens 
are not shuffled randomly. Given a sentence in the source 
language, words from the parallel sentence in the targeted 
language are inserted as guided by the following procedure:  

• Words with similar forms in both the source and 
target language are placed adjacent to each other in 
the shuffled sentence. For example in Figure 2, the 
word “knight” is similar in both French and English.  

• Looking up a cross-lingual dictionary which maps 
words in a source language to the words in the target 
language. If there are matches, the target word is 
inserted adjacent to the source word. For example in 
Figure 2, the word “Appelant” maps to “Calling”. 

• If both above cases are not met, computing the 
character n-gram overlap between the dictionary 
translation of the source word and the target word, 
which is then used to compute a probability 
distribution. Given the source word, the target word 
is sampled. For example, “d’orient” and “oriental” 
overlaps substantially. Given “d’orient”, “oriental” 
will be sampled with higher probability for placement 
beside “d’orient”, as compared to other words in the 
English sentence. • If all above cases are not met, the 
target word is sampled from a uniform distribution, 
given the source word. Also note that insertion of 
target words is adjacent to, but randomly before or 
after the source word.  

 
French sentence: Appellant les knights des les d’Orient l’est 
English sentence: Calling the knights of the Oriental East 
Shuffled Sentence: appellant les the knights knights of des les the d’Orient  
oriental l’est East 
Figure 2: An example of a smartly shuffled sentence. The source language is 
French and the target language is English. 

 

We trained a Word2Vec model, utilising concepts such as 
random shuffling, cosine similarity, taking the mean reciprocal 
rank and calculating accuracy of test results. 

III. FINDINGS 
We applied the Random Shuffling approach to datasets of 
parallel movie subtitles. We downloaded parallel move 
subtitles from OPUS [6] and pre-processed it to remove 
punctuation as well as lower all alphabets. This was so as to 

ensure that the Word2Vec model learns each word 
independent of the punctuation around it, and does not mix up 
punctuations with words. Ensuring that all letters are in 
lowercase would lessen noise when processing and training 
the model as the model would not classify the capitalised and 
lowercase word as different words. For example, ‘America’ 
and ‘america’ would be classified as two different words 
though they are in actuality one word. Hence, the words 
should be converted to lowercase so as to minimise noise in 
the training process and prevent incorrect classification. 
Thereafter, we conducted 5 trials whereby for each trial, we 
randomly selected 1000 parallel sentence pairs as the test 
dataset. For each trial, we evaluate the randomly initialized 
embeddings first on the test data set prior to training. 
Thereafter, it was trained on randomly shuffled data before 
being tested with the 1000 parallel sentence pairs to evaluate 
its accuracy. The aim of conducting multiple trials was to 
improve the estimate of the mean model performance. 
Arbitrarily selecting the randomly shuffled data for training 
also served as a less-biased representative of the overall 
dataset. 

A. Testing 
For the testing process, we converted the words in the query 
and target sentences into word embeddings if they were in the 
vocabulary of the model. Each sentence was represented by a 
vector from the average of all the word embeddings it 
contained.  
 

 
Thereafter, we computed the cosine similarity between test 
vectors and candidate vectors. Equation 1 illustrates cosine 
similarity between vectors A and B, each of dimension n, and 
where ||.|| denotes the Euclidean norm of vectors. Cosine 
similarity ranges from -1 to 1, where -1 means that the results 
are perfectly dissimilar whereas 1 is perfectly similar. A 
cosine value of 0 means that the two vectors are perpendicular 
to each other. For each test vector, the corresponding 
candidate vectors were ranked in descending order.  

 
After the parallel sentence was sorted in order of descending 
cosine similarity, we then calculated the Mean Reciprocal 
Rank(MRR) of the correct candidate vector with Equation (2). 
For the i-th test sentence, the reciprocal rank is 1/ranki where 
ranki is the rank of the matching parallel sentence. For 
multiple queries, the reciprocal rank is the mean of the N 
reciprocal ranks. MRR is high if the correct corresponding 
candidate vectors are ranked high. We also computed the top-
10 accuracy, whereby for each test sentence, we checked if the 
correct answer sentence was ranked within the top 10. Across 
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all test sentences, we counted the number of times the correct 
candidate vector was within the top 10 candidate vectors and 
divided that by the number of test vectors to get our accuracy 
score. Before training, we calculated by probability that the 
parallel answer vector would have a 0.1% chance of being 
within the top 10 candidate vectors. We then hypothesised that, 
given our genism model consistently attained roughly 70% 
cosine-similarity score between the English word “house” and 
its French, Spanish and German synonyms (“maison”, “casa” 
and “haus”) after training, the top-10 accuracy score would be 
roughly 70%. In order to evaluate the trained model, the 
model was tested on 1000 parallel test sentences across 3 
different language pairs. The Mean Reciprocal Rank and 
Accuracy were both derived from the averages of 5 trials for 
each language pair. For each trial, the model was tested twice, 
once before and once after training. “Pre-training” refers to the 
model before it was trained on the bilingual training data 
while “Post-training” refers to the same model after it has 
been trained.  
 

B. Results 
  MRR Top-10 Accuracy 
English-French Pre-training 0.0585 0.0838 
 Post-training 0.547 0.673 
English-German Pre-training 0.0387 0.0622 
 Post-training 0.505 0.627 
English-Spanish Pre-training 0.0673 0.101 
 Post-training 0.696 0.817 
Table 1: Table of results. Pre-training refers to randomly initialised 
embeddings used prior to training. Post-training refers to The trained 
Word2Vec model based on random shuffling.  
C. Equations 
Table 1 represents our experimental results for the Random 
Shuffle datasets. On a whole, there was a significantly higher 
Top-10 Accuracy score after training. Using the English-
French results as a benchmark, the Top-10 Accuracy score 
increased from 0.0838 to 0.673 after training. This means that 
after training, the corresponding parallel target sentence was 
within the Top 10 candidate sentences almost 70% of the time. 
Similarly, the MRR score increased from 0.0585 pretraining to 
0.547 after training. This signifies that the model has been 
trained properly. Another notable difference was that the 
English-Spanish experiment has a slightly higher accuracy as 
compared to the English-French and English-German 
experiments. This may be due to the comparatively larger 
number of cognates between Spanish and English words as 
compared to the other languages. Cognates are words with a 
common etymological origin. There are about 20 000 Spanish-
English cognates, 1700 French-English cognates and around 
1000 German-English cognates. Due to the high prevalence of 
cognates, it is plausible that cosine similarity between Spanish 
and English words would be higher, hence resulting in better 
classification and slighter greater accuracy. Nevertheless, 
having repeated each bilingual experiment on 5 test folds of 
data tabulating an average to be used in table 1 above, we 
believe that our results are statistically significant.  
 

IV. CONCLUSION 
We have explored a simple cross-lingual word embedding 
model based on random shuffling and it achieved almost 70% 
accuracy in matching short parallel sentences as compared to 
the 0.1% accuracy before training. This shows that despite its 
simplicity, random shuffling performs well when matching 
short noncomplexed parallel sentences between romance 
languages. This model can thus be implemented in search 
engines to aid in bilingual query translation as well as 
information retrieval. However, one limitation of the model is 
its inability to recognise stylistic language. For example, 
should the idiom “let the cat out of the bag” be used, a search 
engine implemented with my model would search for words 
related to “cat” and “bag” despite the phrase having the 
connotation of “revealing facts previously hidden”. As the 
skipgram model used only has a window size of 5 words, the 
idiom will not be considered in its totality. As a result, the 
meaning of the idiom may be distorted when translated. 
Another potential limitation is the translation gap. As my 
model has a tendency to search for words with similar 
embeddings to itself, the word chosen may not necessarily be 
precise. Hence, a translation gap arises. In order to circumvent 
that issue, Hamed, Sheikh and Allen proposed using the Smart 
Shuffling method which is able to bridge the translation gap. 
In future works, we hope to compare the effectiveness of the 
Random Shuffling method in relation to the Smart Shuffling 
method, as well as other more sophisticated models. 
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APPENDIX 1 
 
import gensim 
import pickle 
import os 
import numpy as np 
from sklearn.metrics.pairwise import cosine_similarity 
from gensim.models import Word2Vec 
from timeit import default_timer as timer 
 
def get_plain(content): 
    #content_plain = re.sub(r'[^\x00-\x7f]',r'',content.strip()) 
    content_plain=content.strip() 
    return content_plain 
 
 
class MySentences(object): 
    def __init__(self, dirname): 
        self.dirname = dirname 
    def __iter__(self): 
        for fname in os.listdir(self.dirname): 
            for line in open(os.path.join(self.dirname, fname)): 
                # can pre-process & clean sentence here 
                l=line.strip() 
                content_plain = get_plain(l) 
                content_plain=content_plain.strip().lower() 
                yield content_plain.split(' ') 
 
# no longer doing cross-validation 
# use some for training, rest for testing. This is what you are 
doing now anyway 
# your codes are haphazardly trying to force cross-validation 
code to do non-cross validation stuff 
def split_test_train(num_test): 
    fp=open("example/en_test",'r') 
    en_sent=fp.readlines() 
    fp.close() 
    fp=open("example/fr_test",'r') 
    fr_sent=fp.readlines() 
    fp.close() 
 
    usable=[]   # store ids of sentence pairs that we can use 
    for i in range(0, len(en_sent)): 
        en=en_sent[i].strip().lower() 
        fr=fr_sent[i].strip().lower() 
        if en!=fr:  # if sentences are not same, can use 
            if len(en)>0 and len(fr)>0: # should not be blank 
                usable.append(i) 
        else: 
            #print(en, '|', fr) 
            pass 
    print('usable', len(usable)) 
 
    np.random.seed(0)   # to get the same ordering every time 
shuffling is done. For experiment reproducibility 
    permuted=np.random.permutation(usable)  # shuffled     
    test_indices=permuted[0:num_test] 

    train_indices=permuted[num_test:] 
    print('num test', len(test_indices)) 
    print('num train', len(train_indices)) 
 
    # save training set for training word2vec 
    fp=open('random_shuffle/training_data','w') 
    for sent_id in train_indices: 
        en=en_sent[sent_id].strip().lower() 
        fr=fr_sent[sent_id].strip().lower() 
        en_tokens=en.split(' ') 
        fr_tokens=fr.split(' ') 
        mixed_tokens=en_tokens+fr_tokens 
        np.random.shuffle(mixed_tokens) 
        for token in mixed_tokens: 
            fp.write(token+' ') 
        fp.write('\n')             
    fp.close() 
 
    # store test sentences in memory 
    testSet=[] 
    for sent_id in test_indices: 
        en=en_sent[sent_id].strip().lower() 
        fr=fr_sent[sent_id].strip().lower() 
        testSet.append([fr, en]) 
         
    return testSet         
 
 
def embed_sentence(sent, model): 
    dim=100 
    tokens=sent.split(' ') 
    sum_v=np.zeros([1,dim]) 
    counter=0 
    for token in tokens: 
        if token in model.wv.vocab: 
            sum_v+=model.wv[token] 
            counter+=1 
    if counter>0: 
        vector=sum_v/counter 
        vector=np.array(vector) 
        return [vector, 1] 
    else: 
        return [sum_v, 0] 
 
def embed_stuff(model, testpairs): 
    fr_emb=[] 
    en_emb=[] 
    for fr, en in testpairs: 
        fr_vec, fr_flag=embed_sentence(fr, model) 
        en_vec, en_flag=embed_sentence(en, model) 
        if en_flag==1 and fr_flag==1: 
            fr_emb.append(fr_vec) 
            en_emb.append(en_vec) 
    return [fr_emb, en_emb] 
 
def get_cosim_ranking(test_emb, ans_emb): 
    rr_list=[] 
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    num_correct=0 
    for j in range(0,len(test_emb)): 
        cosim_list=[] 
        for i in range(0,len(ans_emb)): 
            cosim=cosine_similarity(test_emb[j], ans_emb[i]) 
            cosim_list.append((cosim[0][0], i)) 
        cosim_list.sort(key=lambda x:x[0], reverse=True) 
        rank=0 
        rr=0.0 
        for cos, k in cosim_list: 
            rank+=1 
            if k==j: 
                rr=1/rank 
                if rank<=10: 
                    num_correct+=1 
                break 
        rr_list.append(rr) 
        #print(rr) 
        #if j==100: 
        #    break 
 
    mrr=np.mean(rr_list) 
    accuracy=num_correct/len(test_emb) 
    return num_correct, accuracy, mrr 
 
 
 
num_test=1000       # pairs for testing. actual number may be 
slightly lower cos some pairs not embedded 
 
initial_testSet=split_test_train(num_test) 
 
sentences = MySentences("random_shuffle/") 
model = gensim.models.Word2Vec(min_count=3, window=5, 
size=100, sg=1, seed=0, workers=1) 
model.build_vocab(sentences) 
[fr_emb, en_emb]=embed_stuff(model,initial_testSet) 
print('actual no. of test pairs', len(fr_emb), len(en_emb)) 
 
start = timer() 

num_correct, accuracy, mrr=get_cosim_ranking(fr_emb, 
en_emb) 
end = timer() 
print('elapsed', end-start) 
print("Before training:", accuracy, mrr) 
 
start = timer() 
model.train(sentences, total_examples=model.corpus_count, 
epochs=10) 
model.save('model') 
end = timer() 
 
#model=gensim.models.Word2Vec.load("model") 
 
print('training elapsed', end-start) 
 
[fr_emb, en_emb]=embed_stuff(model,initial_testSet) 
num_correct, accuracy, mrr=get_cosim_ranking(fr_emb, 
en_emb) 
print("after training:", accuracy, mrr) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



【評語】190039 

This project evaluates the effectiveness of random shuffling 

in the cross-lingual information retrieval (CLIR) process. 

Experimental results on three language pairs showed that 

models trained on a randomly shuffled dataset outperforms 

randomly initialized word embeddings substantially despite its 

simplicity. It would be even nicer if additional languages 

(especially the ones that belong to the other language families) 

could be included in this study to further strengthen the impacts 

of this research. 
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