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作者簡介 

 

I am Charles Jan, a senior from Taipei American School. I have loved math since I 

could remember. Math research is very different from math taught in schools; this project 

has widened my definition of what math really can achieve. It has also let me explore my 

interests and taught me resilience. I also learned how valuable short rest periods can be; 

when I am in a bottleneck, I resort to my favorite leisurely activities like badminton, 

cooking, or even working out. Switching things up often gives me the jolt of inspiration 

I need to power on. With my persistent efforts, I hope I can make meaningful 

contributions to the field of math and promote math as an easily accessible and 

understandable subject. 
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摘要 

ABSTRACT 

An isosceles set is a collection of points in which any subset of three points 

forms an isosceles triangle. We want to find the upper bound for the size of 

isosceles sets in any n-dimensional Euclidean space. Kido has already 

completed the study of isosceles sets in 3 and 4-dimensional space. We study 

the upper bound of spherical two-distance sets, a special type of isosceles sets, 

to help us find the upper bound of isosceles sets. More specifically, Musin’s 

Linear Programming technique on spherical two-distance sets could be used to 

study isosceles sets if a consistent relationship between isosceles sets and two-

distance sets can be characterized. We offer a conjecture of this relationship. 

We also offer non-trivial lower bounds of isosceles sets in dimension 5 with 17 

points and dimension 7 with 30 points as examples. 

壹、前言 

Introduction 

一、研究動機/目的  

Research Motive / Purpose 

 

An isosceles set is a collection of points in which any subset of three points forms an 

isosceles triangle.  

We want to know the upper bound of the size of isosceles sets.  
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二、研究背景  

Research Background 

 

Figure 1 

 

Figure 2 

 

Over 7 decades ago, in 1947, Erdos and Kelly [6] proved 6 points (Figure 1) as the upper 

bound of isosceles sets in 2-dimensional Euclidean space. Then, in 1961, Croft [4] suggested 

8 points as the upper bound in 3-dimensional Euclidean space. The configuration is made by 

adding a point directly above and below center point the plane of Figure 1 (Figure 2). Kido 

[9] proved the uniqueness of this 8-point configuration as the upper bound configuration of 

isosceles sets in 3-dimensional Euclidean space. Kido [10] then determined configurations of 

isosceles sets up to 4-dimensional Euclidean space. He suggested 11 points as the upper 
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bound. We know very little when the dimension is above 4. We want to study the upper 

bound of the size of isosceles sets in n-dimensional Euclidean space when n>4. We noticed 

the study of spherical two-distance sets has been extended up to n equals infinity. Thus, we 

restrict our discussion to spherical two-distance sets first. 

A set S of vectors in n-dimensional Euclidean space is called two-distance set, if there are 

two numbers c and d so that the distance of distinct vectors of S are either c or d. A two-

distance set is obviously an isosceles set since the triangles formed from any three points are 

either of side lengths c,c,d or c,d,d. Larman, Rogers, and Seidel [11] have discovered a rule 

governing the ratios of distances of two-distance sets. The rule is as such: in n-dimensional 

space, if the cardinality of a two-distance set is greater than 2 3n+  with distances c and d, 

c<d, then the ratio 
2

2

c

d
=

1k

k

−
for an integer k with

1 2
2

2

n
k

+
  . 

Here we introduce a specific type of two-distance sets known as spherical two-distance sets. 

It is a two-distance set on a unit sphere, with unit vectors pointing from the sphere center 

outwards. The points of a spherical two-distance set are where the unit vectors located in the 

surface of the unit sphere. It logically follows that the vectors that compose of a spherical 

two-distance set may only have inner products of two distinct magnitudes. This is because the 

inner product between two vectors is defined by the following equation, cosab  , with a and 

b being the vector lengths and   being the angle measure. The angles between the vectors of 

a spherical two distance-set can only be of two distinct magnitudes by the definition of a two-

distance set, and vector lengths in a spherical two-distance set are equal (all vectors are unit 

vectors). 

As proven by Delsarte, Goethals, and Seidel [5], the largest cardinality, g(n), of a spherical 

two-distance set in n dimensions is given by 
( 3)

( )
2

n n
g n

+
 . 

Now that we have an upper bound of g(n), we reference a well-known method to find the 

lower bound of g(n). Let 1 1,..., ne e + represent the standard unit vectors that form an orthogonal 

basis of a n+1-dimensional space. Also let X be the regular simplex with vertices 

1 12 ,..., 2 ne e + . The set of mid-points of the edges of X would thus represent a spherical two-

distance set in n-dimensional space. Thus, 
( 1)

| |
2

n n
X

+
= .  This explicit construction offers 

the lower bound of g(n); namely, 
( 1)

( )
2

n n
g n

+
 . 
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When n<7 the largest cardinality of two-distance sets is g(n), where g(n) is bounded in the 

aforementioned range: Table 1 shows the specific results. 

 

 

 

Table 1 

N g(n) 

2 5 

3 6 

4 10 

5 16 

6 27 

 

For 6<n<40, n  22,23, Musin [12] narrowed down the range to prove that g(n) = 
( 1)

2

n n +
, a 

single value.  

Barg and Yu [1] then used the semidefinite programming method to find the exact values for 

g(n) for all n (except 46 and 78) with 93n  . Yu [13] then further extended that range to 

417n  . Finally, Glazyrin and Yu [7] extended that range to infinity.  

The maximum cardinality of spherical two-distance sets got much attention recently: Zhao et 

al. [8] proved that when the two inner product values a and b are given, and as the dimension 

n approaches infinity, the cardinality of such spherical two-distance sets is at most a constant 

times dimension n. Compared to the results of Glazyrin and Yu (
( 1)

| |
2

n n
S

+
 ), which is in 

the order of big O of 
2n , the results of Zhao et al. are in the order of big O of n, although 

their results are based on the conditions that a and b are given and n is large enough. 

貳、研究過程與方法 

Materials and Methods 

MATLAB, GeoGebra, and MathType were used. 

Here we explain clearly Musin’s methods that led him to this conclusion: Musin improved 

the upper bound of g(n) given by Delsarte, Goethals, and Seidel, under the condition that a + 
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b   0. By some counting argument of dimension in conjunction with the a+b>=0 condition, 

we can reduce the upper bound to n(n+1)/2. Denote by ( )n  the largest possible cardinality 

of spherical two-distance sets in n  with a + b ≥ 0. 

Then 
( 1)

( ) .
2

n n
n

+
  The set of mid-points of the edges of a regular simplex has 

( 1)

2

n n +

points, and we will show that 0a b+   for 7n  . In our calculations, an n-dimensional 

simplex will be represented in n+1 dimensional space as {2ei} for i=1 to n+1 and ei as the 

standard orthonormal basis, where ei is a vector with ith component as one and all others as 

zero. The midpoints between the vertices of the simplex would thus have coordinates with 

two components being 1 and all others being 0. The center point of the simplex would be 

(2/(n+1), 2/(n+1), …) since the center point is a vector with its coordinates as an average of 

all others. To obtain the values of a and b, we need to calculate the inner products between 

the vectors representing the midpoints between the vertices of the simplex. The vectors can 

be obtained by subtracting the coordinates of the midpoints from the center point. The vectors 

would thus have two components being 
2 1

1
1 1

n

n n

−
− =

+ +
 and all other components being 

2

1n
−

+
. We know that there exists only two distinct inner product values, a and b, and it does 

match with the calculations performed with this example: the only two possible distinct 

magnitudes are created by taking the inner products of vectors with each of their 
1

1

n

n

−

+
 

components completely staggered or with one of their 
1

1

n

n

−

+
 components overlapping, 

respectively. Therefore, we obtain
3

2( 1)

n
a

n

−
=

−
,  

2

1
b

n

−
=

−
 and 

7
0.

2( 1)

n
a b

n

−
+ = 

−
 

When a+b<0, however, the methods mentioned above are no longer applicable. Delsarte’s 

method is needed to find the maximum cardinality of spherical distance sets when a+b<0. 

We use the polynomial method to estimate the maximum cardinality of spherical two-

distance sets. 

We define Gegenbauer (or ultraspherical) polynomials ( ) ( )n

kG t . ( )n

kG  as the following:  

( ) ( )
( ) ( ) ( ) 1 2
0 1

(2 4) ( 1)
1, ,..., .

3

n n
n n n k k

k

k n tG k G
G G t G

k n

− −+ − − −
= = =

+ −
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For instance, 

2
( )

2

1
( ) ,

1

n nt
G t

n

−
=

−
 

3
( )

3

( 2) 3
( ) ,

1

n n t t
G t

n

+ −
=

−
 

4 2
( )

4 2

( 2)( 4) 6( 2) 3
( ) .

1

n n n t n t
G t

n

+ + − + +
=

−
 

Now for given n, a, b we introduce polynomials ( )iP t , 1,...,5i = .  

(1) (1) (1) ( )

1 0 1 2 21: ( ) ( )( ) ( ).ni P t t a t b f f t f G t= = − − = + +  

(2) (2) (2) ( ) (2) ( )

2 0 1 2 2 3 32 : ( ) ( )( )( ) ( ) ( ),n ni P t t a t b t c f f t f G t f G t= = − − + = + + + where c is defined by 

the equation (2)

1 0f = . 

(3) (3) (3) ( ) (3) ( )

3 0 1 2 2 3 33: ( ) ( )( )( ) ( ) ( ).n ni P t t a t b t a b f f t f G t f G t= = − − + + = + + +  Note that (3)

2 0f = . 

2 (4) ( )

44 : ( ) ( )( )( ) ( ),n

k ki P t t a t b t ct d f G t= = − − + + = where c and d are defined by the 

equations (4) (4)

1 2 0f f= = . 

2 (5) ( )

55 : ( ) ( )( )( ) ( ),n

k ki P t t a t b t ct d f G t= = − − + + = where c and d are defined by the 

equations (5) (5)

2 3 0f f= = . 

 

Each successive polynomial offers a more precise estimation of the upper bound. By simply 

plugging in the values of n ,a, b, after making sure that they follow the boundary rules, 

Delsarte’s method can supply us the maximum cardinality of a spherical-two distance set |S|. 
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參、研究結果與討論 

Results 

Theorem 1. (Musin [12]) Let S be a spherical two-distance set in n  with inner products a 

and b. If a + b   0, then 
( 1)

| |
2

n n
S

+
 .  

Theorem 2. (Musin [12]) If 7n  , 
( 1)

( )
2

n n
n

+
=   

Theorem 3. (Delsarte, Goethals, Seidel [5]) Let T be a subset of the interval [−1, 1]. Let S 

be a set of unit vectors in nR such that the set of inner products of distinct vectors of S lies in 

T. Suppose a polynomial f is a nonnegative linear combination of Gegenbauer polynomials 

( ) ( )n

kG t , i.e., 

( )( ) ( )n

k k

k

f t f G t= , where 0kf  . 

If ( ) 0f t   for all t ∈ T and 0 0f  , then 

0

(1)
| |

f
S

f

 
  
 

 

肆、結論與應用 

Discussion 

 

We are on the verge of discovering a seemingly formulaic, consistent relationship between 

spherical isosceles sets and spherical two-distance sets. This may allow us to utilize a method 

similar to Delsarte’s Method (linear programming) to unlock the upper bounds of the 

maximum cardinality of spherical isosceles sets across all dimensions, as has been done by 

Glazyrin and Yu [7] for spherical two-distance sets. 

We considered the difference between two-distance sets and isosceles sets: In 2 , the 

configuration with the maximum cardinality of two-distance sets is the five vertices of a 

regular pentagon. The configuration with the maximum cardinality of isosceles sets is 

composed of six points, the five vertices of a regular pentagon and its center point (Erdos and 
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Kelly [6]). In 3 , the maximum two-distance set is the six vertices of an octahedron. The 

maximum isosceles set is an eight-point configuration with a regular pentagon on its equator, 

a center point, and a point at both the north and south pole. Through these examples, we 

realized the relationship between maximum two-distance sets and isosceles sets can be 

characterized as such: a maximum isosceles set is the maximum two-distance set of the same 

dimension plus its center point OR a maximum two-distance set of one dimension lower plus 

its center point, north pole, and south pole. 

Let I(n) be the maximum cardinality of isosceles sets in n and g(n) be the maximum 

cardinality of spherical two-distance sets. We conjecture that  

( ) max{ ( ) 1, ( 1) 3}I n g n g n= + − + . 

This is true for at least n = 2,3,4.  

Kido has proved that (4) 11 max{ (4) 1, (3) 3}I g g= = + + where g(4) = 10, and g(3) = 6, and 

max{11,9} = 11, so our conjecture holds true. If our conjecture is true, then I(5) = max{g(5) 

+ 1, g(4) + 3} = max{17,13}= 17. The construction comes from half of a hypercube in 5

with 16 points and its center. The remaining question is how to find the upper bound of an 

isosceles set in 5 , 17. The proof is elusive, so we would like to offer a non-trivial 

construction of an isosceles set in 7-dimensional space with 30 points. 

 

Figure 3 

We can demonstrate how to find the lower bounds of isosceles sets by utilizing the upper 

bounds of two-distance sets. To give a specific example, in 6-dimensional Euclidean space, 

the upper bound for two-distance sets is 27 points. Then we can obtain a 7-dimensional 30-

point configuration as the lower bound of the isosceles set.  This configuration can be likened 
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to a strongly regular graph with parameters (27, 10, 1, 5). A visual representation in 2D is 

shown in Figure 3. We denote this by SRG (27,10,1,5), which is a strongly regular graph with 

27 vertices and every vertex has 10 neighbors; every two adjacent vertices have 1 common 

neighbor and every two non-adjacent vertices have 5 common neighbors. This strongly 

regular graph can be interpreted to be a two-distance set through its adjacency matrix, A. ,i ja

is the (i, j) entries of A. ,i ja = 1 if i is adjacent to j. Otherwise, ,i ja  = 0.  If each row is treated 

like a vector that denotes the coordinates / location of each point in the configuration, we 

could take the inner products between any two row vectors and instantly realize that this is in 

fact a two-distance set. The inner product between any two row vectors is either 1 or 5, 

depending on whether the two row vectors are adjacent or nonadjacent, respectively. Now it 

is confirmed that the 27-point configuration is a two-distance set. The coordinates for the 27-

point configuration in 6-dimensional Euclidean space obtained through spherical embedding 

of SRG (27,10,1,5) (Cameron [2]): 

We can then add a center point, a top vertex, and a bottom vertex to this configuration to 

construct a non-trivial lower-bound 30-point configuration for isosceles sets in 7-dimensional 

Euclidean space. We show its coordinates in the appendix. We would like to prove soundly 

that 30 is the upper bound of isosceles sets in 7 , but we do not know how to do it yet. 

We also can offer a non-trivial construction of isosceles sets in 23 with 278 points. This 

construction can be obtained from the spherical embedding of SRG (275,112,30,56). We will 

not list the coordinates of the construction in the appendix, but we would like to offer this 

information since this is the largest example we know to attain 
( 3)

2

n n +
 points as spherical 

two-distance sets in n . 

We know that if the size of a spherical two-distance set is large enough (in n with size 

larger than 2n+3), then the Larman, Roger, Seidel Theorem applies, so the distances are quite 

restrictive. We wonder whether a similar theorem could be made for isosceles sets; namely, 

whether we can find the relationship between the distances of an isosceles set if its size is 

large enough. 

Also, we wonder what other s-distance sets an isosceles set can be if it is not a two-distance 

set. Let us consider n = 2 first. The maximum isosceles set is a pentagon with a center point. 

Assume the regular pentagon lies on a unit circle. Then the distances from the center point to 

the vertices is 1. The other two distances should be 2 2cos72 1.1756− =  and the previous 
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number multiplied by the golden ratio, 1.9021. Thus, it is a three-distance set. Next, let us 

consider n = 3. It is simply the example in n = 2 plus a north and south pole. Thus, it would 

be a 5-distance set: the previous three distances plus 2  and 2.  

In short, we conjecture that an isosceles set is made up of a two-distance set and a collection 

points equidistant to all the original points in the two-distance set. This led us to the 

conclusion ( ) max{ ( ) 1, ( 1) 3}I n g n g n= + − + . 

We shortly sketch the idea to approach this conjecture. We start with a spherical two-distance 

set of maximum cardinality in any dimension. We can add a center point to make it an 

isosceles set. That is where the g(n)+1 formula comes from. We claim that any new point to 

be added to a spherical two-distance set must be equidistant to all the original points to make 

it an isosceles set. If not, then OA  OB, where O is the new point and A, B are the original 

points in the spherical two-distance set. In this case, either OA or OB must equal AB by 

definition of an isosceles set. Then O must either be one of the original points in the spherical 

two-distance set or in its orthogonal complement. Without loss of generality, assume OA = 

AB. This means A must be on the perpendicular bisector of OB. This has to hold true for any 

two points of the original spherical two-distance set, which is quite unlikely to happen. 

Therefore, we conjecture that OA must equal OB; the new point must be equidistant to all 

points of the original spherical two-distance set. Thus, we can only add the center, north pole, 

and south pole, and that is where the g(n-1)+3 formula comes from. 
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Appendix 

Here is the construction of the isosceles set with 30 points in 7

 



【評語】010011 

作者研究的Maximum isoceles sets是離散幾何的一個重要問

題，目前只有在維數較小的時候有正確的答案。本研究希望藉由有

好研究成果的 Two distance sets 來回答上述在高維度的答案；經

由一些已知的性質的確可以獲得一些結果，然而，整體而言進展不

大，值得繼續努力。  
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