
190039
2022 年臺灣國際科學展覽會

優勝作品專輯

作品編號 190039

參展科別 電腦科學與資訊工程

作品名稱 Cross-lingual Information Retrieval

得獎獎項

國 家 Singapore

就讀學校 Raffles Girls' School

指導教師 Shaun de Souza

作者姓名 Alysa Lee Mynn

關鍵詞 Cross Lingual Information Retrieval

CLIR)、Cross-lingual word embeddings、

random shuffling

i

作者照片

1

Abstract—In this project, we evaluate the effectiveness of
Random Shuffling in the Cross Lingual Information Retrieval
(CLIR) process. We extended the monolingual Word2Vec model
to a multilingual one via the random shuffling process. We then
evaluate the cross-lingual word embeddings (CLE) in terms of
retrieving parallel sentences, whereby the query sentence is in a
source language and the parallel sentence is in some targeted
language. Our experiments on three language pairs showed that
models trained on a randomly shuffled dataset outperforms
randomly initialized word embeddings substantially despite its
simplicity. We also explored Smart Shuffling, a more
sophisticated CLIR technique which makes use of word
alignment and bilingual dictionaries to guide the shuffling
process. Due to the complexity of the implementation and
unavailability of open source codes, we defer experimental
comparisons to future work.

I. INTRODUCTION
In monolingual information retrieval, the queries and answers
for retrieval are in the same language. However, in Cross
Lingual Information Retrieval (CLIR), queries and answers
are in different languages. This increases the difficulty of
retrieving answers that are actually of interest to the user. For
example, the user may enter a query in English, while the
system's goal is to return a ranked list of documents in French
that the user is interested in. Existing CLIR approaches
include document translation, query translation, as well as the
mapping of a both document and query to a third language or
medium for comparison. Of the three, query translation is
generally considered the most suitable due to its simplicity and
effectiveness [1]. However, the main problem is dealing with
translation ambiguity, which becomes more pronounced when
query sentences are shorter. With limited context, translations
to related terms in the document’s language would be difficult
and inaccurate. In comparison, document translation is
computationally more expensive and harder to scale as the
entire document has to be translated to query language.
However, its allure resides in its increased probability of
correct translation to a synonymous query word, especially
amongst more common query words. More recently, Vulic
and Moens [2] introduced the concept of the Cross-lingual
Word Embeddings (CLE) approach, which converts randomly
shuffled parallel sentences into word embeddings for
comparison. This method proved much more accurate than a
model trained with a simpler baseline(translation of query
before matching) for several reasons, one of which is due to its
ability to efficiently convert parallel texts into dense vectors
and map their proximity. The Smart Shuffling method
introduced by Hamed, Sheikh and Allen in July 2020[3] takes
the CLE approach one step further with the help of a
dictionary in the reordering process when shuffling the
parallel sentences. In our exploration, we implemented our
simplified interpretation of their algorithm and exemplified
how it shuffles grouped words with similar definitions closer
to each other. In traditional information retrieval, the queries
and documents for retrieval are in the same language.

However, in Cross Lingual Information Retrieval(CLIR),
queries and documents are in different languages. This
increases the difficulty of retrieving documents that are
actually of interest to the user. Generally, Random Shuffling is
used in the CLIR process. Hence we want to explore the
effectiveness of this method.

II. FRAMEWORK

A. Word2Vec Model and its Parameters
For this experiment, we used Word2Vec, a popular method
used to construct word embeddings from words in a
document’s vocabulary using a shallow neural network. It was
developed by Tomas Mikolov in 2013 at Google [4]. The
word embedding formed from each word is capable of
capturing the context of a word in the document, as well as its
semantic and syntactic similarity in relation to the other words.
We chose to use the Skip-Gram model. According to
Mikolov[5], this model has the ability to represent words well
despite working with small amounts of data. Given a target
word, the skip gram model tries to predict its context, i.e. the
surrounding words. For each input word in the input layer, the
input word is linearly transformed through a weight matrix to
form its one-hot representation and activated with an
activation function to create a hidden layer. Each word also
goes through a backward pass(backpropagation) which re-
calculates the input and output weight matrices. This process
is repeated for every word in the training dataset in order to
create word embeddings for use later on in the experiment. For
our Word2Vec model, we use hyper-parameters based on the
default values. Our minimum count was 3, which meant that
in the dataset, a word had to have a total frequency higher than
3 before it would be used for training the model. Our window
size was 5 for our skip-gram model, which meant that the
maximum distance between the current and predicted word in
a sentence would be 5. We set the embedding size to 100.

B. Random Shuffling
For the Random Shuffling approach, each parallel sentence

pair in the data set was tokenized. The word tokens of each
sentence pairs are then randomly shuffled. Thereafter, the
shuffled sentence will be used for training Word2Vec. The
random shuffling creates a coarse-grained bilingual context for
each word and enable the creation of a cross-lingual
embedding space. Cross-lingual contexts allows the learned
representations to capture cross-lingual relationships. While
adjacent words in the shuffled sentences may not be correct
translations, or may not approximate the original context
closely, we hypothesize that if the sentences are short, random
shuffling may still work adequately. Figure 1 illustrates
random shuffling. For Word2Vec training, if the contextual
window is set high enough, randomly shuffled words can still
have a chance of forming useful cross-lingual associations. For
example, the word “calling” would form connections with the
words around it based on the window size. Due to this, the
word “appellant”, which is the corresponding French definition

2

of “calling”, would form a strong association with it as well.
The random shuffling technique thus may be able to capture
cross-lingual information despite its simplicity. The code used
can be found in Appendix 1.
French sentence: Appellant les knights des les d’Orient l’est
English sentence: Calling the knights of the Oriental East
Shuffled Sentence: de knights les of appellant calling east oriental knights les
des the the d’Orient l’est

Figure 1: Randomly shuffled French-English sentence. In the shuffled
sentence, shaded words are from the French sentence, while unshaded words
are form the English sentence.

C. Smart Shuffling
In comparison, for the Smart Shuffling approach, word tokens
are not shuffled randomly. Given a sentence in the source
language, words from the parallel sentence in the targeted
language are inserted as guided by the following procedure:

• Words with similar forms in both the source and
target language are placed adjacent to each other in
the shuffled sentence. For example in Figure 2, the
word “knight” is similar in both French and English.

• Looking up a cross-lingual dictionary which maps
words in a source language to the words in the target
language. If there are matches, the target word is
inserted adjacent to the source word. For example in
Figure 2, the word “Appelant” maps to “Calling”.

• If both above cases are not met, computing the
character n-gram overlap between the dictionary
translation of the source word and the target word,
which is then used to compute a probability
distribution. Given the source word, the target word
is sampled. For example, “d’orient” and “oriental”
overlaps substantially. Given “d’orient”, “oriental”
will be sampled with higher probability for placement
beside “d’orient”, as compared to other words in the
English sentence. • If all above cases are not met, the
target word is sampled from a uniform distribution,
given the source word. Also note that insertion of
target words is adjacent to, but randomly before or
after the source word.

French sentence: Appellant les knights des les d’Orient l’est
English sentence: Calling the knights of the Oriental East
Shuffled Sentence: appellant les the knights knights of des les the d’Orient
oriental l’est East
Figure 2: An example of a smartly shuffled sentence. The source language is
French and the target language is English.

We trained a Word2Vec model, utilising concepts such as
random shuffling, cosine similarity, taking the mean reciprocal
rank and calculating accuracy of test results.

III. FINDINGS
We applied the Random Shuffling approach to datasets of
parallel movie subtitles. We downloaded parallel move
subtitles from OPUS [6] and pre-processed it to remove
punctuation as well as lower all alphabets. This was so as to

ensure that the Word2Vec model learns each word
independent of the punctuation around it, and does not mix up
punctuations with words. Ensuring that all letters are in
lowercase would lessen noise when processing and training
the model as the model would not classify the capitalised and
lowercase word as different words. For example, ‘America’
and ‘america’ would be classified as two different words
though they are in actuality one word. Hence, the words
should be converted to lowercase so as to minimise noise in
the training process and prevent incorrect classification.
Thereafter, we conducted 5 trials whereby for each trial, we
randomly selected 1000 parallel sentence pairs as the test
dataset. For each trial, we evaluate the randomly initialized
embeddings first on the test data set prior to training.
Thereafter, it was trained on randomly shuffled data before
being tested with the 1000 parallel sentence pairs to evaluate
its accuracy. The aim of conducting multiple trials was to
improve the estimate of the mean model performance.
Arbitrarily selecting the randomly shuffled data for training
also served as a less-biased representative of the overall
dataset.

A. Testing
For the testing process, we converted the words in the query
and target sentences into word embeddings if they were in the
vocabulary of the model. Each sentence was represented by a
vector from the average of all the word embeddings it
contained.

Thereafter, we computed the cosine similarity between test
vectors and candidate vectors. Equation 1 illustrates cosine
similarity between vectors A and B, each of dimension n, and
where ||.|| denotes the Euclidean norm of vectors. Cosine
similarity ranges from -1 to 1, where -1 means that the results
are perfectly dissimilar whereas 1 is perfectly similar. A
cosine value of 0 means that the two vectors are perpendicular
to each other. For each test vector, the corresponding
candidate vectors were ranked in descending order.

After the parallel sentence was sorted in order of descending
cosine similarity, we then calculated the Mean Reciprocal
Rank(MRR) of the correct candidate vector with Equation (2).
For the i-th test sentence, the reciprocal rank is 1/ranki where
ranki is the rank of the matching parallel sentence. For
multiple queries, the reciprocal rank is the mean of the N
reciprocal ranks. MRR is high if the correct corresponding
candidate vectors are ranked high. We also computed the top-
10 accuracy, whereby for each test sentence, we checked if the
correct answer sentence was ranked within the top 10. Across

3

all test sentences, we counted the number of times the correct
candidate vector was within the top 10 candidate vectors and
divided that by the number of test vectors to get our accuracy
score. Before training, we calculated by probability that the
parallel answer vector would have a 0.1% chance of being
within the top 10 candidate vectors. We then hypothesised that,
given our genism model consistently attained roughly 70%
cosine-similarity score between the English word “house” and
its French, Spanish and German synonyms (“maison”, “casa”
and “haus”) after training, the top-10 accuracy score would be
roughly 70%. In order to evaluate the trained model, the
model was tested on 1000 parallel test sentences across 3
different language pairs. The Mean Reciprocal Rank and
Accuracy were both derived from the averages of 5 trials for
each language pair. For each trial, the model was tested twice,
once before and once after training. “Pre-training” refers to the
model before it was trained on the bilingual training data
while “Post-training” refers to the same model after it has
been trained.

B. Results
 MRR Top-10 Accuracy
English-French Pre-training 0.0585 0.0838
 Post-training 0.547 0.673
English-German Pre-training 0.0387 0.0622
 Post-training 0.505 0.627
English-Spanish Pre-training 0.0673 0.101
 Post-training 0.696 0.817
Table 1: Table of results. Pre-training refers to randomly initialised
embeddings used prior to training. Post-training refers to The trained
Word2Vec model based on random shuffling.
C. Equations
Table 1 represents our experimental results for the Random
Shuffle datasets. On a whole, there was a significantly higher
Top-10 Accuracy score after training. Using the English-
French results as a benchmark, the Top-10 Accuracy score
increased from 0.0838 to 0.673 after training. This means that
after training, the corresponding parallel target sentence was
within the Top 10 candidate sentences almost 70% of the time.
Similarly, the MRR score increased from 0.0585 pretraining to
0.547 after training. This signifies that the model has been
trained properly. Another notable difference was that the
English-Spanish experiment has a slightly higher accuracy as
compared to the English-French and English-German
experiments. This may be due to the comparatively larger
number of cognates between Spanish and English words as
compared to the other languages. Cognates are words with a
common etymological origin. There are about 20 000 Spanish-
English cognates, 1700 French-English cognates and around
1000 German-English cognates. Due to the high prevalence of
cognates, it is plausible that cosine similarity between Spanish
and English words would be higher, hence resulting in better
classification and slighter greater accuracy. Nevertheless,
having repeated each bilingual experiment on 5 test folds of
data tabulating an average to be used in table 1 above, we
believe that our results are statistically significant.

IV. CONCLUSION
We have explored a simple cross-lingual word embedding
model based on random shuffling and it achieved almost 70%
accuracy in matching short parallel sentences as compared to
the 0.1% accuracy before training. This shows that despite its
simplicity, random shuffling performs well when matching
short noncomplexed parallel sentences between romance
languages. This model can thus be implemented in search
engines to aid in bilingual query translation as well as
information retrieval. However, one limitation of the model is
its inability to recognise stylistic language. For example,
should the idiom “let the cat out of the bag” be used, a search
engine implemented with my model would search for words
related to “cat” and “bag” despite the phrase having the
connotation of “revealing facts previously hidden”. As the
skipgram model used only has a window size of 5 words, the
idiom will not be considered in its totality. As a result, the
meaning of the idiom may be distorted when translated.
Another potential limitation is the translation gap. As my
model has a tendency to search for words with similar
embeddings to itself, the word chosen may not necessarily be
precise. Hence, a translation gap arises. In order to circumvent
that issue, Hamed, Sheikh and Allen proposed using the Smart
Shuffling method which is able to bridge the translation gap.
In future works, we hope to compare the effectiveness of the
Random Shuffling method in relation to the Smart Shuffling
method, as well as other more sophisticated models.

REFERENCES
[1] Ren, Fuji & Bracewell, David. (2009). Advanced Information Retrieval.
Electronic Notes in Theoretical Computer Science. 225. 303-317.
10.1016/j.entcs.2008.12.082.

[2] Ivan Vulić and Marie-Francine Moens. 2015. Monolingual and Cross-
Lingual Information Retrieval Models Based on (Bilingual) Word
Embeddings. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR
'15). Association for Computing Machinery, New York, NY, USA, 363–372.
DOI:https://doi.org/10.1145/2766462.2767752

[3] Hamed Bonab, Sheikh Muhammad Sarwar, and James Allan. 2020.
Training Effective Neural CLIR by Bridging the Translation Gap. In
Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR '20). Association for
Computing Machinery, New York, NY, USA, 9–18.
DOI:https://doi.org/10.1145/3397271.3401035

[4] Mikolov, Tomas; et al. (2013). "Efficient Estimation of Word
Representations in Vector Space"

[5] M. (n.d.). De-obfuscated Python + question. Retrieved January 03, 2021,
from https://groups.google.com/g/word2vec-
toolkit/c/NLvYXU99cAM/m/E5ld8LcDxlAJ

[6] P. Lison and J. Tiedemann, 2016, OpenSubtitles2016: Extracting Large
Parallel Corpora from Movie and TV Subtitles. In Proceedings of the 10th
International Conference on Language Resources and Evaluation (LREC 2016)

https://groups.google.com/g/word2vec-toolkit/c/NLvYXU99cAM/m/E5ld8LcDxlAJ
https://groups.google.com/g/word2vec-toolkit/c/NLvYXU99cAM/m/E5ld8LcDxlAJ

4

APPENDIX 1

import gensim
import pickle
import os
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from gensim.models import Word2Vec
from timeit import default_timer as timer

def get_plain(content):
 #content_plain = re.sub(r'[^\x00-\x7f]',r'',content.strip())
 content_plain=content.strip()
 return content_plain

class MySentences(object):
 def __init__(self, dirname):
 self.dirname = dirname
 def __iter__(self):
 for fname in os.listdir(self.dirname):
 for line in open(os.path.join(self.dirname, fname)):
 # can pre-process & clean sentence here
 l=line.strip()
 content_plain = get_plain(l)
 content_plain=content_plain.strip().lower()
 yield content_plain.split(' ')

no longer doing cross-validation
use some for training, rest for testing. This is what you are
doing now anyway
your codes are haphazardly trying to force cross-validation
code to do non-cross validation stuff
def split_test_train(num_test):
 fp=open("example/en_test",'r')
 en_sent=fp.readlines()
 fp.close()
 fp=open("example/fr_test",'r')
 fr_sent=fp.readlines()
 fp.close()

 usable=[] # store ids of sentence pairs that we can use
 for i in range(0, len(en_sent)):
 en=en_sent[i].strip().lower()
 fr=fr_sent[i].strip().lower()
 if en!=fr: # if sentences are not same, can use
 if len(en)>0 and len(fr)>0: # should not be blank
 usable.append(i)
 else:
 #print(en, '|', fr)
 pass
 print('usable', len(usable))

 np.random.seed(0) # to get the same ordering every time
shuffling is done. For experiment reproducibility
 permuted=np.random.permutation(usable) # shuffled
 test_indices=permuted[0:num_test]

 train_indices=permuted[num_test:]
 print('num test', len(test_indices))
 print('num train', len(train_indices))

 # save training set for training word2vec
 fp=open('random_shuffle/training_data','w')
 for sent_id in train_indices:
 en=en_sent[sent_id].strip().lower()
 fr=fr_sent[sent_id].strip().lower()
 en_tokens=en.split(' ')
 fr_tokens=fr.split(' ')
 mixed_tokens=en_tokens+fr_tokens
 np.random.shuffle(mixed_tokens)
 for token in mixed_tokens:
 fp.write(token+' ')
 fp.write('\n')
 fp.close()

 # store test sentences in memory
 testSet=[]
 for sent_id in test_indices:
 en=en_sent[sent_id].strip().lower()
 fr=fr_sent[sent_id].strip().lower()
 testSet.append([fr, en])

 return testSet

def embed_sentence(sent, model):
 dim=100
 tokens=sent.split(' ')
 sum_v=np.zeros([1,dim])
 counter=0
 for token in tokens:
 if token in model.wv.vocab:
 sum_v+=model.wv[token]
 counter+=1
 if counter>0:
 vector=sum_v/counter
 vector=np.array(vector)
 return [vector, 1]
 else:
 return [sum_v, 0]

def embed_stuff(model, testpairs):
 fr_emb=[]
 en_emb=[]
 for fr, en in testpairs:
 fr_vec, fr_flag=embed_sentence(fr, model)
 en_vec, en_flag=embed_sentence(en, model)
 if en_flag==1 and fr_flag==1:
 fr_emb.append(fr_vec)
 en_emb.append(en_vec)
 return [fr_emb, en_emb]

def get_cosim_ranking(test_emb, ans_emb):
 rr_list=[]

5

 num_correct=0
 for j in range(0,len(test_emb)):
 cosim_list=[]
 for i in range(0,len(ans_emb)):
 cosim=cosine_similarity(test_emb[j], ans_emb[i])
 cosim_list.append((cosim[0][0], i))
 cosim_list.sort(key=lambda x:x[0], reverse=True)
 rank=0
 rr=0.0
 for cos, k in cosim_list:
 rank+=1
 if k==j:
 rr=1/rank
 if rank<=10:
 num_correct+=1
 break
 rr_list.append(rr)
 #print(rr)
 #if j==100:
 # break

 mrr=np.mean(rr_list)
 accuracy=num_correct/len(test_emb)
 return num_correct, accuracy, mrr

num_test=1000 # pairs for testing. actual number may be
slightly lower cos some pairs not embedded

initial_testSet=split_test_train(num_test)

sentences = MySentences("random_shuffle/")
model = gensim.models.Word2Vec(min_count=3, window=5,
size=100, sg=1, seed=0, workers=1)
model.build_vocab(sentences)
[fr_emb, en_emb]=embed_stuff(model,initial_testSet)
print('actual no. of test pairs', len(fr_emb), len(en_emb))

start = timer()

num_correct, accuracy, mrr=get_cosim_ranking(fr_emb,
en_emb)
end = timer()
print('elapsed', end-start)
print("Before training:", accuracy, mrr)

start = timer()
model.train(sentences, total_examples=model.corpus_count,
epochs=10)
model.save('model')
end = timer()

#model=gensim.models.Word2Vec.load("model")

print('training elapsed', end-start)

[fr_emb, en_emb]=embed_stuff(model,initial_testSet)
num_correct, accuracy, mrr=get_cosim_ranking(fr_emb,
en_emb)
print("after training:", accuracy, mrr)

【評語】190039

This project evaluates the effectiveness of random shuffling

in the cross-lingual information retrieval (CLIR) process.

Experimental results on three language pairs showed that

models trained on a randomly shuffled dataset outperforms

randomly initialized word embeddings substantially despite its

simplicity. It would be even nicer if additional languages

(especially the ones that belong to the other language families)

could be included in this study to further strengthen the impacts

of this research.

C:\Users\cutes\OneDrive\Documents\國際科展_2022\排版\190039-評語

	190039-封面
	190039

	190039-作者照片
	190039-本文
	I. Introduction
	II. Framework
	A. Word2Vec Model and its Parameters
	B. Random Shuffling
	C. Smart Shuffling

	III. Findings
	A. Testing
	B. Results
	C. Equations

	IV. Conclusion
	References

	190039-評語

