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Abstract

Hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) provide an attractive
path to obtain sustainable energy and tackle the issue of global warming. However, today HER and
OER highly depend on noble-metal-based catalysts such as Pt and Ru, which obstructs the
large-scale commercial applications of energy conversion devices. In this study, the Co-based
electrocatalysts were prepared by electrodeposition. Electrodeposition method is a simple and fast
technology to construct multi-composition materials. By adjusting ratio of metals and reaction time,
we successfully synthesized Co, Co-Mo and Co-W catalysts respectively. The better catalyst can be
obtained under the kinetics conditions of 65°C and 1 hour. After coated onto the Nickel foam, the
electrocatalysts were examined by scanning electron microscope (SEM) and X-ray diffractometer
(XRD). Among three different catalysts, Co-Mo shows the highest efficiency for catalyzing OER at
low overpotential (7 =290 mV@10 mA cm), and the tafel slope is 61.1 mV/dec. In the meantime, it
also shows the highest efficiency for catalyzing HER at low overpotential (7 =56.8 mV@10 mA
cm), and the tafel slope is 93.6 mV/dec. The outstanding performance enlists these electrocatalysts
to be promising candidates as low-cost anode and cathode materials for wide applications in water

splitting.



1. Introduction

1.1 Purpose of the Research

Ir and Ru-based nanoparticles appear as the most efficient OER electrocatalysts in recent
decades. However, the scarcity and poor stability remain the huge barriers to the implementation of
these precious metals in practical hydrogen production. Therefore, the exploration of high-efficiency
and cost-effective OER electrocatalysts is of great significance for the large-scale production and
application of hydrogen energy in renewable energy technology fields.

To verify the synergistic effect, this study synthesized Co and Co-based electrocatalysts (Co-W,
Co-Mo) and compared their HER and OER performances. Co and Co-based electrocatalysts were
produced by electrodeposition process which offers important advantages and unique possibilities in
the development of nanostructure. Using this technique, it is possible to obtain a metal nanocoating
in a single step process. Co and Co-based electrocatalysts were examined by various methods, such
as linear sweep voltammetry (LSV), cyclic voltammetry (CV) and electrochemical impedance
spectroscopy (EIS). Their morphologies were also confirmed by scanning electron microscope (SEM)
and X-ray diffractometer (XRD). Additionally, this study adjusted Co/W molar ratio and Co/Mo

molar ratio to obtain the optimized electrocatalysts.

2. Method and Procedure

2.1 Fundamental of HER and OER
Fundamentals of HER and OER electrochemical water splitting can produce pure hydrogen at
the cathode and oxygen at the anode in an electrolytic cell, which are two very critical half-cell
reactions for electrochemical water-electrolysis. The water splitting reaction can be expressed as
follows:
2H20 — 2H2+ O2
The reactions at the cathode and anode parts for the water-splitting reaction under alkaline condition

can be expressed as follows:



Cathode reaction:
4H20 + 4¢° — 2H2+40H E°=-0.83V
Anode reaction:
40H — 02+ 2H20 + 4e” E°=-0.40V
The thermodynamic voltage of water splitting is 1.23 V (vs normal hydrogen electrode (NHE)) at
25°C and 1 atm, but much higher potentials are needed to drive efficient water splitting. This excess
potential, which is called the overpotential (1)), is required to overcome the intrinsic activation
barriers during the electrode reaction. The actual applied potential for the two half-cell reactions of
water splitting can be expressed as follows:
EHer = E%er + iR + MHER
Eoer = E%er + iR + noer

iR is the ohmic potential drop of the system and 7 is the overpotential, E%er = 0 and E%er = 1.23 V.
In this study, iR compensation is 95%.
2.2 Hydrogen Evolution Reaction (HER)
HER is a two-electron transfer process that occurs on the cathode in water electrolysis. In general,
this multi-step elementary reaction mechanism is called the Volmer-Heyrovsky mechanism or the
\Volmer-Tafel mechanism as illustrated as follows:
For Volmer-Heyrovsky mechanism in alkaline condition:

H20q) +e +* — H* + OH(aqg), Volmer reaction

H* + H2Oq) + & — Hzg) + OH@ag) + *, Heyrovsky reaction

For Volmer-Tafel mechanism in alkaline condition:

H200) + e +* — H* + OH(aq), Volmer reaction

H* + H* — Hpq) + 2*, Tafel reaction (acidic and alkaline)

* denotes an empty active site, and H* denotes a hydrogen atom bonded to the active site.



2.3 Oxygen Evolution Reaction (OER)
Oxygen evolution reaction (OER) is a four-electron transfer process with a very sluggish reaction
rate that severely limits oxygen production, thus, the reaction process of OER is relatively
complicated. They are basically discussed around three intermediates (O*, OH*, and OOH%*).
Currently, the generally recognized reaction mechanisms of OER can be illustrated as follows:
Proposed mechanism under alkaline conditions:

M+ OH — MOH

MOH + OH" — MO + H20)
2MO — 2M + Og()
MO + OH" — MOOH + ¢

MOOH + OH — M + Oz + H20

2.4 Preparation of Co, Co-Mo and Co-W Electrodes

The three electrodes have been produced by electrodeposition on Nickel foam (NF). The principle of

the electrodeposition is shown in Fig. 1. First, the reactants are dissolved in the electrolyte. By

fine-tuning the applied cell potential, the oxidizing or reducing products can be continuously

deposited on the surface of the working electrode (WE) or counter electrode (CE). All

electrodeposition, lasting 1 hour, have been carried out at 5V and 65°C.

Reagents Co Co-Mo Co-W
NasCsHsO7 0.5M 0.5M 0.5M
CoN20s - 6H20 0.23M 0.23M 0.23M
NazMoO4 - 0.08M/0.23M/0.69M -
Na2WOs- 2H2.0 - - 0.08M/0.23M/0.69M

Table 1 Composition of the three used electrolytes



Platinum Nickel Foam

Fig. 1 Principle of the electrodeposition
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Fig. 2 Co-W electrodeposited on nickel foam
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3. Results and Discussion

3.1 Electrochemical Measurement

Electrochemical measurements were performed in a electrochemical workstation (CH
Instruments) in a typical three-electrode setup. An Ag/AgClI (3 M KCL) electrode and a platinum
electrode were used as the reference and counter electrode, respectively. In this study, Erre = E +
Eagager + 0.059*14(pH value) = E + 1.023

Linear sweep voltammetry (LSV) is a method where there is linear variation of the electrode
potential with time with the scan rate (v). In LSV, only the first half-cycle of a cyclic voltammogram
IS executed. Scanning starts at a potential where no electrochemical reaction occurs. Current can be
observed at the potential where the charge transfer begins, which increases with the potential. In this
project, LSV were carried out with scan rate 20 mV s over a range from -0.9 to +1.3 V for HER and
0to 0.7 V for OER. All the experiments were carried out at room temperature in 1M KOH solutions.
3.2 Results of HER
3.2.1 Overpotential and Tafel Slope

In Fig. 3, it shows that the overpotential of Co is 150 mV at 10 mA cm, and the tafel slope is

149 mV/dec.
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Fig. 3 a) LSV of Co b) Tafel of Co
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Among three different Co-Mo electrodes as illustrated in Fig. 4, the highest electrocatalytic

activity exhibits at a Co/Mo molar ratio of 1:1, whose overpotential is 56.8 mV at 10 mA cm, and

the tafel slope is 93.6 mV/dec.
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On the other hand, among three different Co-W electrodes as illustrated in Fig. 5, the lowest

overpotential exhibits at a Co/W molar ratio of 1:1, whose overpotential is 135 mV at 10 mA cm™,

The lowest tafel slope exhibits at a Co/W molar ratio of 1:3, whose tafel slope is 84.0 mV/dec.
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3.2.2 Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopic (EIS) is an electrochemical techniques to measure the
impedance of a system in dependence of the AC potentials frequency. In this study, EIS
measurements were carried out in 1 M KOH at different potentials in the frequency range 10~ to
10° Hz. The Nyquist plots of Co-Mo and Co-W for the hydrogen evolution reaction are shown in
Fig. 6 below. The radius of semicircle refers to charge transfer resistance (Rct), and the smaller Rect
results better electrochemical behaviour. That is, the impact of Co/Mo ratio on Rct is trivial, each of
them has similar radius. However, the Co/W molar ratio of 1:1 has the smallest Rct among 6

electrocatalysts. In the meantime, it has the lowest overpotential among 3 Co-W electrocatalysts,

(a) (b)

25 2.5
R, R, E =-200mV vs RHE Ca E =-200mV vs RHE
29F —=— CoMo (1:1) =0F ¥ o
| | —e— CoMo (1:3) .
15 G G —— CoMo (1:5) £ 15;
S
N 1.0}
—=—CoW (1:1)
0.5 —e— CoW (1:3)
—a— CoW (1:5)
O'O 1 L
1 2 3 4 5 6
Z' (Ohm) Z' (Ohm)

Fig. 6 a) the Nyquist plot of CoMo b) the Nyquist plot of CoW. The equivalent circuit is shown on
the upper-left side of the plot. Cai represents double layer capacitance, Zw represents the Warburg

impedance, and Rs represents solution resistance.
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3.3 Results of OER
1) Overpotential and Tafel Slope

In Fig. 7, the overpotential of Co for OER is 330 mV, and the tafel slope is 79.4 mV/dec.
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Fig. 7 a) LSV of Co b) Tafel of Co
In Fig. 8, overpotentials of Co-Mo (1:1), Co-Mo (1:3), Co-Mo (1:5) are 290 mV, 294
mV and 320 mV respectively. Notably, the Co/Mo molar ratio of 1:1 has both lowest overpotential
and lowest tafel slope (61.1 mV/dec), which indicates its high efficiency.
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Fig. 8 a) LSV of CoMo b) Tafel of CoMo



Current Density (mA cm?)

In Fig. 9, overpotentials of Co-W (1:1), Co-W (1:3), Co-W (1:5) are 308 mV, 301 mV and 299
mV respectively. Among three Co-W catalysts of different Co/W ratio, Co-W (1:5) exhibits the best

performance, which has low overpotential (299 mV@10 mA cm2) and low tafel slope (69.8

mV/dec).
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Fig. 9 a) LSV of CoW b) Tafel of Cow
2) Electrochemical Impedance Spectroscopy
Fig. 10 (a) shows the Nyquist plot of Co-Mo for HER. It has the similar result as the Nyquist
plot of Co-Mo for OER. Three radiuses of semicircles on the Nyquist plot are close to each other. On
the other hand, Co-W catalysts of different Co/W ratio have distinct radiuses. Additionally, Co-W
(1:5), which shows the highest efficiency among three Co-W catalysts, has the smallest Rct. This
proves the correlation between Rct and efficiency of catalysts.
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Fig. 10 a) the Nyquist plot of CoMo b) the quuigt plot of CoW.
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3.4 Electrochemical Surface Area (ECSA)

Accurately quantifying ECSA is important for determining catalyst activity, since
morphology-dependant OER predominantly occurs at the active surface. The ECSA is estimated
from the double layer capacitance (Cai) via cyclic voltammetry (CV) measurement, and it was
calculated according to the equation ECSA=Ca/Cs.

In Fig. 11, the CV curves in a non-faradaic region were plotted as a function of various scan

rates (20, 40, 60, 80, 100 mV/s). Then, the double layer capacitance (Car) was assessed from the

slope of the linear regression between the current density differences in the middle of the potential

window of CV curves versus the scan rates. Cs stands for the specific capacitance of standard

electrode materials on a unit surface area. In Fig. 11 (d), Co-Mo (1:3) has the largest slope, which

indicates that it has larger ECSA than Co-Mo (1:1) and Co-Mo (1:5).
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Fig. 11 a) CV of CoMo (1:1) b} CV of CoMo (1:3) ¢) CV of CoMo (1:5) d} linear regression between
the current density differences in the middle of the potential window of CV vs. scan rates for
three CoMo samples 10
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In Fig. 12 (d), Co-W (1:1) has the largest slope, which is 12.4 mF cm2 Meanwhile, Co-W (1:1)

has the best efficiency for HER among three Co-W catalysts (The overpotential is 135 mV@10 mA

cm? and the tafel slope is 129.7 mV/dec). Accordingly, it can be inferred that the ECSA is correlated

to HER performance of Co-W.
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Fig.12 a) CV of CoW (1:1) b) CV of CoW (1:3) c) CV of CoW (1:5) d) linear regression between the
current density differences in the middle of the potential window of CV vs. scan rates for three

CoW samples
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3.5 Materials Characterizations

3.5.1 SEM Analysis

Morphology analysis was conducted on a scanning electron microscope (SEM). Fig. 13 shows that
the morphology of Co-Mo (1:1) is round shape in the large scale. When the scale bar represents 300
nm, the sheet-shaped nanostructure is observed. In Fig. 14, Co-W (1:5) has the porous surface, which

can significantly increase its surface area, leading to a better performance for both HER and OER.

(b)

CoMo 1:1 CoMo 1:1

Fig. 13 SEM images of CoMo (1:1)
(b)

Fig. 14 SEM images of CoW (1:5)

12



2.5.2 XRD Analysis
X-ray diffraction is a non-destructive technique for analyzing the structure of materials,
primarily at the atomic or molecular level. The XRD spectrums of Co-Mo and Co-W are shown

below (Fig. 15 and Fig.16).
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Fig. 16 the XRD spectrum of CoW
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3.6 Comparison

In order to find the best electrocatalysts, Co, Co-Mo and Co-W are put on the same plot. Fig. 17

shows the LSV and tafel slope for HER. Fig. 18 shows the LSV and tafel slope for OER. In table 2

and 3, it shows that Co-Mo has the highest efficiency for both HER and OER, and then goes to Co-W.

The last one is Co, which can prove the existence of synergistic effect.

1.8
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Fig. 17 a) LSV - Comparison of Co, CoMo and CoW b) Tafel - Comparison of Co, CoMo and
CoW
Electrocatalyst Overpotential (mV) Tafel Slope (mV/dec)
Co 150 149
CoMo 56.8 93.6
Cow 135 129.7
Table 2 overpotential and tafel slope of Co, CoMo, and CoW for HER
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Electrocatalyst Overpotential (mV) Tafel Slope (mV/dec)

Co 330 79.4
CoMo 290 61.1
CoW 299 69.8

Table 3 overpotential and tafel slope of Co, CoMo, and CoW for OER

4. Conclusion and Prospective

In this study, Co, Co-Mo and Co-W electrocatalysts have been successfully synthesized by
electrodeposition after numerous attempts. Moreover, the composite catalysts show excellent
bifunctional activities for HER and OER reactions. The characteristics of Co, Co-Mo, and Co-W
electrocatalysts have been investigated thoroughly. Among these three catalysts, Co-Mo shows the
best efficiency and activity for both HER and OER, and the least efficient electrocatalyst is Co. That
is, the synergistic effect occurred in this experiment. Bimetallic electrocatalysts have advantages
over monocatalysts due to it can catalyze H2and Oz with less overpotential. Especially for OER,
electrochemical properties of Co-Mo outperform some of the best electrocatalysts previously
reported and make it promising candidate for overall electrochemical water splitting. Remarkably,
these electrocatalysts are made by non-noble metals, which have the great potential to be produced
on a commercial scale. Furthermore, this clean and renewable energy provides possible solution to

the excess emission of greenhouse gasses.
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