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Abstract

In the era of smart mobile technology, touchscreen-enabled devices have gone deep into
modern lives. As handwriting recognition technology evolves, input methods such as traditional
character recognition or Swype-like keyboards has become the most important tool for humans
to interact with mobile devices. But more often than not, people suffer from handwriting
distortion while drawing under unstable settings. To improve writing experiences on mobile
devices, the study presents NoDistort, which stands for "Drawing Distortion Recovery System
for Shaky Screens". By combining data from internal motion sensors, the system estimates the
displacement and posture of the device. Then the system corrects the distorted drawings by the
proposed drawing correction algorithm. The study also designed an equipment-free self-
calibration pipeline which aimed to calibrate sensors easily. After several updates and
optimizations, the algorithm had gained huge progress. In real life situations, the system had

successfully corrected distorted handwritings and had shown its effectiveness and usefulness.
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Algorithm 1 R BB R &

Require: Tinic(wait before start acquiring data), a® (Calibraited Data), datasetNum (number of cycles to collect
data)

: Wait for T, seconds
: for i = 0: datasetNum
if static == true

dataset; < average of array of a°

1

2

3

4

5: else

6 retry
7: end
8: end
9: Params « optimize using dataset and Levenberg — Marquardt algorithm

10: a® « calibrate a® using Params

-

I ~Euler Integration:

Euler Integration = #‘vit R+ B @ Rfriz® ¥ &> 2 - T 5 Ruler
Integration i& e/~ 42.:
(- )~ FRaEdd (N 10)EGYN D) E 7

dx

—=v (34 10)

dt
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x(0) = xq
v(0) = v,

GV 1D

(3% 12)
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f;&g Ak Bv(0) = OB 4 o % AtR 590 PF(ALE e BH 1R IR ):
dt = At (34 14)

R EER s FE R

ax x(t+At)—x(t) .
at At (4 15)
R e 5 it B
v v(t+At)—v(t) X
at At (54 16)
d (1D EGYI8)F iz ¥ B2t BB ¥ R
x(t + At) = x(t) + v(t)At (3 17)
v(t + At) = v(t) + a(t)At (4 18)
(=) ~ Euler Integration sk #%# &% % (Local truncation error, LTE):
Yy
yn+1 -
slope T
f(tm yn) E”+1
y(tn+1)__ 'i
Yn —+ T
E,
y(tn) + L: y |
I : t
tn tnst
(R 4)~ - % Bbfh A B
T2 d Buler Integration »tyofs ity 2 B :
¥1 = Yo + hif(to, ¥o) (34 19)
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H y=ytoth) I 3 ¥ udck By Be
y(to +h) = y(to) + hy' (k) +5h%y" () + O(h®) (5 20)
L EFERy(ty + h) 2 Euler Method s 25 By (8 3] B 308 £ 24 > d (5% 21) %57 :
LTE = y(t, + h) — y; = =h%y"'(t,) + O(h®) 20

d P ¥ & ¢ hix] B Buler Integration 5 R4 k2% B2h2 0L §) o

Algorithm 2 Euler Integration

Require: v, (previous velocity), p, (previous position),a (measured acceleration), dt (time elapsed

since previous measurement), SD (static detector status)

I vp+= a=xdt

2: ppt= vp*dt

3: if Static == true

4: set vp and @ zero
5:end

~ Mass-Spring-Damper Model :
Mass-Spring-Damper Model & & d 3§ % fL A 45 & e 32 HA] - H & % p Mass-
Spring-Damper System o i&Hien & SL82 ¥ 3 4 £ F g R pEen(T S 2R ¥ Ap o RO

%%%#«%E@ﬁ%ﬁmﬂ@%ﬁ?iﬂﬁ%%’éﬁﬂﬁiﬁﬁﬁ$$ﬁ§4’ﬂ

] N ﬁj_ 7 e %mﬁ;\?_ N PE‘E,K#E?Z&J#Q’J’ (g] 5)&;1—[: k5L g_m.r—g‘—/\;;o
k
m
C
< > < >
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y+ 2Vkmy + ky = —A(t) (3% 23)

i #—A(t) 2 & e Impulse Response H(H)3 & % # 7 10 3 =45 .

Y(t) = H(t) * —A(b) (3% 24)

H @ g e K A e Mass-Spring-Damper System #° Impulse Response H(t) & :

H(t) = te Wk (X 25)

Algorithm 3 Mass-Spring-Damper Model

Require: mBuffer(measured acceleration array in circular buffer), SD (static detector status), k

(constant), bufferSize, sampleDelay(time elapsed since previous measurement)

1: for i = 0:bufferSize

2 t « (1—bu“erslze) * sampleDelay;

3 impulseResponse « te‘t‘/z

4 sum+= (mBuffer[i] * impulseResponse); //convolve buffer with impulseResponse
5. end

6: return sum

Ve

» Runge-Kutta Integration:
- I# Euler Integration fetcig R¥PFRE - tfF At § A4 A~ iR L > PR T
Runge-Kutta Integration 7 ¥ % Fb,] ool R o A 2P &8 v P Runge-Kutta

Integration ¥ & % * &1 Runge-Kutta Integration #uG 423 & T 7> fg;¢

yn+1 _(kl + 2k2 + 2k3 + k4) (;\‘ 26)
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Zof (5 27)

i _
a = f(tn ) (5 28)
ky = f(ta + 590 + 5 k1) (5 29)
ks = f(ta + 590 + 5k2) (5 30)
ko = f(ta +5 Y0 + 5ks) (3 3D

y¥E L For BB N HiE R o RK4 2 ek $R# k324 (Local truncation error, LTE)

20(h®) » 1 $h& 49 ) P > RK4 v+ Euler method # { -] ¢7LTE -

Algorithm 4 RK4 # 4

Require: v, (previous velocity), p, (previous position),a (measured acceleration), dt (time elapsed since

previous measurement), SD (static detector status)

//RK4 divides the integration process into 4 steps > 4 positions.

Vi (velocity at position X;) «< v, +0x0 //the 1st point at t=10
V,(velocity at position X;) < v, +V; *dt*0.5 //the 2nd point at t = 0.5 *dt
V3(velocity at position X3) < v, +V, *dt=0.5 //the 3st point at t=0.5xdt

g w R

V,(velocity at position X,) < v, + V5 = dt //the 4th point at t = dt

1
6: Vall <—E(V1 + 2V2 + 2V3 + V4_)

7: pp+: Vall * dt,
8: vp+= a * dt;

9: return p,

~ ~ Exponential smoothing /gt % :
(=)~ M jpik B
P F - fRdg BT N T Mg B 0 EFRT MO sLarnk o (30
32) - Fpp e A 2R o X, b0~ Heh o S, dt
Ss=a-X;+(1—a) X4 (34 32)
()~ Bk E:

TR A R PO A {8 5] F R ks
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Ss=X—(a-Xe+(1—a) X,y (34 33)

Xt,aﬁiea]%ﬁz#i Stﬁ%]b,ﬁzifg\ THF V¥ ar BEFHRUAETHREE -

1 ~FELRAE:

+ kit B RS = w3t (Linear Quadratic Estimation, LQE)& - & 41*
W2 PRl R (e ZRPRAZ AL IREFZED)RFATELEA 2 TR L g E
S el Kot PR BB F AR KA (EEE A IR o b o B - B

BELE d atH ’*Eﬁ:,}@,}iﬁ P FP AR R LT

L ERERPE:
PR RIE Y TR B AL B PR BB R T R A K

EFASHELA AR EATER > BRI 6, B t DRE L [ FEN T

Yo

(0 = |[VAR,, @] + [VARtW<a;>12 FARL@T (e
(- REFR - THEBE(DV R EFAMT AT F IR RBLIRAE - FERd

Tk RFE T

Algorithm 5 # % g & =

Require: W (3-axis data observed in a rectangular window of t,, seconds at time t), T (static time required to

trigger static detector), threShold

I: for t=1¢t,:t,

2 calculate the variance of data in the windows: var,(t), var,(t), var,(t)

3: ifJﬁmg@ﬂ2+hm@@ﬂ2+hmgaﬂz>th?MMdd

4: static_start_time « t,
5 end

6: if t,—t,>1 sec

T: staticdetector. trigger()
8: end

9: end
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(1)~ &]%?.ﬁﬁ—}’\&ﬁﬂ:é} I EEN ﬁ,ﬁ,ﬁ‘%_.?,il‘:

pP= (3% 39)

(2)~ KT ED g H K A 2w zii P H Y
P=S+T’ (3 40)

(3) ~ & A 4% T - fP#- 22 Quaternion:
do = qo[0] + qo[1]i + qo[2]j + qo[3]k (3¢ 41)
91 = q1[0] + q1[1]i + q4[2]) + q1[3]k (5% 42)

(4) ~ P w 2 £

Qo1 = Q190 " = Chﬁ (34 43)

(5) ~ #] % # Android Rotation Vector B~diz w ~ficeifedicy = 1 &

do1 = 9190 (7% 44)
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Chapter 1 Introduction

The ease-of-use touch screens have led to the rapidly growing popularity of smart devices.
In addition to drawing and making handwritten notes, touchscreen devices nowadays are even
capable of doing handwriting recognition. Light and slim touch screens now permeate every
aspect of our lives; such as control panels in advanced factory machines, smart cars, mobile
devices or even on aircraft dashboards. However, there is a common issue that exists in these
applications.

According to the survey was done by Do. et al. (2011) [1], highlighted in the yellow region
shown in Table 1-1; people spend huge amounts of time sending SMS, browsing websites and
sending emails on transportation using smartphones. Under such unstable environments (such

as vehicle), people’s handwriting input distorts due to undesired shaking.

Table 1-1: Collects the usage of apps in different places (Unit: average number of events occurred/hour) [2]

Software @ . =)
S 5 g

s . = . = -

S & o

« 5 T ¢t ¥ § ®m £ S a £ 3

= £ 5 £ & & E &£ 3 $ 3 =

Q — U m Tv = -f

o < —

. 3 S8 =
Location > =
Home 041 0.18 0.05 0.06 0.07 0.02 0.09 002 006 001 003 0.06

e
)
V=)

Company | 0.51 009 007 001 002 0.1 004 005 001 004 005
Friend's House | 0.63 034 030 006 006 003 0.7 004 005 001 004 0
Friend's company | 0.72  0.30  0.02 0.05 0.02 005 0 004 004 001 0 0
Restaurant | 0.52 027 0.9 002 001 003 010 005 0 006 0 0

Sports 093 026 009 003 001 003 032 007 023 003 010 0.04

Vehicle 033 057 052 017 007 007 007 015 005 004 004 00l
Holiday 009 014 043 022 001 081 006 0 035 007 0 0
Shopping | 021 033 022 008 004 009 0 003 006 00l 0 0
Leisure 015 051 029 029 0 0 0 0 0 007 0 0

Others 0.75 040 0.16 009 002 009 020 0.11 005 005 0.05 0.05

Average 048 024 008 007 005 003 003 004 006 001 003 0.05
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To solve this long-standing problem of handwriting distortion in unstable environments,
by using new algorithms, this research presents a novel solution for improving the
handwriting experience of touch screen devices.

The purpose of this study is to present a new algorithm to recover distorted drawings due
to device shaking, which was known as the NoDistort. To make the system widely applicable
on various devices, the system uses an accelerometer, gyroscope, and magnetometer, which are
common in smartest devices. To obtain precise sensor readings, sensor calibration must be done
before use. The calibration process should be effective, fast and equipment-free. Then an
accurate motion estimation method is used to estimate the actual displacement of the device.
Finally, the Drawing Distortion Recovery Algorithm, which bases on the Finger-Device
Interaction Model, to recover distorted drawings. The below shows issues facing during the

development of NoDistort and a brief introduction of the development process (Figure 1-1).

Research Focuses

How to check the stability of the sensor reading?

What are the main error sources of sensors?

Sensor Calibration How to remove bias?

4

Motion Estimation

How to determine scale factor?

How to reduce noise?

@ g~ w N oE

How to calibrate sensors without external equipment?

Research Focuses

1. How to estimate device motion using the accelerometer?

2. How to remove drift?

3. How to improve the accuracy of motion estimation?

l Research Focuses

Drawing Distortion 1. How to recover distorted drawing by making use of
Recovery displacement information?
Algorithm 2. How to improve performance?

3. How to enhance user experience?

Figure 1-1: NoDistort development process
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1.1 NoDistort System Flowchart

Figure 1-2 shows the process of the proposed NoDistort; In the initialization phase, the
system waits for Tj,;; seconds. Then the system prompts the user to rotate and place the device
for N times to collect N sets of calibration data. Levenberg-Marquardt algorithm is used to
obtain correct parameter values of Sensor Error Model. After sensor calibration, the system
tried three different motion estimation algorithms as Euler Integration, RK4 integration and

Spring-mass-damper model. Finally, the distorted drawings were recovered by the NoDistort.

Accelerometer readings Handwriting data

v
Wait for Tj,;; seconds

< |
No

Wait

Yes
Read into buffer

N sets of data collected?

Do calibration

v

Apply calibration and filters
v

Interpolate, synchronize

data and estimate displacement
* A\ 4
Apply Drawing Distortion Recovery Algorithm
v v
Display recovered results History

Figure 1-2: NoDistort flowchart
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1.2 Allan variance

To know when to start fetching the sensor data, here the system uses the Allan variance

technique [3] for analysis. Allan variance is used for observing noise characteristics and

stability of a clock system. Here it is used to observe noise characteristics of the accelerometer.

In the system, Allan variance is calculated through the following procedure:

1.

2.

3-axis data obtained from the sensor.

Load data into the ring buffer.

Read 100 samples from the buffer and divide them into small pieces of duration t=1s.
For every piece of duration t, take the average of each (a(t;) , a(ty) , a(ts) ... a(ty))

To calculate Allan variance:

1

AVAR(t) = =31 (altisn) — at)) (1-1)

The formula below is used to observe the intrinsic characteristics of noise; Allan Deviation

is defined as follows:

o(t) = JAVAR(D) (1-2)

Allan deviation is used to check the sensor initialization phase:

Rate Random

‘s Correlated Walk

Noise

Sinusoidal

Bias
nstavilty T

Figure 1-3: Different stages in sensor initialization [3]
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When the slope of the Allan deviation of the three axes is equal to 0, the sensor has entered
a stable stage; the system begins receiving stable sensor data, shown in Figure 1-3. This study
concludes that after 35 seconds, the sensor starts to receive stable data.
1.3 Moving Average Filter

In this study, the sensor of the device updates at the rate of 100Hz. The test shows that an
average window with a time span of 1/4 second can effectively reduce noise. Eq. (1-3), shows
the average of At, N indicates the number of samples in the observation windows.

SMA(t) = (at_g + -+ at+g)/N (1-3)

1.4  Accelerometer Calibration
The form below shows main error sources of accelerometer:
1. Bias
Sensor bias is a constant continuously exists in the accelerometer output signal. Under

an ideal situation, b is a 3x1 matrix, a bias matrix can be expressed as:

by
b® = |b§ (1-4)
bz

2. Scale Factor

In an ideal situation, K% is an identity matrix, it can be expressed as:

s¢ 0 0
Ke=|[0 sy 0 (1-5)
0 0 sg

3. Sensor Error Model
In the sensor error model, noise should also be considered. Therefore, the complete
sensor error model can be expressed as:
a’ =K% a®+ b*+v%) (1-6)
where a® is 3x1 true acceleration value, K% is 3x3 scale matrix, a® is 3x1 input matrix,

b% is 3x1 bias matrix and v% is 3x1 noise matrix.
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4. Define accelerometer cost function

In Error model, the study determines the bias and the scale factor. There are 6 parameters
need to be determined. Parameter vector can be expressed as:
2% = [sg,sg, s¢, bd, b, b2 (1-7)
True values can be calculated by the following formula:
a’® = h(a®,A*) = K*(a® + b%) (1-8)
Since the accelerometer magnitude value when device remains static must be equal to the
gravity constant g, Eq. (1-9) defines a cost function which represents the error between
gravity constant || g || and the measured values.
L(A%) = 3N_. (I g 121l h(ag, 1%) 11%)? (1-9)

N represents the amount of measurements in the observation windows.

Algorithm 1 Sensor Calibration

Require: T, (wait before start acquiring data), a® (Calibraited Data), datasetNum
(number of cycles to collect data)

1
2

8
9

N g

: Wait for Ty, seconds
: for i = 0: datasetNum
3:

if static == true

dataset; « average of array of a°
else

retry
end

: end

: Params < optimize using dataset and Levenberg — Marquardt algorithm

10: a® « calibrate a® using Params
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1.5 Euler Integration
Euler Integration is the most direct method to compute velocity and position from
acceleration. The following shows a Euler Integration processes:

1. Eq. (1-10) and Eq. (1-11) show the motion of the device:

dx

—~ =V (1-10)
dav
— =a (1-11)
2. Known initial position and velocity:
x(0) = x, (1-12)
v(0) = v, (1-13)

3. In the system, each time when a user writes, x(0) resets. When the device is detected static,
motion estimation starts at a velocity of 0.
4. When At (At is the interval between each sample) is small enough:
dt = At (1-14)
5. The differential of position over time is velocity.

dx x(t+At)—x(t)

dt At (1-15)
6. The differential of velocity over time is acceleration:
% ~ v(t+AAtz—v(t) (1-16)
7. Velocity and position can be calculated from the following equations:
x(t + At) = x(t) + v(t)At (1-17)
v(t + At) = v(t) + a(t)At (1-18)
Local truncation error (LTE) of Euler Integration:
1. The following shows estimating value of y;from y, using Euler Integration:
y1 = Yo + hf(to, ¥o) (1-19)

here f is the derivative of position over time h = t,,; — t,,.
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2. Set y; = y(ty + h) and expand y; using Taylor Series.
y(to +h) = y(to) + hy' (o) + 5 h2y" (to) + O(h?) (1-20)
3. Then subtract true value y(t, + h) by the Euler Method estimated value y, and get LTE.
LTE = y(to +h) —y; = h2y" (o) + O(h%) (1-21)

4. The above shows that when the step size h is small, local truncation error of Euler Integration

is proportional to hZ.

Y
yn+1 -
slope T
(s yn) Ent
Y(tnt1)+ * l
Yn T
E,
y(tn) T L . .
l g t
tn tnt1

Figure 1-4: A Euler integration process

Algorithm 2 Euler Integration

Require: v, (previous velocity), p, (previous position),a (measured acceleration),
dt (time elapsed since previous measurement), SD (static detector status)

I: vp+= a=dt

2: ppt= vy xdt

3:1f SD == true
4. set vp and a zero
5:end
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1.6 Mass-Spring-Damper Model

Mass-Spring-Damper Model is physical model consisting of a spring and a damper, which
was inspired by the Mass-Spring-Damper System. Such a system behaves very similarly to a
device shaking caused by hands [5]. The model sees a touch screen as an object suspending in
space, and it is connected to a spring and a damp. By applying force, the screen of the device
acts as the Mass-Spring-Damper System. Figure 1-5 shows a one-dimensional Mass-Spring-

Damper System.

k
m
C
X y

Figure 1-5: One-Dimensional Mass-Spring-Damper System
1. The behavior of the system depends on the following damping ratio.

= (1-22)

2. When ( < 1, the system is underdamped, it continuously oscillates back and forth. When
¢ > 1, the system is overdamped, which causes the system to spend too much time to return
to a state of equilibrium. When setting ¢ = 1 > , the system turns into a critical damping
system. It is the best situation and was used in the experiment. Setting ¢ = 2vVkm, { =1,
the critical damped system equation can be described as:

j + 2Vkmy + ky = —A(t) (1-23)

3. By computing the convolution of —A(t) and the Impulse Response of the system H(t),

the displacement was then calculated.
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y(t) = H(t) x —A(t) (1-24)
4. ITmpulse Response of critical damping System H(t) was given:

H(t) = te Wk (1-25)

Algorithm 3 Mass-Spring-Damper Model

Require: mBuffer (measured acceleration array in circular buffer) , SD (static
detector status), k (constant), bufferSize, sampleDelay (time elapsed since previous
measurement)

1: for i = 0:bufferSize

i

2: t « (1—m) * sampleDelay;

3: impulseResponse « e~k

4: sum+= (mBuffer[i] * impulseResponse); //convolve buffer

with impulseResponse
5: end
6: return sum

1.7 Runge-Kutta Integration

First-order Euler Integration of acceleration over time will result in significant bias,
whereas Runge-Kutta Integration has a higher Taylor precision. Among all Runge-Kutta
method, RK4 is the most commonly used. The process requires the following four Runge-Kutta

Integration equations:

A
et = Yo + = (ks + 2k + 2ks + ky) (1-26)
where
dy _

oy (1-27)
ki = f(tn yn) (1-28)

A A
ky = f(tn +5 Y0 + 5 k1) (1-29)

At At
ks = f(ty +7'yn+7k2) (1-30)
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At At
ka = f(tn +?»Yn+7k3) (1-31)
y can be position or velocity

The Local truncation error (LTE) of RK4 method is O(h®), thus when h is small.

Algorithm 4 RK4 Integration

Require: v, (previous velocity), pp (previous position), a (measured acceleration), dt

(time elapsed since previous measurement), SD (static detector status)

1: //RK4 divides the integration process into 4 steps > 4 positions.

Vi (velocity at position X;) < v, + 00 //the 1st point at t=10
V,(velocity at position X;) < v, +V; *dt=0.5 //the 2nd point at t = 0.5 = dt
V3 (velocity at position X3) < v, +V, *dt=0.5 //the 3st point at t = 0.5 *dt
V,(velocity at position X;) < vy, + V3 * dt //the 4th point at t=dt

1
6: Vall@g(vl + 2V2 + 2V3 + V4,)

7: pp+= Vall * dt;
8: vpt+= a * dt
9: return p,

1.8 Filter Base on Exponential smoothing
1. Low Pass Filter:

The first-order exponential smoothing formula was used here as a low-pass filter to
filter out high-frequency signal, Eq. (1-32) is a formula of first-order exponential smoothing.
X; 1s input data, S; is output data

Ss=a-X;+(Q—0a) X4 (1-32)
2. High pass filter:

Subtracting the original signal by the low-frequency proportion results in high pass

filtering effects.X,is input data, S; is output data
Se=Xe—(@Xe +(A—a) Xi1) (1-33)

where he smoothing constant & above was determined by the experiment.
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1.9 Kalman Filter

Kalman filter is also known as a linear quadratic estimator Linear Quadratic Estimation
(LQE), which is a method using the measure of the past (including statistical noise and other
uncertain factors, and so on) to estimate unknown variables. Kalman filter values are often more
accurate than the measured values. Thus, it is often used to predict motion. Since Kalman filter

is a kind of recursive filter, there is no need to record historical data.

1.10 Static Sensor
Because calibration data hugely affect the accuracy of calibration, distinguishing whether
the device is static or not is critical. Given time interval ¢, , variance of sensor reading was

calculated by the following

Variance Magnitude {(t) = \/[VARtW(afc)]z + [VARtVV(61§,)]2 + [VARtW(ag)]2 (1-34)
By checking if {(t) is higher or lower than the static detector threshold, the detector
determines whether the device is placed static or not. The threshold of the static detector was

determined by experiment.

Algorithm 5 Static Detector

Require: W (3-axis data observed in a rectangular window of t,, seconds at time t), T (static
time required to trigger static detector), threshold

1: for t=t,:t,

2: calculate the variance of data in the windows: var(t), var, (t), var,(t)
3 if J [VAR,(D)]? + [VAR,(D)]” + [VAR,(0)]? > threshold

4: static_start_time « ¢,

5: end

6: if t,—ty;>1 sec

7: staticdetector. trigger()

8: end

9: end
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1.11 Sensor Timestamps Synchronization

Since different sensors have their update rates, NoDistort utilizes the shared ring buffer
and cubic spline interpolation to synchronize and accept on-demand sensor data input.
1. Shared ring buffer:

Create a shared ring buffer, then load all of the incoming data into the buffer, where N
represents the sensor data in the buffer as an array of data. Meanwhile, the buffer throws out
the old data while the new data load into the buffer zone to maintain the buffer size
unchanged. The Shared Ring Buffer not only make data extraction easier, but it also makes
it simpler to interpolate or apply the window functions. Figure 1-6 shows Common ring

buffer operation diagram.

N=7 N=0
N=6 N=1

| Green Buffer: Touch Sensor 1

1 1

N=3 N=2 " : Accelerometer |

1 1

! : Gyroscope !

N=4 N=3 | Red Buffer: Magnetometer |

1

Figure 1-6: Common ring buffer

2. Spline interpolation:
In the process of motion estimation and distortion recovery, the system has to
synchronize the sensors. These sensors include accelerometers, gyroscope, magnetometer
and a touch screen. This alignment process requires the use of a shared ring buffer with

spline interpolation methods. In the system timestamps synchronization process, cubic spline
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interpolation is used. One of the benefits of this interpolation method is it does not produce

dithering as Runge's phenomenon.

N=7 N=0 ‘0
¢ Interpolate to obtain the values
¢ of every sensor at time N=1.
g
N=6 * N=1
*
*

| Green Buffer: Touch Sensor 1

1 }

N=35 N=2 |1 : Accelerometer |
1 [}

! : Gyroscope !

N=4 N=3 | Red Buffer: Magnetometer

1

Figure 1-7: Do spline interpolation in the shared ring buffer

1.12 Status Detection

NoDistort focuses on common situations which the device moves in a limited range.
Therefore, some special situations are seen as user's awareness behavior. The following cases
are considered an exception situation:
1. The value of acceleration is larger than 4 m/s?.
2. The value of velocity is larger than 1 m/s.
3. The length of displacement is larger than 4 cm.

4. The acceleration value remasins positive or negative more than 1 second.
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1.13 Finger-Device Interaction Model

Sensor Layer

E? ‘.I
| g

T w\‘q‘}«i
[

Touch Screen Layer Recovered Layer

Figure 1-8: NoDistort is based on 3 layers model

Figure 1-8 Showed finger-screen interaction model. It consists of 3 parts:
. Drawing Layer:

Drawing Layer is an imagined layer fixed in the space (in world coordinates). Users
intend to draw on this virtual canvas, which is the ultimate goal NoDistort aimed to recover
distorted drawing. Drawing Layer is fixed in space at the moment user starts drawing, it does
not change until the user pulls up his finger.

. Sensor Layer:

Sensor Layer is a bridge link between the Drawing and Touch layer. NoDistort utilizes
a built-in accelerometer, gyroscope, and magnetometer to calculate the inclination angle and
relative position between the world coordinates and the Sensor Layer. These sensors are
Micro-Electro-Mechanical Systems. Since sensors in the device are fixed and have no
movable parts, it is a strap-down system. Thus, the Sensor Layer is always parallel to the
Touch Layer.

. Touch Layer:

Touch Layer is a medium finger physically contacts to. It records information including

touch position and touch pressure (the research device can record touch location and touch

pressure). It is parallel to the Sensor Layer.
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Chapter 2 NoDistort v1.0

In the v1.0 finger-device interaction model, every of the layers is parallel to each other.
2.1 The v1.0 Finger-Device Interaction Model
1. Drawing Layer:
The layer user intended to draw on; it is fixed in space.
2. Sensor Layer:

Consists of an accelerometer, gyroscope, and magnetometer.Sensor Layer is parallel to
earth surface, and it would move and rotate with the device but limited on a 2-dimensional
platform.

3. Touch Layer:
Touch Layer is used to get touch positions, and it is always connected to the Sensor

Layer.

Figure 2-1: The v1.0 finger-device interaction model
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2.2 Mapping Touch Layer to Drawing Layer

1. At the time the user hands down, align all layers.Align origins of all layers (0,0).

2. Set the Touch Layer moves (Xj,Ys) regarded to its origin. Set S the position vector of the
origin of the Touch Layer on the Drawing Layer.

3. Set a touch point (X;,Y;), its position vector can be described as T.

4. Set the Touch Layer rotates counterclockwise (+) around the center of the screen by 6.

5. Assumed between sampling points from current to the next, Sensor Layer did a linear
transform consists of translation and rotation relative to Touch Layer.For convenience, the
below uses homogeneous coordinates.

(1) Set position vector of the user-intended stroke on the Drawing Layer:

X
P= ly (2-1)
1
(2) Set T' the position vector when P is converted to the Drawing Layer:
P=S+T (2-2)

(3) To know P, first convert the touch position vector T to the Drawing Layer, which is

cos(f) —sin(8) 0
sin(6) cos(@) O
0 0 1

—

T = T (2-3)

the recovered position can be obtained:

cos(f) -—sin(8) O

—_

P=S+T =S+ sin(0) cos(6) O|T (2-4)
0 0 1
O [Xs cos() —sin(8) O][X; X + Xicos(0) — Y;sin(6)
T=|Ys|+|sin(@) cos(@) Of|Y:|=]|Y;+ Y.cos(®) + thin(G)] (2-5)
1 0 0 L1 1

6. Then display the recovered drawings on the screen.
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Chapter 3 NoDistort v2.0

In the v2.0 update, the NoDistort greatly improved its performance and effect. First of all,
the v2.0 recovery algorithm removes significant motion caused by moving vehicles by applying
a high-pass filter. This new feature ensures that the algorithm won't be affected by intended
motion. The v2.0 recovery algorithm also removed the assumption that the three layers are
always parallel to one another. It allows the system make the 3-axis motion sensors to do 3-
dimensional linear transformations. Finally, the v2.0 recovery algorithm was re-written to make
it a real-time recovery system. This allows for users to view recovery results simultaneously
while they draw. Furthermore, NoDistort v2.0 sticks the result with the finger to make the
overall experience better.

3.1 The v2.0 Finger-Device Interaction Model

1. Drawing Layer is an imagined layer fixed in the space (in world coordinate). Users intends
to draw on this virtual canvas, which is the ultimate goal NoDistort aimed to recover
distorted drawing to.

2. Sensor Layer: Consists of an accelerometer, gyroscope, and magnetometer.Initially, the
layers are aligned, it transforms and rotates with the device.

3. Touch Layer: used to get touch points always connected to the sensor layer.

4. Fingers: v2.0 recovery algorithm do not consider unexpected finger movements.

5. Apply high-pass filter to the device's acceleration direction:

y y

n

Convert to world coordinate .

i

I

X << -____i
z After applying the high pass T —— >z

I

filter, convert the coordinate !

I

1

Figure 3-1: Apply high-pass filter to the device's acceleration direction
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3.2 Mapping Touch Layer to Drawing Layer

Drawing Lavyer Touch & Sensor Laver

\ ~

Rotate

Figure 3-2: Do three-dimensional linear transform to touch points

1. At the moment user hands down, all of the layers were aligned and shared the same origin
(0,0).

2. Since people do not draw vertically, the Z-axis drawing is ignored. Set the Touch Layer
moves (Xs,Ys) with regard to the origin, and set S the position vector of the Touch Layer
relative to the Drawing Layer.

3. Set a touch position (X;,Y;) on the Touch Layer, its position vector on the layer is T.

4. To avoid Gimbal lock happen, here all calculations of rotations were expressed using
quaternion. Set the absolute orientation when the user hands down g, and the absolute
orientation of next touch point ¢q;.

5. Here the rotation vector quaternion is defined as the following:

y
A

Figure 3-3: Definition of world coordinate. X axis: the direction of Y and Z axis (YXZ), Y axis: positive at north

direction, Z axis: positive at the direction pointing to the sky.
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6. Set the origin of the Touch Layer moves (Xs,Y;) and rotates qy; regarded to the Drawing
Layer.

(1) Set position vector of the user-intended stroke on the Drawing Layer:

X
P = Iy (3-1
z
(2) Set T' the position vector when P is converted to the Drawing Layer:
P=S+T' (3-2)
(3) Set initial and Quaternion of the next touch point:
do = qol0] + qo[1]i + qo[2]j + qo[3]k (3-3)
q1 = q1[0] + q4[1]i + q4[2]j + q4[3]k (3-4)
(4) Take the quaternion difference:
Qo1 = 190" = T _do_ (3-5)
llgoll?
(5) Since the norm of the Rotation Vector is 1,
do1 = 9190 (3-6)
where
90 = 90l0] — qo[1]i — qo[2]j — qo[3]k (3-7)
(6) Then after q,; rotation T it becomes T':
T' = qo1Tqo1 " (3-8)
expressed using the rotation matrix:
S (1 =2q0:[2]* = 2901 [31%) 2(q01[11901[2] + 901[0101[3])  2(q01[11q01[3] — 901 [01q01[2D)] x
T = [y' = 2040111901 (2] = 402 [0190a[3D (1 = 2402 [112 = 2004 [31)  2(402[210[3] + G2 [0]1 [1]) H (3-9)
z' 2(q01[11901[3]1 + 901[01G01[2])  2(q01[21G01[3] — 901[0]G0:[1]) (1 = 2q01[1]* — 2901 [2]%) z
(7) Finally:
X (1= 2901[2]% = 2q6:[31%) 2(q01[11q01[2] + 901[01901[3])  2(q01[11q01[3] — 901 [01q01[2D)] x
P =¥ +(20001[10901[2] = 40a[0100s 3D (1 = 2401 (11 = 2401312 2(q01[21401[3] + 4o [0]: [11) [y] (3-10)
0 2(q01[11901[31 + q01[0]1q01[2])  2(q01[21901[3] — q01[0]q0:[1]) (1 — 2901 [11* — 2q01[2]») Z

(8) Then display the recovered drawings on the screen.
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3.3 Re-Written into a Real-Time Recovery Process
NoDistort v2.0 make use of multithreading, which made interface speed increased

significantly.

Touch triggered

Recover

Recover

m—> Display the results

\4 a \ A 4

Recovery Algorithm working

Figure 3-4: Multithreading

3.4 Detecting if Strokes Belongs to the Same Character
The study designs a stroke split/merge mechanism to detecting if strokes belong to the
same character. This feature makes NoDistort being able to recognize multi-stroke characters

(suchas A, B, J...).

Strokes belong to

the same character

Time-stamp of

the previous

T

Time-stamp of

Character

Split [

Recognition

Touch screen [P

the current

Figure 3-5: Same Character detecting flow chart

59



3.5 Let the Recovered Results Continuously Follow User's Finger Position
The new algorithm connects the end of the recovered drawings to user's finger. This new

feature helps users to view the latest recovered results and make the user experience way more

Intuitive.
© R .l 74%m 19:03 A R ¥ 4 100% M 2001
DisplayStabilizer Ulv1_draw0 HISTORY
) .
\
[DrawDATA@ Time:1450004584330 X:1230.642 Y.
1008.55005
New Text °
[AcceDATA@ Time: 1450004591193
X:-0.107116245 Y:-0.13560896
[GyroDATA@ Time: 1450004591202
[X:-0.009773844 Y:0.0012217305
[ Connect to the start of the recovered drawings. ] [ Connect to the end of the recovered drawings. ]

Figure 3-6: NoDistort v1.0 & v2.0 display style comparison (Left is v1.0, Right is v2.0).
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Chapter 4 NoDistort v3.0

The v3.0 recovery algorithm is based on the v2.0 version and it was greatly improved by
extensive performance optimization. Drawing smoothing was also added as a new feature to
make the recovered drawings even more beautiful.

4.1 Performance Optimization

The huge performance improvement of NoDistort v3.0 was the result of rewriting the
algorithm in an incremental procedure which accumulates previous results rather than
recomputing the full canvas at each redraw event. It avoids cumulative errors through setting
the conservativeness of recovery strength.

4.2 Drawing Rotation

When the device rotates, the drawing rotates in the opposite direction accordingly to offset
Rotary shaking. The absolute direction of the device, qy(In the unified global coordinate), is
set when the user starts drawing. Set the absolute direction of the device at the moment g4 (In
the unified global coordinate). The system take the difference between the two quaternions and

rotate the drawings to the user’s view, Then display the drawings on the x-y plane.

Current Direction

Initial Direction I

\ Rotate regard to the
current position

Figure 4-1: Rotate the drawings to the user’s view

When the user rotates the device, the system continuously aligns the drawings to make it
stay in the correct position relative to the user. It makes drawing on the device a lot easier. After
the user pulls up his hand, NoDistort automatically rotates the drawings back in the exact

orientation to facilitate handwriting recognition.
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4.3 Uniform Drawing Coordinates

In order to unify touch point coordinates, NoDistort set all strokes toward a unified
direction. To make the changes of touch positions meet the requirements of the unified touch
coordinates, set the absolute direction of the device when the user starts drawing q,. Set the
absolute direction of the device at the moment q,. The system take the difference between the
two quaternions, revert the delta touch vector and append it to the previous touch position to
obtain the new recovered position. The purpose of this amendment is to do curve line curvature
correction and straightening.
4.4  Correct Estimation Errors Caused by the Relative Distance Between

Built-in Sensors and Screens

Since there is a distance between built-in sensors (accelerometer, gyroscope, and
magnetometer) and touch position, the following amendment is used to fix this problem.
1. Set the touch position (x,y), rotated touch position(x’,y") » estimated displacement by

acceleration 0 (p,q) ’ the actual displacement of touch point in space T(P, Q), the device

rotated clockwise for &, and its rotation matrix R.

Previous

(xy)

(0,0

Figure 4-2: Calculate the actual displacement of touch points in space
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2. Express the rotated touch point (x’,y") using measured displacement 0.
4 ~ X
[;] =0+ R[y] (4-1)
3. Rewriting the above equation and then the correct displacement T was obtained.
=[e]=[1- B0+ xf)-[) =
4.5 Handwriting Recognition
The study implemented the open-source Lipitoolkit 4.0 for character recognition.
Lipitoolkit was developed by HP Laboratories, using (Massachusetts Institute of Technology,
MIT) license.
The study uses toolkit's default training data and Android Native Interface to make it run
on the Android device. The following are instructions of using this Kit:
1. Input/output:
(1) Input is an array of strokes, which stroke is defined as continuous touch points users draw
at a time, and must be entered in chronological order.
(2) The outputs are three candidates ranked by its confidence from high to low, including
degree of confidence.
2. Properties:
(1) Identification a letter will take about 0.1 second on average.
(2) It can accept multiple stroke letters (such as a, d, e, F ...).
(3) Lipitoolkit itself is written in C++ language.
3. Use restrictions:
(1) Can recognition only one letter at a time.
(2) Characters for identification are the 26 alphabets (though it can expand recognition set

through training samples using its official tools provided).
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4.6 Full Procedure

Calculate Apply
Accelerometer | Static Detector [ Collect Data Set [ B
Calibration Constant Calibration

Figure 4-3: Sensor calibration flowchart

Figure 4-3 shows the flow of sensor calibration. First, NoDistort collects data from the
accelerometer while the user place the device in six position. In the process, the Static Detector
is used to distinguish if the device stays in the same place or have moved elsewhere. Second,
NoDistort calculats the calibration constants in the Sensor Error Model by optimizing the cost

function. Finally, the calibration is applied to the system for further use.

Input . Coordinate Transform ACCelerathn Output
High Pass Linear )
in space
Acceleration A T
Accelerometer Velocity
RK4
Integration |
- .
Low Pass Filter Gravity | Kalman Filter
RK4
Magnetometer Gravity Direction Position
Integration [
Horizontal Direction
Interpolation
RK4 ) )
Gyroscope ) Orientation Orientation
Integration I

Figure 4-4: Motion estimation module flowchart

Motion Estimation (Figure 4-4) combines information from the accelerometer, gyroscope
and magnetometer to compute the velocity, position, and orientation of the device. Through
sensor fusion of gyroscope data and magnetometer data, the direction of magnetic north is
determined. The gravity direction and north direction helps to determine the orientation of the
device and through the cross product of the two, to construct a 3D coordinate axis system. Using

data from the accelerometer, linear acceleration and gravity can be isolated by applying band
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pass filters. Lastly, using RK4 integration and the constructed 3D axis, displacement and

velocity of the device is then calculated from linear acceleration.

Input Output
Initial
Orientation
Velocity Transformation
Matrix
Current
Orientation
Position
Original Finger-Device Recovered
Drawings Interaction Drawings

Figure 4-5: Drawing distortion Recovery Algorithm module flowchart

Given the actual position of the device in space and the distorted drawings received from
the device’s touch screen, my study proposes a Drawing Distortion Recovery Algorithm (Figure
4-5) to recover the drawings. It is based on the 3-Layer Model, and it maps the original drawings

on the Touch Layer to the Drawing Layer.
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Chapter 5 Results and Discussion
The research includes experiments to obtain parameters and validate the performance of
NoDistort. The experiment was done in an order of Sensor Calibration, Motion Estimation and
Drawing Distortion Recovery Algorithm. Figure 5-1 shows the three phases of NoDistort and

the parameters needed to be determined of each.

Drawing Distortion

Sensor Calibration } Motion Estimation } Recovery Algorithm

1. Static Detector 1. Euler Integration 1. Achieve scale factor
2. Determine Parameter Values 2. RK4 Integration 2. Effectiveness evaluation
3. Get the best Tipi;

Figure 5-1: Experimental procedure
5.1 Sensor Calibration
1.  Adjust Static Detector threshold:

Whether the static detector triggers or not depends on if the variation value in an
observation windows is larger than the given threshold. If the threshold is too high, the
Static Detector is less likely to be triggered; on the other hand, if the threshold is too low,
the Static Detector is triggered too easily. This experiment tried different threshold size,
trying to get a sensitivity and accuracy of the balance. Periodic motion generator used in
this experiment will make the device produces two different types of motion; First, device

is placed on a platform remaining static. Second, the device is moved by the Periodic

motion generator.

Figure 5-2: Experiment Settings
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Periodic motion generator produces 2cm forward, 2cm backward periodic motion.
Within the generator stops 1 second, device enters a static state.

This experiment sets the threshold from 0.0004 to 0.005. Tested by an increment of
0.0001 each step. The experiment outputs are 3-axis acceleration values, the variance
magnitude of the array in the observation windows and the status of Static Detector. Output

of the Static Detector when the threshold was set to 0.0004 (Figure 5-3).

6 Variance Magnitude Detector Status
g 4 X Axis ——Y AXis
I — Z AXis 3
5, T PRI
S 0 [T T P 117 AT W b
S 121416 4126128130132134 381401421441461481
@ -2
< -4

-6

The nth Measurement

Figure 5-3: Static Detector threshold = 0.0004

The variation of three-axis less than 0.0004, static sensor outputs 2; If the variation of
three-axis greater than 0.0004, static sensor output. When the static sensor threshold set to
0.0004, the sensor is too sensitive. Another extreme example of static sensor threshold is

setting it 0.0005 (Figure 5-4).

6 Variance Magnitude Detector Status
~ 4 X Axis —— Y Axis
»n .
é 5 — Z AXis ) (1 L
c
20
g 2 | 1 61 8110112114 120122124126128 134136138140142 1481501
g -
2 -4
-6

The nt" Measurement
Figure 5-4: Static Detector threshold =0.0005

Setting the threshold is too high would result in low sensitivity of Static Detector.
Sometimes even when the device is moving, Static Detector reports it static. In order to

find the best static sensor threshold, the experiment tested values from 0.0004 to 0.0005,
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every step increases by 0. 0001. Finally, the experiment result below showed that the

threshold of 0.0017 is the optimum (Figure 5-5).

4
% 2
e an AW
o AL T .
S 1t 1INy
= ) il i 1461481501
P
[7)
©
o
2 -4 Variance Magnitude Detector Status

X Axis Y AXis
-6 Z Axis

The nth Measurement
Figure 5-5: Static Detector threshold = 0.00017

The Static Detector accurately reported the device static (2 indicates the Static Detector
was triggered) when the device was actually placed static.
2. Determine parameters of Sensor Error Model:

Using Algorithm 1 can determine parameter values in the Sensor Error Model. First flip
and then place the device static 6 times. This will collect 6 sets of acceleration values of the
device when placed in 6 different postures (Figure 5-6). Then the system calls Levenberg-
Marquardt algorithm to minimize the cost function. Finally, it outputs and applies the most

appropriate parameter values (Table 5-1).

Figure 5-6: Performing Sensor Calibration for 6 different postures (A) to (F)
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Table 5-1: Calibration parameter values

Times Bias X  Bias Y Bias Z Scale X Scale Y  Scale Z
First 0 0 0 1 1 1

Second 0 0 0 0.9999999 1 1
Third 0 0 0 1 1 1
Forth 0 0 0 1 1 1
Fifth 0 0 0 1 0.9999999 1

3. Calculate Allan variance Tjp;;:

By calculating Allan variance, the value of Tj,;; can be determined. While the Allan
deviation of the three-axis gradually reduced to the minimum value, the system can start to
collect data at Tj,j;. In this experiment, the phone is placed screen up on the flat desktop.
When the program starts (Figure 5-7 (A)), the system starts at a 0.25-second observation
window to Calculating Allan variance (Figure 5-7 (A)). At the moment of 20 seconds, the

value of Allan Variance has minified. Thus, the time when NoDistort starts to fetch sensor

data Tj,;; was set to 20 seconds.

1.00E+00
i
E 1.00E-03
S 1.00E06
& 1.00E-09
<L 0 20 40 60

The N Measurement
X axis Y axis Z axis

Figure 5-7: (A) Placing on flat surface, (B) the results of Allan variance

5.2 Motion Estimation
1. Motion estimation by integrating acceleration values using Euler method:
This experiment compared motion estimation performance by comparing the Euler

Integration estimated motion and the actual displacement. The periodic motion generator
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(Figure 5-8) moves the device back and forth periodically. The actual displacement was
obtained by a stylus fixed in space and continuously draw on the device as it moves:

AX = —x; * Ry (5-1)

Ay = —y; * Rum, (5-2)

Where Ry, is the ratio of screen pixel to meters; x;is the displacement of stylus on

x axis; y; is the displacement of stylus on y axis. Initial position was set to (0,0) every

time. Then compare the estimated motion to the actual move.

Figure 5-8: Periodic Motion Generator

The study makes use of cosine similarity technique to evaluate the similarity between
the estimated curve and the exact curve to find the best suit filter parameters. Cosine
similarity is a simple and effective method of measuring the similarity between two lines.

Cosine similarity of the two lines is defined as Eq. (5-3).
A'B — Z?:l A;B;
IANBI "~ [om 2 [om g2

A; and B; are vectors on A and B respectively. According to the experiment, the

Cosine similarity = cosf = (5-3)

study uses cosine similarity to evaluate and optimize to achieve the best parameter
combination for the Euler Integration method. As the result, the alpha value of the low pass
filter is 0.8 and the alpha value of the high pass filter is 0.7.

This parameter combination generates the highest cosine similarity and is the closest
to the original curve when using Euler Integration as the motion estimation method. Here

Euler Integration successfully estimated device motion and reshape the movement curve.
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2. Motion estimation using RK4 :

This experiment searches for the optimum filter parameters using the same way, but
with RK4 method. Configuration (RK4, alpha = 0.9 low-pass filter, high-pass filter alpha =
0.7) is the parameter which makes the estimated curve closest to the original curve. Similarly,
though the scale factor were not determined yet, by comparing the similarity the experiment
concluded that Rk4 method can be successfully used to estimate motion, and it was more

accurate than Euler Integration.
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Figure 5-9: Motion estimation using Euler Integration
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Figure 5-10: Actual movement of the Euler Integration experiment
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Figure 5-11: Motion estimation using RK4
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Figure 5-12: Actual movement of the RK4 Integration experiment
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5.3 Drawing Distortion Recovery Algorithm
1. Achieve scale factor :
In order to make the result more accurate, this study aimed to determine the scaling factor
between the recovered and ideal one. The experiment followed the following steps.
(1) Define errors

Here error is defined as the distance of the ideal position and the recovered position.

error = /(staX — ideX)? + (sta¥ — ideY)? (5-4)

where
staX = stroX — posX * Mutiplier (5-5)
staY = stroY — posY * Multiplier (5-6)

staX is Recovered X position, staY is Recovered Y position, ideX is Ideal X position
and ideY 1is Ideal Y position. Since the stylus was fixed in space throughout the
experiment, ideX and ideY should remain 0.

(2) Adjust the scale factor from -1000 to 1000, with intervals of 50. Seek the scale factor to

minimize the error:
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Figure 5-13: Spring-Damp-Mass Model Results
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Figure 5-14: Euler Integration Results
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Figure 5-15: RK4 Integration Results

(3) Adjust the scale factor from 0.2 to 0.9, with intervals of 0.05. Seek the scale factor to

minimize the error:
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Figure 5-16: Spring-Damp-Mass Model Results
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Figure 5-17: Euler Integration Results
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Figure 5-18: RK4 Integration Results

73



(4) Adjust the scale factor from 0.05 to 0.06, with intervals of 0.001. Seek the scale factor to

minimize the error:
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Figure 5-19: Spring-Damp-Mass Model Results
1500
= 1000
o
—
S
w500
0
T O A O A O AO OO O OO OO AOdOAOAdOA© OO
MOMN~NOSMNMNEAdTOAOANLLOONOOODMOOMMNMO SN CdT 00 dWD 0N O N O
AT A NN NDOOETTTOODOONMNNMNMNOOOOWMOOOODOOO dd NN
e I B R I |
The nt" Measurement
Figure 5-20: Euler Integration Results
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Figure 5-21: RK4 Integration Results

2. Evaluating effectiveness of NoDistort:
(1) Compare the root mean square error between the recovered stroke and the ideal stroke.
Since the stylus is fixed at one point, ideal coordinates equals (0,0). Therefore, the

performance of NoDistort can be assessed by the following procedure:

error = /(staX)? + (staY)? (5-7)
The below shows the performance differences between different motion estimation

methods. The smaller the error, the better performance it is.
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Figure 5-22: Comparison of error

The lowest error appears when using RK4 Integration, which is on an average of 503
pixels. Compared to error without recovery, which is 1036 pixels (standard location (0,0)),
NoDistort reduced About 48.5% errors.
(2) Evaluate NoDistort performance by character recognition.

In order to measure the value of NoDistort in everyday life, this experiment evaluates
the effectiveness of the NoDistort by comparing the character recognition success rate
between NoDistort enabled and disabled.

Figure 5-23 shows the experiment tested five letters “a”, “b”, “c”, “d”, “e”
individually. Every of which was tested through periodic motion generator generating

random shaking within *2cm for 100 times.

Word | Handwriting Perform 100 Tests (Black indicates success, White indicates failure)

Before Recovery
a
Afer Recovery

Before Recovery

b

Afer Recovery

Before Recovery
Afer Recovery

Before Recovery

I
i i
Ll
Before Recovery I I I | !
¢ Afer Recovery

Figure 5-23: Evaluating the effectiveness of NoDistort by character recognition. (The black blocks

indicate success, and the white blocks indicates failure.)
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Figure 5-24: NoDistort increased the success rate of character recognition

Figure 5-24 shows after recovery of NoDistort, the success rate of character

recognition raised about 28.2% on average, which was 2.34 times better than before

recovery.

76



Chapter 6 Conclusions

This study successfully developed NoDistort, and recovered distorted drawings in real life.
NoDistort consists of three main steps: firstly, users do sensor calibration. Then the study
proposed the Drawing Distortion Recovery Algorithm and recover distorted drawings using the
motion estimation results. This study seeks for optimum motion estimation method by
discussing different integration methods and parameter combinations. The performance of
NoDistort was evaluated by calculating RMS error and character recognition. The experimental
results show as below:

(1) The system reduced about 48.5% errors withint2cm shaking. (Figure 5-22)

(2) The character recognition test results showed that within random shake of +2cm, the
success rate of recognition raised 28.2%, which was 2.34 times better than before
recovery. (According to Figure 5-24)

NoDistort can be applied to any touch screen devices which has basic built-in sensors and
have made great contributions to improving the user experience of writing. This system can be
installed immediately into such as smart cars, cell phones, tablets and other devices. For
handwriting recognition, NoDistort can significantly improve the success rate of the
handwriting on touch screen devices. NoDistort can also be deeply integrated into character
recognition systems and become an essential component to improving the writing experience.
This research will continue to improve and update. The following are the objectives:

(1) Through increasing sensor accuracy, expand the availability of NoDistort.

(2) Improved algorithm to improve accuracy and reduce resource consumption.

(3) Write API, so that the majority of developers will benefit from NoDistort.

(4) Add scenario recognition ability to dynamically adjust NoDistort recover strength.
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A real life test of NoDistort shows as below. Black as the original handwriting, and red as
the handwriting recovered by NoDistort. In the process, the device moves from right to left.

The recognition success rate increase significantly after recovery by NoDistort.

- a R0 4l 56% & 17:12 el @ % .al 69%G 07:47 1 4.4 99% W 11:40 o@e

DDRS Demo HISTORY NoDistort Demo HISTORY 2 NoDistort Demo HISTORY £ NoDistort Demo

n a | ) q 9
. LT ) [:AUBRAI:E 192.168.0.199:11000 CALIBRATE' "’I‘JZ 168.0.199:11000 » CALIBRATE  192.168.0.199:11000
Before  After Before  After Before  After Before  After

174N

*moves left: «— *moves right: — *rotates clockwise *rotates counter-clockwise

Figure 6-1: NoDistort Demostration
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