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Purpose: To develop an application for predicting breast cancer malignancy, along 

with its risk factors, from multiple diagnostic procedures through the integrated 

utilization of cutting-edge deep learning models.  

Output: The efficiency of the AI models embedded in the system proves that this 

technology can be used to predict breast cancer from a variety of sources, at the 

level of experienced individuals in the field in a clinically-supportive channel. 

 

Abstract 

       This research project focuses on developing a web-based multi-

platform solution for augmenting prognostic strategies to diagnose breast 

cancer (BC), from a variety of different tests, including histology, 

mammography, cytopathology, and fine-needle aspiration cytology, all in 

an automated fashion. The respective application utilizes tensor-based 

data representations and deep learning architectural algorithms, to 

produce optimized models for the prediction of novel instances against 

each of these medical tests. This system has been designed in a way that 

all of its computation can be integrated seamlessly into a clinical 

setting, without posing any disruption to a clinician’s productivity or 

workflow, but rather an enhancement of their capabilities. This software 

can make the diagnostic process automated, standardized, faster, and even 

more accurate than current benchmarks achieved by both pathologists, and 

radiologists, which makes it invaluable from a clinical standpoint to 

make well-informed diagnostic decisions with nominal resources.  

Keywords: Breast Cancer, Early Detection, Improved Diagnostics, Deep Learning, AI, Histology, 

Cytopathology, Mammography, Fine-Needle Aspiration Cytology 

I. Background Research 

       BC is one of the most common cancers among women worldwide. It 

accounts for 25% of all cancer cases, making it a significant public 

health problem in today’s society [1, 4, 5]. Complementarily, however, 

according to the World Health Organization, there is a global shortage of 

radiologists, with over 5 billion people in the world having little to no 

access to radiology services for proper diagnosis [2]. This alone 

motivates the need for a software that can diagnose BC at the standard of 

these experts, to minimize consequences posed by such shortage. 

Additionally, depending on one’s location, both pathologists, and 

radiologists take anywhere from 1-16 weeks to finalize their diagnostic 

conclusions, which is precious time of the patient which could be used to 

get started on therapeutic endeavors if BC is present. Countless 

researches have shown that the early diagnosis of BC can improve the 

prognosis and chances of survival significantly, as it can promote timely 

clinical treatment to patients [6, 9]. To solve this problem, machine 

learning models have been applied, in hopes of trying to exploit patterns 

and relationships among a large number of cases and predict the outcome 

of BC using historical cases stored in datasets. But in these cases, the 

performance of most conventional classification systems is dependent on 

appropriate data representation and much of the efforts are dedicated to 

feature engineering, a difficult and time-consuming process that uses 
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prior expert domain knowledge of the data to create useful features. 

However, deep learning, an advancement in traditional machine learning, 

can extract and organize the discriminative information from the data, 

not requiring the design of feature extractors by a domain expert.  

       Furthermore, even disregarding the shortages of radiologists, and 

the time-resources constraints associated with BC diagnosis, there is 

still a major problem of the diagnostic predictions themselves being quite 

subjective.  

Several studies have shown that pathologist-related diagnostic 

variabilistic error fares very high for BC, and the primary reason for 

this, in histology, is the subtle differences of professional opinion on 

whether the specific morphological features present, meet the diagnostic 

criteria; these are often related to an individual pathologist’s threshold 

for a particular diagnosis in a specific case [3, 10, 14]. The average 

general agreement within breast pathologists, as derived by a prominent 

national study, shows an alarmingly low 68.39% (95% CI) interclass 

coefficient (ICC) agreement [7, 11].  

In addition to this, in the case of fine-needle aspirations, 

countless studies show a pathologist’s chance of accurate prediction to 

be in the ranges of 90-92%, with a specificity of 94-96%, and sensitivity 

of 93-95%, yielding relatively high false-negative rates of 10-15% [15]. 

This not only puts people at a huge risk, but also makes pointless a test 

that is designed to provide accurate results while decreasing patient 

trauma, expense, and be able to be performed on an outpatient basis.  

Also, recently documented reports have deemed that mammographers 

are very likely to overestimate tumor extent when studying a mammogram 

and that in general, they have anywhere between 60-75% overall accuracy 

in detecting BC from a mammogram, and that if they are asked to review 

the same study as reviewed by them 5 years ago, they display 21-24.5% 

disagreement, which in itself is huge [12, 18]. This is also very much 

correlated with the mammographic density parameters, namely, percent-

based density (PBD), and breast imaging-reporting and data system (BI-

RADS5), which are computed from the mammogram and add crucial weightage 

to a diagnostic decision – a separate derivation from the report. As 

closely observed in one European study (which sought to compare individual 

density predictions with their respective consensus), predictions for 

both PBD & BI-RADS5 tasks come with a very high root mean squared error 

of around 17.548, and alarming accuracy of 57.777%, respectively [13].  

Despite these unsatisfactory results, both pathologists, and 

radiologists continue to diagnose patients of malignancy, who, 

unfortunately, end up suffering the repercussions, namely late and 

misdiagnosis [16, 17, 24]. This is exactly what I would like to change, 

using my novel application. 

II. Related Work 

Recently, deep learning-based approaches using CNNs have begun to 

achieve impressive performance on medical tasks such as chest pathology 

identification in X-Ray and CT, thoraco-abdominal lymph node detection, 

and interstitial lung disease classification [19, 25]. Currently, in the 
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context of breast masses, the detection of malignancy uses a combination 

of manual feature extraction and traditional machine learning algorithms 

[20, 21]. Multiple works tackle the problem of breast lesion 

classification, but typically adopt a multi-stage approach, by extracting 

hand-engineered semantic (such as calcification) and textual features, 

and classify a partial mammogram by extracting features from each view of 

the breast, and combining them to output a prediction [22]. Not only does 

this require extensive pre-processing but also heavy clinical domain 

knowledge, before training a CNN [23]. To the best of my knowledge, this 

paper presents the first work to directly classify pre-detected breast 

masses using CNN architectures achieving state-of-the-art results, from 

more than one diagnostic source in a single application.  

III. Deep Learning Module 1: Histology  

A. Dataset 

In the context of Histopathologic means of diagnosis, I utilized 

the publicly available BACH dataset for detecting BC malignancy, 

particularly Invasive (Infiltrating) Ductal Carcinoma (IDC) – which 

accounts for 80%+ of all BC diagnosis. This dataset can be accessed from 

here: http://gleason.case.edu/webdata/jpi-dl-tutorial/IDC-regular-ps50-

idx5.zip.  

This dataset consists of 162 H&E-stained whole mount slide images 

(RGB-scaled .tiff) of BC specimens scanned at 40x. To assign an 

aggressiveness grade to a whole mount sample, pathologists typically focus 

on the regions which contain the IDC, and therefore each image has a 

corresponding list of labeled coordinates that enclose IDC and Non-IDC 

regions. In total, there are 277,524 records of x & y coordinates with an 

associated label, of which 198,738 are IDC negative, and 78,786 are IDC 

positive.  

B. Preprocessing 

As a result of this area-focus labelling, the preprocessing steps 

for automatic aggressiveness grading first require the delineation of the 

exact regions of IDC inside of a whole mount slide, which I implemented 

by looping through each of the patch coordinate parameters, and storing 

each partition of the image into a separate Numpy array (.npy) file, and 

its label (after OneHotEncoding into a list) in a new CSV log explicitly 

linked to the array’s ID. In this way, I was able to generate 277,524 

patches and resized them all to a unified size of 50*50px. A sample of 

these preprocessed patches from each class is shown in Fig. 1. I then 

enforced balanced classes by randomly deleting the difference between the 

IDC negative, and positive images, from the negative, as proved by Fig. 

2. Then, after applying feature scaling, for the primary purpose of 

speeding up the training process, the data is split into training, and 

testing subsets, with a ratio of 80:20. After the data preprocessing, the 

training tensor has the shape, (126058, 50, 50, 3), and the testing tensor, 

(31514, 50, 50, 3), while the output tensor is expected to have the shape 

(2, 1). 

 

http://gleason.case.edu/webdata/jpi-dl-tutorial/IDC-regular-ps50-idx5.zip
http://gleason.case.edu/webdata/jpi-dl-tutorial/IDC-regular-ps50-idx5.zip
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IDC (+) 

 

 

 

Non-IDC (-) 

 

 
 

Figure 1: Displaying a sample of preprocessed histology image patches of both IDC positive and negative 

classes 

 

Previously Imbalanced  Now Balanced 

 

 

 

 

 

 

Figure 2: Displaying the correction of class imbalancement 

 

C. Model Structure 

In terms of structure, I have defined a custom Tensorflow model 

which starts by accepting input tensors in batches of 128 images into an 

initial 2D Convolutional layer. It is then followed up with 3 sets of 

Convolutions, MaxPoolings, BatchNormalizations, Dropouts, and 

subsequently trailed with several Dense layers. All mentioned layers carry 

a ReLu activation function, except the last Dense layer, which is 

activated via SoftMax. The gradient descent optimization algorithm used 

for this is called AdaDelta. A fully graphed structure of the model is 

displayed in Fig. 3. 
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Figure 3: Displaying model structure 

 

D. Model Results  

See Fig. 4 for the validation results computed on the test set. 

  

Overall Accuracy 84.45458000760168% 

Area Under the Curve 84.23874203482222% 

Brier Score/Hamming Loss/Zero-One Classification Loss 0.1554541999239833 

Average Hinge Loss (Non-Regularized) 0.6554541999239833 

Logistic/Crossentropy Loss 0.3631732057210411 

Cohen’s Kappa (Inter-Annotator Agreement) 0.9091600152033333 

Matthews Correlation Coefficient 0.6891128602975093 
 

Figure 4: Listing validation data; revealing the results 
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Average time to predict BC presence from browser: 18.2 seconds. 

As can be seen by considering accuracy alone, this model already 

performs far better than traditional pathologists, who, as stated earlier, 

diagnose BC from histopathological means with an accuracy of just 68.39%. 

This is an unprecedented 16.06458% increase. Though there is limited data 

to compare other metrics, it can be inferred that this positive spike is 

also prevalent in the other stated losses and agreements.  

 Additionally, see Fig. 5 for a detailed Classification Report 

(gauging values of the precision, recall, and f1 score for each class) & 

Fig. 6 for a Confusion Matrix (computing class-based accuracies), both 

derived from the validation set. Furthermore, Fig. 7 shows epoch-wise 

trends for training & testing accuracies & losses. 

  

 

 

 

 

 

 

 

 

Figure 5: Graphing classification report            Figure 6: Graphing confusion matrix  

 

 

 

 

 

 

 

 

Figure 7: Plotting epoch-wise trends for training & testing accuracies & losses 
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IV. Deep Learning Module 2: Mammography 

A. Dataset 

In the context of Mammographical means of diagnosis, I trained 3 

separate models, 2 utilizing the publicly available CBIS1-DDSM dataset 

for detecting breast density (both percent-based density [PBD], and breast 

imaging-reporting and data system [BIRADS5] categorical density) from a 

mammogram, and the other using the publicly available MIAS-M dataset for 

detecting malignancy from these 2 density parameters. The CBIS1-DDSM 

dataset can be accessed from here: https://wiki.cancer-imaging-

archive.net/display/Public/CBIS-DDSM, and the MIAS-M dataset from here: 

https://www.repository.cam.ac.uk/handle/1810/250394.  

The CBIS1-DDSM dataset contains 1182 (3328px x 4084px) gray-scaled 

DICOM (.dcm) mammogram images, with associated PBD & BIRADS5 markings 

stored in the image format, while the MIAS-M dataset consists of a single 

CSV file with 936 records, and 2 columns for the 2 density parameters, 

with the prognostic truth label (MALIGNANT/ BENIGN) for each. There are 

452 MALIGNANT records, and 484 BENIGN. 

B. Preprocessing 

Preprocessing for CBIS1-DDSM dataset is quite extensive. Firstly, 

each DICOM file must be appropriately read and converted into a pixel 

array. Then the density parameter labels which are embedded in the image 

format need to be extracted and stored into a DataFrame separately after 

OneHotEncoding the BIRADS5 labels and accounting for outliers in the PBD. 

Further, after implementing feature scaling, the images are resized into 

256*256px and saved as Numpy array (.npy) files. A sample of these 

preprocessed images is shown in Fig. 8. These Numpy arrays are then run 

through a series of various augmentations, namely, random noise, 

log/gamma/sigmoid adjustments, rotations/flips, contrastings, exposure, 

etc., in order to increase the magnitude of the data by more than 3x. The 

preprocessing required for the MIAS-M dataset is nominal, apart from 

loading the data into a Pandas DataFrame. All the data is finally split 

into training, and testing subsets, with a ratio of 80:20. After the data 

preprocessing, the training tensor for the CBIS1-DDSM dataset has the 

shape, (2564, 256, 256, 1), and the testing tensor, (641, 256, 256, 1), 

while the output tensor is expected to have the shape (2, 1) for both 

models collectively. In the same sense, the training tensor for the MIAS-

M dataset is of shape (791, 2), while the rest (145, 2) is for testing.  
 

 

 

 

 

Figure 8: Displaying a sample of preprocessed mammogram images 

 

 

 

https://wiki.cancer-imaging-archive.net/display/Public/CBIS-DDSM
https://wiki.cancer-imaging-archive.net/display/Public/CBIS-DDSM
https://www.repository.cam.ac.uk/handle/1810/250394
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C. Model Structure 

 The custom Tensorflow model structure/summary of the PBD & 

BIRADS5 prediction models can be seen in Fig. 9. Both of these models 

utilize a TanH activation function for every layer, except the last, where 

the PBD model uses no activation, and the BIRADS5 model uses SoftMax. 

The third model, which is fed these numerical density outputs 

actually performs better as a traditional machine learning RandomForest 

classifier, as opposed to a deep learning classifier, presumably due to 

limited training data. Fig. 10 graphical displays the central node of the 

RF Decision Tree. 

 
Figure 9: Displaying PBD & BIRADS5 models’ structures  
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Figure 10: Displaying a single RF central decision tree’s model structure  
 

D. Models’ Results 

* PBD Model 

See Fig. 11 for the validation results computed on the test set. 

  

Root Mean Squared Error (RMSE) 5.2321181999999999 

Mean Squared Error (MSE) Loss 27.375060712888888 

Mean Absolute Error (MAE) 3.9111124037821011 

Median Absolute Error (Med-AE) 4.7013566669285345 

R2 Score 0.9874539608491023 

Explained Variance Regression Score 0.9378082300000000 

Pearson Correlation Coefficient (Pearson’s R) 0.9666666666666666 

Kendall Rank Correlation Coefficient (Kendall’s Tau) 0.8277829344387999 

Spearman’s Rank Correlation Coefficient (Spearman’s Rho) 0.8591247189612479 
 

Figure 11: Listing validation data; revealing the results 

 

Average time to predict PBD from browser: 3.4 seconds. 

Judging by the RMSE, this model shows an increase of nearly 12.32, 

which is more than competitive for what’s currently available.  

Also, see Fig. 12 for a linear comparison of actual values, and 

predicted values, and see Fig. 13 for a detailed comparison of the 
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residuals and fits. Furthermore, Fig. 14 outlines the training & testing, 

RMSE & MAE loss trends, as the epochs progress. 

 

 

 

 

 

 

 

 

 

Figure 12: Graphing actuals vs. CNN predictions                   Figure 13: Graphing residuals vs. fits 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Plotting RMSE/MAE loss progression history 
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* BIRADS5 Model 

See Fig. 15 for the validation results computed on the test set. 

  

Overall Accuracy 88.29837599999999% 
 

Figure 15: Listing validation data; revealing the results 

 

Average time to predict BIRADS5 from browser: 1.8 seconds. 

Judging by the accuracy, this model shows an increase of nearly 

30.52, which is more than competitive for what’s currently available.  

Additionally, see Fig. 16 for a Confusion Matrix (computing class-

based accuracies) derived from the validation set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Graphing confusion matrix  
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* Overall Density -> Malignancy Model 

See Fig. 17 for the validation results computed on the test set. 

  

Overall Accuracy 92.19287411188888% 

Area Under the Curve 81.22222222222222% 

Brier Score/Hamming Loss/Zero-One Classification Loss 0.1398597151111111 

Average Hinge Loss (Non-Regularized) 0.5555555555555555 

Logistic/Crossentropy Loss 0.3279283202222222 

Cohen’s Kappa (Inter-Annotator Agreement) 0.9339725875029388 

Matthews Correlation Coefficient 0.5347275390870328 
 

Figure 17: Listing validation data; revealing the results 

 

Average time to predict BC presence from browser: 12.1 seconds. 

As can be seen by considering accuracy alone, this model already 

performs far better than traditional radiologists, who, as stated earlier, 

diagnose BC from mammographic means with an accuracy of just 60-75%. This 

is an unprecedented 17.193-32.193% increase. Though there is limited data 

to compare other metrics, it can be inferred that this positive spike is 

also prevalent in the other stated losses and agreements.  

 Additionally, see Fig. 18 for a detailed Classification Report 

(gauging values of the precision, recall, and f1 score for each class) & 

Fig. 19 for a Confusion Matrix (computing class-based accuracies), both 

derived from the validation set. Furthermore, Fig. 20 shows epoch-wise 

trends for training & testing accuracies & losses. 

 

 

 

 

 

 

 

 

 

Figure 18: Graphing classification report          Figure 19: Graphing confusion matrix  
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Figure 20: Plotting epoch-wise trends for training & testing accuracies & losses 

V. Deep Learning Module 3: Cytopathology 

A. Dataset 

In the context of Cytopathological means of diagnosis, I utilized 

the publicly available Breast Cancer Wisconsin (Diagnostic) dataset, for 

detecting BC malignancy, and can be accessed from here: 

http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnos

tic). This dataset consists of features which are computed from a 

digitized image of a fine needle aspirate (FNA) of a breast mass. They 

describe the characteristics of cell nuclei present in the image. Aside 

from the ID, and diagnosis (m = malignant, B = benign), there are 10 real-

valued features computed for each cell nucleus, and the mean, standard 

error, and worst/largest (mean of the 3 largest values) of these features 

are recorded resulting in a total of 30, as follows, 

a) mean, SE, & worst - radius (mean of distances from the center to 

points on the perimeter) 

b) mean, SE, & worst - texture (standard deviation of gray-scale 

values)  

c) mean, SE, & worst - perimeter  

d) mean, SE, & worst - area  

e) mean, SE, & worst - smoothness (local variation in radius lengths)  

f) mean, SE, & worst - compactness (perimeter^2 / area - 1.0)  

g) mean, SE, & worst - concavity (severity of concave portions of 

the contour)  

Epoch-wise Loss & Accuracy Trends 

http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
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h) mean, SE, & worst - concave points (number of concave portions 

of the contour)  

i) mean, SE, & worst - symmetry  

j) mean, SE, & worst - fractal dimension ("coastline approximation" 

- 1) 

There are 569 records in total, of which 357 are benign, and 212 

are malignant. Fig. 21 shows the correlations among and between these 

dimensions and Fig. 22 shows their distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Showing correlation heatmap for the dataset 

 

 

 

 



15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Showing distribution plots for the selected features 

B.  

B. Preprocessing 

The preprocessing required for this dataset is minimal and requires 

loading the data into a Pandas DataFrame, applying feature scaling + 

normalization, and splitting into training, and testing subsets, with a 

ratio of 95:5. After the data preprocessing, the training tensor has the 

shape, (541, 31), and the testing tensor, (28, 31), while the output 

tensor is expected to have the shape (2, 1). 

C. Model Structure 

In terms of structure, I have defined a custom Tensorflow model 

which starts by accepting input tensors in batches of 32 records into an 

initial Dense layer. It is followed up with 3 sets of Dense layers, all 

of which carry a ReLu activation function, except the last, which is 

activated via Sigmoid (causing probability-based predictions/outputs). 

The gradient descent optimization algorithm used for this is called 

RMSProp. A fully graphed structure of the model is displayed in Fig. 23. 
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Figure 23: Displaying model structure 

 

D. Model Results 

See Fig. 24 for the validation results computed on the test set. 

  

Overall Accuracy 96.4949494949% 

Area Under the Curve 92.9361702128% 

Brier Score/Hamming Loss/Zero-One Classification Loss 0.008771929821 

Average Hinge Loss (Non-Regularized) 0.596491228077 

Logistic/Crossentropy Loss 0.191881722762  

Cohen’s Kappa (Inter-Annotator Agreement) 0.981841350749 

Matthews Correlation Coefficient 0.902003265278 
 

Figure 24: Listing validation data, revealing the results 

 

Average time to predict BC presence from browser: 11.7 seconds. 
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As can be seen by considering accuracy alone, this model already 

performs far better than traditional pathologists, who, as stated earlier, 

diagnose BC from cytopathological means with an accuracy of just 90-92%. 

This is an unprecedented 4.494-6.494% increase. Though there is limited 

data to compare other metrics, it can be inferred that this positive spike 

is also prevalent in the other stated losses and agreements.  

 Additionally, see Fig. 25 for a detailed Classification Report 

(gauging values of the precision, recall, and f1 score for each class) & 

Fig. 26 for a Confusion Matrix (computing class-based accuracies), both 

derived from the validation set. Since the outputs of this model are 

probabilistic rather than discrete, a Receiver Operating Characteristic 

Graph has been plotted, allowing for greater transparency into the model’s 

capability of distinguishing between classes (see Fig. 27). Also view Fig. 

28 for an illustrative measure of the valued distribution of the 

validation predictions. Furthermore, Fig. 29 shows epoch-wise trends for 

training & testing accuracies & losses. 

 
Figure 25: Graphing classification report           

 

 

 

 

  

 

 

 

 

 

 

 

Figure 26: Graphing confusion matrix                                   Figure 27: Graphing ROC AUC Curve 
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Figure 28: Graphing predictions probability distribution                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Plotting epoch-wise trends for training & testing accuracies & losses for several models  
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VI. Deep Learning Module 4: Fine-Needle Aspiration 

Cytology 

A. Dataset 

In the context of Fine-Needle Aspiration Cytological means of 

diagnosis, I utilized the publicly available Breast Cancer Wisconsin 

(Original) dataset, for detecting BC malignancy, and can be accessed from 

here: 

http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(origina

l). This dataset consists of pathological parameters which have been 

recorded of fine needle aspirations of breast masses. Aside from the ID, 

and diagnosis (m = malignant, B = benign), there are 10 categorical 

features (encoded 1-10), as follows, 

a) clump thickness 

b) uniformity of cell size 

c) uniformity of cell shape 

d) marginal adhesion  

e) single epithelial cell size 

f) bare nuclei 

g) bland chromatin  

h) normal nucleoli  

i) mitoses  

There are 699 records in total, of which 458 are benign, and 241 

are malignant. Fig. 30 shows the correlation within these dimensions.  

 

 

 

 

 

 

 

 

 

 

 

http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
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Figure 30: Showing correlation heatmap for the dataset 

 

B. Preprocessing 

The preprocessing required for this dataset is minimal, and requires 

loading the data into a Pandas DataFrame, applying feature scaling + 

normalization, performing Principal Component Analysis (see Fig. 31) to 

reduce the dimensions to only the most significant (hence removing single 

epithelial cell size), and splitting into training, and testing subsets, 

with a ratio of 95:5. After the data preprocessing, the training tensor 

has the shape, (664, 10), and the testing tensor, (35, 10), while the 

output tensor is expected to have the shape (2, 1). 
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Figure 31: Showing removal of “single epithelial cell size” through principal component analysis 

 

C. Model Structure 

In terms of structure, I have defined a custom Tensorflow model 

which starts by accepting input tensors in batches of 32 records into an 

initial Dense layer. It is followed up with several Dropouts, and 4 sets 

of Dense layers, all of which carry a ReLu activation function, except 

the last, which is activated via Sigmoid (causing probability-based 

predictions/outputs). The gradient descent optimization algorithm used 

for this is called Stochastic Gradient Descent (SGD). A fully graphed 

structure of the model is displayed in Fig. 32. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 32: Displaying model structure 
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D. Model Results 

See Fig. 33 for the validation results computed on the test set. 

  

Overall Accuracy 99.1212121212% 

Area Under the Curve 98.0934752222% 

Brier Score/Hamming Loss/Zero-One Classification Loss 0.005238083222 

Average Hinge Loss (Non-Regularized) 0.333829787888 

Logistic/Crossentropy Loss 0.098982975222  

Cohen’s Kappa (Inter-Annotator Agreement) 0.999325798232 

Matthews Correlation Coefficient 0.969827530980 
 

Figure 33: Listing validation data, revealing the results 

 

Average time to predict BC presence from browser: 4.0 seconds. 

As can be seen by considering accuracy alone, this model already 

performs far better than traditional pathologists, who, as stated earlier, 

diagnose BC from fine-needle aspiration cytological means with an accuracy 

of just 90-92%. This is an unprecedented 7.121-9.121% increase. Though 

there is limited data to compare other metrics, it can be inferred that 

this positive spike is also prevalent in the other stated losses and 

agreements.  

 Additionally, see Fig. 34 for a detailed Classification Report 

(gauging values of the precision, recall, and f1 score for each class) & 

Fig. 35 for a Confusion Matrix (computing class-based accuracies), both 

derived from the validation set. Since the outputs of this model are 

probabilistic rather than discrete, a Receiver Operating Characteristic 

Graph has been plotted, allowing for greater transparency into the model’s 

capability of distinguishing between classes (see Fig. 36). Also view Fig. 

37 for an illustrative measure of the valued distribution of the 

validation predictions. Furthermore, Fig. 38 shows epoch-wise trends for 

training & testing accuracies & losses. 

 
Figure 34: Graphing classification report         
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Figure 35: Graphing confusion matrix                                   Figure 36: Graphing ROC AUC Curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Graphing predictions probability distribution                                    
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Figure 38: Plotting epoch-wise trends for training & testing accuracies & losses for several models  

VII. Cloud-Based Platform 

     One of the main aspects of this system is its access and availability. 

This is primarily due to the software’s web-based component. This 

application has user-friendly forms (see Fig. 39) in the cloud that accept 

inputs, predict against each of the trained models, and return outputs 

(see Fig. 40) instantaneously.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: Displaying web forms for inputting data, and interacting with the deep learning models 
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Figure 40: Displaying sample alertive results 

 

     I also utilized ImgCNNViSual, my own fully-documented library for 

visualized an image input passing through each of the layers of the models, 

along with its respective filters/feature maps generated. As part of this 

software, this functionality induced additional transparency into the 

exact intermediary processes of the networks by bringing out distinct 

statures of inputs and outputs of the convolutional layers present in the 

contextual histograms, and mammograms (see Fig. 41). 
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Figure 41: Displaying sample visualizations of the uploaded image going through several models 

VIII. Technologies/Frameworks 

     See Fig. 42 for a list of technologies utilized to make this 
project happen. 
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Figure 42: List of technologies and frameworks used 

IX. Conclusion 

       By leveraging the computational intuition of AI algorithms, this 

technology is indeed, successfully, able to perform a standardized and 

optimal medical diagnosis for BC, as proved by the accuracies, losses, 

and correlations computed on the validation matrices for each model. The 

models can detect patterns which are far too complex to be recognized by 

even expert radiologists and pathologists and can efficiently apply their 

parameterized resolutions to the task of malignancy prediction.  

       DetectTimely v3.7 is an open-source, standardized, and 

comprehensive BC analytics platform, which delivers A.I. powered clinical 

optimization to cultivate a new standard of pathological/radiological 

interpretation through an automated environment with prognostic-based 

outcomes at its forefront. While it would be of substantial value to 

perform investigation-oriented clinical trials, this system is fully 

capable and ready to diagnose actual patients, as proved by the several 

stages of model validations. Currently the software’s malignancy 

prediction task for the histology module has an accuracy of 84.5%, while 

the mammography module has an accuracy of 92.2%, the cytopathology module 

has an accuracy of 96.4%, and the fine-needle aspiration cytology module 

has an accuracy of 99.1%, making the overall technology significantly 

better than what typical pathologists and radiologists can achieve, which 

as mention previously are, 68.39%, 60-75%, 90-92%, and 90-92%, for the 

tasks respectively. More importantly though, this system is able to 

compute output predictions in a matter of seconds, as opposed to the 

prolonged weeks taken by pathologists, and radiologists (due to their 

world-wide shortage). Still, more global participation is required to 

adopt the intellectual logistics of these scientific findings and increase 

the predictive success on blind samples, where a traditional 

interpretation would deem it inconclusive. If more data were available to 

counterbalance rare outliers, it would be very valuable to further help 

this research project reach its full potential in terms of the enhanced 

development of its predictive capabilities, hopefully, one day meaning 

that breast cancer may no longer be a lethal disease. 

       The hope of this system is that it would make better the 

late/misdiagnosis issues commonly associated with breast cancer, which 

may appreciably aid in lowering chances of adversely evitable, and 

unnecessary delay in a patient’s treatment. Furthermore, by adding 

functionality to visualize the image-related models, this framework 

provides precise insights into the intuitive inconsistencies of the 
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patient’s pathological report, which in turn helps provide full-scale 

intuition into the technicalities of the malignancy. Lastly, by optimizing 

the required deep learning models’ predictions to the maximum, a radical 

alteration in the negative repercussions posed by human-error is ensured, 

inducing a viable causality for a lower rate of unhandled complexity 

within the data, and increasing the long-term success rate for the 

prognostic orchestration led by a positive decrease in the optimal trend 

for inconclusive results. This result will not only increase executional 

standards of incontrovertible productivity of the software’s intended 

functionalities, but also potentially characterize an unseen paradigm-

shift in the internal logistical processes of more general forms of such 

acute medical diagnosis. 

X. Next Steps: 

       Even though this project is beyond anything currently in the 

marketplace for early cancer detection systems, there is always scope for 

advancement. In the short-term, I plan to acquire more datasets in order 

for this platform’s features to accommodate other types of tests for 

breast cancer (MRIs, CTs, Ultrasounds, & PET Scans). In the long-term, I 

would like to get FDA approval for this technology, so that it can actually 

be used in a medical setting authentically. I also plan to develop a 

business model, so as to figure out how to sell and market this technology 

to clinicians. 
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【評語】190027 

˙ This is an ambitious project that proposes to combine 

deep learning and NLP techniques for mental disorder 

diagnosis. 

˙ It would be nice to provide more description about the 

collaboration detail between the project and the 

collaborators (i.e., Johns Hopkins University). 

˙ It would be great to if the project could provide 

psychologist feedbacks on the diagnosis outcomes 

produced by this project. 
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