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摘要 

 基於音樂輸入的動作骨架生成是一個正在興起的研究主題，然而在弦樂樂

器的演奏骨架生成上，由於動作與音樂資訊間並非是一對一的對應關係，且在

時間序列上非常注重前後關係，此問題仍非常具有挑戰性。在研究中，我們設

計新的架構，將小提琴演奏者的演奏各部分拆解並分別生成。針對前人研究及

此研究的研究結果，我們分別進行了客觀測試及主觀問卷的評估，兩方面皆顯

示我們的研究結果較前研究進步。就我們所知，此篇研究是第一個嘗試在小提

琴演奏動作上加入音樂情緒的研究。 

 

 

ABSTRACT 

Generating body movements based on given music audio recordings is an 

emerging research topic. This problem remains challenging particularly for string 

instruments, considering that the relationship between the musical note sequences and 

the body movement sequences in string instruments is not one-to-one correspondence 

and is highly contextual-dependent. In this paper, we take a divide-and-conquer 

approach to tackle the multifaceted characteristics of musical movement, and propose 

a framework for generating violinists' body movements. Both objective and subjective 

evaluation show that the proposed framework improves the stability as well as the 

perceptual quality of the generation outputs by using the task-specific models for 

bowing and expressive movement. To the best of our knowledge, this work represents 

the first attempt to generate violinists' body movements considering music 

expressivity. 
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1. INTRODUCTION 

Musicians rely on their body movement to execute a music performance. The 

musical body movement is highly complex owing to 1) its diverse functions, 2) its 

context-dependent nature, 3) its person-dependent nature, and 4) the high-degree of 

freedom of movement during music performance. Musicians’ body movement serves 

to produce the instrumental sound, to express their musical ideas, and to communicate 

with their co-performers [1]. Musicians intentionally select different movements to 

achieve the planed performance sound according to the musical compositional context 

[2]. For instance, different violinists may choose various bowing and fingering 

strategies depending on the musical interpretations they attempt to deliver. It has also 

been shown that individual musicians have their own distinguishable idiosyncratic 

movement features [3]. On the top of those, even when a particular musician playing 

the same musical composition, the performing movement may vary along with 

different expressive intentions [4]. All those dimensions contribute to the complexity 

and flexibility of musical movements. 

Previous research has shown that different body movements from musicians 

generate diverse instrumental sound [5, 6]. And the correspondence between 

musicians' movement and the performed musical composition has also been 

demonstrated [7, 8]. An interesting yet challenging question is, in spite of its 

complexity, can the performing body movement being reversely generated from the 

given musical sound [9, 10]. The majority of existing studies tackle the movement-

sound relation based on motion capture data collected in laboratory settings [11]. Such 

motion capture data have the virtue of being highly accurate and reliable, yet are with 

vast limitation in data collection and application. Furthermore, we suggest that the 

performance of existing end-to-end models to generate musicians' movement from 
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audio can be further improved by addressing the complexity and diverse functions of 

body movement [9, 10]. 

In this paper, the proposed model generates violinists' playing movement from 

the audio of violin performance. To tackle aforementioned issues, we take a divide-

and-conquer approach to consider different functions of violinists' instrumental 

movement in their right hand (bowing model), left hand (position model), and 

expressive movement in upper body (expression model). Our data were derived from 

video sequences with pose estimation tools [12], which are more applicable to a 

nature scenario of music performance, and can potentially access to a crowd of data 

from existing video recordings. The model of generating body movement from music 

audio has the potential to be applied to computer graphics and animation, such as to 

synthesize virtual musicians directly from the recorded audio sequences. 

2. Related Works 

The task of modelling human body movement has been addressed by diverse 

approaches. Models to predict human movement (e.g. walking, running) has been 

built using frameworks including Gaussian processes [13], restricted Boltzmann 

machines [14], and hidden Markov models [15]. Deep learning frameworks such as 

Convolutional Neural Networks (CNN) [16] and Recurrent Neural Networks (RNN) 

[17] has proven to be efficient to generate movement sequences. Deep quaternion 

networks provide further improvement to implement the hyper-structure between 

components [18]. 

Regarding the correspondence between audio and body movement, the 

relationship between the speech and body movement has been explored [19]. Several 

attempts have been devoted to generate music-related movement. In [20], 

choreographic movements are automatically assigned to music according to the user's 
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preference. Pianists' and violinists' body movements were generated from given audio 

recordings using an end-to-end RNN model [9]. The model generating pianists' 

movement using the combination of CNN and RNN incorporated the information of 

bar and beat positions in music, and the model was proven to be capable of learning 

the movement characteristics of each pianist [10]. 

 

3. Proposed Method 

 

 

 

 

 

 

Fig. 1 illustrates the proposed body movement generation framework for 

expressive violin performance. The framework consists of three models to deal with 

movements in different body parts, namely the bowing model for right hand, the 

position model for left hand, and the expression model for upper body. Due to the 

limitation of the training data and pose estimation accuracy, we consider only 2-D 

pose generation of the upper body, while depth information, lower body movement 

and fingering are not discussed. The framework takes audio as input, and outputs a 

20-D sequence containing the 2-D location of 10 body joints: head, neck, left 

shoulder, right shoulder, left elbow, right elbow, left wrist, right wrist, left hip, and 

right hip. The three models are discussed as follows. 

Fig. 1. Left: the body movement generation framework. Right: illustration of 

parameters (See Section 3.2 and 3.3) 
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3.1. Bowing model 

 

 

 

 

 

 

 

 

 

 

In violin performance, there are usually different ways of bowing for violinists to 

perform the same music piece. Our goal is thus to generate a reasonable bowing 

arrangement according to a given music piece. To facilitate the discussion, we assume 

that the performance always starts from up-bow, as the same approach also applies for 

the music started with down-bow. In this way, the bowing movement generation 

problem is simplified into two subtasks: bowing attack prediction, and bowing speed 

rendering. 

Fig. 2 shows the bowing attack prediction network. It is a CNN trained to predict 

bowing attack, the time instance when the bowing direction changes (i.e., from up-

bow to down-bow. or from down-bow to up-bow). A 2-second segment of mel-

spetrogram centered at time $t$ is fed into the network, and it outputs the likelihood 

of bowing attack 𝑎[𝑡] at 𝑡, 𝑎[𝑡] ∈ {0, 1}, where 𝑎[𝑡] is labeled as 1 if the bow is 

changing its direction at time t and labeled as 0 if not. The output layer is a sigmoid 

Fig. 2. The proposed network for bowing attack prediction. 
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function and an output threshold at 0.5 is used. The 𝑘th predicted bowing attack of a 

piece is denoted as 𝑎𝑘. The bowing direction 𝑑[𝑡] ∈ {−1, 1} is rendered from 𝑎[𝑡] 

by switching the sign of 𝑑[𝑡] when 𝑎[𝑡] = 1, such that 𝑑[𝑡] = 1 represents up-bow 

and 𝑑[𝑡] = −1 represents down-bow.    

Then we discuss body movement generation at the interval 𝑡 ∈ [𝑎𝑘, 𝑎𝑘+1] 

between the 𝑘th and the (𝑘 + 1)th predicted bowing attack for every 𝑘. Denote δ =

𝑎𝑘+1 − 𝑎𝑘. We first select the upper-body movements having a whole up-bow on each 

of the four strings from the training data as the up-bow templates x𝑠[𝑞] ∈ ℝ20, where 

the subscript 𝑠 represent the four strings; 𝑠 ∈ {G, D, A, E}. The down-bow templates 

are made by reversing the up-bow templates. We normalize the length of these 

templates to 𝛿0 = 28 frames (0.924s), i.e. 𝑞 ∈ [0, 𝛿0]. The body movement x̂[𝑡] 

corresponding to music is generated by stretching or truncating the templates: 

 

x̂[𝑡] ≔ {
𝑑[𝑡]x𝑠[(𝑡 − 𝑎𝑘)𝛿0/𝛿],   𝛿 > 𝜑;

𝑑[𝑡]x𝑠[(𝑡 − 𝑎𝑘)],       𝛿 < 𝜑;
 

 

where 𝜑𝑣 = 15 frames and 𝑠 will be determined by the position model. More 

specifically, if the interval 𝛿 is longer than 15 frames, we assume it as full-bow and 

stretch the template; while if the interval is shorter then 15 frames, we truncate it. 

 

3.2. Position model 

The position of left hand on the fingerboard x𝑙ℎ[𝑡] ∈ ℝ2 depends on the 

contextual pitch sequence. We first assume that at 𝑡 = 0 the left hand position started 

with the lowest position where the pitch is allowed to be played. Then, the pitch 

sequence estimated from the audio using the YAAPT algorithm [21] is applied to 

derive the left hand position of all notes. This is done with a greedy strategy: the left 
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hand position of the (𝑛 + 1)th note is as near as possible to the position of the 𝑛th 

note. By assuming that the left hand always lies on the line between the lowest 

position 𝑥0[𝑡] (i.e., 0th position on the fingerboard) and the head position 𝑥ℎ[𝑡], as 

illustrated in Fig. 1, the left hand at the 𝑛𝑝th position is synthesized as �̂�𝑙ℎ[𝑡] =

𝑥0[𝑡] + 𝑛𝑝𝑑(𝑥ℎ[𝑡] − 𝑥0[𝑡]), where 𝑑 is the ratio between the fingerboard position 

and the distance between head and the 0th position. After knowing 𝑛𝑝 and pitch, the 

string number 𝑠 can be uniquely determined and this information is then used to 

generate right hand bowing. Note that detailed left hand fingering generation is not 

implemented in this paper and is left as future work. 

 

3.3. Expression model 

Generating violinists' body movement with musical expression is a rather 

unexplored problem, probably because violin performance data containing 

annotations of music expression is rare. As a preliminary step toward this direction, 

we focus only on the arousal aspect of music expression, since [22] indicates that the 

music arousal level highly correlates to the head acceleration and torso tilt, and there 

are music datasets with arousal labels [23] for training an arousal prediction model. 

The expression model is therefore an arousal-predicting network and a 

parametric model relating arousal to head and torso tilt. The arousal predicting 

network is a convolutional recurrent neural network (CRNN) based on [24]. It 

contains three convolutional layers of CNN with a receptive filter size of 3x3 and a 

fully-connected layer, followed by a bidirectional GRU and a maxout layer. MSE is 

used as the loss function. Based on the data annotation, the outputs arousal value is 

between -1 and 1. For better discussion, the final output arousal value is scaled to the 

range between 0 and 1. 
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The predicted arousal 𝑟[𝑡] ∈ {0, 1} is then used to control the torso tilt angle 

𝜃𝑡[𝑡] and the head tilt angle 𝜃ℎ[𝑡] (See Fig. 1). Taking the middle of the two hip 

joints as reference, the 𝜃𝑡[𝑡] measures the counterclockwise rotation of the neck joint 

from the vertical axis. Inspired from [22], high arousal implies large torso tilt, so we 

let 𝜃𝑡[𝑡] be proportional to 𝑟[𝑡]: 𝜃𝑡[𝑡] ≔ −𝛽𝑡𝑟[𝑡]. We set 𝛽𝑡 = 2/π, meaning that 

the maximal tilt is -90 degree. In comparison to torso, the behavior of head is more 

rhythmic, implying the need to incorporate beat information into the generation 

process. We define 𝜃𝑡[𝑡] as the extra tilt angle of head compared to the original 

template, as shown in Fig. 1. We adopt the madmom library [25] to estimate the beat 

and downbeat positions and design the rule of movement as: the head moves forward 

and backward periodically, and it moves forward to the lowest position (i.e. minimal 

𝜃ℎ) at downbeat. This forward-moving action is done within the beat interval before 

that downbeat, as shown in Fig. 3. Take 4-beat music as an example: given the arousal 

values between the 𝑘th downbeat 𝑑𝑘 and its precedent beat 𝑑𝑘−0.25, the head tilt 

angle at 𝑑𝑘 is: 

𝜃ℎ[𝑑𝑘] = −𝛽ℎ

∑ 𝑟[𝑡]𝑑𝑘
𝑡=𝑑𝑘−025

𝑑𝑘 − 𝑑𝑘−0.25
 

 

Fig. 3. Conceptual illustration of head movement angle (black solid bold line) 

for 4-beat music. The lowest angle (black dot) at every downbeat is determined 

by the average arousal value every the beat interval before the downbeat. 
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where 𝛽ℎ = 𝜋/3 is the maximal tilt angle for head. By assuming that 𝜃ℎ[𝑑𝑘−0.25] =

0, the expressive head movement over time can be animated by interpolation. 

 

4. Experiment 

4.1. Data and preprocessing 

The URMP dataset [26] is applied for body movement modeling. The dataset 

comprises 43 music performance video with individual instruments recorded in 

separate tracks. Among the tracks containing solo violin performance, we select 10 

pieces (total length = 15m42s) as the training set, and 4 pieces (total length = 8m14s) 

for testing. The DEAM dataset [23] is applied to train our expression model. It 

consists of 1,802 music excerpt recordings with annotations of arousal and valence 

values per second. We use all the audio and arousal annotations in the dataset for 

training. For both datasets, audio signals are sampled at 𝑓𝑠 = 22.05 kHz, and mel-

spectrogram with dimension 128 is the input for all the three models. For the bowing 

and position models, the frame rate is 30 fps. For the expression model, the frame rate 

is set to 60 fps and the mel-spectrogram is pooled by averaging and standardization 

for every non-overlapped 500ms segments [24]. The list of used data and other details 

will be released afterwards. 

The OpenPose library [12] and the COCO body model [27] are adopted to 

extract the 2-D position of the violinists' 10 upper body joints. The joints are extracted 

frame-wisely at the video's frame rate of 30 fps. All the joint data are normalized such 

that the mean of all joints over all time instances is zero. The normalized joint data are 

then smoothed using a median filter with the window size of 5 frames. 

Since the ground truth labels of bowing attack timing are not provided in the 

dataset, we retrieve them based on the right hand movement along the vertical axis. 
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More specifically, we compare the average velocities over 10 frames before and after 

every time instance 𝑡. Then, 𝑡 is identified as a bowing attack if the two velocities 

are of opposite direction and their magnitude are both larger than a threshold. This is a 

simple yet efficient way to obtain bowing attack labels that facilitates model training 

and evaluation. 

 

4.2. Objective evaluation 

To evaluate how similar the bowing directions of the generated body movements 

are to the ground truth ones, we evaluate the performance of bowing direction and 

bowing attack on the four testing data. We re-implemented the end-to-end RNN 

model [9] for baseline comparison. First, we compare the predicted bowing direction 

𝑑[𝑡] to the ground truth and report the frame-level accuracy. Results on the 4 testing 

pieces show that the average accuracy of the proposed model is 0.782, while the one 

of baseline method is 0.764. In the evaluation of bowing attack, we assume that a 

bowing attack is correctly predicted if the predicted time 𝑎𝑝 is within a tolerance 

window 𝜑𝑒 = 0.3s from a ground truth 𝑎𝑙; |𝑎𝑝 − 𝑎𝑙| ≤ 0.3. We report the F1-score, 

which is computed in the same way as in MIREX onset detection task. The F1-score 

of our method is 0.777, while the F1-score of the baseline is 0.760. In summary, the 

proposed model can better capture the behavior of bowing direction and bowing 

attack timing than the baseline model.  Note that the objective evaluation does not 

reflect the overall quality of generation since the bowing movement is not uniquely 

determined by music. 
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4.3. Subjective evaluation 

 

 Musician Non-musician 

Reasonableness 

Naturalness 

0.507±1.072 

0.652±0.960 

0.620±1.036 

0.669±1.054 

 

The subjective test is conducted to evaluate the effectiveness of the expression 

model. To do this, we compare the generated body movements with the expression 

model to the one without that model. In the test, every subject needs to watch the 

animation video showing the music and the generated movements. Every subject 

needs to answer two questions: 1) whether the movements with the expression model 

look more reasonable (i.e. the bowing attack and direction is compatible with the 

music), and 2) whether the movements with the expression model look more natural 

(i.e. more like human) than those without expression. We asked the subjects to score 

their answers in five levels: much more unreasonable/unnatural (-2); more 

unreasonable/unnatural (-1); no change (0); more reasonable/natural (1); and much 

more reasonable/natural (2). 

Table 1 shows the mean and standard deviation of the scores rated by two groups 

of subjects: 185 subjects having no experience in professional music training, and 28 

subjects having professional music training. On average, both groups of subjects rate 

the generated body movements with the expression model to be more reasonable and 

more natural than the one without the expression model. It could be note that the 

musician group still rates lower scores to both questions. Another interesting 

Table. 1. Mean (±standard deviation) scores of the subjective test. The score 

rates the improvement of the reasonableness and naturalness of the expressive 

body movement at the scale between -2 and 2. See Section 4.3 for details. 
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phenomenon is that the two scores rated by the musicians differs 0.145 (0.507 and 

0.652), while the scores rated by non-musicians are almost the same (0.620 and 

0.669). This is probably because non-musicians are not able to catch the precise 

meaning of `reasonable' and `natural,' while musicians are more able to distinguish the 

two. This is an important lesson which suggests the need to revise the contents of our 

subjective tests in the future. 

 

5. Conclusion 

We have proposed and verified the use of bowing attack prediction, fingerboard 

position mapping and music arousal prediction to generate instrument and expressive 

body movement. Based on the domain knowledge of violin performance, the 

proposed framework performs more stable than the fully data-driven approach, and 

provides extra flexibility in controlling musical expression. Future work includes 3-D 

body movement and fingering generation, and the incorporation of more complicated 

expression such as musical valence.  
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【評語】190019 

˙ 本項研究的主題新穎有趣且完成度高。 

˙ 對於作品的研究成果評估，除了質化的主觀評估外，可考慮

同時提供較為客觀的量化結果。 
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