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Abstract 

With the extensive use of antibiotics around the world, the problem of antibiotic 

residues have become severe. Therefore, a bacterial array solid-phase assay 

(BacSPA) method was established to detect and categorize antibiotics in samples. 

Suspension of 15 strains of E. coli genetically modified with lux:CDABE reporter 

genes were spotted on solidified agar individually mixed with 11 different 

antibiotics at 1.5 ppm concentration. The antibiotic stimulated the bacteria and the 

induced bioluminescence from different strains generated different patterns for 

different antibiotic classes. The luminescence pattern was monitored by time-lapse 

photography and the machine learning algorithm, Multiclass Decision Forest, was 

applied to train categorization models that either identify the compound or 

categorize the class of antibiotics using the indices. The best model got the best 

accuracy of 90% for class classification in three hours. The method was further 

tested for categorizing antibiotics at different concentrations. The final model 

could categorize the eight chosen antibiotics at a concentration range from 125 

ppb to 1000 ppb with accuracies mostly higher than 70%. We hope to establish the 

database of the luminescence pattern for more kinds of antibiotics at different 

concentrations and with different combinations in the future. This method would 

become more powerful, and it could surely provide a good way for people to 

detect and categorize antibiotic residue in food or environment samples.  

 

摘要 

隨著抗生素的廣泛使用，抗生素殘留的問題日益嚴重。為此，本研究建立了

一個稱作細菌陣列固相分析（BacSPA）的方法來檢測和分類樣品中的抗生

素。本研究將 15個在質體中植入生物冷光的大腸桿菌液，點在與 11種不同

的抗生素混合的固相培養基上，濃度為 1.5 ppm。不同的抗生素會刺激細

菌，使其產生特定的生物冷光變化圖形。將圖形以延時攝影紀錄，並以機器

學習演算法中的多重決策樹系訓練抗生素分類模型。得到的最佳模型能在三

小時內，以 90％分類抗生素的類別。再對該方法進一步測試，以區分不同濃

度的抗生素。最終模型能將濃度從 125 到 1000 ppb的八種抗生素進行分類，

其準確率大多高於 70％。在未來，我們希望能建立更多不同濃度、不同組合

的抗生素發光圖形資料庫，以擴大此方法的應用範圍。這無疑為人們檢測與

分類食品與環境樣品中的抗生素殘留，提供了一個很好的方法。 
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Introduction 

 
With the extensive use of antibiotics around the world, the problem of antibiotic 

residues have become a severe issue. The antibiotics remaining in the environment 

or food will impose selection pressure on bacteria, which makes bacteria develop 

antibiotic resistance and turn into superbugs. Superbugs claim about five hundred 

thousand people’s lives every year. Therefore, it is crucial to detect and categorize 

the antibiotics in samples more widely, such as food, water and so on. The method 

utilized now is Mass Spectrometry(MS) and ELISA. However, MS is quite 

expensive and takes long hours, so it is not suitable for preliminary use, and due to 

the chemical mechanism of ELISA, it cannot classify different antibiotics 

precisely. Thus, the biological method was utilized in the study. The 14 strains of 

genetically modified E. coli were used to detect and classify antibiotics in samples. 

Each strain of E. coli has a specific promoter on its plasmid, and each specific 

promoter was designed to be induced by a corresponding stress factor caused by a 

specific class of antibiotics. By using this biological method, the goal of quickness 

and convenience would be reached. 

 

Materials and Methods 
 
Antibiotics: 
The 11 antibiotics used in this study were purchased from Sigma Aldrich and 

shown in Table 1. The “antibiotic compound” refers to the name of a specific 

antibiotic, while the “antibiotic class’’ refers to the mode-of-action (MOA) class 

an antibiotic was in. 

 

Table 1: The antibiotic compounds and their classes used in this study. 

 

Antibiotic 

Class 

Antibiotic 

Compound 

Name 

Catalog 

Number 

β-lactams 

Amoxicillin 10039 

Ampicillin A9393 

Ceftiofur 34001 

Cefapirin SMB00605 

Phenicols 
Chloramphenicol C0378 

Thiamphenicol T0261 

Tetracyclines 
Doxycycline D3447 

Tetracycline 31741 

Rifampicin Rifampicin R3501 
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Quinolone Ciprofloxacin 17850 

Naphthyridine Nalidixic acid N8878 

 

 

Bacteria strains: 

 
The 14 strains of genetically modified E. coli used in this study were shown in 

Table 2. (Melamed, S., Lalush, C., Elad, T., Yagur-Kroll, S., Belkin, S., & 

Pedahzur, R. 2012) Each strain of E. coli has a specific promoter on its plasmid, 

and each specific promoter was designed to be induced by a corresponding stress 

factor (sensing element).  

 

Without antibiotics, different strains of bacteria emit different intensities of natural 

bioluminescence, mainly caused by the intrinsic expression of the luxCDABE 

operon. However, when incubated with antibiotics, different antibiotics inhibited 

the growth of the bacteria by imposing different stress factors. They induced 

different extents of activation on different promoters, and eventually cause a 

variety of changes in luminescence intensity for different strains. This 

phenomenon allows the bacteria to be used to classify the antibiotics existing in 

their incubation environments. 

 

Table 2 The 14 strains of genetically modified  E. coli used in this study. 

(Melamed, S., Lalush, C., Elad, T., Yagur-Kroll, S., Belkin, S., & Pedahzur, R. 

2012)  

 

Strain Plasmid Sensing element 
information 

SM332 pBRlux‐trp:emrA::luxCDABE Cytoplasmatic membrane 
fusion protein  

SM333 pBRlux‐trp:acrA::luxCDABE Periplasmic lipoprotein 

component of the AcrAB‐

TolC multidrug efflux pump 

SM334 pBRlux‐trp:zwf::luxCDABE G6PDH, regulated by SoxS 
and MarA 

SM335 pBRlux‐trp:soxS::luxCDABE Dual transcriptional 
activator, participates in the 
removal of antibiotics 

SM337 pBRlux‐trp:tolC::luxCDABE Outer membrane porin 
involved in the efflux 
transport system 

SM338 pBRlux‐trp:inaA::luxCDABE pH‐inducible protein 

involved in stress response 

SM340 pBRlux‐trp:zntA::luxCDABE Lead,   cadmium,  zinc and 
mercury transporting 
ATPase 
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SM341 pBRlux‐trp:marR::luxCDABE Multiple antibiotic 
resistance protein 

SM342 pBRlux‐trp:recA::luxCDABE DNA recombination protein, 
induce the SOS response 
to DNA damage 

SM343 pBRlux‐trp:micF::luxCDABE Antisense regulator of the 
translation of the OmpF 
porin,  under SoxS 
regulation 

SM344 pBRlux‐trp:katG::luxCDABE Bifunctional hydroperoxides 
I,  having both catalase and 
peroxidase activity 

SM345 pBRlux‐trp:sodA::luxCDABE Superoxide dismutase 
protein 

SM346 pBRlux‐trp:rpoB::luxCDABE RNA polymerase, beta 
subunit 

SM34
7 

pBRlux‐trp:ompF::luxCDABE Outer membrane porin 

 

 

Other materials: 
 

25 g of LB powder(Difco LB Broth cat. no. 244620) was dissolved into 1 liter of 

water and sterilized to make LB Broth medium. 6 g of the agar powder (Bacto 

Agar) was added into LB Broth medium and sterilized to make agar. The 

formulation of the M9 medium had been mentioned in previous study.  (Melamed, 

S., Lalush, C., Elad, T., Yagur-Kroll, S., Belkin, S., & Pedahzur, R. 2012) 

 

 

 
(a) 
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(b)   

 
(c) 

 

Figure 1. Procedure of the SPAA assay. (a) The structure of the four-well plate 

made of a PMMA frame and a layer of adhesive film. (b) Agar (yellow) mixed 

with the target antibiotic was pipetted into the wells and cooled to solidify. (c) The 

bacterial suspension was inoculated onto the agar surface, contacting the target 

antibiotic 

 

Bacterial array solid-phase assay- BacSPA: 

 
 

The BacSPA method allows the target antibiotics to stimulate the 14 bacteria 

strains simultaneously. Arrays of the bacteria were inoculated onto the surface of 

the agar containing the target antibiotics (Figure 1) for interaction. In comparison 

to the conventional liquid phase assay, the BacSPA method is simple and allows 

multiplex interactions to be monitored in a high-throughput manner. The detail of 

the BacSPA method is described below. 

 

Solidified agar was held by a home-build four-well plate, which was composed 

of a plate frame (figure 3) and an underlying adhesive film. The plate frame was 

made of PMMA sheet (thickness 5 mm), cut by a CO2 Laser scriber (Wavelength 

10.6 micrometer, Company, V2000). Then, the adhesive film was adhered to the 
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bottom of the frame to make the four-well plate. 

 

The agar containing the target antibiotics was prepared as follows. Antibiotic 

stocks were prepared by dissolving the target antibiotic powder in water or 

methanol to be 1,000X of the designated concentrations in the agar. Each stock 

was prepared with a volume of 10 ml and stored below 4 ℃ before mixed with 

agar to prevent degrading. For each experiment, the stock and the melted agar (60 

℃) were mixed at a ratio of 1:1000 and vortexed for 1 minute. For the blank test, 

the melted agar was prepared with a mock solvent at the ratio identical to that of 

the experiment group. The melted agar was then poured into the four-well plate 

(Figure 1(b)) and allowed to cool at ambient temperature to solidify. The solidified 

agar was then ready for immobilizing bacterial suspension. 

 

The bacterial suspension was prepared as follows. Bacterial stock (1.5 µL) 

stored at -40 ℃ was added into 15 mL culture tubes containing 1 mL of M9 salt 

medium and was grown overnight in an incubator (Dengyng, D9MD-DB45) at 37 

℃. After the overnight growth, the bacterial suspension was diluted by 25 times 

with the LB medium and regrown in a new culture tube in the incubator at 37 ℃  

for two hours. The culture tube was then stored in an ice bath to stop the bacterial 

growth. The suspension was then diluted to 0.2 O.D. (measured by a photometer 

Metertech, Model 6+ Mini) with LB medium. Finally, the bacterial suspension 

was centrifuged and then resuspend to a concentration of 2.0 to 3.0 O.D.  

 

The concentrated bacteria suspension was then inoculated onto the surface of 

the solidified agar using a pipette, forming bacterial arrays (figure 1 (c)). The 

volume of each spot was 5 µL. The bacterial array was thus in contact with the 

target antibiotics, and the bioluminescence was then monitored by time-lapse 

photography. 

 

Monitoring strain bioluminescence  

 
The four-well plates containing the bacterial arrays were incubated at 37 ℃ and 

photographed using a camera (Diffraction Limited, STF-8300). Each experiment 

repeats consisted of four four-well plates mounting on a customized turntable 

made of PMMA cut by the CO2 laser scriber. Each well in the four-well plate 

contains one condition (different compounds and concentrations), resulting in a 

total of 16 conditions in one experiment repeat. The turntable’s rotation was 

integrated with the camera’s exposure controlled by a MATLAB 

(https://www.mathworks.com/products/matlab.html)  program to photograph each 

plate for 10 hours at an interval of 3 minutes. A total of 7 experiment repeats were 

conducted independently. 

 

Luminescence of the bacterial arrays in the photographs was quantified using a 

program written in Python (https://www.python.org/downloads/) and its function 

library OpenCV (https://opencv.org/). The bacteria spots were first marked using 

plain circles in Photoshop manually, and a function called HoughCircle 

(https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_circle/hough_c

ircle.html) in OpenCV circled out the edge of each spot. The photographs were 

compressed to 8-bit grayscale, and the color depths (i.e. intensity) of the pixels 

https://www.mathworks.com/products/matlab.html
https://www.python.org/downloads/
https://opencv.org/
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html
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within each spot were summed up into luminescence value. The background noise 

intensity was further subtracted from the luminescence values to obtain the raw 

bacterial luminescence intensity, shortened as “raw intensity, Ln(t).” below. 

 

Intensity data processing: 

 
The human error occurred when condensing or inoculating bacteria might cause 

errors in the amounts of bacteria spotted on the agar surface. The amount of 

plasmids in each bacteria cell also varies. These errors manifest in the 

luminescence intensity emitted from the cells, causing the fluctuation of the raw 

bioluminescence intensity. 

 

The raw intensity data were further processed using different mathematical ways 

to increase the accuracy by machine learning. For a specific antibiotic, the raw 

luminescence intensity was calculated according to the following four methods, 

generating four sets of indices.  

 

Method 1: Ratio to blank, 𝑅𝑛(𝑡) 

 

The ratio of a strain’s raw luminescence intensity, Ln(t), in an antibiotic to the 

corresponding one in the blank experiment was calculated to 𝑅𝑛(𝑡) using the 

following equation. The index 𝑅𝑛(𝑡) could diminish the error caused by unstable 

intrinsic bioluminescence emission by designating each intrinsic emission as the 

baseline. 

 

𝑅𝑛(𝑡) =
𝐿𝑛(𝑡)

𝐵𝑛(𝑡)
  eq.(1) 

 

, where n is the strain number,  𝐿𝑛(𝑡) is the raw intensity of a strain in an antibiotic 

emitted at time t. 𝐵𝑛(𝑡) is the raw intensity of the corresponding strain emitted in 

the blank experiment at time t. 

 

Method 2: Time normalization, 𝑇𝑛(𝑡) 

 

The raw intensities of a strain in an antibiotic at time t were normalized to Tn(t) by 

all the corresponding time points using the following equation. The index Tn is 

aiming for reducing the effect from the luminescence fluctuation over time 

between different experiment repeats. 

 

𝑇𝑛(𝑡) =
𝐿𝑛(𝑡)−𝑎𝑣𝑔(𝐿𝑛(0) 𝑡𝑜 𝐿𝑛(𝑡))

𝑠𝑡𝑑(𝐿𝑛(0) 𝑡𝑜 𝐿𝑛(𝑡))
 eq.(2) 

 

,  where n is the strain number. 𝐿𝑛(𝑡) is the raw intensity of a strain in an antibiotic 

emitted at time t. 𝐿𝑛(0) 𝑡𝑜 𝐿𝑛(𝑡) refer to the raw intensity of the corresponding 

strain in the corresponding antibiotic at the time points from time 0 to time t. The 

function 𝑎𝑣𝑔 refers to the average and 𝑠𝑡𝑑 the corrected standard deviation. 

 

Method 3: Strain normalization 𝑆𝑛(𝑡) 
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The raw intensities of a strain in an antibiotic at time t were normalized by all 

those from all the 14 strains to 𝑆𝑛(𝑡) using the following equation. The index aims 

to diminish the error caused by overall environmental instability among different 

experiment repeats that affects all the bacterial strains in forms of linear 

transformations. (Craig A. Mertler., 2007) 

 

S𝑛(𝑡) =
𝐿𝑛(𝑡)−avg(𝐿1~14(𝑡))

std(𝐿1~14(t))
  eq.(3) 

, where n is the strain number. 𝑆𝑛(𝑡) is the raw intensity of a strain at time t. 

(𝐿1~14(𝑡)was all the bioluminescence intensity of all 14 strains in the 

corresponding antibiotic  to 𝐿𝑛(𝑡) 

 

Method 4: Omnibus index 𝐴𝑛(𝑡) 

 

The three indices obtained using the three methods above were combined into 

𝐴𝑛(𝑡)as shown below. The index 𝐴𝑛(𝑡) was a set of data tuples that contained the 

information of all the three indices. 

 

 𝐴𝑛(𝑡)=(𝑅𝑛(𝑡), 𝑇𝑛(𝑡), 𝑆𝑛(𝑡)), where n is the strain number. 
 

Categorization Model Training and Testing : 

 
Microsoft Azure machine learning Studio (https://studio.azureml.net/) was used 

for constructing the machine learning models used for identifying and categorizing 

the antibiotics objectively (Scheme 1). The algorithm, Multiclass Decision Forest 

(MDF), was applied to train categorization models that categorized the antibiotic 

in the sample using the bioluminescence intensity data of the bacteria stimulated 

by the antibiotics.   

 

https://studio.azureml.net/
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Scheme 1. The flowchart for training and validation of the machine learning 

models. 

 

A process termed as “model hyperparameter tuning” attempted different training 

hyperparameters (Scott Hartshorn., 2016) during training. The hyperparameters 

include the numbers of decision trees, the maximum depths of the decision trees, 

the number of random splits per node, and the minimum number of samples per 

leaf node. The evaluation method “Leave-one-out cross-validation ( Scott 

Hartshorn., 2016 ) ”, was used to score the accuracy of the models with different 

hyperparameters, which chooses the best model hyperparameters with the highest 

accuracy and prevents overfitting at the same time. The detailed training steps are 

described below. 

 

The data (the L, R, T, S, and A indices) were partitioned into seven-folds, each 

fold containing the indices from one experiment repeat. The cross-validation 

process worked in a round-robin way. The tuning module first designated a set of 

training hyperparameters of the decision tree. One data fold was first left out (i.e., 

excluded from the model training), and it was used to score the categorization 

model trained using the remaining six data folds by the decision forest with the 

designated hyperparameters. After that, the left-out data fold was swapped with 

another data fold, scoring the second categorization model trained using the new 

combination of six remaining data folds with the same sets of hyperparameters.  

After all the seven data folds have been left out respectively with a set of seven 

models trained, the accuracy obtained using the set of hyperparameters was 

defined as the average accuracy of the seven models. After all the seven 

combinations of data have been used for training the MDF model, a set of optimal 

hyperparameters was determined.  By changing and tuning the training 

hyperparameters, the final accuracy is defined as the accuracy of the optimal 

(having the highest average accuracy) set of hyperparameters, and the final 

categorization model was considered trained with the resultant hyperparameter set.  

 

 

Results and Discussions 
 

(a) (b) (c)

(d) (e) (f)  
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(g) (h) (i)  

(j) (k) (l)

(m) (n)  

Figure 2. Photographs of luminescence from the 15 strains of bacteria stimulated by 

different antibiotics in the agar at concentration 1.5 ppm for 3 hours. (a) Amoxicillin. 

(b) Ampicillin. (c) Ceftiofur. (d) Cefapirin. (e) Chloramphenicol. (f) Thiamphenicol. 

(g) Doxycycline. (h) Tetracycline. (i) Rifampicin. (j) Ciprofloxacin. (k) Nalidixic 

Acid. (l) Blank. (m) Nalidixic Acid at concentration 6 ppm. (n) The layout of the 15 

strains on the agar surface.  

 

Luminescence from stimulated bacteria:  

Figure 2 shows the photographs of the luminescence from the 15 strains of 

bacteria when stimulated by the antibiotics spiked in the agar. With a moderate 

antibiotic concentration, different antibiotics caused different extents of activations 

on different promoters. As a result, each antibiotic generated a specific 

luminescence pattern, which could be used to identify and classify the MOA of the 

antibiotic. 

For antibiotics in the same class, the luminescence from the strains generated 

similar patterns, mainly because a similar mode of action should take place. For 

example, doxycycline (figure 2(g)) and tetracycline (figure 2(h)) yielded a similar 

pattern because they both belong to the tetracycline class and inhibit the work of 

30S subunits in ribosomes (Chopra, Roberts M., 2001.). 

In contrast, amoxicillin (figure 2(a)) acts on bacteria through the weakening of 

cell walls (Pharmacol Ther.,1985) and generated a different luminescence pattern 

from that by doxycycline (figure 2(g)). In a blank experiment with no antibiotics 

added (figure 2(l)), some strains emitted observable bioluminescence because of 

the intrinsic expression of the LuxCDABE operons. On the other hand, for 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Chopra%20I%5BAuthor%5D&cauthor=true&cauthor_uid=11381101
https://www.ncbi.nlm.nih.gov/pubmed/?term=Roberts%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11381101
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antibiotics in a concentration high enough to inhibit the growth of most strains 

intensely (figure 2(j)), almost all strains exhibited only weak bioluminescence. To 

better compare the differences of the luminescence pattern stimulated by different 

antibiotics, the raw intensities were normalized to three indices using the methods 

described in the Materials and Methods section. 

 

Figure 3.  Radar charts of the luminescence indices, Rn(3hr), for different antibiotic 

classes. (a) β-lactams. (b) Tetracyclines. (c) Phenicols. (d) Other three classes, 

including Naphthyridines, Quinolones, and Rifampicins. (e) 95% confidence 

intervals for Cefapirin and Rifampicin. 

Radar charts were drawn using the  𝑅𝑛(3ℎ𝑟) index of antibiotics at 1.5 ppm to 

demonstrate the relationship of luminescence patterns between antibiotic classes, 

as shown in Figure 3. The radial axes represent the 14 bacterial strains, while the 

radii indicate the  𝑅𝑛(3ℎ𝑟) value of the strains. 

Figure 3(a) shows the charts of the four β-lactam antibiotics (Amoxicillin, 

Ampicillin, Ceftiofur, and Cephapirin ). This radar chart reveals the significant-

high spikes at strain SM338 and the minor spikes at strains SM333, SM343, and 

SM345 for most of these antibiotics. 

Figure 3(b) shows the chart of the two Tetracycline class antibiotics 

(Tetracycline and Doxycycline). In this chart, all the  𝑅𝑛(3ℎ𝑟)alues are smaller 

than 1.5, and both antibiotics showed a small pike in strains SM333 and SM335. 
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Contrary to the charts for the beta-lactam class (figure 3(a)), a visible dent in strain 

SM338 was observed for the Tetracycline class. 

Figure 3(c) shows the charts of the two Phenicol class antibiotics 

(Chloramphenicol and Thiamphenicol). This chart seems to be similar to the β-

lactam antibiotics chart, as they both showed a prominent spike in strain SM338. 

However, in the Phenicols chart, 𝑅𝑛(3ℎ𝑟)or strains SM344 and SM346 are 

smaller than those for the beta-lactam class. As a result, the shapes of the two 

radar charts appear different. 

Figure 3(d) represents the remained three classes of antibiotics, including the 

Naphthyridine class (Nalidixic Acid), the Quinolone class (Ciprofloxacin), and the 

Rifampicin class (Rifampicin). For Nalidixic Acid, it shows a prominent spike in 

strain SM338, similar to the Tetracyclines and β-lactams. Nevertheless, the curve 

around the other strains is much smoother in the Naphthyridine chart, making it 

differentiable with the other two classes. For Rifampicin, the chart reveals a 

relatively round curve for 𝑅𝑛(3ℎ𝑟) values around 1.5, and two minor spikes in 

strains SM332 and SM344. For Ciprofloxacin, all the  𝑅𝑛(3ℎ𝑟)values are smaller 

than 1.0. Compare to the tetracycline class, the threshold of  𝑅𝑛(3ℎ𝑟)is even 

smaller, and no prominent spikes are found in the Ciprofloxacin chart.  

Figure 3(e) shows that the difference between classes may not be statistically 

different for all the strains. It is difficult to select the representative strains to 

distinguish the difference between the antibiotic classes. Therefore, Machine 

learning was utilized to classify the antibiotics. In machine learning, the Decision 

Forest algorithm was known for its capability to dig out the differentiable features 

concealed in a bulge of noised data, and multiple biological tasks, including 

protein and DNA arrays classification (Chen, X., & Ishwaran, H., 2012), had been 

successfully attempted. The categorization models trained using this algorithm 

tried to tell the class of an antibiotic from the response of its bioluminescence 

pattern.   

 

Table 3. Accuracy of categorization models trained using different indices W to L 

Data Forms 
(t=3hr) 

𝐿𝑛(𝑡) 𝑅𝑛(𝑡) 𝑇𝑛(𝑡) 𝑠𝑛(𝑡) 𝐴𝑛(𝑡) 

Compound 53% 56% 59% 52% 65% 

Class 63% 81% 76% 77% 90% 
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Accuracy of machine learning categorization models:   

Preliminarily, the concentrations of the antibiotics were confined to 1.5ppm to 

simplify the training procedure.  

Ten categorization models were trained using the method mentioned in 

“Categorization Model Training and Testing.” The bioluminescence-pattern data 

were given in five forms, including the raw intensity data (𝐿𝑛(𝑡), 𝑅𝑛(𝑡), 𝑇𝑛(𝑡), 

𝑆𝑛(𝑡), and 𝑨𝒏(𝒕)). Two different models were trained using each pattern-data 

form that identified either the compound name (such as Thiamphenicol, or 

Ampicillin) or classified the class (such as Phenicols, or β-lactams) of the 

antibiotic.  

The accuracies of the models trained using the data from time equals the 3rd 

hour were shown in Table 3. It showed that most of the accuracies increased 

prominently with data that had been preprocessed into indices. Different indices 

excelled at classifying different antibiotics, while the omnibus indices tended to 

integrate the advantages of them and resulted in the best accuracy of 65% for 

compound identification and 90% for class classification.    

The significant 25% increase in the accuracy for the class categorization 

compared to that for the compound identification demonstrated that the bacterial 

array is advantageous for categorizing antibiotics based on the mode of action 

(MOA). As mentioned, the same class of antibiotics generated similar 

luminescence patterns, resulting in similar patterns that lowered the accuracies for 

discriminating antibiotics in the same class. For class categorization, however, 

antibiotics in the same class share the same categorization label. In other words, 

the MDF algorithm did not have to tell the same-class antibiotics apart, which 

share similar pattern features, and thus significantly increased the categorization 

accuracy. 
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Table 4. Confusion matrix of the class classification model trained using a 

combination of all three indices. (The boxes in white equals 0.00.) 

 

The scoring results of the class categorization model trained with 𝐴𝑛(𝑡) are 
visualized using a table called Confusion Matrix shown in Table 4. The vertical 

axis represents the antibiotic compounds that were used in the sample, while the 

horizontal axis represents the class-categorization results by the MDF model. The 

numbers in the grids represent the ratio of the corresponding sample being 

classified into the correct class. The black-boxed grids represent the ones that were 

accurately classified.    

Most of the 11 antibiotics were accurately categorized, with nine accuracies 

higher than 80 %. It is more crucial to detect the existence of antibiotic in a sample 

than identifying the compound, meaning that this model shouldn’t have high false-

negative and false-positive rates for Blank. In Table 4, samples with antibiotics 

could be detected except for Cefapirin, which has a rate of 0.14 to be categorized 

as Blank. In other words, all antibiotics except Cefapirin show no false-negative 

rate. For the blank samples, there is only a rate of 0.14 to be categorized as 

phenicols, showing that this model has a low false-positive rate for Blank.  

For categorization, there were low false-categorization rates for Cefeparin 

(14%), Ceftiofur(14%), Nalidixic Acid (28%) and Amoxicillin (40%) and no 

false-categorization results for the other antibiotics. Compared to what was 

observed in the radar chart in Figure 3(e), in which Cefapirin (β-lactam class) and 

Rifampicin (rifampicin class) could not be distinguished statistically, the MDF 

model successfully told apart from the two classes. The result demonstrated the 

superiority of using ML for categorization. 
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Categorization models for different concentrations of antibiotics:   

 

(a) 

 

Figure 5. (a) line chart of the classification accuracy change of  Rifampicin at 1000 

ppb, Tetracycline at 500 ppb, and tetracycline at 125 ppb through time. (b) Scoring 

result of the combination method classification. The letters in red were the 

accuracies obtained in the fourth hour while the letters in blue were those obtained 

in the tenth hour. ( Thl= Thiamphenicol, Amx= Amoxicillin, Amp= Ampicillin, 

Cef= Ceftiofur, Cip= Ciprofloxacin, Rim= Rifampicin, Dcy= Doxycycline, Tcy= 

Tetracycline. ) 

 

We further tested whether the MDF categorization could be useful for 

antibiotics at different concentrations.  In this research, four lower concentrations 

(1000 ppb, 500 ppb, 250 ppb, and 125 ppb) of eight chosen antibiotics were used 
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to demonstrate the ability for the MDF categorization method to distinguish 

antibiotics at different concentrations. 

A classification model was trained with the 𝑨𝒏(𝒕) indices and the concentration 

value of the 32 kinds of antibiotic samples. The time  3hr ≦  t ≦  10hr were used 

fo𝑨𝒏(𝒕). It was found that the same compound of antibiotics with different 

concentrations in the experimental range didn’t emit bioluminescence with 

significant differences. Therefore, the classification model was designated to 

output the class but not the concentration of the antibiotic in a sample. 

From the scoring results, the antibiotic samples could 

be partitioned into two groups, depending on their 

classified accuracy through time. For antibiotics in higher 

concentrations (≥ 500 ppb), they were classified accurately 

in the fourth hour but dropped their accuracy through 

time. However, for antibiotics in lower concentrations (≤ 

250 ppb) and the antibiotic Rifampicin, which imposed 

weaker stress, they were classified poorly in the fourth 

hour, but more accurately in the 10th hours. Three 

examples were shown in Figure 5(a). 

A combination of two models was applied to enhance the accuracies for low 

concentration and Rifampicin classification. The scoring results of this 

combination method were shown in Figure 5(b) The final model was trained with 

the data in the fourth hour (letters in red) and modified using the model trained 

with the data in the tenth hour (letters in blue). This model categorized the eight 

antibiotics at a concentration range from 125 ppb to 1000 ppb with accuracies 

mostly higher than 70%. Except for Rifampicin at 125 ppb, which may be too 

weak for the present bioreporters to detect.  
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Table 6. Confusion matrix of the classification model with three unknown 

antibiotics  

 

As mentioned, the categorization method classified antibiotics based on the 

similar patterns caused by similar stress factors. This mechanism enabled the 

categorization method to categorize an unknown compound of antibiotic if an 

antibiotic from the same class had been included in the training database. 

The training dataset of the classification model in Table 4 was modified to 

demonstrate the ability of the method to classify unknown antibiotics. Three 

compounds of antibiotics (Ampicillin, Thiamphenicol, Doxycycline) were 

excluded from the training database, representing unknown antibiotics, with at 

least one same-class antibiotic included in the database. A new model was trained 

using this database and scored using the data of the three removed ones. The 

confusion matrix of the model is shown in Table 6. The overall accuracy also 

dropped from 90% to 85 %, which occurred in both the retained and excluded 

antibiotics. The accuracies of the three excluded antibiotics were all greater than 

70%, showing that they were well classified even if they weren’t in the database.  

The ability to detect and categorize unknown antibiotics reveals another 

advantage of this method. For most of the existing antibiotic detection methods, a 

database for all the antibiotic compounds needs to be established in order for those 

methods to work. However, for our method, only the representative antibiotics for 

each MOA class need to be in the luminescence pattern database, and the 

remained ones could be successfully detected and categorized. Not only could it 
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save lots of time in database establishing, but also newly created antibiotics with 

no detailed information could be tested to see which MOA class might them 

belonged to. More detailed comparisons with existing antibiotic detection methods 

would be listed in the next paragraph.  

 

Comparisons with existing antibiotic detection and categorization 

methods: 

Two most commonly used existing antibiotics detection methods are High-

Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) (Lúcia 

Santos, Fernando Ramos. , 2016) and Enzyme-Linked Immunosorbent Assay 

(ELISA) (Mahgoub, Osman & Kadim, Isam & Mothershaw, Ann & Zadjali, S.A. 

& Annamalai, K.. 2006.). 

In HPLC-MS, the HPLC separates samples into different components and the 

MS identified the components by their mass-to-charge ratio (m/z). This method 

could detect and identify the antibiotic residues in samples with significantly high 

accuracy and could even tell the amounts or concentration of the residues. Due to 

its high precision, HPLC-MS serves as the government regulations for many 

countries. However, at the cost of its precision, the MS instruments are relatively 

expensive, and the amount of the instruments is rather small, meaning that it’s not 

practical for many samples to be tested by this method. In comparison, the 

bacterial array method could detect the presence of antibiotics with almost no 

false-negative rates, and categorize the antibiotic residues in an accuracy of about 

90%. The accuracy may not be as high as HPLC-MS, however, the only 

instruments for the bacterial array method are just cameras and incubators, which 

are much more affordable and convenient than MS. Therefore, the method could 

serve as a widely screening process that could be implemented on large numbers 

of samples, and if necessary, the detected samples could be further tested with 

HPLC-MS to tell the concentration of the residues. 

ELISA  is a screening method that is widely used in different detection fields. 

The antibody in the test kit binds to the specific antigen in the sample and the 

enzyme on the immobilized antibody emits visible signals that could be 

recognized. The process of this screening method could be done in a short time, 

however with relatively low accuracy, and high false-negative rates. Also, one 

ELISA antibodies could only detect one compound of antibiotic, meaning that for 

an unknown sample, one may need to utilized many times of different ELISA 

antibodies to meet most of the possibilities of the compounds.The bacterial array 

method, in comparison, could give its results in four to ten hours with much higher 

accuracies, and by doing only one time of test, all the antibiotic classes in the 

database could be detected and categorized. Moreover, the establishment of the 

luminescence database could be done in just seven times of E.coli incubation and 

monitoring, while the creation of an antibody with specific selectivity is rather 

complicated. These reasons clearly show the importance of the bacterial array 

method. 
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Conclusion 

A bacterial array solid-phase assay (BacSPA) method was established to detect 

and categorize antibiotics in samples. Suspension of 15 strains of E. coli 

genetically modified with lux:CDABE reporter genes were spotted on solidified 

agar individually mixed with 11 different antibiotics from 7 classes at 1.5 ppm 

concentration. The antibiotic stimulated the bacteria and the induced 

bioluminescence from different strains generated different patterns for different 

antibiotic classes. The luminescence pattern was monitored by time-lapse 

photography and the data were processed into four kinds of indices for antibiotic 

categorization.  The machine learning algorithm, Multiclass Decision Forest, was 

applied to train categorization models that either identify the compound or 

categorize the class of antibiotics using the indices.  

 

The omnibus indices tended to integrate the advantages of the other three 

indices and resulted in the best accuracy of 65% for compound identification and 

90% for class classification in three hours. The method was further tested for 

categorizing antibiotics at different concentrations. A combination of two models 

from the fourth and tenth hour could categorize the eight chosen antibiotics at a 

concentration range from 125 ppb to 1000 ppb with accuracies mostly higher than 

70%. Also, three antibiotics were excluded from the training database and 

successfully categorized. It demonstrated the ability of the categorization method 

to categorize an unknown compound of antibiotics if an antibiotic from the same 

class had been included in the training database. 

 

The bacterial array method is fully extendable, with more luminescence data 

monitored, the detection range of this method would be wider and wider. We hope 

to establish the database of the luminescence pattern for more kinds of antibiotics 

at different concentrations and with different combinations in the future. The 

method would become more powerful, and it could surely provide a good way for 

people to detect and categorize antibiotic residue in food or environment samples.  
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【評語】070006 

抗生素濫用及耐藥性細菌的存在實為本世紀重要的課題，故本

文研究動機及想法很有創意，建構螢光偵測系統利用已知濃度的抗

生素及菌種做機器學習，希望作為未來抗生素檢測的方法。然而實

驗測試中何以不同的抗生素會刺激細菌，使其產生特定的生物冷光

圖形有不同的變化，作者未詳述其原理，是否所檢測到的讀值具有

實質意義，相關對照組應詳列，且機器學習需要大量的數據，本研

究學習的資料不多，是否可以有顯著性地反應測試的結果有待進一

步驗證。  

書面報告內容及研究建議如下： 

1. 縮寫字第一次出現時需用全名，並標示括號縮寫，例如：SPAA, 

PMMA。 

2. Format (style) of each reference should be consistent. 

3. 英文不夠精準，描述太中文化。 
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