# 2014 年臺灣國際科學展覽會 優勝作品專輯

- 作品編號 060007
- 参展科別 植物學
- 作品名稱 轉錄因子 bZIP16 參與阿拉伯芥開花途徑的 分子機制研究
- 得獎獎項 大會獎:二等獎

美國 ISEF 正選代表:美國第 65 屆國際科 技展覽會

- 就讀學校 臺北市立建國高級中學
- 指導教師 吳素幸、蔡敏麗
- 作者姓名 黃亦軒

關鍵字 <u>轉錄因子、bZIP16、開花途徑</u>

作者簡介



我是黃亦軒,目前就讀於台北市立建國高級中學。從小我對大自然就充滿好 奇心,熱衷於做各種實驗來尋找答案。有時我覺得我就好像是一個偵探,不停的 蒐集資料、線索、思考、推論、驗證,這個過程充滿樂趣,尤其是得到一些出乎 意料的答案,更是精彩。進入中研院植微所做研究,讓我從過去僅能對物質表面 現象的研究進入研究內在分子的領域,打開我的視野,更讚嘆大自然的奇妙。

此次能參與國際科學展覽會,特別感謝教授、老師熱心的指導和實驗室學姐、 學長熱情的教導我操作各種實驗,更要感謝父母的支持,讓我放手去做我最喜愛 的研究。

## 摘要

植物透過光受器和細胞內訊號分子來感知及反應環境變化,而轉錄因子為其 中重要的細胞訊號分子。先前文獻證實阿拉伯芥轉錄因子 bZIP16 是一個整合植物 荷爾蒙與光訊息傳導途徑的重要負向轉錄因子,促進種子的萌芽與幼苗的發育。 然而對開花是否有影響並不清楚。本研究透過 bZIP16 在阿拉伯芥野生株不同組織 的表現,發現 bZIP16 蛋白質在花苞和花具有高表現量。根據開花實驗顯示,bzip16 突變株不論生長在長、短日照下皆延遲開花。進一步透過微矩陣轉錄體 (transcriptome)分析與 qRT-PCR 分析其分子機制,發現 bZIP16 對吉貝素途徑、光 週期途徑及春化途徑的基因沒有影響。然而,bZIP16 卻明顯抑制負調控開花因子 FLC 及促進 SOC1 和 FT 的表現。表明 bZIP16 藉由抑制 FLC,調控開花整合因子 SOC1 和 FT 的表現,進而促進植物開花。本研究證實 bZIP16 除了控制阿拉伯芥種 子的萌芽與幼苗的發育之外,在開花途徑中具有正向調控開花的功能。此外,我 們確認 bZIP16 是自主開花途徑基因的新成員。

## Mechanistic Characterization of a Transcription Factor bZIP16 in Regulating Arabidopsis Flowering Pathways

## Abstract

bZIP transcription factors exist in all eukaryotes. In plants, they are master regulators of many central developmental and physiological processes. In 2012. bZIP16 was reported to promote seed germination and hypocotyl elongation during the early seedling development by repressing RGL2 and PIL5. Interestingly, a previous study has indicated that RGA and RGL2 both negatively regulate the floral transition. It inspired us to pursue whether bZIP16 also functions in Arabidopsis flowering time control. By counting the rosette leaf numbers at bolting, we found that *bzip16* mutants showed late-flowering phenotypes under long-day and short-day conditions in Arabidopsis. To clarify how the floral transition is regulated by bZIP16, we performed a transcriptomic study and qRT-PCR to analyze the expressions of genes regulating flowering time in both wild-type and *bzip16* mutant. Those results revealed that bZIP16 does not affect the expressions of genes in photoperiodic, gibberellin, autonomous and vernalization pathway. In contrast, bZIP16 significantly represses the expression of FLC and promotes the expressions of SOC1 and FT. Our chromatin-immunoprecipitation assay indicated that bZIP16 directly binds to the FLC promoter harboring G-box motif. The expression repression of FLC by bZIP16 will de-repress the expressions of SOC1 and FT to promote flowering. Our studies demonstrated that bZIP16 not only promotes seed germination and hypocotyl elongation in early seedling development but also plays a positive role in floral induction. Our research also revealed bZIP16 as a new floral regulator in controlling flowering time.

## 壹、 前言

一、研究動機和背景介紹:

轉錄因子存在於所有真核生物中,藉由與 DNA 序列進行專一性的結合來調控 DNA 轉錄至 mRNA 的過程。其利用單獨作用或結合其他蛋白質組成聚合體,來影 響 RNA 聚合酶連接到特定基因上,以調節此基因的轉錄作用,此機制確保了特定 的基因在生物體內能夠正確的開關。植物必須不斷的調節內部的生長機制以適應 環境和氣候的變化,因此對植物發育生長而言,轉錄調控扮演一個相當重要的角 色。

在阿拉伯芥野生株與其光形態突變株的基因轉錄組(Transcriptome profiling) 中已經分析出上千個對光反應具有不同表現形式的基因(Ma et al., 2001)。而植物 中,bZIP 轉錄因子被報導參與許多的調控過程,包括病原體的防禦、光線與壓力 的訊息傳導、種子成熟和花的發育。阿拉伯芥基因組序列包含 75 個不同的 bZIP 蛋白質,其中約有 50 個尚未被了解。bZIP16 被歸類於 basic region/leucine zipper motif 轉錄因子的 G 組(Jakoby et al.,2002)。bZIP16 的功能已被證實是一個整合植 物荷爾蒙與光訊息傳導途徑的重要負向轉錄因子,並控制阿拉伯芥種子的萌芽與 幼苗的發育。bZIP16 扮演轉錄抑制者的角色,利用直接結合至植物荷爾蒙下游的 關鍵基因,包括離層酸(ABA)下游基因和吉貝素(GA)訊息傳導相關的 RGA-LIKE2 (RGL2)之啟動子上,來抑制這些基因的表現,達成促進種子萌芽與下胚軸延長的 生理作用(Hsieh et al, 2012)。



## 圖甲.bZIP16 在阿拉伯芥種子的萌芽與幼苗的發育之分子機制示意圖 (Hsieh et al, 2012)

bZIP16 藉由抑制 RGA-LIKE2 (RGL2), PHYTOCHROME INTERACTING FACTOR 3-LIKE5 (PIL5)和 ABA 下游基因來促進種子萌芽及下胚軸延長作用。

吉貝素(GA)是促進植物生長和發育的重要賀爾蒙。它在種子萌發,生長和開 花過程中扮演重要角色。缺乏吉貝素的突變體植株會生長遲緩和延遲開花,而對 這些植物施予吉貝素則恢復正常。在光照或黑暗的環境下,吉貝素通過細胞分裂 反應刺激莖伸長和葉細胞的膨脹和擴張 (Hauvermale et al., 2012)。然而 DELLA 蛋白質則會抑制吉貝素各方面的作用,影響植物的生長 (Zentella et al., 2007)。 DELLA 蛋白質包含 GA-INSENSITIVE(GAI)、REPRESSOR OF GA1-3(RGA)、 RGA-LIKE1(RGL1)、RGL2 和 RGL3。先前文獻提及 RGL2 抑制種子萌發,RGA、 RGL1 和 RGL2 參與調控植物的開花 (Tyler et al., 2004)。

在阿拉伯芥中主要存在四條調控植物開花的途徑:光週期途徑、春化途徑、 自主途徑和吉貝素途徑。這些途徑通過整合內在發育和外在環境兩方面的因素參 與調控開花時間。光週期途徑負責感受和傳遞日照長短信號,而春化途徑則感受 和反應環境溫度變化。另外兩條途徑上的基因能夠不依賴於環境信號而調控開花, 其中自主途徑通過調控一些未知的植物內部因子來促進開花,而吉貝素能夠不依 賴於光週期促進開花。這幾條開花調節途徑通過幾個整合因子,如FT、SOC1和 LFY 互相聯繫。



#### 圖乙. 阿拉伯芥中四條調控植物開花的途徑

根據前人的研究證實 RGA 和 RGL2 會影響植物的開花 (Tyler et al., 2004)。 bZIP16 抑制 DELLA 基因之一的 RGL2,會促進吉貝素的作用(Hsieh et al, 2012)。

然而 bZIP16 是否參與植物的開花仍屬未知,因此激發我們去探討 bZIP16 蛋 白質是否參與阿拉伯芥開花途徑的調控機制。 二、研究目的:

- 1. 探討 bZIP16 蛋白質在阿拉伯芥野生型植株中各組織之表現量
- 2. 研究 bZIP16 在阿拉伯芥開花途徑中的調控機制。

貳、 研究方法與過程

一、實驗流程



## 二、研究材料及設備

【阿拉伯芥野生株及突變株種植】

阿拉伯芥種子:

Landsberg erecta (Ler.野生型)

bzip16-2 突變株 GT9934 (剔除 bZIP16 基因突變型)

bzip16-2/bZIP16 #2-8-1 (互補回復突變型)

Ler/35S-bZIP16-GFP#6-4 (大量表現 bZIP16 基因突變型)

試劑:

- 1. 70% 酒精
- 2. 種子殺菌液 (25% bleach; 0.025% SDS)

1/2 MS 培養基(0.5X Murashige and Skoog, 3% 蔗糖(質量體積比)和 0.8%
 瓊脂(重量體積比)

【阿拉伯芥野生型植株不同組織 bZIP16 蛋白質之萃取】

材料:

阿拉伯芥野生型植株不同組織:種子、根、莖、葉、幼苗、花苞、花、果莢。

1. 蛋白質萃取液:

| Working conc.         | <u>Stock</u> | <u>For 1ml</u> |
|-----------------------|--------------|----------------|
| 100mM Tris-HCL, pH7.8 | 1M pH8.0     | 0.1ml          |
| 4M Urea               | MW60.6       | 0.24g          |
| 5% SDS                | 10%          | 0.5ml          |
| 15% glycerol          | 100%         | 0.15ml         |
| 2. 蛋白酶抑制劑:            |              |                |
| Working conc.         | Stock        | For 1ml        |
| 2ng/ml aprotinin      | 1mg/ml       | 2µl            |
| 3ng/ml leupetin       | 1.5mg/ml     | 2µl            |
| 1ng/ml pepstain       | 1mg/ml       | 1µl            |
| 2mM PMSF              | 100mM        | 20µl           |
| <b>D</b>              |              |                |

【西方墨點法】

材料:

SDS-PAGE 的電泳膠片, Bio-Rad protein assay kit, PVDF membrane, 甲醇 (methanol), sample dye, β-ME, Bio-Rad, Mini trans-blot electrophoretic transfer cell, blocking reagent (5%牛奶, 0.1% Tween 20, 1XPBS 緩衝液), washing buffer (0.05% tween 20 in 1XPBS), acrylamide gel, coomassie blue, Tris-HCl(pH6.8 與 8.8)、一級抗體(bZIP16 antibody)、二級抗體(anti-rabbit,HRP)、底片、3mm 紙 片 【阿拉伯芥野生型和各突變型植株總 RNA 之萃取】

試劑:

- Pine tree extraction buffer( 2% CTAB · 2% PVP · 0.5g/l Spermidine · 2M NaCl · 25mM EDTA, pH8.0 · 100mM Tris-HCl, pH8.0 · 2 % β-mercaptoethanol )
- 2. 10M LiCl
- 3. Chloroform:isoamylalcohol (24:1)
- 4. 10mM Tris-HCl, pH8.0
- 5. DEPC-dH2O (Diethylpyrocarbonate-H2O)

【阿拉伯芥野生型和突變種植株 cDNA 之合成】

材料:

DNase-treated RNA (8 µl, 2µg RNA (250µg/µl) , 0.6µl, RNase-free H<sub>2</sub>O ,
 2.4µl ,5x Superscript buffer (15mM MgCl<sub>2</sub>) , 1µl ,RQ1 RNase-free DNase (1U/µl, Promega) , Reverse transcription 反應混合液 (0.9µl, RNase-free H<sub>2</sub>O , 1.6µl ,5x Superscript buffer , 2µl 0.1 M DTT , 1µl ,10 mM dNTP , 1µl RNasin(40U/µl)(final 2U, Promega) , 0.5µl SuperScript II (Invitrogen)

設備:

微量滴管、加熱器、離心機、無菌操作檯、膠體電泳儀器、照相器、恆温生 長箱、PCR 儀器、鑷子、電磁加熱攪拌器、攪拌子、冰桶、20c.c.離心管、造 膠臺、拭鏡紙、造膠玻璃、水噴瓶、微量吸管、微量離心管、酒精、計時器、 齒梳、攝氏-80度冰箱、攝氏-20度冰箱、跑膠槽、電源供應器、Running buffer、 vortex、刮膠器具、孔夾(黑與白)、玻璃棒、transfer buffer、轉印槽、剪刀、 塑膠夾子、鐵夾子、壓片盒、暗房、顯影劑(developer)、定影劑(fixer) (一) 探討 bZIP16 蛋白質在阿拉伯芥野生型植株中各組織之表現量

實驗 1:阿拉伯芥野生型種植及不同組織取樣

實驗 1-1

方法:

- 取阿拉伯芥野生株 Landsberg erecta 種子約 100 顆置於 1.5 ml 微量離心 管中,並以 1 ml 70% 酒精清洗 1 分鐘後,加水馬上將酒精去除,重複 三次。
- 2) 以滅菌水清洗種子 3-5 次,即播種於土壤中。
- 3) 於4℃暗房下預冷3天後,移至長日照(16h光照/8h黑暗),22℃培養箱中。
- 4) 待阿拉伯芥開花結果莢時, 關燈後第四小時分別取根、莖、葉、花様
  本放
- 5) 入液態氮中,置入-80°C冰箱保存。

實驗 1-2

- 取阿拉伯芥野生株 Landsberg erecta 種子和突變種 bzip16-2 共 150 顆,
  置於 1.5 ml 微量離心管中,並以 1 ml 70% 酒精清洗 1 分鐘後。
- 加種子殺菌液(25% bleach; 0.025% SDS)消毒五分鐘。以滅菌水清洗 種子 3-5 次,即可播種於 1/2 MS medium 上。
- 3) 於4℃冷房黑暗中預冷3天後,留50顆在暗房中培養,50顆移至22℃
  長日照培養箱,50顆移至22℃全日照培養箱中。

4) 分別取樣如下:

長日照 bzip16-2 的花苞(對照組)

長日照野生株的花苞、花、果莢

野生株乾燥的種子野生株4℃暗房三天種子

野生株4℃暗房三天種子後22℃全日暗一天幼苗

野生株4℃暗房三天種子後22℃全日暗四天幼苗

野生株4℃暗房三天種子後22℃全日照一天幼苗

野生株 4℃暗房三天種子後 22℃ 全日照四天幼苗

5) 將樣本放入液態氮中,置入-80°C冰箱保存。

實驗 2: 阿拉伯芥野生型植株不同組織蛋白質之萃取

方法:

- 1) 將蛋白質萃取液置於 100°C 培養箱三分鐘後,加入蛋白酶抑制劑。
- 分別加入 50µl 以上的蛋白質萃取液至各組織樣本,振盪混合均匀。
- 3) 加熱樣本到 100°C 5 分鐘。
- 4) 以 1,3000 rpm 離心 5 分鐘。
- 5) 離心後所得上清液即為組織蛋白質萃取液,取出置於新的離心管中。
- 6) 以 Bio-Rad protein assay kit 測定蛋白質濃度。

實驗 3: 西方墨點法:

方法:

實驗 3-1: 蛋白質製備

- 1) 將已萃取的阿拉伯芥野生型植株不同組織的蛋白質取出。
- 2) 分別加入 5μl 樣品染劑和 2μlβ-ME 到 100μl 蛋白質萃取樣本中。
- 3) 置於 95°C 培養箱中反應 90 秒,以 1,2000 rpm 離心 5 分鐘後,輸進丙烯 酰胺凝膠。

實驗 3-2: SDS-聚丙烯醯胺凝膠電泳

- 1) 準備 10%-12% SDS-PAGE。
- 將 5-10µg 蛋白質注入電泳槽尺狀凹槽中,放入電泳裝置中。
- 加之以 70V 電壓 30 分鐘待蛋白質聚集,在以 100V 電壓 1.5 小時使其 分離。

實驗 3-3: 轉漬

- 以 100% methanol (甲醇) 稍微潤洗,活化 PVDF membrane。建構 the gel sandwich (by Bio-Rad, Mini trans-blot electrophoretic transfer cell) 將 transfer 夾鋪平,依次放上一片海綿、一張 3mm 濾紙、膠、PVDF
- membrane、一張 3mm 紙片、一片海綿,最後將夾子夾起來,稍微擠壓 將氣泡擠出來。
- 3) 放入 transfer 裝置以 100V 電壓 1 小時進行轉漬, 即完成。
- 實驗 3-4: 阻斷和檢測
  - 1) 將轉漬完的 membrane 浸泡在甲醇和水中。
  - 2) 準備 blocking reagent (5%牛奶, 0.1% Tween 20, 1XPBS)。
  - 將 membrane 放入 10ml blocking reagent 中,在室溫下搖晃 blocking 1 小時。(60rpm)
  - 4) 加入一級抗體 10ml(bzip16 antibody, 1:1000)後繼續搖晃1小時。(60rpm)
  - 5) 使用 washing buffer (0.05% Tween 20 in 1X PBS) 沖洗 membrane,以
    60rpm 搖晃 5 分鐘 5 次。
  - 加入 10ml 二級抗體 (anti-rabbit HRP, 1:5000) 在室溫下搖晃培養 1 小時。
  - 7) 使用 washing buffer (0.05% Tween 20 in 1X PBS) 沖洗 membrane,以
    60rpm 搖晃 5 分鐘 5 次。

- 8) 將 substrate 加入 membrane 後,放入滅過菌的袋子。
- 9)利用 substrate 將之顯影,顯影方式為將所附試劑 A: 500µl 加上試劑
  B: 500µl,淋在袋子中,輕壓 membrane 使其完全浸在試劑中,將氣泡 擠出後迅速封袋,放進壓片盒中。
- 10) 以冷光專用 X 光片於暗房中壓片,壓片 10 秒到 10 分鐘不等,洗出 X
  光片。
- 壓片完成後取出袋子中的 membrane,用 coomassie blue 將它染色以檢 查 membrane 上的蛋白質。
- (二) bZIP16 突變株表型的觀察

實驗: 阿拉伯芥野生型和各突變型種植與生長

方法:

- 分別取阿拉伯芥野生型Ler 種子、bZIP16基因突變型(bzip16-2)、互 補回復突變型(bzip16-2/bZIP16)及大量表現 bZIP16基因突變型 (bZIP16ox)各60顆種子置於1.5 ml 微量離心管中,並以1 ml 70% 酒精清洗1分鐘後,加水馬上將酒精去除,重複三次。
- 2) 以滅菌水清洗種子 3-5 次,即播種於土壤中。
- 3) 於4℃下預冷3 天後,分兩批各移至長日照(16小時光照/8小時黑暗) 和短日照 (8小時光照/16小時黑暗) 培養箱中,觀察他們抽薹時葉片 數目及生長情形。
- (三) 在野生株和突變株中各開花基因的轉錄組比較

實驗 1: 阿拉伯芥野生型和突變型種植及取樣

- 取阿拉伯芥野生株 Ler 種子和 bZIP16 基因突變型(bzip16-2)種子各 360
  顆置於 1.5 ml 微量離心管中,並以 1 ml 70% 酒精清洗 1 分鐘。
- 2) 以滅菌水清洗種子 3-5 次,各播種於土壤中。
- 3) 於4℃暗房下預冷3天後,移至短日照(8小時光照/16小時黑暗),
  22℃培養箱中18天後,在ZT12小時取樣。
- 實驗 2: 阿拉伯芥野生型和 bzip16 突變型植株 RNA 之萃取

(For Affymetrix GeneChip)

- 在液態氮中分別研磨之前備用的阿拉伯芥野生型和各突變型植株樣本 至粉狀。
- 加入 invitrogen Plant total RNA purification kit (500 µl) 劇烈振盪混合均
  匀。
- 3) 於4℃下,以13,000 rpm 離心4 分鐘。
- 4) 取上層之澄清液,並加入 200µl 之 5M NaCl,混合均匀。
- 5) 加入 500µl 之 Chloroform: isoamylalcohol (24:1) 混合均匀。
- 6) 於4℃下,以13,000 rpm 離心10分鐘。
- 取上層之澄清液,並加入 900µl 之 isopropanol 混合均匀,等 10 分鐘, 待其沉澱。
- 8) 於4℃下,以13,000 rpm 離心10分鐘。
- 9) 以 70% EtOH 沖洗 RNA, 劇烈振盪直到其漂浮在溶液之中。
- 10) 於4℃下,以13,000 rpm 離心 10 分鐘。
- 11) 風乾 RNA 後, 再以 40 µL of DEPC-dH2O 回溶 RNA。
- 12) 以分光光度測定各樣本 RNA 濃度。

(四)分析 RGA, RGL2, CO, GI, FT, LFY, FLC, SOC1 基因在阿拉伯芥野生型和各突 變型植株中開花途徑的表現量

實驗 1: 阿拉伯芥野生型和突變型種植及取樣

方法:

- 取阿拉伯芥野生株 Ler 種子和 bZIP16 基因突變型(bzip16-2)、互補回復 突變型(bzip16-2/bZIP16)和大量表現 bZIP16 基因突變型(bZIP16ox) 種 子各 270 顆置於 1.5 ml 微量離心管中,並以 1 ml 70% 酒精清洗 1 分 鐘。
- 2) 以滅菌水清洗種子 3-5 次,各播種於土壤中。
- 3) 於4℃暗房下預冷3天後,移至短日照(8小時光照/16小時黑暗),22
  ℃培養箱中18天後。
- 4) 於開燈後三小時開始,每個時間點各種取樣本8至10株放入液態氮中。
  之後,每隔三小時取樣一次,共取樣本五次(連續12小時),置入-80°C
  冰箱保存備用。

實驗 2: 阿拉伯芥野生型和各突變型植株總 RNA 之萃取

- 1) 以 65℃水浴加熱 pine tree extraction buffer (5ml/g tissue) 20 分鐘。
- 在液態氮中分別研磨之前備用的阿拉伯芥野生型和各突變型植株樣本 至粉狀,
- 3) 並分別分裝於2ml之離心管中。
- 4) 加入 700µl 預熱過之 pine tree extraction buffer 劇烈振盪混合,於 65℃
  水浴加熱 5 分鐘。
- 5) 加入同體積 700µl 之 Chloroform:isoamylalcohol (24:1), 劇烈振盪混
  合 20 秒。

- 6) 於 4℃下,以12000 rpm 離心 15 分鐘。
- 7) 取上層之澄清液,並加入 1/4 體積 175µl 之 10M LiCl,混合均匀。於 4
  ℃下沈澱 RNA 至隔夜。
- 8) 於4℃下以12000 rpm 離心 30 分鐘。
- 9) 去除上清液,倒置離心管於kimwipes上,以除去殘餘之10M LiCl。
- 10) 加入 700µl 75%冰的 EtOH 以去除多餘的鹽類。
- 11) 10)於4℃下以12000 rpm 離心 30 分鐘。
- 12) 11)去除上清液,倒置離心管於 kimwipes 上。
- 13) 再以 10~50µl 之 DEPC-H2O 回溶 RNA。
- 14) 取 1µl 之 RNA,以分光光度分別測定各樣本 RNA 濃度。

15)分別將所有 RNA 濃度稀釋到相同濃度後,放入-80 ℃冰箱中保存。 實驗 3:阿拉伯芥野生型和突變型植株 cDNA 之合成

- 阿拉伯芥野生株 Ler、bZIP16 基因突變型(bzip16-2)及大量表現 bZIP16 基因突變型(bZIP16ox)各樣本的 RNA template 加入 DEPC-H<sub>2</sub>O 稀釋 至 250 ng/µl。
- 將 2µg RNA template(8µl)、0.6µl 的 DEPC-H<sub>2</sub>O、2.4µl 的 5xSuperscript buffer(15mM MgCl<sub>2</sub>)、1.0µl 的 RQ1 RNase-free DNase (1U/µl, Promega) 分別加入各樣本之中。
- 37℃,反應30分鐘後,馬上置於冰上1分鐘。
- 4) 分別加入 1µl 的 oligo-dT(23)V (0.5µg/µl)。
- 5) 65℃,反應10分鐘後,馬上置於冰上1分鐘。
- 分別加入 7µl 的 RT 反應混合液到 13µl 的 DNase-treated RNA 混合液, 攪拌均匀。
- 7) 42℃反應1小時後,置於72°C15分鐘,儲藏於-20°C備用。

實驗 4: Primers 測試

方法:

1) 根據過去文獻的資料,找出 CO、GI、FT、FLC、LFY、SOC1、RGA、

RGL2、bZIP16、UBQ10 等基因的專一性 primers。

Primers 序列如下:

| qRT-PCR primer   | Sequence $(5' \rightarrow 3')$ | Reference     |
|------------------|--------------------------------|---------------|
| UBQ10-ABI-1      | AGAAGTTCAATGTTTCGTTTCATGTAA    | Hsieh et al., |
| ABI-Ler-UBQ-2    | GAATGGAAACATAGTTGGAACAATTATTCA | 2012          |
| AtbZIP16-F       | GCATGGACAATGACCACCAA           | Hsieh et al., |
| AtbZIP16-R       | TCTCTCTGCGGCACCTGTTT           | 2012          |
| CO-750-ABI-S     | CATTAACCATAACGCATACATTTCATC    | Wu et al,     |
| CO-800-ABI-AS    | TCCGGCACAACACCAGTTT            | 2008          |
| FT-254-ABI-S     | ATCTCCATTGGTTGGTGACTGATA       | Wu et al,     |
| FT-306-ABI-AS    | GCCAAAGGTTGTTCCAGTTGTAG        | 2008          |
| FLC-396-ABI-S    | AGCCAA GAAGACCGAACTCA          | Baurle and    |
| FLC-550-ABI-AS   | TTTGTCCAGCAGGTG ACA TC         | Dean, 2008    |
| LFY-437-ABI-S    | TTGATGCTCTCTCCCAAGAAG          | Ebine et al,  |
| LFY-549-ABI-AS   | TTGACCTGCGTCCAGTAA             | 2012          |
| SOC1-305-ABI-S   | AACAACTCGAAGCTTCTAAACGTAA      | Ebine et al,  |
| SOC1-367-ABI-AS  | CCTCGATTGAGCATGTTCCT           | 2012          |
| RGA-687-ABI-S    | AGAAGCAATCCAGCAGA              | Tyler et al,  |
| RGA-972-ABI-AS   | GTGTACTCTCTTCTTACCTTC          | 2004          |
| RGL2-977-ABI-S   | CGGAGAATTCAGATTCGCTTCAAC       | Kang et al,   |
| RGL2-1090-ABI-AS | CAAGATCCGATAAACTCTCAGCGG       | 2011          |
| GI-3513-ABI-S    | ACTAGCAGTGGTCGACGGTTTATC       | Wu et al,     |
| GI-3563-ABI-AS   | GCTGGTAGACGACACTTCAATAGATT     | 2008          |

## 2) primers 測試反應如下:

| MQ            | 6.5 | 5.5 | 4   |
|---------------|-----|-----|-----|
| Primer-ABI-S  | 0.5 | 1.5 | 3   |
| Primer-ABI-AS | 0.5 | 0.5 | 0.5 |
| MQ            | 5.5 | 4.5 | 3   |
| Primer-ABI-S  | 0.5 | 1.5 | 3   |
| Primer-ABI-AS | 1.5 | 1.5 | 1.5 |
| MQ            | 4   | 3   | 1.5 |
| Primer-ABI-S  | 0.5 | 1.5 | 3   |
| Primer-ABI-AS | 3   | 3   | 3   |

Fw primer: Rv primer 比例為 0.5, 1.5, 3 對 0.5, 1.5, 3。

(9\*3 repeats=27)

\*將這9組引子對利用此濃度比例體積為7.5μl,加上12.5μl的 SYBR Green MasterMix (Applied Biosystem, at 4°C)和 5μl 的 MQ,總體積為 25μl 的混合液中進行 qRT-PCR 反應。

- 1) 用 MQ 稀釋引子到濃度 100µM 後訂為標準溶液。
- 2) 再用 MQ 稀釋引子到濃度 5µM。
- 3) 測試 primers:
- 4) a)primers 濃度 100~300nM。
- 5) b)總共27個反應(一次反應25µl,共重複3次)。
- 6) UBQ10、CO、GI、FT、FLC、LFY、SOC1、RGA、RGL2、bZIP16 個

別的 primers 經過 9 種不同濃度組合的測試後得到的比例如下表:

| 5 μM primers | 總體積為 25µl            |
|--------------|----------------------|
| UBQ10        | Fw: Rv = 3.0: 3.0    |
| bZIP16       | Fw: Rv = 1.5 : 1.5   |
| СО           | Fw: Rv = 4.5 : 1.5   |
| FT           | Fw: Rv = 3.0 : 1.5   |
| FLC          | Fw: Rv = 0.5 : 0.5   |
| LFY          | Fw: $Rv = 0.5 : 0.5$ |
| SOC1         | Fw: Rv = 1.5 : 1.5   |
| RGA          | Fw: Rv = 1.5 : 1.5   |
| RGL2         | Fw: $Rv = 0.5 : 0.5$ |
| GI           | Fw: Rv = 3.0: 3.0    |

實驗 5: Real-Time PCR

Real-time PCR 反應混合液如下:

- 分別將五個不同時段(3hr,6hr,9hr,12hr,15hr)採取的野生株和突變株樣本 之 cDNA(0.5ng/5µl)5µl+各自不同比例的7.5µl primer 混合液+SYBR Green dye mixture 12.5µl 輸進8連排的離心管。
- 分別以 UBQ10、CO、GI、FT、FLC、LFY、SOC1、RGA、RGL2 和 bZIP16
  相應的引物進行 Real-Time PCR 反應,其混合液如下:

LFY, GI和 UBQ1 的 primer 混合液:

|                                       | One reaction | 70 reactions |
|---------------------------------------|--------------|--------------|
| MQ                                    | 1.5µl        | 105µl        |
| Primer-ABI-S                          | 3µl          | 210µl        |
| Primer-ABI-AS                         | 3µl          | 210µl        |
| SYBR Green                            | 12.5µl       | 75µl         |
| cDNA ( 0.05ng/µl)<br>final 0.25 ng/µl | 5µl          |              |
| total                                 | 25µl         |              |

bZIP16, RGA 和 SOC1 的 primer 混合液:

|                   | One reaction | 70 reactions |
|-------------------|--------------|--------------|
| MQ                | 4.5µl        | 315µl        |
| Primer-ABI-S      | 1.5µl        | 105µl        |
| Primer-ABI-AS     | 1.5µl        | 105µl        |
| SYBR Green        | 12.5µl       | 875µl        |
| cDNA ( 0.05ng/µl) | 51           |              |
| final 0.25 ng/µl  | Sμi          |              |
| total             | 25µl         |              |

FLC 和 RGL2 的 primer 混合液:

|                   | One reaction | 70 reactions |
|-------------------|--------------|--------------|
| MQ                | 6.5µl        | 455µl        |
| Primer-ABI-S      | 0.5µl        | 35µl         |
| Primer-ABI-AS     | 0.5µl        | 35µl         |
| SYBR Green        | 12.5µl       | 875µl        |
| cDNA ( 0.05ng/µl) | 51           |              |
| final 0.25 ng/µl  | 5μ1          |              |
| total             | 25µl         |              |

CO 的 primer 混合液:

|                   | One reaction | 70 reactions |
|-------------------|--------------|--------------|
| MQ                | 1µl          | 70µl         |
| Primer-ABI-S      | 4.5µl        | 315µl        |
| Primer-ABI-AS     | 1.5µl        | 105µl        |
| SYBR Green        | 12.5µl       | 875µl        |
| cDNA ( 0.05ng/µl) | 51           |              |
| final 0.25 ng/µl  | 5μι          |              |
| total             | 25µl         |              |

FT 的 primer 混合液:

|                   | One reaction | 70 reactions |
|-------------------|--------------|--------------|
| MQ                | 3µl          | 210µl        |
| Primer-ABI-S      | 3µl          | 210µl        |
| Primer-ABI-AS     | 1.5µl        | 105µl        |
| SYBR Green        | 12.5µl       | 875µl        |
| cDNA ( 0.05ng/µl) | 51           |              |
| final 0.25 ng/µl  | Sμi          |              |
| total             | 25µl         |              |

 NTC 則是 5μl 的 MQ + 各自不同比例的 7.5μl primer 混合液+SYBR GreenMasterMix 12.5 μl。  4) 加完後放入 qRT-PCR 儀器中執行 qRT-PCR。所使用之機體為 Applied Biosystem QuantStudio ™ 12K Flex Real-Time PCR System (http://www.appliedbiosystems.com)。

PCR 反應循環為:

- 1) 50°C, 2分鐘 (去除 RNA)
- 2) 95°C, 10 分鐘(活化 DNA Polymerase)
- 3) 95°C,15 秒 (DNA 變性)
- 4) 60℃,1分鐘(引子黏接及延長作用於一分鐘內同時進行);其中步驟3及4共進行40個循環。

## 參、 研究結果與討論

#### (一) bZIP16 蛋白質在花苞與花中具有高表現量

針對 bZIP16 蛋白質在植物不同生長時期之表現量分析,首先萃取 bzip16 基因 突變型和阿拉伯芥 Ler 野生型不同生長期之組織,包括種子、根、莖、葉、幼苗、 花苞、花、果莢的蛋白質。再藉由西方墨點法執行四次實驗,發現 bZIP16 蛋白質 在根、莖、幼苗、花苞、花、果莢中均有表現,其中以花苞和花的累積量最高。 由於 bZIP16 蛋白質在花苞和花的高累積量,推測 bZIP16 可能也參與調控阿拉伯 芥開花機制。(圖 1-1 至 1-3)

比較在 4℃處理三天後, 放在 22℃ 黑暗環境中生長一天和四天的幼苗, 顯示 四天的幼苗中 bZIP16 蛋白質量增多。而比較在 4 天黑暗環境中生長的幼苗和在 4 天光照環境中生長的幼苗, 顯示 4 天光照下幼苗中的 bZIP16 蛋白質量明顯減少。 而在未經過°4C 冷處理的乾燥種子及有經過°4C 冷處理全光照 1 天環境中生長的幼 苗中,則偵測不到 bZIP16 蛋白質。但經 4℃處理三天的種子,我們發現有 bZIP16 蛋白質的出現。顯示光照及冷處理對 bZIP16 蛋白質的表現量有密切關係。



根葉莖花根葉莖花

(重複一)

(重複二)

#### 圖 1-1 bZIP16 蛋白質在根和花中表現量較多

阿拉伯芥野生型種植於 22℃ 長日照(16 h 光照/8 h 黑暗)生長箱,取 21 天成株的組織的樣本。圖中黑色箭頭指示的位置為 bZIP16 蛋白質,bZIP16 蛋白質的分子量約 51-55 kDa,從圖中此位置條帶的深淺可以代表 bZIP16 蛋白質的多少。



## 圖 1-2 bZIP16 蛋白質在花、花苞和在黑暗環境中生長 4 天的幼苗表現量較多。

萃取 *bzip16* 基因突變型和阿拉伯芥 Ler 野生型不同生長期之組織,包括種子、根、 莖、葉、幼苗、花苞、花、果莢的蛋白質。以α-tubulin 蛋白質做為 loading control。 下圖利用 coomassie blue 染色以確認 membrane 上的蛋白質。



| 果 | 四  | 四 | 花 | 花  | bz |
|---|----|---|---|----|----|
| 英 | a  | a |   | ¥  | ip |
|   | 光  | 黑 |   | E. | 16 |
|   | 积限 | 暗 |   |    | ** |
|   | 幼  | 幼 |   |    | 10 |
|   | 苗  | 苗 |   |    |    |

**圖 1-3 bZIP16 蛋白質累積在果莢、花、花苞和在黑暗環境中生長 4 天的幼苗表現量較多。萃取 bzip16 基因突變型和阿拉伯芥 Ler 野生型不同生長期之組織,包括四日光照幼苗、四日黑暗幼苗、花苞、花、果莢的蛋白質。** 

(二) bzip16 突變株在長日照與短日照下皆具有延遲開花的現象

為了解bZIP16 在植物中之生理功能及特性,藉由觀察及比較阿拉伯芥野生型 植株 Ler、bzip16 突變株(bzip16-2)互補回復突變型(bzip16-2/bZIP16)及大量表現 bZIP16 基因之植株(bZIP16ox)之外觀型態,來推測bZIP16 可能扮演的角色。將 野生型和突變型分別種植於不同光照處理(長日照:16小時光照/8小時黑暗;短 日照:8小時光照/16小時黑暗)之生長箱,並於生長其間觀察其外觀性狀。比較 野生型植株 Ler 和 bzip16 突變株於長日照生長環境下之性狀。

結果顯示在長日照下,第一次開花實驗中,bzip16 突變株的蓮座葉平均數目比 野生型多一片,而野生型在長出4片蓮座葉後便抽苔開花。而 bzip16 突變株在開 花前平均產生5片的蓮座葉(圖2-2A)。而長日照下第二次開花實驗,野生型平 均長出4.5片蓮座葉後便抽苔開花,但 bzip16 突變株平均長出5.5片的蓮座葉後才 抽苔開花,顯示 bzip16 突變株在長日照下會延遲開花。在短日照下,野生型平均 長出 23.55 片蓮座葉後便抽苔開花,而 bzip16 突變株平均產生 31.36 片的蓮座葉後 才抽苔開花(圖 2-4)。顯示由營養生長到生殖生長的轉變明顯延遲。綜合上述結果 顯示 bZIP16 會促進開花。



Ler *bzip16-2 bzip16-2/bZIP16 bZIP16ox* 圖 2-1 長日照下, *bzip16* 突變株蓮座葉較多

消毒每種品系的種子後,泡水一小時,種在泥土中,置入4℃冷房三天,之後移 至 22℃之長日照下(16 小時光照/8 小時黑暗)的植物生長箱,光照強度為 70~100μmol m<sup>-2</sup> sec<sup>-1</sup>。



## 圖 2-2 bzip16 突變株在長日照下會延遲開花。

圖 2-2A 長日照下,野生型平均長出 4 片蓮座葉後便抽苔開花,而 bzip16-2 突變株 平均長出 5 片的蓮座葉後才抽苔開花。圖 2-2B 野生型平均長出 4.5 片蓮座葉,但 bzip16-2 突變株平均長出 5.5 片的蓮座葉。互補回復突變株(bzip16-2/bZIP16) 平均 長出 4.72 片蓮座葉,大量表現 bZIP16 株(bZIP16ox)長出 4.16 片蓮座葉。圖 2-2A 和圖 2-2B 為分別兩次不同實驗。\*表示 bzip16 突變株明顯較野生株延遲開花。計 算其開花前蓮座葉的數目(Student's t test; P<0.001,  $n \ge 10$ )



*bzip16* Ler *bzip16-2/bZIP16 bZIP16ox* 圖 2-3 在短日照下, *bzip16* 突變株蓮座葉較多

消毒每種品系的種子後,泡水一小時,種在泥土中,置入4℃冷房三天,之後移 至 22℃之短日照(8 小時光照/16 小時黑暗)的植物生長箱,光照強度為 80~110 $\mu$ mol m<sup>-2</sup> sec<sup>-1</sup>。



圖 2-4 bzip16 突變株在短日照下明顯延遲開花。

野生型平均長出 23.55 片蓮座葉後便抽苔開花,而 bzip16-2 突變株平均產生 31.36 片的蓮座葉後才抽苔開花。\*表示 bzip16 突變株明顯較野生株延遲開花。計算其開 花前蓮座葉的數目(Student's t test; P<0.001, n  $\geq$  10)

#### (三) bZIP16 明顯抑制 FLC 表現量

為了解 bZIP16 如何調控開花,我們利用 Affymetrix ATH1 GeneChip 分析,從 檢測的 24000 個基因找出四十三個調控開花的基因,比較開花途徑中參與調控開 花的基因於短日照下生長十八天的野生株和 bzip16 突變株中轉錄的變化。第一類 是屬於自主途徑的基因,包含 MULTICOPY SUPPRESSOR OF IRA1 4 (FVE), FLOWERING LOCUS D (FLD), FLOWERING LOCUS KH DOMAIN (FLK), LUMINIDEPENDENS (LD), FCA, FY 及開花整合因子 SOC1 和 FLC。第二類是屬於 吉貝素途徑的基因,包含 REPRESSOR OF GA (RGA), GIBBERELLIC ACID INSENSITIVE(GAI), SUPPRESSOR OF PHYA-105 (SPY), RGA-LIKE 1 (RGL1), RGA-LIKE2 (RGL2) 和 RGA-LIKE3 (RGL3)。第三類是屬於光週期途徑的基因,包 含 CIRCADIAN CLOCK ASSOCIATED1(CCA1), LATE ELONGATED HYPOCOTYL (LHY), EARLY FLOWERING3 (ELF3), EARLY FLOWERING4 (ELF4), LOV KELCH PROTEIN2(LKP2), ,GIGANTEA(GI), FLAVIN-BIDING, KELCH REPEAT, F-BOX1(FKF1), PSEUDO-RESPONSE REGULATOR3 (PRR3), PRR5, PRR7, PRR9, ZEITLUPE(ZTL), TIMING OF CAB EXPRESSION1 (TOC1), CYCLING DOF FACTOR1 (CDF1), CONSTANS (CO), ARRHYTHMO/PHYTOCLOCK1 (LUX), LIGHT-REGULATED WD1 (LWD1), LIGHT-REGULATED WD2 (LWD2), (CCA1 HIKING EXPEDITION, TCP DOMAIN PROTEIN 21) CHE,及開花整合因子 FLOWERING LOCUS T (FT)。第四類是屬於春化途徑的基因,包含 VIRE2-INTERACTING PROTEIN 1 (VIP1), VIRE2 INTERACTING PROTEIN 2 (VIP2), VERNALIZATION INDEPENDENCE 3 (VIP3), VERNALIZATION INDEPENDENCE 4 (VIP4), VERNALIZATION INDEPENDENCE 5 (VIP5), PHOTOPERIOD-INDEPENDENT EARLYFLOWERING 1 (PIE1), FRIGIDA (FRI), REDUCED VERNALIZATION RESPONSE 1 (VRN1), 和 REDUCED VERNALIZATION RESPONSE 2 (VRN2) •

25

微矩陣轉錄體(transcriptome)分析顯示,在四十三個調控開花的基因中,以FLC 的 mRNA 表現量變化最大,其它基因的 mRNA 表現量變化很小。在野生株中,FLC 的 mRNA 表現量下降;反之,在 bzip16 突變株中,FLC 的 mRNA 表現量升高。(圖 3-1)而 bZIP16 對吉貝素途徑、光週期途徑、春化途徑和自主途徑的基因似乎沒有 影響。

此外,檢查24000 個基因在野生株和 bzip16 突變株中的轉錄差異變化多於兩 倍的基因共有 30 個,其中受 bZIP16 上調控的基因有 11 個(圖 3-2),受 bZIP16 下 調控的基因有 19 個 (圖 3-3),除了 FLC 是抑制開花基因外,其它基因都不屬於開 花途徑基因。以上結果證實 bZIP16 抑制 FLC 的表現,bZIP16 有可能是自主途徑 基因。

| Flowering<br>Pathway | Systematic  | Locus<br>Number | Gene | Ler<br>Repeat 1 | Ler<br>Repeat 2 | <i>bzip16</i><br>Repeat 1 | <i>bzip16</i><br>Repeat 2 |
|----------------------|-------------|-----------------|------|-----------------|-----------------|---------------------------|---------------------------|
|                      | 267509_at   | AT2G45660       | SOC1 |                 |                 |                           |                           |
|                      | 265946_s_at | AT2G19520       | FVE  |                 |                 |                           |                           |
|                      | 258944_at   | AT3G10390       | FLD  |                 |                 |                           |                           |
| Autonomous           | 258790_at   | AT3G04610       | FLK  |                 |                 |                           |                           |
|                      | 255444_at   | AT4G02560       | LD   |                 |                 |                           |                           |
|                      | 250476_at   | AT5G10140       | FLC  |                 |                 |                           |                           |
|                      | 245848_at   | AT5G13480       | FY   |                 |                 |                           |                           |
|                      | 245489_at   | AT4G16280       | FCA  |                 |                 |                           |                           |
|                      | 266221 of   | AT2001570       | PCA. |                 |                 |                           |                           |
|                      | 200331_at   | AT2G01570       | RGA  |                 |                 |                           |                           |
|                      | 202030_at   | AT1014920       | BCLI |                 |                 |                           |                           |
| GA                   | 250250 at   | AT3G11540       | SDV  |                 |                 |                           |                           |
|                      | 259259_at   | AT3G03450       | PCID |                 |                 |                           |                           |
|                      | 209042_at   | AT5G17490       | RGL2 |                 |                 |                           |                           |
|                      | 240432_at   | A15617450       | NOLS |                 |                 |                           |                           |
|                      | 267364_at   | AT2G40080       | ELF4 |                 |                 |                           |                           |
|                      | 266935 at   | AT2G18915       | LKP2 |                 |                 |                           |                           |
|                      | 266839 at   | AT2G25930       | ELF3 |                 |                 |                           |                           |
|                      |             | AT2G46830       | CCA1 |                 |                 |                           |                           |
|                      | 266720 s at | AT2G46670       | PRR9 |                 |                 |                           |                           |
|                      | 264638_at   | AT1G65480       | FT   |                 |                 |                           |                           |
|                      | 264211_at   | AT1G22770       | GI   |                 |                 |                           |                           |
| Photoperiodic        | 261560 at   | AT1C01060       |      |                 |                 |                           |                           |
|                      | 201309_at   | AT1G01000       |      |                 |                 |                           |                           |
|                      | 250000 a at | AT1012010       |      |                 |                 |                           |                           |
|                      | 259990_5_at | AT 1008000      |      |                 |                 |                           |                           |
|                      | 257635_at   | AT 3G26640      |      |                 |                 |                           |                           |
|                      | 252475_s_at | AT3G46640       | LUX  |                 |                 |                           |                           |
|                      | 250971_at   | AT5G02810       | PRR/ |                 |                 |                           |                           |
|                      | 249741_at   | AT5G24470       | PRR5 |                 |                 |                           |                           |
|                      | 247898_at   | A15G57360       | ZIL  |                 |                 |                           |                           |
|                      | 247668_at   | AT5G60100       | PRR3 |                 |                 |                           |                           |
|                      | 247525_at   | AT5G61380       | TOC1 |                 |                 |                           |                           |
|                      | 247452_at   | AT5G62430       | CDF1 |                 |                 |                           |                           |
|                      | 246525_at   | AT5G15840       | CO   |                 |                 |                           |                           |
|                      | 246011_at   | AT5G08330       | CHE  |                 |                 |                           |                           |
|                      |             |                 |      | -               |                 |                           |                           |
|                      | 260813 at   | AT1G43700       | VIP1 |                 |                 |                           |                           |
|                      | 259718 at   | AT1G61040       | VIP5 |                 |                 |                           |                           |
|                      | 257688_at   | AT3G12810       | PIE1 |                 |                 |                           |                           |
|                      | 256944_at   | AT3G18990       | VRN1 |                 |                 |                           |                           |
| Vernalization        | 255634_at   | AT4G00650       | FRI  |                 |                 |                           |                           |
| Vernalization        | 253645_at   | AT4G29830       | VIP3 |                 |                 |                           |                           |
|                      | 247695_at   | AT5G59710       | VIP2 |                 |                 |                           |                           |
|                      | 247565_at   | AT5G61150       | VIP4 |                 |                 |                           |                           |
|                      | 245280_at   | AT4G16845       | VRN2 |                 |                 |                           |                           |
|                      |             |                 |      |                 |                 |                           |                           |

|      | Expression |     |  |
|------|------------|-----|--|
|      |            |     |  |
| -1.9 | Ó          | 1.9 |  |

## 圖 3-1. FLC 的 mRNA 表現量在 bzip16 突變株中明顯升高

比較基因轉錄組,分析 18 天大在(ZT) 12 小時的野生株和 bzip16 突變株中 43 個在 開花途徑中的基因。每個基因的平均表達顯示為黃色。平均相對表現量上升為紅 色,表現量下降為綠色。共執行兩次不同實驗。在野生株中,FLC 的 mRNA 表現 量下降;反之,在 bzip16 突變株中,FLC 的 mRNA 表現量升,bZIP16 對吉貝素途 徑、光週期途徑和春化途徑的基因似乎沒有影響。

| Probe                                   | Ler  | Ler  | bzip16-2 | bzip16-2 | expression | Unigene  | Gene   |           | Target Description                        |  |
|-----------------------------------------|------|------|----------|----------|------------|----------|--------|-----------|-------------------------------------------|--|
| Set ID                                  | R1   | R2   | R1       | R2       | fold       | (Avadis) | Symbol | AGI       |                                           |  |
| 266624 of                               | 1.04 | 1 17 | 1.00     | 1.04     | 10         | A+ 27662 |        | AT2C25520 | putative G-box binding bZIP transcription |  |
| 200034_at                               | 1.04 | 1.17 | -1.20    | -1.04    | 4.0        | AL.37003 |        | A12G35550 | factor                                    |  |
| 262634_at                               | 2.24 | 2.48 | -2.29    | -2.24    | 23.0       | At.26590 |        | AT1G06690 | unknown protein                           |  |
| 262636_at                               | 0.71 | 0.79 | -0.71    | -0.96    | 3.0        | At.20810 | NIH    | AT1G06670 | DEIH-box RNA/DNA helicase                 |  |
| 260835_at                               | 2.35 | 2.42 | -2.42    | -2.35    | 27.2       | At.12093 |        | AT1G06700 | protein kinase interactor                 |  |
| 260412_at                               | 1.35 | 0.99 | -1.99    | -0.99    | 6.3        | At.24555 | AMY3   | AT1G69830 | putative alpha-amylase                    |  |
| 257076_at                               | 1.13 | 0.65 | -0.69    | -0.65    | 2.9        | At.8144  |        | AT3G19680 | unknown protein                           |  |
| 256245_at                               | 1.4  | 0.65 | -0.82    | -0.65    | 3.4        | At.47608 | HSP70  | AT3G12580 | heat shock protein 70                     |  |
| 255064 at 0.74                          | 0.74 | 0.6  | -0.6     | -0.74    | 2.5        | At.22399 | EXO    | AT4C08050 | putative phi-1-like phosphate-induced     |  |
| 20004_al                                | 0.74 | 0.0  |          |          |            |          |        | A14G00950 | protein                                   |  |
| 254452_at 2                             | 2.40 | 2.15 | -2.15    | -2.15    | 22.1       | At.32663 | DDB1B  | AT4G21100 | UV-damaged DNA-binding protein-like       |  |
|                                         | 2.49 |      |          |          |            |          |        |           | damage-specific DNA binding protein 1     |  |
| 253942_at                               | 0.59 | 0.49 | -0.49    | -0.59    | 2.1        | At.54525 |        | AT4G27010 | putative protein                          |  |
| 250304_at                               | 0.92 | 0.89 | -0.89    | -0.93    | 3.5        | At.699   |        | AT5G12110 | elongation factor 1B alpha-subunit        |  |
| 圖 3-2 bZIP16 正向調控的基因, 11 個基因都不屬於開花途徑基因。 |      |      |          |          |            |          |        |           |                                           |  |

|              |        |        |          |          |            |          |        | -         |                                 |
|--------------|--------|--------|----------|----------|------------|----------|--------|-----------|---------------------------------|
| Probe Set ID | Ler R1 | Ler R2 | bzip16-2 | bzip16-2 | expression | Unigene  | Gene   | AGI       | Target Description              |
|              |        |        | R1       | R2       | fold       | (Avadis) | Symbol |           |                                 |
| 266693_at    | -0.67  | -0.58  | 0.58     | 0.67     | 2.4        | At.12894 | MIOX2  | AT2G19800 | unknown protein                 |
| 264824_at    | -0.90  | -0.80  | 0.80     | 0.80     | 3.1        | At.69970 | 2A6    |           | unknown protein                 |
| 004000 at    | 0.61   | 0.00   | 0.61     | 0.77     | 2.5        | At.19920 | 2A6    | AT1G03410 | putative 1-aminocyclopropane-1- |
| 204020_al    | -0.01  | -0.00  |          |          |            |          |        |           | carboxylate oxidase             |
| 263268_at    | -0.93  | -1.13  | 0.94     | 0.93     | 3.9        |          |        |           | unknown protein                 |
| 262010_at    | -0.97  | -1.32  | 0.97     | 1.10     | 4.5        | At.47239 |        |           | hypothetical protein            |
| 262019_s_at  | -1.11  | -0.80  | 0.80     | 0.82     | 3.4        |          |        |           | hypothetical protein            |
| 260011_at    | -0.60  | -0.70  | 0.60     | 0.84     | 2.6        | At.19366 |        | AT1G68110 | hypothetical protein            |
| 259620_s_at  | -1.26  | -1.43  | 1.30     | 1.26     | 6.2        |          |        |           | Tam3-like transposon protein    |
| 257306_at    | -0.84  | -0.79  | 0.79     | 1.15     | 3.4        | At.53591 |        | AT3G30200 | hypothetical protein            |
| 256940_at    | -2.85  | -2.85  | 2.85     | 2.85     | 52.0       | At.36724 | QQS    | AT3G30720 | unknown protein                 |
| 256300_at    | -0.83  | -0.43  | 0.43     | 0.68     | 2.3        | At.24919 | NAP    | AT1G69490 | unknown protein                 |
| 256166_at    | -1.03  | -1.01  | 1.08     | 1.01     | 4.2        | At.49945 |        | AT1G36920 | hypothetical protein            |
| 255414_at    | -2.01  | -1.95  | 1.95     | 2.10     | 16.0       | At.54106 |        | AT4G03156 | hypothetical protein            |
| 254343_at    | -0.88  | -0.55  | 0.55     | 0.80     | 2.6        | At.2106  | APR3   | AT4G21990 | PRH26 protein                   |
| 250476_at    | -0.79  | -0.85  | 0.89     | 0.79     | 3.2        | At.75671 | FLC    | AT5G10140 | MADS box protein FLOWERING      |
|              |        |        |          |          |            |          |        |           | LOCUS C                         |
| 248969_at    | -0.61  | -0.55  | 0.60     | 0.55     | 2.2        | At.27375 |        | AT5G45310 | unknown protein                 |

| 248676_at | -0.66 | -0.60 | 0.60 | 0.97 | 2.7 | At.29820 | ATSDI1 | AT5G48850 | similar to unknown protein     |
|-----------|-------|-------|------|------|-----|----------|--------|-----------|--------------------------------|
| 245032_at | -0.80 | -0.74 | 0.74 | 0.92 | 3.0 |          |        |           | En/Spm-like transposon protein |

圖 3-3 bZIP16 負向調控的基因

除了 FLC 是抑制開花基因外,其它 18 個基因都不屬於開花途徑基因。

#### (四) FLC 在 bzip16 突變株的表現量會增高而 SOC1 和 FT 表現量則會下降

為了進一步探討是否 bZIP16 是屬於自主途徑的基因,我們利用即時定量反轉錄 PC 技術(quantitative real-time RT-PCR),藉由 RNA 的抽取,反轉錄合成 cDNA, 再以此 cDNA 為模板,依據特定目標的 primer,進行後續 qPCR 的實驗。分析 8 個調控開花時間的基因 RGA, RGL2, CO, GI, LFY, FT, FLC和 SOC1 在阿拉伯芥野生 型植株 Ler、bzip16 突變株 (bzip16-2)、互補回復突變株(bzip16/bZIP16)及大量表 現 bZIP16 的植株 (bZIP16ox) mRNA 的表現量。為得到精確的資料,分析了各基 因在不同時刻的表現量,以選擇最佳取樣時間。選定取樣時 間為於開燈後三小時 開始收第一次樣本,之後,每三小時收一次樣本,至十五小時止共收取五個不同 時間點的樣本來進行分析。

首先先分析 bZIP16 在不同植株中的表現量。結果顯示 bZIP16 在突變株中並 不存在,反之在 bZIP16ox 中則會大量表現。證明所使用的植株正確無誤(圖 4-1)。 接著分析 bZIP16 對不同調控開花時間基因之表現的影響。結果顯示 FLC mRNA 的表現量在 bzip16 突變株明顯高於野生型(圖 4-2)。而受 FLC 負調控的調節開花 的重要整合因子 SOC1 和 FT 在 bzip16 突變株中的 mRNA 表現量則明顯下降。反 之,在大量表現 bZIP16 的植株 (bZIP16ox)中,FLC 的 mRNA 表現量明顯下降, 而 SOC1 和 FT 的 mRNA 表現量明顯上升(圖 4-3,4-4)。

然而,比較野生型和突變型各株,吉貝素途徑的 DELLA 基因 RGL2 和 RGA 的 表現量沒有明顯差異(圖 4-5, 4-6)。光週期途徑的 CO 和 GI 基因的 mRNA 表現量也 沒有明顯變化(圖 4-7,4-8)。另一個調節開花的整合因子,花序分生組織特徵基因 LFY 的 mRNA 量太少,無法偵測出數據。 上述結果表明,bZIP16 對阿拉伯芥開花的調控,是通過抑制 FLC 的表現,從 而促進 SOC1 和 FT 的表現而最終促進植物開花。



## 圖 4-1 bZIP16 在不同植株中的表現

bzip16 突變株 (bzip16-2,藍色), 在野生型 Ler(黑色) (bzip16/bZIP16, 及大量表現 bZIP16 的植株(bZIP160x,綠色)。植物生長於短日照下(8小時光照/16小時黑暗), 種植 18 天大,於開燈後三小時開始取樣,每隔三小時取樣一次(連續 12小時),共 取樣本五次。抽取 RNA 進行 qRT-PCR。圖上白色橫條表示光照期,黑色橫條表 示黑暗期。All values in (Fig.4-1~4-8) are means (±S.E.) from three technique repeats



ZT (h)

**圖 4-2** FLC 的 mRNA 表現量在 bzip16 突變株中明顯高於野生型。 執行二次實驗,結果相似。



**圖 4-3** SOC1 的 mRNA 表現量在 bzip16 突變株中明顯低於野生型。 執行二次實驗,結果相似。



**圖 4-4 FT 的 mRNA 表現量在 bzip16 突變株中明顯低於野生型。** 執行二次實驗,結果相似。



**圖 4-5** *RGL2* 的 mRNA 的表現量在不同植株中,沒有明顯差異。 執行二次實驗,結果相似。



**圖 4-6 RGA 的 mRNA 量在 bzip16 突變株中比野生型略為減少。** 執行二次實驗,結果相似。


**圖 4-7** CO 的 mRNA 表現量在不同植株中沒有明顯差異。 執行二次實驗,結果相似。



**圖 4-8 GI 的 mRNA 表現量在不同植株中沒有明顯差異。** 執行二次實驗,結果相似。

## 肆、 討論

檢測 bZIP16 蛋白質在種子、幼苗、花苞、花、果莢的表現量時,發現經過 4C °冷處理三天後,放在 22℃ 全黑暗 4 天環境中生長的幼苗所含的 bZIP16 蛋白質比 在相同處理後,全光照 4 天環境中生長的幼苗多。而在未經過°4C 冷處理的乾燥種 子及有經過°4C 冷處理全光照 1 天環境中生長的幼苗中,則偵測不到 bZIP16 蛋白 質(圖 1-1 至 1-3),顯示冷處理和光影響 bZIP16 的表現量。此外,bZIP16 蛋白質 在花苞和花的高表現量和 bzip16 突變種在短日照和長日照下都延遲開花,顯示 bZIP16 可能參與調控阿拉伯芥開花機制。

在阿拉伯芥中主要存在四條調控植物開花的途徑:光週期途徑,春化途徑,自主途徑和吉貝素途徑(Mouradov et al., 2002)。這些途徑通過整合內在發育和外在環境兩方面的因素參與調控開花時間。感受和傳遞日照長短信號屬於光週期途徑,而感受和應答環境溫度變化則在春化途徑上。另外兩條途徑上的基因能夠不依賴於環境信號而調控開花,其中自主途徑通過感應一些未知的內部因子來促進植物開花,而吉貝素能夠不依賴於光週期促進開花。這幾條開花調節途徑通過幾個整合因子,如FT, SOC1和LFY 互相聯繫。

以 Affymetrix GeneChip 分析,證實 bZIP16 抑制 FLC 的表現,而對吉貝素途 徑、光週期途徑和春化途徑的基因似乎沒有影響。進一步以即時定量反轉錄 PCR (qRT-PCR)分析 8 個開花途徑的基因 RGA、 RGL2、 CO、 GI、LFY、 FT、 FLC 和 SOC1。已知 bZIP16 在阿拉伯芥種子的萌芽與幼苗的發育中,藉由抑制 RGL2 的作用來控制離層酸,促進吉貝素作用來促進幼苗的發育。但本研究發現 bZIP16 在開花途徑中,對 RGL2 卻沒有影響(圖 3-5)。而光週期途徑的基因 CO 和 GI,其 mRNA 表現量亦無明顯變化(圖 3-7)。表示 bZIP16 不是透過此二路徑調控開花。然 而在 bzip16 突變株中 FLC 的 mRNA 表現量顯著高於野生型(圖 3-2)。而受 FLC 負 調控之調節開花的重要整合因子 SOC1 和 FT 在 bzip16 突變株中的 mRNA 表現量

34

則明顯低於野生型(圖 3-3、3-4)。這些結果表明 bZIP16 在 FLC 的上游抑制其表現, 隨後 FLC 又負調控 SOC1 和 FT 的表現,促進阿拉伯芥的開花 (圖丙)。自主途徑 基因的主要功能在於抑制 FLC 的表現。目前所知在自主途徑基因 fca, fld, fpa, fve, fy 及 ld 突變株中,FLC 表現都會上升(Michaels and Amasino, 1999)。光週期途徑基因 的突變株只在長日照下才延遲開花,但自主途徑基因的突變株不論在長日照或短 日照下都會延遲開花。(Mouradov et al., 2002)。本研究證實 bzip16 突變種在短日照 和長日照下都延遲開花並抑制負調控開花基因 FLC 的表現量,結果顯示 bZIP16 是自主途徑基因的一員。



圖丙 bZIP16 參與阿拉伯芥開花途徑的分子機制

箭頭代表著促進T字型代表抑制

# 伍、 結論與未來展望

先前文獻證實阿拉伯芥轉錄因子 bZIP16,藉由抑制 RGL2 與 PIL5 的表現來控 制離層酸,並且促進吉貝素作用,來促進阿拉伯芥種子的萌芽與幼苗的發育(Hsieh et al, 2012)。本研究發現 bZIP16 蛋白質在花苞和花的表現量最高,在開花途徑中, bZIP16 藉由抑制 FLC,調控開花整合因子 SOCI 和 FT 的表現進而促進植物開花。 此外,先前文獻證實自主途徑基因的突變株不論在長日照或短日照情況下都會延 遲開花且都具有 FLC 高表現的特徵 (Michaels and Amasino, 1999; Mouradov et al., 2002)。 bzip16 突變株和自主途徑基因突變株的特徵相同,進一步透過微矩陣轉錄 體(transcriptome)分析與即時定量反轉錄 PCR 分析,發現 bZIP16 對吉貝素途徑、 光週期途徑及春化途徑的基因沒有影響,顯示 bZIP16 透過自主開花途徑調控開花 時間。

本研究證實 bZIP16 除了控制阿拉伯芥種子的萌芽與幼苗的發育之外,在開花途徑中具有正向調控開花的功能。bZIP16 為阿拉伯芥新的開花調控基因,並且發現 bZIP16 是自主開花途徑基因的新成員。

研究科學最刺激的一部分就是我們永遠無法預測研究的成果是什麼,而專注 的研究總得到意想不到的驚喜。當初我們以為bZIP16可能會透過吉貝素開花途徑 的RGL2 促進開花,結果,很幸運的發現 bZIP16 的另一功能一調控開花,找到一 個新的開花基因。不過也意外的發現,bZIP16 在成長階段並不會抑制 RGL2,可見 植物內部分子機制的複雜超過我們可以想像。希望未來可以進一步研究 bZIP16 如 何抑制 FLC,探討它是否和其它八個自主開花途徑基因有相同的作用機轉。

36

# 陸、 參考文獻

### Websites

- 1. Arabidopsis eFP Browser, from http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
- DIURNAL, Mockler Lab, from http://diurnal.mocklerlab.org/diurnal\_data\_finders/new
- TAIR (The Arabidopsis Information Resource), from http://www.arabidopsis.org/
- Regulation of flowering time in Arabidopsis, from http://www.egad.ksu.edu/GA/gibberellin\_transd\_pathway.htm
- Plant Cell Biology, from ttp://plantcellbiology.masters.grkraj.org/html/Plant\_Growth\_And\_
- 6. Development10-Physiology\_Of\_Flowering.htm

#### Literature

- Achard, Genschik (2009) Releasing the brakes of plant growth: how Gas Shutdown DELLA proteins, Journal of Experimental Botany, vol. 60, no. 4: 1085–1092
- Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, et al (2005), FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex, Science, vol. 309 no. 5737:1052-1056

- Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues, Nature Reviews, vol. 13, 627-639
- Ba<sup>"</sup> urle I, , Dean C (2008) Differential Interactions of the Autonomous Pathway RRM Proteins and Chromatin Regulators in the Silencing of Arabidopsis Targets, PLoS ONE vol. 3, no. 7 : e2733
- Blázquez MA, Green R, Nilsson O, Sussman MR, Weigel D (1998)
   Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell vol.10, 791–800
- Blázquez MA, Weigel D (2000). Integration of floral inductive signals in Arabidopsis, Nature, vol. 404, 889-892
- Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple Pathways in the Decision to Flower: Enabling, Promoting, and Resetting, The Plant Cell, vol. 16 no. suppl 1 S18-S31
- Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function, Development,131: 1055-1064.
- Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis, Science vol.316: 1030–1033
- Creville n P, Dean C (2011) Regulation of the floral repressor gene FLC: the complexity of transcription in a chromatin context, Plant Biology vol.14:38–44

- Davière JM, Achard P (2013), Gibberellin signaling in plants, Development, vol.140: 1147-1151.
- Ebine K, Uemura T, Nakano A, Ueda T(2012), Flowering Time Modulation by a Vacuolar SNARE via FLOWERING LOCUS C in Arabidopsis thaliana, PLoS ONE, vol. 7. no. 7: e42239
- Hauvermale AL, Ariizumi T., Steber CM. (2012), Gibberellin Signaling: A
  Theme and Variations on DELLA Repression, Plant Physiology , vol. 160 no.
  1: 83-92
- Hsieh WP, Hsieh HL, Wu SH (2012) Arabidopsis bZIP16 Transcription
   Factor Integrates Light and Hormone Signaling Pathways to Regulate Early
   Seedling Development, The Plant Cell, vol.24 no.10: 3997-4011
- Immink R, Posé D, Ferrario S, Ott F, Aufmann K, Valentim FL, Folter S, Wal F, Dijk A, Schmid M, Angenent GC (2012) Characterization of SOC1's Central Role in Flowering by the Identification of Its Upstream and Downstream Regulators, Plant Physiology, Vol. 160, 433–449
- Jakobya M, Weisshaara B, Dröge-Laserb W, Vicente-Carbajosac J, Tiedemannd J, Kroje T, Parcy F (2002), bZIP transcription factors in Arabidopsis, Trends in Plant Science Vol 7, no. 3: 106–11
- 17. Jiang C, Gao X , Liao L, Harberd NP, Fu X (2007) Phosphate Starvation Root Architecture and Anthocyanin Accumulation Responses Are Modulated by the Gibberellin-DELLA Signaling Pathway in Arabidopsis1,Plant Physiology,Vol. 145, 1460–1470

- Kang HG, Kim J, Kim B, Jeong H, Choi SH, Kim EK, Lee HY, Lim PO (2011), Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana,Plant Science, vol.180, 4: 634-641
- Koornneef M, Hanhart C, van der Veen J (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66
- Ma L, Li J, Qua L, Hagerd J, Chen Z, Zhao H, Deng XW (2001) Light Control of Arabidopsis Development Entails Coordinated Regulation of Genome Expression and Cellular Pathways, The Plant Cell ,vol. 13 no. 12: 2589-2607
- Michaels SD, Amasino RM (1999) FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering, The Plant Cell vol. 11 no. 5 949-956
- 22. Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant Journal, vol 35: 613–623
- Mouradov A, Cremer F, Coupland G (2002), Control of Flowering Time
   Interacting Pathways as a Basis for Diversity, The Plant Cell vol. 14 no. suppl
   1 \$111-\$130
- Nilsson O, Lee I, Blázquez MA, Weigel D (1998) Flowering-time genes modulate the response to LEAFY activity, Genetics vol.150, 403–410

- 25. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science,vol. 288:1613–1616
- 26. Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun TP (2004), DELLA Proteins and Gibberellin-Regulated Seed Germination and Floral Development in Arabidopsis, Plant Physiology, vol. 135 no. 2:1008-1019
- 27. Zentella R, Zhanga ZL, Parka M, Thomasa SG, Endob AE, Murasea K, Fleeta CM, Jikumarub Y, Nambarab E, Kamiyab Y, Suna TP (2007), Global Analysis of DELLA Direct Targets in Early Gibberellin Signaling in Arabidopsis, The Plant Cell, vol. 19 no. 10: 3037-3057
- Wu JF, Wang Y, Wu SH (2008), Two New Clock proteins, LWD1 and LWD2, Regulate Arabidopsis Photoperiodic Flowering, Plant Physiology, vol.148: 948-959

# I. Introduction

#### A. Literature Review and Motivation

Transcription factors which exist in all eukaryotes are essential for the control of gene expression. These proteins bind to DNA regulatory sequences and control the transcription of genetic information from DNA to messenger RNA, promoting or blocking the recruitment of RNA polymerase to specific genes. They affect the transcription of specific genes, essentially determining whether a particular gene will be turned "on" or "off" in an organism. Plants are sessile, so they have to modulate the underlying developmental program accordingly to cope with the variation of environments. Therefore, transcriptomic adjustment plays a crucial role in plants.

Transcriptome profiling has revealed hundreds to thousands of genes with differential expression patterns in response to light in wild-type Arabidopsis and photomorphogenic mutants (Ma et al., 2001). In plants, basic region/leucine zipper motif (bZIP) transcription factors regulate processes including pathogen defense, light and stress signaling, seed maturation and flower development. The Arabidopsis genome sequence contains 75 distinct members of the bZIP family, of which ~50 are not described in the literature. bZIP16 is a basic region/leucine zipper motif (bZIP) transcription factor and is classified in group G (Jakoby et al.,2002). bZIP16 is primarily a transcriptional repressor of abscisic acid (ABA) responsive genes, could directly target ABA-responsive genes and RGA-LIKE2(RGL2), a DELLA gene in the gibberellin (GA) signaling pathway. bZIP16 has G-box-specific binding activity. It functions to promote seed germination and hypocotyl elongation during the early stages of Arabidopsis seedling development (Hsieh et al., 2012, Fig.A). The diverse roles of

42

bZIPs inspire us to explore whether bZIP16 regulates other developmental stages in Arabidopsis.



Fig.A Working model illustration molecular actions of bZIP16 in Arabidopsis early seedling development (Hsieh et al., 2012). bZIP16 positively regulates seeds germination and hypocotyl cell elongation by repressing *RGA-LIKE2* (*RGL2*), *PHYTOCHROME INTERACTING FACTOR 3-LIKE5* (*PIL5*) and ABA-responsive genes.

Gibberellins (GAs) are plant hormones that promote important processes of plant growth and development, such as seed germination, growth through elongation, and floral transition. Hence, mutant plants that are deficient in GA exhibit a dwarf and delayed flowering phenotype, and treating these plants with GA restores normal growth. GA also stimulates stem elongation and leaf expansion through cell expansion and cell division in response to light or dark (Hauvermale et al., 2012). DELLA proteins are conserved growth repressors that modulate all aspects of GA responses. (Zentella et al., 2007). The Arabidopsis genome encodes five DELLAs including GA-INSENSITIVE (GAI) REPRESSOR OF GA1-3 (RGA) RGA-LIKE1 (RGL1), RGL2 and RGL3 that play distinct but also overlapping functions in repressing GA responses. RGL2 inhibits seed germination. RGA, RGL1, and RGL2 are all involved in modulating floral development (Tyler et al., 2004).

There are at least four flowering pathways in Arabidopsis, namely photoperiod, autonomous, vernalization, and gibberellins dependent pathways (Mouradov et al., 2002). The photoperiod pathway refers to regulation of flowering in response to day length and quality of light perceived. The autonomous pathway refers to endogenous regulators that are independent of the photoperiod and gibberellin pathways. (Koornneef M, et al., 1991) The vernalization pathway refers to the acceleration of flowering on exposure to a long period of cold. FLOWERING LOCUS C (FLC) delays flowering by blocking the transcription of genes in the photoperiodic flowering pathway. Vernalization inhibits transcription of FLC. The FLOWERING LOCUS T (FT), LEAFY (LFY), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) genes act as central floral integrators (Blazquez et al., 1998; Nilsson et al., 1998; Samach et al., 2000). The gibberellin pathway refers to the requirement of gibberellic acids for normal flowering patterns. SOC1 integrates the GA-mediated flowering-time signal with these environmental cues (Moon et al., 2003). The FT protein and mRNA appear to be the flowering stimulus that moves from leaves into the shoot apical meristem region, where it evokes the transition from vegetative to reproductive meristem identify.(Corbesier et al.,2012)

44



Fig. B Flowering pathways

#### B. Hypothesis

A previous study has indicated that RGA and RGL2 both negatively regulate the floral transition (Tyler et al., 2004; Fig.B). In early seedling development, bZIP16 is the repressor of *RGL2/RGA*. We thus hypothesize that bZIP16 also represses *RGL2/RGA* to promote floral transition. Our goals are to test this hypothesis and to understand the regulatory mechanisms imposed by bZIP16 in Arabidopsis flowering pathways.

# **II.** Materials and Methods

- A. Research Flow
  - Investigating bZIP16 protein level in different growth and development stages of Arabidopsis by western blot analysis to understand whether bZIP16 accumulates higher level in flowers.
  - Counting the rosette leaf numbers at bolting for wild-type (Landsberg *erecta*),
     bZIP16 knock-out line (*bzip16* mutant) and bZIP16 overexpression line
     (*bZIP16ox*) to understand whether bZIP16 regulates flowering time
  - Performing transcriptomic comparison between wild-type plants and *bzip16* mutants by Affymetrix ATH1 GeneChip to reveal genes regulated by bZIP16
  - 4. Analyzing the expressions of different genes in flowering pathways by quantitative reverse transcription-PCR to elucidate the role of bZIP16 in the flowering pathways.
  - Using 18d-old Zeitgeber time 12 hr wild-type and bZIP16ox to perform chromatin immunoprecipitation quantitative PCR assay to test whether bZIP16 directly binds to the *FLC* promoter

#### B. Materials and Method

1. Investigating bZIP16 protein level in different growth development stages of *Arabidopsis*.

Experiment 1:

Planting Wild-type Arabidopsis, *bzip16* mutants and sampling different tissues seeds:

Landsberg erecta (Ler, wild type)

*bzip16-2* mutant, GT9934 (null allele)

Ler/35S- bZIP16-GFP#6-4 (overexpression line in a Ler background)

Materials:

70 % of ethanol, half-strength

Murashige and Skoog (MS) medium with 0.8% agar and ddH<sub>2</sub>0

Exp.1-1

Procedures:

- Take 100 seeds of Ler into a 1.5ml eppendorf. Add 1 ml of 70 % ethanol and rinse for 1 min.
- Use dd H<sub>2</sub>O to wash the seeds 3 to 5 times and plant them in soil. Put plants into 4°C cool room at dark for 3 days to synchronize the germination.
- 3) Transfer them to LD growth chamber (16 hours light/8 hours dark) at  $22^{\circ}$ C.
- 4) When plants flower, collect roots, stems, leaves and flowers as samples. And put them into liquid nitrogen and store them at-80 °C. (In darkness collect all the samples at the fourth hour after truning off light.)

#### Exp.1-2

#### Procedures:

- Take 150 seeds of Ler and bzip16-2 mutant into a 1.5ml eppendorf, respectively. Add 0.5 ml of 70 % ethanol for 1 min.
- 2) Add 0.5 ml of 25% bleach for 5 min.
- Use ddH20 to clean the seeds several times and plant them on half-strength MS plates with 0.8% agar for 3 days at 4°C dark chamber.
- Transfer plates to growth chambers under LD, constant white light and constant dark at 22°C.
- 5) Take samples as below:

*bzip16* mutants (LD) : flowers (for controlling)

Ler. (LD): buds, flowers and siliques

Ler: Dry seeds

Seeds at 4°C for 3 days under dark condition

- Seeds at 4°C for 3 days and at 22°C under dark condition for one day Seeds at 4°C for 3 days and at 22°C under light condition for one day
- Ler: Seedlings (at 4°C for 3 days and at 22°C under dark condition for 4 days)

Seedlings (at 4°C for 3 days and at 22°C under light condition for 4 days)

6) Harvest and put the samples into liquid nitrogen and store them at-80 °C.

## Experiment 2: Un-stable Protein Extraction

Materials:

Extraction buffer:

| Working conc.               | <u>Stock</u> | For 1ml |
|-----------------------------|--------------|---------|
| 100mM Tris-HCL, pH7.8       | 1M pH8.0     | 0.1ml   |
| 4M Urea                     | MW60.6       | 0.24g   |
| 5% SDS                      | 10%          | 0.5ml   |
| 15% glycerol                | 100%         | 0.15ml  |
| Protease Inhibitors         |              |         |
| Working conc.               | Stock        | For 1ml |
| 2ng/ml aprotinin            | 1mg/ml       | 2µl     |
| 3ng/ml leupetin             | 1.5mg/ml     | 2µl     |
| 1ng/ml pepstain             | 1mg/ml       | 1µl     |
| 2mM PMSF                    | 100mM        | 20µl    |
| Protease inhibitor cocktail | 50x          | 20µl    |
| Procedures:                 |              |         |

- Prepare the protein extraction buffer and heat at 100°C for 3 min and add protease inhibitors.
- 2) Add 50µl of extraction buffer to the samples and mix well by vortex.
- 3) Denature all samples at 100°C for 5 min.
- 4) Centrifuge at 1,3000 rpm for 5 min.
- 5) Transfer the supernatant to a new eppendorf.
- 6) Measurement of protein concentration by protein assay DC (Bio-Rad)

(The processes were handled as soon as possible.)

Experiment 3: Western Blot Analysis

- A. Total Protein preparation
  - 1) Protein was extracted from samples
  - 2) Quantified by BCA method (Bio-Rad protein assay kit)
  - 3) Add 5µl of sample dye and 2µl of  $\beta$ -ME into 100µl sample.
  - 4) Heat at 95°C for 90sec, then spin 12,000 rpm for 5min.
- B. Electrophoresis
  - 1) Prepare 10%-12% SDS-PAGE,
  - 2) Load 5-10µg total protein to each lane,
  - 3) Run 70V for 30min for stacking and 100V for 1.5hr for separating,
- C. Blot transfer
  - 1) Activate PVDF membrane by 100% methanol,
  - Buildup the gel sandwich ( by Bio-Rad, Mini trans-blot electrophoretic transfer cell),
  - 3) Run 100V for1hr with Western transferring buffer,
- D. Blocking and detection
  - 1) Activated membrane by 100% methanol and rinse with H2O.
  - 2) Prepare blocking reagent (5% milk, 0.1% Tween 20, 1X PBS),
  - Preblock membrane with 10ml of blocking reagent for 1 hr shaking at room temperature (60rpm),
  - Block with primary antibody (bZIP16 antibody, 1:1000) within 10ml of blocking reagent for 1hr with shaking at RT (60rpm).
  - 5) Wash membrane by shaking with washing buffer (0.05% Tween 20 in 1X PBS) 5min for 5 times.

- Block with 10ml of anti-secondary antibody (anti-rabbit HRP, 1:5000)
   blocking reagent 1 hr shaking at room temperature.
- 7) Wash membrane by shaking with washing buffer (0.05% Tween 20 in
- 8) 1X PBS) 5min for 5 times.
- 9) Add substrate to the membrane and seal the membrane to plastic bag.
- 10) Detect signals by exposing to a X-ray film.
- Use the coomassie blue to stain the membrane and detect the protein loading on each sample.

#### 2. Observing phenotypes of *bzip16* mutants

Materials: Ler and *bzip16* mutants and *bZIP16ox* 

#### Procedures:

- Take 240 seeds of Ler, *bzip16-2* mutant and *bZIP16ox* into a 1.5ml
   eppendorf, respectively. Wash them by 1ml of 70 % ethanol for 1 min.
- Use dd H2O to wash the seeds 3 to 5 times and plant them in soil. Put plants into 4 °C cool room at dark for 3 days to synchronize the germination.
- Transfer 12 seedlings for each line to LD (16 hours light/ 8 hours dark) and SD growth chamber (8 hours light/16 hours dark) at 22°C.
- 4) Observe their phenotypes and count the rosette leaf number at bolting.

#### 3. Transcriptomic comparison between wild-type plants and bzip16 mutants

Experiment 1: Planting Ler and bzip16 mutants and sampling

#### Procedures:

1) Take seeds of Ler and *bzip16* mutants.

- Plant 360 seeds per line to soil at 4°C cool room at dark for 3 days to synchronize the germination.
- Transfer to SD growth chamber (8 hours light/16 hours dark) at 22 °C for 18 days and then collect samples at ZT 12hr.

Experiment 2: RNA extraction for Affymetrix ATH1 genome array

Material: Invitrogen kit for plant RNA extraction

- Pulverize tissue in eppendorf with a blue pestle pre-cooled in liquid nitrogen.
- Add in the Invitrogen Plant total RNA purification kit (500 µL powder) into the ground tissue and immediately mix by vortexing until well mixed.
- 3) Centrifugate 13,000 rpm for 5 min at  $4^{\circ}$ C.
- 4) Save supernatant and add 200 µL 5M NaCl, mix well.
- 5) Add 600 µL Chloroform:isoamyl alcohol (24:1), mix well.
- 6) Centrifugate 13,000 rpm for 10 min at  $4^{\circ}$ C.
- Save supernatant, add 900 µL isopropanol, mix well. Wait for 10 min until it precipitates.
- 8) Centrifugate 13,000 rpm for 10 min at  $4^{\circ}$ C.
- 9) Wash pellet with 70% EtOH (Vortex the pellet until it floats).
- 10) Centrifugate 13,000 rpm for 10 min at  $4^{\circ}$ C.
- 11) Briefly dry the pellet until it turns transparent, and suspend it in 40  $\mu$ L DEPC-dH2O.
- Measure RNA concentration (OD260/280) using the Nanodrop spectrophotometer.

#### 4. Analyzing the expression of different genes in flowering pathways

Experiment 1: Planting Ler and bzip16 mutant and sampling

Procedures:

- 1) Take seeds of Ler, *bzip16* mutant and *bZIP16ox*.
- Plant 270 seeds per line to soil at 4°C cool room at dark for 3 days to synchronize the germination.
- Transfer them to SD growth chamber (8 hours light/16 hours dark) at 22 °C for 18 days.
- 4) Collect 8-10 plants each line at ZT 3 hr, 6 hr, 9 hr, 12 hr and 15 hr after light on, respectively. Quickly and carefully put samples into labeled 2mL eppendorf without physical damage. Immediately dip the tube into liquid nitrogen and then store at -80°C.

**Experiment 2: RNA Isolation** 

Materials:

- Pine tree extraction buffer (2% CTAB, 2% PVP, 0.5g/l Spermidine, 2M NaCl, 25mM EDTA pH8.0, 100mM Tris-HCl pH8.0, 2% β-mercaptoethanol)
- 2. 10M LiCl
- 3. Chloroform:isoamylalcohol (24:1)
- 4. 10mM Tris-HCl, pH8.0
- DEPC-dH<sub>2</sub>O (Diethylpyrocarbonate-H<sub>2</sub>O) (Add 0.1% DEPC into H<sub>2</sub>O and mix thoroughly. Incubate at 37 °C for overnight and autoclave.)

Procedures:

- 1) Pre-cool centrifugation and set 65°C water bath.
- Calculate pine tree extraction buffer require (5ml/g tissue). Add β-ME into pine tree extraction buffer and heat in 65°C water bath for 20 min.
- Pulverize tissue in Eppendorf with a blue pestle pre-cooled in liquid nitrogen.
- Add extraction buffer in the ground tissue and immediately mix by vortexing until well mixed.
- 5) Heat sample in  $65^{\circ}$ C water bath for 5min.
- Add equal 700µlof chloroform: isoamyl alcohol, mix by vortexing for 20 sec.
- 7) Centrifugate at 4°C, 12,000 rpm, until the phases are well-separated.
- Transfer aqueous layer into a new tube and repeat chloroform extraction for 1-2 times, until the interface is clear.
- Add 1/4 volume (175μl) of 10M LiCl and mix by pipetting. Precipitate RNA at 4°C overnight.
- Harvest RNA by centrifugation at 4°C, 12,000 rpm for 30min and immediately remove supernatant and invert on kimwipe to drain.
- 11) Add 700µlof cold 75% EtOH to wash away excess salt.
- 12) Centrifugation at 4°C, 12,000 rpm for 30min.
- 13) Immediately remove supernatant and invert on kimwipe to drain.
- Resuspend pellet with 10-50µl of DEPC-H<sub>2</sub>0, and then transfer into a new eppendorf.
- 15) Measure RNA concentration by OD260/280, using DEPC-H<sub>2</sub>0 for blank.
- 16) Store RNA at -80  $^{\circ}$ C

Experiment 3: Reverse transcription

Material: 2µg RNA template in DEPC-H<sub>2</sub>O,

Filter tips, RT mix (0.9μl of RNase-free H<sub>2</sub>O, 1.6μl of 5x Superscript
Buffer, 2μl of 0.1 M DTT, 1 μl of 10 mM dNTP, 1μl of RNasin (40U/ml,
final 2U, Promega), 0.5μl SuperScript II (Invitrogen)

Procedures:

- 1) Dilute RNA template to  $250 \text{ ng/}\mu\text{l}$  by using DEPC-HO.
- Add 2µg of RNA template (8µl) with 0.6µl of DEPC-H2O, 2.4µl of5X
   Superscript buffer (15mM MgCl2) and 1.0µl of RQ1 RNase-free DNase
   (1U/µl, Promega).
- Incabate 30min at 37°C to remove contaminating genomic DNA, then return to ice for 1 min.
- Add 1µl of oligo-dT(23)V(0. 5µg/µl), incabate at 65°C for 10min, then return to ice for 1 min.
- 5) Add 7µl of RT mix to 13µl of DNase-treated RNA.
- Mix well, and incubate 1 hr at 42°C, 15min at 72°C and 4°C, then store at -20°C.

**Experiment 4: Primers test** 

According to previous literatures, find out the primers of CO, GI, FT, FLC, SOC1,

*RGA*, *RGL2* and *bZIP16*.

The list of primers as below:

| qRT-PCR primer   | Sequence $(5' \rightarrow 3')$ | Reference     |
|------------------|--------------------------------|---------------|
| UBQ10-ABI-1      | AGAAGTTCAATGTTTCGTTTCATGTAA    | Hsieh et al., |
| ABI-Ler-UBQ-2    | GAATGGAAACATAGTTGGAACAATTATTCA | 2012          |
| AtbZIP16-F       | GCATGGACAATGACCACCAA           | Hsieh et al., |
| AtbZIP16-R       | TCTCTCTGCGGCACCTGTTT           | 2012          |
| CO-750-ABI-S     | CATTAACCATAACGCATACATTTCATC    | Wu et al,     |
| CO-800-ABI-AS    | TCCGGCACAACACCAGTTT            | 2008          |
| FT-254-ABI-S     | ATCTCCATTGGTTGGTGACTGATA       | Wu et al,     |
| FT-306-ABI-AS    | GCCAAAGGTTGTTCCAGTTGTAG        | 2008          |
| FLC-396-ABI-S    | AGCCAA GAAGACCGAACTCA          | Baurle and    |
| FLC-550-ABI-AS   | TTTGTCCAGCAGGTG ACA TC         | Dean, 2008    |
| SOC1-305-ABI-S   | AACAACTCGAAGCTTCTAAACGTAA      | Ebine et al,  |
| SOC1-367-ABI-AS  | CCTCGATTGAGCATGTTCCT           | 2012          |
| RGA-687-ABI-S    | AGAAGCAATCCAGCAGA              | Tyler et al,  |
| RGA-972-ABI-AS   | GTGTACTCTCTTCTTACCTTC          | 2004          |
| RGL2-977-ABI-S   | CGGAGAATTCAGATTCGCTTCAAC       | Kang et al,   |
| RGL2-1090-ABI-AS | CAAGATCCGATAAACTCTCAGCGG       | 2011          |
| GI-3513-ABI-S    | ACTAGCAGTGGTCGACGGTTTATC       | Wu et al,     |
| GI-3563-ABI-AS   | GCTGGTAGACGACACTTCAATAGATT     | 2008          |

Materials: Filter tips, MQ, 0.05ng/µl cDNA, 5µM of real-time primer,

SYBR Green Master Mix (Applied Biosystem) at 4°C, Applied

Biosystem QuantStudio<sup>TM</sup> 12K Flex Real-Time PCR System

(http://www.appliedbiosystems.com).

Procedures:

1) Using Filter tips to dissolve real-time primer with MQ to  $100\mu$ M for stock.

- 2) Dilute the primer with MQ to final  $5\mu$ M.
- 3) Primer test:
  - a) Primer concentration: final 100~300nM
  - b) Total 27 reactions (25µl per reaction).
  - c) 5µl of cDNA (0.05ng/µl)+7.5µl primer mixture + 12.5µl SYBR Green
     Master Mix and 5µl of MQ+7.5µl primer mixture + 12.5µl SYBR
     Green Master Mix for No Template Control (NTC)

| MQ            | 6.5 | 5.5 | 4   |
|---------------|-----|-----|-----|
| Primer-ABI-S  | 0.5 | 1.5 | 3   |
| Primer-ABI-AS | 0.5 | 0.5 | 0.5 |
| MQ            | 5.5 | 4.5 | 3   |
| Primer-ABI-S  | 0.5 | 1.5 | 3   |
| Primer-ABI-AS | 1.5 | 1.5 | 1.5 |
| MQ            | 4   | 3   | 1.5 |
| Primer-ABI-S  | 0.5 | 1.5 | 3   |
| Primer-ABI-AS | 3   | 3   | 3   |

d) The reactions of primer test is as below:

(9\*3 repeats=27)

#### Experiment 5: Real-Time PCR

- Take 5µl cDNA (0.05ng/µl) of the different samples which were collected at ZT 3, 6, 9, 12, 15hr after light on each line and add 20µl of primer mixture (7.5µl individual primer mixture and 12.5 µl SYBR Green Master Mix), respectively.
- 2) NTC:  $5\mu$ l of MQ +  $20\mu$ l primer mixture.
- qRT-PCR programs: 50°C for 2 min; 95°C for 10 min; 40 cycles of 95°C for15 sec and 60°C for 1 min.

Primer mixtures of UBQ10, CO, GI, FT, FLC, SOC1, RGA, RGL2 and bZIP16 as

below :

Primer mixtures of *GI*, and *UBQ10*:

|                   | One reaction | 70 reactions |
|-------------------|--------------|--------------|
| MQ                | 1.5µl        | 105µl        |
| Primer-ABI-S      | 3µl          | 210µl        |
| Primer-ABI-AS     | 3µl          | 210µl        |
| SYBR Green        | 12.5µl       | 875µl        |
| cDNA ( 0.05ng/µl) | 51           |              |
| final 0.25 ng/µl  | Sμi          |              |
| Total             | 25µl         |              |

Primer mixtures of *bZIP16*, *RGA* and *SOC1*:

|                                       | One reaction | 70 reactions |
|---------------------------------------|--------------|--------------|
| MQ                                    | 4.5µl        | 315µl        |
| Primer-ABI-S                          | 1.5µl        | 105µl        |
| Primer-ABI-AS                         | 1.5µl        | 105µl        |
| SYBR Green                            | 12.5µl       | 875µl        |
| cDNA ( 0.05ng/µl)<br>final 0.25 ng/µl | 5µl          |              |
| Total                                 | 25µl         |              |

Primer mixtures of *FLC* and *RGL2*:

|                   | One reaction | 70 reactions |
|-------------------|--------------|--------------|
| MQ                | 6.5µl        | 455µl        |
| Primer-ABI-S      | 0.5µl        | 35µl         |
| Primer-ABI-AS     | 0.5µl        | 35µl         |
| SYBR Green        | 12.5µl       | 875µl        |
| cDNA ( 0.05ng/µl) | 51           |              |
| final 0.25 ng/µl  | Jμi          |              |
| Total             | 25µl         |              |

Primer mixtures of CO:

|                   | One reaction | 70 reactions |
|-------------------|--------------|--------------|
| MQ                | 1µl          | 70µl         |
| Primer-ABI-S      | 4.5µl        | 315µl        |
| Primer-ABI-AS     | 1.5µl        | 105µl        |
| SYBR Green        | 12.5µl       | 875µl        |
| cDNA ( 0.05ng/µl) | 51           |              |
| final 0.25 ng/µl  | Sμi          |              |
| Total             | 25µl         |              |

Primer mixtures of *FT*:

|                                       | One reaction | 70 reactions |
|---------------------------------------|--------------|--------------|
| MQ                                    | 3µl          | 210µl        |
| Primer-ABI-S                          | 3µl          | 210µl        |
| Primer-ABI-AS                         | 1.5µl        | 105µl        |
| SYBR Green                            | 12.5µl       | 875µl        |
| cDNA ( 0.05ng/µl)<br>final 0.25 ng/µl | 5µl          |              |
| Total                                 | 25µl         |              |

# 5. Performing chromatin immunoprecipitation quantitative PCR assay

Experiment 1: Planting Ler and bZIP16 overexpression line and sampling

Procedures:

- 1) Take seeds of Ler and *bZIP16ox* (*Ler/35S-bZIP16-GFP*)
- Plant 360 seeds per line to soil at 4°C cool room at dark for 3 days to synchronize the germination.
- Transfer to SD growth chamber (8 hours light/16 hours dark) at 22 °C for 18 days and then collect samples at ZT 12hr

**Experiment 2. Fixation** 

| Fresh | prepare | Cross- | linking | buffer |
|-------|---------|--------|---------|--------|
|-------|---------|--------|---------|--------|

|               | Stock                  | Volume of 150 ml | Final  |
|---------------|------------------------|------------------|--------|
| Cross-linking | 2M Sucrose (5x)        | 30 ml            | 0.4 M  |
|               | 1M Tris-HCL pH8.0      | 1.5 ml           | 10 mM  |
|               | (100x)                 | 4.05 ml          | 1%     |
|               | 37% Formaldehyde (37x) | 114.45 ml        |        |
|               | MQ                     |                  |        |
| Stop solution | 2M Glycine             |                  | 125 mM |

- 1) Collect 0.2g tissue would use for ChIP.
- 2) Rinse the tissue with 50 ml water to remove soil
- Add 37 ml cross-linking buffer and place tissue under vacuum for 20 min (5min x 4).
- Add 2.4 ml 2M (final 0.125M) glycine and place tissue under vacuum for 5 min.
- 5) Rinse tissue two times with 50 ml water to remove formaldehyde. Remove as much water as possible after second wash by kitchen paper.
- 6) In this step, plant materials can be shock-frozen in liquid nitrogen. Grind tissue to a fine power and store in -80 °C

Experiment 3. Extraction and sonication (all steps are on ice)

| Buffer    | Reagent                    | Final  | Stock  | х      | 50 ml    |
|-----------|----------------------------|--------|--------|--------|----------|
| Nuclei    | PIPES (pH 6.8)             | 15 mM  | 150mM  | 10 x   | 5 ml     |
| Isolation | MgCl2                      | 5 mM   | 1 M    | 200 x  | 250µl    |
| buffer    | KCL                        | 60 mM  | 200 mM | 3.3 x  | 15ml     |
|           | Sucrose                    | 0.25 M | 2 M    | 8 x    | 6.24ml   |
|           | NaCl2                      | 15 mM  | 3 M    | 200 x  | 250µl    |
|           | CaC2                       | 1 mM   | 1 M    | 1000 x | 50µl     |
|           | TritonX-100                | 0.9%   | 20%    | 22.2 x | 2.27ml   |
|           | PMSF                       | 0.1mM  | 100mM  | 1000 x | 50µl     |
|           | Protease inhibiter (Roche) | 1 X    | 50x    | 50x    | 1 bullet |
|           | MQ                         |        |        |        | 23.9ml   |
| Nuclei    | HEPES pH7.5                | 50mM   | 1 M    | 20x    | 300µl    |
| lysis     | Sodium                     | 0.1%   | 10%    | 100 x  | 60µl     |
| buffer    | deoxycholate(DOC)          | 0.5%   | 10%    | 20 x   | 300µl    |
|           | SDS                        | 150 mM | 3 M    | 200 x  | 30µl     |
|           | NaCl                       | 1%     | 20%    | 20 x   | 300µl    |
|           | TritonX-100                | 0.1mM  | 100 mM | 1000 x | бµl      |
|           | PMSF                       | 1x     | 50 x   | 50 x   | 120µl    |
|           | Roche PI                   |        |        |        | to 6ml   |
|           | MQ                         |        |        |        |          |

Prepare Nuclei isolation buffer, Nuclei lysis buffer, Miracloth, ice, Centrifuge 4°C

1) Add 500  $\mu$ l of cold nuclei lysis buffer into samples.

- 2) Divid the samples into two aliquots of 330 µl each in tubes. Filter the solution through two layers of Miracloth into fresh 50 ml falcon tube on ice.
   Set aside 10µl from each sample for the control of sonicated chromatin.
- 3) Shear the DNA into 500~1000 bp fragments by Bioruptor (power high, 15s ON, 15s OFF). Add ice very 5 min, total sonication time is 30 min
- Check the fragment by electrophoresis 10µl sample + 10µl MQ for loading
- 5) Centrifuge samples for 10 min at 13000 rpm at  $4^{\circ}$ C to pellet debris.
- 6) Collect samples by combining the supernatants. (sonicated chromatin)

Experiment 4. Immunoprecipitation

Prepare pre-equilibrated salmon sperm DNA/protein A agarose beads

- a) 200µl protein A sepharose 50% slurry (GE71-5017-54 AD) in the spin column, centrifuge at 750g for several seconds.
- b) Wash with protein A sepharose with 200µl lysis buffer for 3 times and centrifuge at 750g to discard supernatant.
- c) Add 100µl lysis buffer and mix with 0.2mg sonicated salmon sperm DNA and 0.2 mg BSA.
- d) Pre-incubate mixture at 4°C with rotation for 4 hrs, and store at 4°C before using.

#### Procedures

- Wash prepared salmon serm/protein A-sepharose beads with 800µl lysis buffer lysis buffer for 3 times and centrifuge at 750g to discard supernatant. Resuspend resin with lysis buffer ( =bed volume)
- Add 60 μl washed salmon sperm/protein A-sephaarose bead to 300μl sonicated chromatin for 1 h at 4°C with gentle rotation.
  - Take 30µl (1/10 volume) of supernatants as DNA input control
  - Take 20µl as protein input control.
- Add 1µl anti-GFP antibody (Ab290, rabbit polyclone) and incubated 3hr at 4°C with gentle rotation.
- 4) Centrifuge samples at 750g for 2 min at  $4^{\circ}$ C.

- Collect flow through 20 $\mu$ l for SDS-PAGE and western to check the binding efficiency

5) Wash

|        | Reagent     | Final  | Stock  | Х     | V of   | Wash     |
|--------|-------------|--------|--------|-------|--------|----------|
|        |             |        |        |       | 10ml   | volume   |
| Nuceli | Same as     |        |        |       |        | 800µl x3 |
| lysis  | the buffer  |        |        |       |        | times    |
| buffer | for         |        |        |       |        |          |
|        | experiment3 |        |        |       |        |          |
| LNDET  | LiCl        | 0.25 M | 10 M   | 40 x  | 250µl  | 800µl x3 |
|        | NP40        | 1%     | 100%   | 100 x | 100µl  | times    |
|        | DOC         | 1%     | 10%    | 10 x  | 1 ml   |          |
|        | EDTA        | 1 mM   | 0.5M   | 500 x | 20µl   |          |
|        | MQ          |        |        |       | 9630µl |          |
| TE     | Tris pH8.0  | 10 mM  | 1 M    | 100 x | 100µl  | 800µl x3 |
|        | EDTA        | 0.1M   | 500 mM | 500 x | 20µl   | times    |
|        | MQ          |        |        |       | 9880µl |          |

- Take samples of every two washes for western blot to check the quality of samples.
- 7) Elute the immuno-complex by adding 60µl of freshly prepared elution

buffer by incubating at room temperature for 5 min.

|         | Reagent | Final | Stock | х    | V of 1 | Wash     |
|---------|---------|-------|-------|------|--------|----------|
|         |         |       |       |      | ml     | volume   |
| Elution | SDS     | 1%    | 10%   | 10 x | 100µl  | 60µl x 2 |
| buffer  | NaHCO3  | 0.1 M | 0.5 M | 5 x  | 200µl  | times    |
|         | MQ      |       |       |      | 700µl  |          |

- Centrifuge samples at 750g for 2 min at room temperature and transfer the supernatant into a new tube. Repeat the elution step 9 again.
- 9) Combine two elutions

- Take 1/10 volume of elution for western to check IP

- Add 1% SDS and 0.1M NaHCO<sub>3</sub> into 80µl DNA input control to adjust the same concentration with elutions.
- 11) Add 1.5µl proteinase K (Invitrogen, 20 mg/ml) into 120µl elutions and input solution(final concentration 0.25 mg/ml), incubate overnight at  $65^{\circ}$ C).

- 12) Extract the DNA by using the PCR purification kit (QIAGEN). Elute in 120 and 60µl MQ.
- 13) Measure the DNA content by Nanodrop.

Primers of ChIP:

| qRT-PCR primers | Sequence $(5' \rightarrow 3')$ |  |  |
|-----------------|--------------------------------|--|--|
| pFLC-ABI-a-Fw   | AAGTAGCAAAGACGCTCGTCA          |  |  |
| pFLC-ABI-a-Rv   | GGTAAACGAGAGTGATGCAAA          |  |  |
| FLC-ABI-b-Fw    | TGTCATTTTCAATCTGCCGA           |  |  |
| FLC-ABI-b-Rv    | CCAATGAATTATGTGGGGCTAAC        |  |  |
| UBC21-ABI-c-Fw  | TCCTCTTAACTGCGACTCAGG          |  |  |
| UBC21-ABI-c-Rv  | GCGAGGCGTGTATACATTTG           |  |  |

# **III. Results**

#### 1. bZIP16 protein accumulates at higher expression levels in buds and flowers.

To examine bZIP16 protein level in different growth developmental stages of Arabidopsis, we first performed the western blot to measure the bZIP16 protein expression in different tissues. We found that bZIP16 protein expressed in roots, stems, seedlings, buds, flowers and siliques. But bZIP16 protein was not detected in dry seed and 1-day-old seedlings at 22°C under light conditions. And the results showed higher protein levels in buds and flowers (Fig. 1-1~1-3). In addition, bZIP16 protein was detected more in 4-day-old seedling under dark conditions than in 4-day-old seedling under light conditions. The high levels of bZIP16 protein in flower buds and flowers (Fig. 1-1~1-3) suggest that bZIP16 may be important for floral development.



(repeat 1) (repeat 2)

**Fig. 1-1** bZIP16 protein higher accumulation in roots and flowers. Amount of bZIP16 protein loaded was as marked. The molecular weight of bZIP16 protein is about 51-55 KDa



Fig.1-2 bZIP16 protein higher accumulation in buds, flowers, and 4- day-old seedling under dark condition.

The tissues and developmental stages tested were, from left to right in the graph, buds of *bzip16* mutant, buds, flowers, siliques, dry seeds, 4°C -treated-3d seeds, 4 °C -treated-3d and constant light-treated-1d, 4 °C -treated-3d and constant dark-treated-1d, 4 °C -treated-3d and constant light-treated-4d, and constant dark-treated-4d of wild-type.  $\alpha$ -tubulin was also detected in these samples to show equal loading of protein from each sample (exposure for 3 min). The asterisk indicated the non-specific bands. The coomassie blue stained gel was included as loading controls.



Fig. 1-3 bZIP16 protein higher accumulation in siliques, flowers, buds and 4day-old seedling under dark condition.

The tissues and developmental stages tested were, from left to right in the graph, siliques, 4°C-treated-3d and constant light-treated-4d seedlings, 4°C-treated-3d and constant dark-treated-4d seedlings, flowers, buds and flowers of the *bzip16* mutants



Fig. 1-4 The seeds of Ler, *bzip16* and *bZIP160x* are correct.

Twelve-day-old wild-type, *bzip16-2* and *bZIP16ox* line grown under short-day conditions (8-h light/16-h dark) were harvested.

# 2. *bzip16-2* mutants showed late-flowering phenotypes under long-day and short-day conditions.

To investigate the other roles of the *bZIP16* in Arabidopsis, in this study, Ler, bZIP16 knock-out line (*bzip16-2*), and *AtbZIP16-GFP* which was driven the 35S promoter of *bZIP16* overexpression line (*bZIP16ox*), were planted to observe the phenotypes. The results revealed that under SD conditions, the plant size of *bzip16-2* mutants was shorter than wild-type plants.(Fig.2-3)

To further evaluate the contribution of bZIP16 in flowering pathways, we calculated the rosette leaf number at bolting. The number of rosette leaves will not increase after bolting; thus it can represent the physiological age at flowering. Under long-day (LD) conditions, in the first experiment, the *bzip16* mutants and wild-type plants began flowering with an average of 5 and 4 total rosette leaves, respectively (Fig.2-2A). In the second experiment, the *bzip16* mutants and wild-type plants began flowering with an average of 5.5 and 4.5 total rosette leaves, respectively. *bZIP16* overexpression lines had 4.16 leaves at bolting, indicating that *bZIP16* promoted flowering (Fig.2-2B ). Under short-day (SD) conditions, in the first experiment, the bzip16 mutants forming 27.91 leaves compared to 23.17 leaves for wild-type (Fig. 2-4A). In the second experiment, the *bzip16* mutants also flowered late comparing with wild-type plants. *bzip16* mutants forming 31.36 leaves compared to 23.55 leaves for wild-type (Fig. 2-4B). These results demonstrated that bzip16 mutants showed late-flowering under both LD and SD conditions.


Ler bzip16-2 bZIP16ox

#### Fig. 2-1 *bzip16-2* mutants showed more rosette leaves

Seeds for each line were surface-sterilized, imbibed for 1 hour at 22 °C and then planted in soil at 4 °C for 3 days. Afterwards, plants were transferred and grown at 22 °C under long-day (16-h light/8-h dark) conditions at cool white fluorescent lights (70 to 100  $\mu$ mol m<sup>-2</sup>sec<sup>-1</sup>)



Fig.2-2 bzip16-2 mutant plants showed late-flowering under long-day conditions

Flowering time indicated by numbers of rosette leaves at bolting for wild-type, *bzip16-2* and *bZIP16* overexpression line under LD (16- h light/8- h dark) conditions. Error bars indicate  $\pm$  SD. Asterisks indicate that *bzip16-2* mutant plants flowered significantly later than wild-type plants (Student's t test; \*:P<0.05, \*\*:P<0.001, n  $\geq$  10)..





Fig. 2-3 bzip16-2 mutants showed more leaf numbers.

Plants were grown under SD (8-h light/16-h dark) conditions at cool white fluorescent lights  $80 \sim 110 \mu mol m^{-2} sec^{-1}$ ).



Fig.2-4 bzip16-2 mutant plants showed late-flowering under short-day conditions

Flowering time indicated by numbers of rosette leaves at bolting for wild-type, *bzip16-2* and *bZIP16* overexpression line under SD (8- h light/16- h dark) conditions. Error bars indicate  $\pm$  SD. Asterisks indicate that *bzip16-2* mutant plants flowered significantly later than wild-type plants (Student's t test; \*:P<0.05, \*\*:P<0.001, n  $\geq$  10).

#### 3. bZIP16 Repressed Significantly the Expression of FLC.

To clarify how the floral transition is regulated by bZIP16, we performed a transcriptomic comparison of 18-d-old wild-type plants and *bzip16* mutants grown under SD conditions using Affymetrix ATH1 GeneChip. 43 flowering-related genes

were retrieved for hierarchical clustering analysis. There are four representative expression clusters. Cluster I is the autonomous pathway genes MULTICOPY SUPPRESSOR OF IRA1 4 (FVE), FLOWERING LOCUS D (FLD), FLOWERING LOCUS KH DOMAIN (FLK), LUMINIDEPENDENS (LD), FCA, FY and the floral integrators SOC1, FLC. Cluster II is the GA pathway genes REPRESSOR OF GA (RGA), GIBBERELLIC ACID INSENSITIVE (GAI), SUPPRESSOR OF PHYA-105 (SPY), RGA-LIKE 1 (RGL1), RGA-LIKE2 (RGL2) and RGA-LIKE3 (RGL3). Cluster III is the photoperiodic pathway genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY), EARLY FLOWERING4 (ELF4), LOV KELCH PROTEIN2 (LKP2), EARLY FLOWERING3 (ELF3), GIGANTEA (GI), FLAVIN-BIDING, KELCH REPEAT, F-BOX1 (FKF1), PSEUDO-RESPONSE REGULATOR3 (PRR3), PRR5, PRR7, PRR9, ZEITLUPE (ZTL), TIMING OF CAB EXPRESSION1 (TOC1), CYCLING DOF FACTOR1 (CDF1), CONSTANS (CO), ARRHYTHMO/PHYTOCLOCK1 (LUX), LIGHT-REGULATED WD1 (LWD1), LIGHT-REGULATED WD2 (LWD2), (CCA1 HIKING EXPEDITION, TCP DOMAIN PROTEIN 21) CHE and the floral integrators FLOWERING LOCUS T (FT). Cluster IV is the vernalization pathway genes VIRE2-INTERACTING PROTEIN 1 (VIP1), VIRE2 INTERACTING PROTEIN 2 (VIP2), VERNALIZATION INDEPENDENCE 3 (VIP3), VERNALIZATION INDEPENDENCE 4 (VIP4), VERNALIZATION INDEPENDENCE 5 (VIP5), PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1 (PIE1), FRIGIDA (FRI), REDUCED VERNALIZATION RESPONSE 1 (VRN1), and REDUCED VERNALIZATION RESPONSE 2 (VRN2) (Fig.3).

Transcriptome analysis revealed the impact of the mutation in *bZIP16* was significant on the expression of *FLC*. The expression of *FLC* transcripts was reduced in wide-type plants. In contrast, the expression of those genes involved in photoperiodic

pathway, GA pathway, vernalization pathway and autonomous pathways almost were unaffected in the *bzip16* mutant (Fig.3).

We have also checked the expression of the 24,000 genes represented on the ATH1 GeneChip. By applying a 2-fold expression changes between wild-type plants and the *bzip16* mutants, we found that 11 genes were up-regulated and 19 genes were down-regulated by bZIP16. Among them, only *FLC* is previously reported to be a flowering gene, while most of the other genes encoding unknown proteins. (Table1, 2). Possible functions of these bZIP16-regulated genes remain to be clarified.

These results imply that *bZIP16* represses the expression of *FLC* and it does not affect the expression of genes in photoperiodic pathway, GA pathway, vernalization pathway and autonomous pathways, suggesting *bZIP16* may be a new component of flowering control in Arabidopsis.

| Flowering<br>Pathway | Systematic  | Locus<br>Number | Gene  | Ler<br>Repeat 1 | Ler<br>Repeat 2 | <i>bzip16</i><br>Repeat 1 | <i>bzip16</i><br>Repeat 2 |
|----------------------|-------------|-----------------|-------|-----------------|-----------------|---------------------------|---------------------------|
|                      | 267509_at   | AT2G45660       | SOC1  |                 |                 |                           |                           |
|                      | 265946_s_at | AT2G19520       | FVE   |                 |                 |                           |                           |
|                      | 258944_at   | AT3G10390       | FLD   |                 |                 |                           |                           |
| Autonomous           | 258790_at   | AT3G04610       | FLK   |                 |                 |                           |                           |
|                      | 255444_at   | AT4G02560       | LD    |                 |                 |                           |                           |
|                      | 250476_at   | AT5G10140       | FLC   |                 |                 |                           |                           |
|                      | 245848_at   | AT5G13480       | FY    |                 |                 |                           |                           |
|                      | 245489_at   | AT4G16280       | FCA   |                 |                 |                           |                           |
|                      | 266331 at   | AT2G01570       | RGA   |                 |                 |                           |                           |
|                      | 262850 at   | AT1G14920       | GN    |                 |                 |                           |                           |
|                      | 202030_at   | AT1G14920       | BCI 1 |                 |                 |                           |                           |
| GA                   | 250250 of   | AT 1000550      | SDV   |                 |                 |                           |                           |
| ŀ                    | 259259_at   | AT3G11340       | BGL2  |                 |                 |                           |                           |
|                      | 209042_at   | AT5G17490       | RGL2  |                 |                 |                           |                           |
|                      | 240432_at   | A15G17490       | RGLS  |                 |                 |                           |                           |
|                      | 267364 at   | AT2G40080       | ELF4  |                 |                 |                           |                           |
|                      | 266935 at   | AT2G18915       | LKP2  |                 |                 |                           |                           |
|                      | 266839_at   | AT2G25930       | ELE3  |                 |                 |                           |                           |
|                      | 266719_at   | AT2C46830       |       |                 |                 |                           |                           |
|                      | 200719_at   | AT2040030       | DBBO  |                 |                 |                           |                           |
|                      | 200720_s_at | AT2G46670       | PKK9  |                 |                 |                           |                           |
|                      | 264638_at   | AT1G65480       | FI    |                 |                 |                           |                           |
| Photoperiodic        | 264211_at   | AT1G22770       | GI    |                 |                 |                           |                           |
| , notoponouio        | 261569_at   | AT1G01060       | LHY   |                 |                 |                           |                           |
|                      | 261202_at   | AT1G12910       | LWD1  |                 |                 |                           |                           |
|                      | 259990_s_at | AT1G68050       | FKF1  |                 |                 |                           |                           |
|                      | 257833_at   | AT3G26640       | LWD2  |                 |                 |                           |                           |
|                      | 252475 s at | AT3G46640       | LUX   |                 |                 |                           |                           |
|                      | 250971 at   | AT5G02810       | PRR7  |                 |                 |                           |                           |
|                      |             | AT5G24470       | PRR5  |                 |                 |                           |                           |
|                      | 247898_at   | AT5G57360       | 7TI   |                 |                 |                           |                           |
|                      | 247668_at   | AT5G60100       | PRR3  |                 |                 |                           |                           |
|                      | 247525 at   | AT5C61380       | TOC1  |                 |                 |                           |                           |
|                      | 247323_at   | AT5001300       |       |                 |                 |                           |                           |
|                      | 247402_at   | AT5G02430       |       |                 |                 |                           |                           |
|                      | 246525_at   | AT5G15840       | 00    |                 |                 |                           |                           |
|                      | 246011_at   | AT5G08330       | CHE   |                 |                 |                           |                           |
|                      |             |                 |       |                 |                 |                           |                           |
|                      | 260813_at   | AT1G43700       | VIP1  |                 |                 |                           |                           |
|                      | 259718_at   | AT1G61040       | VIP5  |                 |                 |                           |                           |
| l                    | 257688_at   | AT3G12810       | PIE1  |                 |                 |                           |                           |
| l                    | 256944_at   | AT3G18990       | VRN1  |                 |                 |                           |                           |
| Vernalization        | 255634_at   | AT4G00650       | FRI   |                 |                 |                           |                           |
|                      | 253645_at   | AT4G29830       | VIP3  |                 |                 |                           |                           |
| ļ                    | 247695_at   | AT5G59710       | VIP2  |                 |                 |                           |                           |
| ļ                    | 247565_at   | AT5G61150       | VIP4  |                 |                 |                           |                           |
|                      | 245280_at   | AT4G16845       | VRN2  |                 |                 |                           |                           |
|                      |             |                 |       | Express         | sion            |                           |                           |



# Fig.3 The expression of FLC transcripts was significantly increased in the *bzip16* mutant

Transcriptomic comparison was performed to analyze genes in the four flowering pathways in 18-day-old at Zeitgber time (ZT) 12 hr of wild-type plants and *bzip16-2* mutants. Hierarchical clustering of bZIP16-regulated genes differentially expressed in Ler and *bzip16-2*. Expression data are shown as relative expression of each gene to the median of 4 samples. The median expression of each gene is shown in yellow. Relative up- or downregulation from median expression is red and green respectively. Two biological replicates were performed for each treatment.

| Probe     | Ler  | Ler  | bzip16-2 | bzip16-2 | Expression | Unigene  | Gene   |           | Torrat Description                        |
|-----------|------|------|----------|----------|------------|----------|--------|-----------|-------------------------------------------|
| Set ID    | R1   | R2   | R1       | R2       | fold       | (Avadis) | Symbol | AGI       | rarget Description                        |
| 266634 at | 1.04 | 1.17 | -1.28    | -1.04    | 4.8        | At.37663 |        | AT2G35530 | putative G-box binding bZIP transcription |
|           |      |      |          |          |            |          |        |           | factor                                    |
| 262634_at | 2.24 | 2.48 | -2.29    | -2.24    | 23.0       | At.26590 |        | AT1G06690 | unknown protein                           |
| 262636_at | 0.71 | 0.79 | -0.71    | -0.96    | 3.0        | At.20810 | NIH    | AT1G06670 | DEIH-box RNA/DNA helicase                 |
| 260835_at | 2.35 | 2.42 | -2.42    | -2.35    | 27.2       | At.12093 |        | AT1G06700 | protein kinase interactor                 |
| 260412_at | 1.35 | 0.99 | -1.99    | -0.99    | 6.3        | At.24555 | AMY3   | AT1G69830 | putative alpha-amylase                    |
| 257076_at | 1.13 | 0.65 | -0.69    | -0.65    | 2.9        | At.8144  |        | AT3G19680 | unknown protein                           |
| 256245_at | 1.4  | 0.65 | -0.82    | -0.65    | 3.4        | At.47608 | HSP70  | AT3G12580 | heat shock protein 70                     |
| 255064 of | 0.74 | 0.6  | 0.6      | 0.74     | 25         | A+ 22200 | EVO    | AT4C08050 | putative phi-1-like phosphate-induced     |
| 20004_at  | 0.74 | 0.0  | -0.0     | -0.74    | 2.5        | AI.22399 | EXU    | A14G00950 | protein                                   |
| 25//52 at | 2 40 | 2 15 | 2 15     | 2 15     | 22.1       | A+ 32663 |        | AT4C21100 | UV-damaged DNA-binding protein-like       |
| 234432_al | 2.45 | 2.15 | -2.15    | -2.15    | 22.1       | AI.32003 | ылан   | A14021100 | damage-specific DNA binding protein 1     |
| 253942_at | 0.59 | 0.49 | -0.49    | -0.59    | 2.1        | At.54525 |        | AT4G27010 | putative protein                          |
| 250304_at | 0.92 | 0.89 | -0.89    | -0.93    | 3.5        | At.699   |        | AT5G12110 | elongation factor 1B alpha-subunit        |

Table 1. The up-regulated genes by bZIP16

| Table 2. | The down-regulated | genes by bZIP16.A | mong them, only | y FLC is a flowering | 5 |
|----------|--------------------|-------------------|-----------------|----------------------|---|
| gene.    |                    |                   |                 |                      |   |

| Droho Cot ID | Lor D1 | Lor D2 | bzip16-2 | bzip16-2 | expression | Unigene   | Gene   |            | Torret Description              |
|--------------|--------|--------|----------|----------|------------|-----------|--------|------------|---------------------------------|
| Probe Set ID | Ler KI | Lei RZ | R1       | R2       | fold       | (Avadis)  | Symbol | AGI        | rarget Description              |
| 266693_at    | -0.67  | -0.58  | 0.58     | 0.67     | 2.4        | At.12894  | MIOX2  | AT2G19800  | unknown protein                 |
| 264824_at    | -0.90  | -0.80  | 0.80     | 0.80     | 3.1        | At.69970  | 2A6    |            | unknown protein                 |
| 264926 of    | 0.61   | 0.69   | 0.61     | 0.77     | 25         | A+ 10020  | 246    | AT1C02410  | putative 1-aminocyclopropane-1- |
| 204020_al    | -0.01  | -0.00  | 0.01     | 0.77     | 2.5        | Al. 19920 | ZAU    | AT 1605410 | carboxylate oxidase             |
| 263268_at    | -0.93  | -1.13  | 0.94     | 0.93     | 3.9        |           |        |            | unknown protein                 |
| 262010_at    | -0.97  | -1.32  | 0.97     | 1.10     | 4.5        | At.47239  |        |            | hypothetical protein            |
| 262019_s_at  | -1.11  | -0.80  | 0.80     | 0.82     | 3.4        |           |        |            | hypothetical protein            |
| 260011_at    | -0.60  | -0.70  | 0.60     | 0.84     | 2.6        | At.19366  |        | AT1G68110  | hypothetical protein            |
| 259620_s_at  | -1.26  | -1.43  | 1.30     | 1.26     | 6.2        |           |        |            | Tam3-like transposon protein    |
| 257306_at    | -0.84  | -0.79  | 0.79     | 1.15     | 3.4        | At.53591  |        | AT3G30200  | hypothetical protein            |
| 256940_at    | -2.85  | -2.85  | 2.85     | 2.85     | 52.0       | At.36724  | QQS    | AT3G30720  | unknown protein                 |
| 256300_at    | -0.83  | -0.43  | 0.43     | 0.68     | 2.3        | At.24919  | NAP    | AT1G69490  | unknown protein                 |
| 256166_at    | -1.03  | -1.01  | 1.08     | 1.01     | 4.2        | At.49945  |        | AT1G36920  | hypothetical protein            |
| 255414_at    | -2.01  | -1.95  | 1.95     | 2.10     | 16.0       | At.54106  |        | AT4G03156  | hypothetical protein            |
| 254343_at    | -0.88  | -0.55  | 0.55     | 0.80     | 2.6        | At.2106   | APR3   | AT4G21990  | PRH26 protein                   |

| 250476 of | 0.70  | 0.95  | 0.90 | 0.70 | 2.0 | A+ 75671 |        | AT5C10140 | MADS box protein FLOWERING     |
|-----------|-------|-------|------|------|-----|----------|--------|-----------|--------------------------------|
| 200470_at | -0.79 | -0.05 | 0.09 | 0.79 | 3.2 | AL.75071 | FLU    | A15G10140 | LOCUS C                        |
| 248969_at | -0.61 | -0.55 | 0.60 | 0.55 | 2.2 | At.27375 |        | AT5G45310 | unknown protein                |
| 248676_at | -0.66 | -0.60 | 0.60 | 0.97 | 2.7 | At.29820 | ATSDI1 | AT5G48850 | similar to unknown protein     |
| 245032_at | -0.80 | -0.74 | 0.74 | 0.92 | 3.0 |          |        |           | En/Spm-like transposon protein |

# 4. FLC is highly induced and FT, SOC1 are repressed in *bzip16* mutants *under* short-day conditions

Floral regulatory signals generated in the photoperiod, *FLC*-dependent, and GA-dependent pathways are integrated by a group of genes called floral integrators. *FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1)*, and *LEAFY (LFY)* have been identified as floral integrators. *FT* and *SOC1* integrate floral regulatory signals generated in the photoperiod and *FLC*-dependent pathways. *SOC1* is also involved in the integration of GA-dependent floral promotion signals (Moon et al., 2003). *LFY* integrates photoperiodic and GA-dependent signals through discrete cis elements in the promoter (Blázquez and Weigel, 2000) And *RGA, RGA-LIKE2 (RGL2)* are members of DELLA proteins which repress GAs in GA pathway.

To elucidate the role of *bZIP16* in the flowering pathways, we employed the quantitative real-time PCR (qRT-PCR) technique using gene-specific primers to quantify transcript levels of the major flowering-time regulators *CONSTANS (CO)*, *GIGANTEA (GI), RGA, RGL2, FT, SOC1, LFY* and *FLC* genes in 18-day-old plants of wild-type plants, *bzip16* mutants and *bZIP16* overexpression lines under SD conditions. According to web-based tool, DIURNAL, we found that time points of the high expressions of the mentioned genes above is between 4 to 16 hour after light on. Therefore, we collected the samples of each line at ZT 3, 6, 9, 12 and 15hr after light on, respectively

The *bZIP16* transcripts were not detected in *bzip16* mutants. By contrast, the level of *bZIP16* transcripts in *bZIP16* overexpression lines was significantly higher than in wild type plants. These data demonstrated that all lines in this study were correct (Fig. 4-1). The *bzip16* mutants showed the high level of *FLC* transcripts, low level of *SOC1* and *FT* transcripts. In addition, in *bZIP16* overexpression line, the level of *FLC* transcripts was reduced and levels of *SOC1* and *FT* transcript were increased. These data are consistent with the late-flowering phenotype of *bzip16* mutants (Fig. 4-2-4-4). Furthermore, there were minor different expressions of *RGL2* and *RGA* in the *bzip16* mutants, demonstrating that *bZIP16* didn't have an effect on the expression of *RGL2* and *RGA* in all lines were similar, indicating that *bZIP16* didn't regulate flowering by photoperiodic pathway (Fig. 4-7, 4-8). The *LFY* expression was too low to be detected (data not shown). We have performed two independent experiments and the results are similar.

In flowering pathways, *FLC* is in upstream negative regulator of *SOC1* and *FT*. Our studies demonstrated that *bZIP16* repressed the expression of *FLC* and promoted the expression of *SOC1* and *FT* to regulate flowering positively.



Fig4-1 The transcripts of bZIP16 in different plants.

Wild-type (black), bzip16-2 mutant (blue), and bZIP16ox overexpression (green). Eighteen-day-old wild-type, bzip16-2 and bZIP16ox line grown under short- day conditions (8-h light/16-h dark) were harvested at zeitgber time (ZT) 3hr, 6hr, 9hr, 12hr and 15hr after light on for total RNA isolation. White bar denotes the light intervals, and black bar denotes darkness. qRT-PCR was used to monitor the expression of genes and UBQ10 specific primers used as a control for input RNA in the RT reaction. All values in (Fig.4-1~ 4-8) are means (±S.E.) from three technique repeats.



Fig.4-2 The level of FLC transcripts was significantly high in bzip16-2 mutant.



Fig.4-3 The level of *SOC1* transcripts was low in *bzip16-2* comparing with the levels of wild-type and *bZIP16* overexpression line.

Two independent experiments were performed and showed similar results.



Fig.4-4 The level of *FT* transcripts was low in *bzip16-2* mutant comparing with the levels of wild-type and *bZIP16* overexpression line.



Fig.4-5 Except for *bzip16-2/bZIP16* at ZT3, the levels of *RGL2* transcripts were comparable in all lines among time points examined.

Two independent experiments were performed and showed similar results.



Fig.4-6 The level of *RGA* transcript was reduced slightly in *bzip16-2* mutants.



Fig.4-7 The transcript levels of CO in all lines were similar.

Two independent experiments were performed and showed similar results.



Fig.4-8 The transcript levels of GI in all lines were similar.

#### 5. *bZIP16* directly binds to the *FLC* promoter harboring G-box motif.

To examine whether bZIP16 directly binds to the *FLC* promoter, we performed chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) assay of 18-day-old *bZIP16* overexpression line (*Ler/35S-bZIP16-GFP*) with wild-type plants used as a control. In ChIP assays, cross-linked chromatin was extracted and sheared by sonication to short fragments. And we used anti-GFP to immunoprecipitate the bZIP16-GFP protein. bZIP16 was immunoprecipitated along with cross-linked DNA. According to the research of Dr. Hsieh, bZIP16 has G-box-specific binding activity (Hsieh et al., 2012). Hence, we analyzed the *FLC* promoter region and found a putative G-box motif at -255bp from *FLC* translation start site.We used specific primer pairs *pFLC* and *FLC* for amplicons of qRT-PCR to detect DNA binding enrichment of promoter region and coding sequence. *pFLC* represents a primer that spans the G-box binding site, while *FLC* represents a primer that avoids the ACGT core as a control. Besides, we used *UBC21* as an internal control.

The result demonstrated that comparing to the wild type, the percentage of input DNA of *FLC* promoter harboring G-box motif in the *bZIP16* overexpression line is 27 times higher than that in the wild type, indicating that bZIP16 directly binds to the promoter region of *FLC*.(Fig.5A, 5B).





The black line represents the length from 0 to-2100bp *FLC* promoter. ACGT core is indicated with green lines.The red line denotes putative G-box motif. The locations of PCR primers (pFLC-ABI-a-Fw&Rv, FLC-ABI-b-Fw&Rv) used for the enrichment test are indicated with blue lines



Fig.5B **bZIP16 directly binds to the** *FLC* **promoter harboring G-box motif** 

The binding of bZIP16ox to the *FLC* promoter spanning the G-box was 27- fold enriched compared with that in wild type plants. The chromatins were extracted from 18-day-old wild-type and bZIP16ox line grown under short-day conditions (8-h light/16-h dark) at ZT12. Immunoprecipitaed DNA was quantified by qPCR with specific primer pairs for candidate fragments. Amplicons in *UBC21* were used as an internal control. Results from wild-type and Ler/*35S-bZIP16-GFP* (*bZIP16ox*) were normalized as percentage of the input DNA. Data are means±S.D.

#### **IV. Discussion**

Investigating bZIP16 protein level in different growth development stages of Arabidopsis, we found that bZIP16 protein was detected more in 4-day-old seedling under constant dark conditions than in 4-day-old seedling under constant light conditions. But bZIP16 protein was not detected in dry seeds and 1-day-old seedlings under constant light conditions. It indicated that cold treatment and light affected the expression of bZIP16 (Fig. 1-1~1-3). In addition, the accumulation of bZIP16 protein was higher in buds and flowers. Furthermore, phenotypic analysis showed that *bzip16* mutants flowered later than the wild-type plants under long-day (LD) and short-day (SD) conditions. It reveals that bZIP16 regulates flowering time.

There are at least four flowering pathways in Arabidopsis, namely photoperiod, autonomous, vernalization, and gibberellins dependent pathways (Mouradov et al., 2002). The photoperiod pathway refers to regulation of flowering in response to day length and quality of light perceived. The autonomous pathway refers to endogenous regulators that are independent of the photoperiod and gibberellin pathways (Koornneef M,et al.,1991). The vernalization pathway refers to the acceleration of flowering on exposure to a long period of cold. *FLC* delays flowering by blocking the transcription of genes in the photoperiodic flowering pathway. Vernalization inhibits transcription of *FLC. FLC* inhibits flowering by directly repressing the key promoters of flowering *FT*, *SOC1*, and *FD* (Michaels, 2009). The *FT*, *LFY* and *SOC1* genes act as central floral integrators (Blazquez et al., 1998; Nilsson et al., 1998; Samach et al., 2000). The gibberellin pathway refers to the requirement of gibberellic acids for normal flowering patterns. *SOC1* integrates the GA-mediated flowering-time signal with these environmental cues (Moon et al., 2003). The *FT* protein and mRNA appear to be the

83

flowering stimulus that moves fromleaves into the shoot apical meristem region, where it evokes the transition from vegetative to reproductive meristem identity (Corbesier et al., 2007).

During the early stages of Arabidopsis seedling development, bZIP16 represses *RGL2* to promote seed germination and hypocotyl elongation. Through the transcriptomic comparison of 43 flowering-related genes in wild-type plants and *bzip16* mutants and analyzing the expressions of the selected genes *CO*, *CI*, *FT*, *SOC1*, *FLC*, *RGA* and *RGL2* in wild-type plants, *bzip16* mutants and *bZIP16* overexpression line by qRT-PCR, my studies revealed that bZIP16 does not repress *RGL2* in adult plants. It indicates that bZIP16 may function differently in different developmental stages. Besides, bZIP16 does not affect the genes involved in GA pathway, photoperiodic pathway, vernalization pathway and autonomous pathway. Therefore, bZIP16 likely functions independently of the GA and the photoperiodic pathway.

A major role of the genes in the autonomous pathway is to repress *FLC* expression. Arabidopsis plants with mutations in autonomous-pathway genes (*fca*, *fld*, *fpa*, *fve*, *fy* and *ld*) have increased levels of *FLC* expression (Michaels and Amasino, 1999). Unlike the photoperiod pathway late-flowering mutants only in LD conditions, the autonomous pathway mutants are delayed in flowering under under SD and LD conditions but still respond to photoperiod by flowering earlier in long days than in short days (Mouradov et al., 2002). bZIP16 represses *FLC* and promotes the expressions of *SOC1* and *FT* to regulate the flowering (Fig. C). In addition, the *bzip16* mutants show late-flowering under LD and SD conditions. Moreover, the transcriptomic study and qRT-PCR analyses demonstrated that bZIP16 does not affect the genes involved in GA pathway, photoperiodic pathway, vernalization pathway and autonomous way. Maybe bZIP16 participates in the autonomus pathway. But, to date we know that the

84

autonomous-pathway genes repress the expression of FLC through

chromatin-remodeling complexes and small RNAs. And the vernalization-pathway genes repress the expression of *FLC* through histone modifications. Our chromatin immunoprecipitation assay showed that bZIP16 directly binds to the *FLC* promoter harboring G-box motif. bZIP16 is the first one transcription factor among the upstream genes of *FLC* that represses *FLC* by binding to the *FLC* promoter directly in *vivo*. Hence, bZIP16 maybe belong to a new unknown pathway of its own and function in parallel of the vernalization and autonomous pathways.



Fig.C Proposed model for the role of *bZIP16* in the regulation of Arabidopsis flowering time. Arrow indicates promotion and blunt arrow indicates repression.

#### V. Conclusions

Our studies showed the high bZIP16 protein accumulation in buds and flowers. Through the observation of the phenotypes, *bzip16* mutants show late-flowering phenotypes under both short-day and long-day conditions. According to the transcriptomic comparison and qRT-PCR, bZIP16 does not affect those genes in photoperiodic pathway, GA pathway, autonomus and vernalization pathway. Our chromatin immunoprecipitation assay showed that bZIP16 directly binds to the *FLC* promoter harboring G-box motif. It demonstrates that bZIP16 regulates flowering time by binding to the *FLC* promoter to repress its expression, which in turn de-repressing the expressions of *FT* and *SOC1* to promote flowering. Our findings provide strong evidence that bZIP16 not only promotes seed germination and hypocotyl elongation during the early stages of Arabidopsis seedling development but also plays a positive role in floral induction. We report a novel physiological function of bZIP16 *in planta*. Furthermore, our study reveals bZIP16 as a new floral regulator in repressing the floral integrator *FLC* via binding to the *FLC* promoter directly to control flowering time.

The most exciting part of doing research is that we are not always able to predict the results. However, concentrating on investigation alway brings us unexpected surprises. At the beginning, we hypothesized that bZIP16 might promote flowering by repressing *RGL2*. Although the results are not what we expected, we are lucky to find bZIP16 as a new floral regulator in controlling flowering time.

### **VI. References**

- A. Websites
  - 1. Arabidopsis eFP Browser, from http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
  - DIURNAL, Mockler Lab, from http://diurnal.mocklerlab.org/diurnal\_data\_finders/new
  - TAIR (The Arabidopsis Information Resource), from http://www.arabidopsis.org/
  - Regulation of flowering time in Arabidopsis, from http://www.egad.ksu.edu/GA/gibberellin\_transd\_pathway.htm
  - Plant Cell Biology, from htp://plantcellbiology.masters.grkraj.org/html/Plant\_Growth\_And\_
  - 6. Development10-Physiology\_Of\_Flowering.htm
- B. Literature
  - Achard, Genschik (2009). Releasing the brakes of plant growth: How Gas hutdown DELLA proteins, Journal of Experimental Botany, vol. 60, no. 4: 1085–1092
  - Abe M., Kobayashi Y., Yamamoto S., Daimon Y., Yamaguchi A., Ikeda Y., Ichinoki H, et al (2005). FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex, Science, vol. 309 no. 5737:1052-1056

- Amasino R.M. and Michaels S.D. (2010). The Timing of Flowering, Plant Physiology vol.154, no.2:516-520
- Andrés F., Coupland G. (2012). The genetic basis of flowering responses to seasonal cues, Nature Reviews, vol. 13, 627-639
- Ba<sup>"</sup> urle I., , Dean C. (2008). Differential Interactions of the Autonomous Pathway RM Proteins and Chromatin Regulators in the Silencing of Arabidopsis Targets, PLoS ONE vol. 3, no. 7 : e2733
- Blázquez M.A., Green R., Nilsson O., Sussman M.R., Weigel D. (1998).
  Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell vol.10, 791–800
- Blázquez M.A., Weigel D. (2000). Integration of floral inductive signals in Arabidopsis, Nature, vol. 404, 889-892
- Boss P.K., Bastow R.M., Mylne J.S., Dean C. (2004).Multiple Pathways in the Decision to Flower: Enabling, Promoting, and Resetting, The Plant Cell, vol. 16 no. suppl 1 S18-S31
- Cheng H., Qin L., Lee S., Fu X., Richards D.E., Cao D., Luo D., Harberd N.P., Peng .J (2004). Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function, Development,131: 1055-1064.
- Corbesier L., Vincent C., Jang S., Fornara F., Fan Q., Searle I., Giakountis A., Farrona S, Gissot L., Turnbull C. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis, Science vol.316: 1030–1033

- Creville n P., Dean C. (2011). Regulation of the floral repressor gene FLC: the complexity of transcription in a chromatin context, Plant Biology vol.14:38–44
- Davière J.M., Achard P. (2013). Gibberellin signaling in plants, Development, vol.140: 1147-1151.
- Ebine K., Uemura T., Nakano A., Ueda T.(2012). Flowering Time Modulation by a Vacuolar SNARE via FLOWERING LOCUS C in Arabidopsis thaliana, PLoS ONE, vol. 7. no. 7: e42239
- Hauvermale A.L., Ariizumi T., Steber C.M. (2012). Gibberellin Signaling: A Theme and Variations on DELLA Repression, Plant Physiology, vol. 160 no. 1: 83-92
- Hsieh W.P., Hsieh H.L., Wu S.H. (2012). Arabidopsis bZIP16 Transcription Factor Integrates Light and Hormone Signaling Pathways to Regulate Early Seedling Development, The Plant Cell, vol.24 no.10: 3997-4011
- Immink R., Posé D., Ferrario S., Ott F., Aufmann K., Valentim F.L., Folter S., Wal F., Dijk A., Schmid M., Angenent G.C. (2012). Characterization of SOC1's Central Role in Flowering by the Identification of Its Upstream and Downstream Regulators, Plant Physiology, Vol. 160, 433–449
- Jakobya M., Weisshaara B., Dröge-Laserb W., Vicente-Carbajosac J., Tiedemannd J., Kroje T., Parcy F. (2002). bZIP transcription factors in Arabidopsis, Trends in Plant Science Vol 7, no. 3: 106–11
- Jiang C., Gao X., Liao L., Harberd N.P., Fu X. (2007). Phosphate Starvation Root Architecture and Anthocyanin Accumulation Responses Are Modulated

by the Gibberellin-DELLA Signaling Pathway in Arabidopsis1,Plant Physiology,Vol. 145, 1460–1470

- Kang H.G., Kim J., Kim B., Jeong H., Choi S.H., Kim E.K., Lee H.Y., Lim P.O. (2011), Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana,Plant Science, vol.180, 4: 634-641
- Koornneef M., Hanhart C., van der Veen J. (1991.) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana, Mol Gen Genet 229:57–66
- Ma L., Li J., Qua L, Hagerd J, Chen Z., Zhao H., Deng X.W. (2001) .Light Control of Arabidopsis Development Entails Coordinated Regulation of Genome Expression and Cellular Pathways, The Plant Cell ,vol. 13 no. 12: 2589-2607
- Michaels S.D., Amasino R.M. (1999). FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering, The Plant Cell vol. 11 no. 5 949-956
- Moon J., Suh S..S, Lee H., Choi K.R., Hong C.B., Paek N.C., Kim S.G., Lee I. (2003). The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant Journal, vol 35: 613–623
- 24. Mouradov A., Cremer F., Coupland G. (2002). Control of Flowering Time Interacting Pathways as a Basis for Diversity, The Plant Cell vol. 14 no. suppl 1 S111-S130

- Nilsson O., Lee I., Blázquez M.A., Weigel D. (1998) Flowering-time genes modulate the response to LEAFY activity, Genetics vol.150, 403–410
- Samach A., Onouchi H., Gold S.E., Ditta G.S., Schwarz-Sommer Z., Yanofsky M.F., Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science,vol. 288:1613– 1616
- Tyler L., Thomas S.G., Hu J., Dill A., Alonso J.M., Ecker J.R., Sun T.P. (2004), DELLA Proteins and Gibberellin-Regulated Seed Germination and Floral Development in Arabidopsis, Plant Physiology, vol. 135 no. 2:1008-1019
- Zentella R., Zhanga Z.L., Parka M., Thomasa S.G., Endob A.E., Murasea K., Fleeta C.M., Jikumarub Y., Nambarab E., Kamiyab Y., Suna T.P. (2007).
   Global Analysis of DELLA Direct Targets in Early Gibberellin Signaling in Arabidopsis, The Plant Cell, vol. 19 no. 10: 3037-3057
- Wu J.F., Wang Y., Wu S.H. (2008), Two New Clock proteins, LWD1 and LWD2, Regulate Arabidopsis Photoperiodic Flowering, Plant Physiology, vol.148: 948-959

# VII. Appendices

Appendix 1

The distribution of bZIP16 transcript in different growth development stages of Arabidopsis. The expression patterns retrieved from Arabidopsis eFP Browser. http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi?primaryGene=AT2G35530&mod eInput=Absolute



The developmental map shows that the bZIP16 mRNA accumulates more in seeds, buds, shoot apexes and flowers.

Appendix 2.

Data about the expression level of *FT*, *bZIP16*, *SOC1*, *RGL2*, *FLC* and *CO* transcripts retrieved from http://diurnal.mocklerlab.org (Mockler Lab, U.S.A)





According to web-based tool, DIURNAL, we found that time points of the high expressions of the mentioned genes above is between 4 to 16 hour after light on. Therefore, we collected the samples of each line at ZT 3, 6, 9, 12 and 15hr after light on, respectively Appendix 3. Observation of flowering phenotype

Plants and mutants grown under long-day conditions (LD)

| Rosette Leaves              | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | AVE  | STEDV |
|-----------------------------|---|---|---|---|---|---|---|---|---|----|----|----|------|-------|
| Ler                         | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4  | 4  | 4  | 4.00 | 0.00  |
| bzip16-2                    | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5  | 5  | 5  | 5.00 | 0.00  |
| bzip16-2/35S-bZIP16-GFP     | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4  | 5  | 5  | 4.83 | 0.39  |
| Ler/35S-bZIP16-GFP#1        | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4  | 4  | 4  | 4.00 | 0.00  |
| <i>Ler/35S-bZIP16-GFP#6</i> | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4  | 4  | 4  | 4.00 | 0.00  |
|                             |   |   |   |   |   |   |   |   |   |    |    |    |      |       |
| Cauline Leaves              | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | AVE  | STEDV |
| Ler                         | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2  | 2  | 2  | 2.00 | 0.00  |
| bzip16-2                    | 3 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2  | 3  | 2  | 2.25 | 0.45  |
| bzip16-2/35S-bZIP16-GFP     | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2  | 2  | 3  | 2.08 | 0.29  |
| Ler/35S-bZIP16-GFP#1        | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2  | 2  | 2  | 2.17 | 0.39  |
| Ler/35S-bZIP16-GFP#6        | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2  | 2  | 2  | 2.00 | 0.00  |

| Genotype                | Rosette<br>Leaves | STEDV | Cauline<br>Leaves | STEDV | T-test      |
|-------------------------|-------------------|-------|-------------------|-------|-------------|
| Ler                     | 4.00              | 0.00  | 2.00              | 0.00  |             |
| bzip16-2                | 5.00              | 0.00  | 2.25              | 0.45  | 1.6922E-40  |
| bzip16-2/35S-bZIP16-GFP | 4.83              | 0.39  | 2.08              | 0.29  | 1.33374E-05 |
| Ler/35S-bZIP16-GFP#1    | 4.00              | 0.00  | 2.17              | 0.39  | 0.338800696 |
| Ler/35S-bZIP16-GFP#6    | 4.00              | 0.00  | 2.00              | 0.00  | 0.338800696 |

Appendix 4. Observation of flowering phenotype

Plants and mutants grown under long-day conditions (LD)

| Rosette<br>Leaves                       | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | AVE  | STEDV |
|-----------------------------------------|---|---|---|---|---|---|---|---|---|----|----|----|------|-------|
| Ler                                     | 4 | 5 | 5 | 4 | 4 | 5 | 4 | 5 | 4 | 5  | 5  | 4  | 4.50 | 0.52  |
| bzip16-2                                | 6 | 6 | 6 | 6 | 5 | 5 | 5 | 5 | 5 | 5  | 6  | 6  | 5.50 | 0.52  |
| Ler/35S-bZI<br>P16-GFP#6                | 4 | 4 | 5 | 4 | 4 | 5 | 4 | 4 | 4 | 4  | 4  | 4  | 4.17 | 0.39  |
|                                         |   |   |   |   |   |   |   |   |   |    |    |    |      |       |
| Cauline<br>Leaves                       | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | AVE  | STEDV |
| Ler                                     | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2  | 1  | 2  | 1.58 | 0.51  |
| bzip16-2                                | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2  | 2  | 2  | 1.67 | 0.49  |
| <i>Ler/35S-bZI</i><br><i>P16-GFP#</i> 6 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2  | 2  | 2  | 1.92 | 0.29  |

| Genotype             | Rosette<br>Leaves | STEDV | Cauline<br>Leaves | STEDV | T-test  |
|----------------------|-------------------|-------|-------------------|-------|---------|
| Ler                  | 4.50              | 0.52  | 1.58              | 0.51  |         |
| bzip16-2             | 5.50              | 0.52  | 1.67              | 0.49  | 0.00011 |
| Ler/35S-bZIP16-GFP#6 | 4.17              | 0.39  | 1.92              | 0.29  | 0.09124 |

Appendix 5. Observation of flowering phenotype

Plants and mutants grown under short-day (SD)conditions

| Rosette<br>Leaves | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | AVE   | STEDV |
|-------------------|----|----|----|----|----|----|----|----|----|----|----|----|-------|-------|
| Ler               | 23 | 24 | 22 | 23 | 25 | 24 | 25 | 27 | 24 | Χ  | 22 | 20 | 23.55 | 1.86  |
| bzip16-2          | 30 | 35 | 32 | 30 | 33 | 28 | Χ  | 32 | 31 | 33 | 33 | 28 | 31.36 | 2.20  |
| bZIP16ox          | 23 | 22 | 25 | 22 | Х  | 21 | 21 | 23 | 22 | 23 | 21 | 24 | 22.45 | 1.29  |

| Cauline<br>Leaves | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9 | 10 | 11 | 12 | AVE  | STEDV |
|-------------------|---|---|---|---|---|---|---|----|---|----|----|----|------|-------|
| Ler               | 7 | 7 | 4 | 5 | 6 | 7 | 6 | 8  | 7 | Χ  | 4  | 5  | 6.00 | 1.34  |
| bzip16-2          | 7 | 8 | 9 | 8 | 8 | 8 | X | 10 | 8 | 9  | 8  | 6  | 8.09 | 1.04  |
| bZIP16ox          | 7 | 5 | 7 | 6 | Х | 8 | 7 | 5  | 5 | 6  | 5  | 7  | 6.18 | 1.08  |

| Genotype | Rosette Leaves | STEDV | Cauline<br>Leaves | STEDV | T-test      | leaf range |
|----------|----------------|-------|-------------------|-------|-------------|------------|
| Ler      | 23.55          | 1.86  | 6.00              | 1.34  |             | 20~25      |
| bzip16-2 | 31.36          | 2.20  | 8.09              | 1.04  | 2.33E-08    | 28~33      |
| bZIP16ox | 22.45          | 1.29  | 6.18              | 1.08  | 0.128284334 | 21~25      |

Appendix 6. Observation of flowering phenotype

Plants and mutants grown under short-day (SD)conditions

| Rosette<br>Leaves | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | AVE   | STEDV |
|-------------------|----|----|----|----|----|----|----|----|----|----|----|----|-------|-------|
| Ler               | 19 | 15 | 22 | 23 | 25 | 24 | 26 | 22 | 29 | 26 | 25 | 22 | 23.17 | 3.64  |
| bzip16-2          | 22 | 20 | 23 | 25 | 29 | 26 | 33 | 32 | 39 | 26 | 32 |    | 27.91 | 5.66  |
| bZIP16ox          | 18 | 18 | 18 | 23 | 16 |    | 23 | 24 |    | 21 | 16 |    | 19.67 | 3.12  |

| Genotype | Rosette | STEDV | Cauline | STEDV | T tost   | loof rongo |    |
|----------|---------|-------|---------|-------|----------|------------|----|
|          | Leaves  | SILDV | Leaves  | SILDV | 1-1051   | leal lange |    |
| Ler      | 23.17   | 3.64  | 8.00    | 1.28  |          | 15~29      |    |
| bzip16-2 | 27.91   | 5.66  | 9.00    | 1.34  | 3.03E-02 | 20~39      | ** |
| bZIP16ox | 19.67   | 3.12  | 5.60    | 2.50  | 2.90E-02 | 16~24      | *  |

Appendix 7. The data of the biological repeat 1 by qRT - PCR

|                 |     | R1        |           | R2        |           | R3        |           |
|-----------------|-----|-----------|-----------|-----------|-----------|-----------|-----------|
|                 | hea | AVE       | AVE       | AVE       | AVE       | AVE       | AVE       |
|                 | hrs | (UBC-0.5) | (RGA-0.5) | (UBC-0.5) | (RGA-0.5) | (UBC-0.5) | (RGA-0.5) |
| Ler             | 3   | 20.476    | 24.426    | 20.616    | 24.480    | 20.487    | 24.587    |
|                 | 6   | 20.814    | 26.007    | 20.692    | 26.195    | 20.705    | 26.153    |
|                 | 9   | 20.024    | 25.946    | 20.045    | 25.894    | 20.012    | 25.834    |
|                 | 12  | 20.775    | 25.048    | 20.818    | 25.019    | 20.690    | 25.022    |
|                 | 15  | 20.626    | 25.228    | 20.664    | 25.301    | 20.718    | 25.213    |
| bzip16-2        | 3   | 20.434    | 24.803    | 20.417    | 24.746    | 20.416    | 24.739    |
|                 | 6   | 20.731    | 26.455    | 20.732    | 26.471    | 20.738    | 26.489    |
|                 | 9   | 20.135    | 25.868    | 20.139    | 25.990    | 20.127    | 26.064    |
|                 | 12  | 20.606    | 24.986    | 20.638    | 25.093    | 20.596    | 25.104    |
|                 | 15  | 20.462    | 25.709    | 20.416    | 25.791    | 20.424    | 25.775    |
| bZIP16/bzip16-2 | 3   | 20.693    | 25.645    | 20.638    | 25.110    | 20.618    | 25.310    |
|                 | 6   | 20.684    | 26.497    | 20.685    | 26.485    | 20.643    | 26.549    |
|                 | 9   | 19.515    | 24.152    | 19.498    | 23.932    | 19.609    | 23.875    |
|                 | 12  | 20.748    | 24.969    | 20.722    | 24.929    | 20.957    | 24.946    |
|                 | 15  | 20.497    | 24.918    | 20.545    | 24.914    | 20.670    | 24.902    |
| bZIP16ox        | 3   | 20.290    | 23.478    | 20.232    | 23.274    | 20.297    | 23.477    |
|                 | 6   | 20.085    | 24.382    | 20.094    | 24.397    | 20.132    | 24.269    |
|                 | 9   | 19.809    | 25.787    | 19.969    | 25.757    | 19.944    | 26.120    |
|                 | 12  | 20.650    | 24.709    | 20.695    | 24.759    | 20.641    | 24.855    |
|                 | 15  | 20.226    | 24.425    | 20.188    | 24.884    | 20.220    | 24.694    |

| с        | R1-2     | R1-3     | R1-1          | R1-2          | R1-3          | (R1+R2)/3     | STEDV/√n |
|----------|----------|----------|---------------|---------------|---------------|---------------|----------|
| ΔCT(RGA- | ΔCT(RGA- | ΔCT(RGA- | <b>2</b> -ΔCT | <b>γ</b> -ΔCT | <b>2</b> -ΔCT | <b>γ</b> -ΔCT | SEM      |
| UBQ-ct)  | UBQ-ct)  | UBQ-ct)  | 2             | 2             | 2             | 2             | SEW      |
| 3.950    | 3.864    | 4.100    | 0.0647        | 0.0687        | 0.0583        | 0.0639        | 0.0030   |
| 5.193    | 5.503    | 5.448    | 0.0273        | 0.0221        | 0.0229        | 0.0241        | 0.0016   |
| 5.922    | 5.849    | 5.822    | 0.0165        | 0.0173        | 0.0177        | 0.0172        | 0.0004   |
| 4.273    | 4.201    | 4.332    | 0.0517        | 0.0544        | 0.0497        | 0.0519        | 0.0014   |
| 4.602    | 4.637    | 4.495    | 0.0412        | 0.0402        | 0.0443        | 0.0419        | 0.0013   |
| 4.369    | 4.329    | 4.323    | 0.0484        | 0.0498        | 0.0500        | 0.0494        | 0.0005   |
| 5.724    | 5.739    | 5.751    | 0.0189        | 0.0187        | 0.0186        | 0.0187        | 0.0001   |

| 5.733 | 5.851 | 5.937 | 0.0188 | 0.0173 | 0.0163 | 0.0175 | 0.0007 |
|-------|-------|-------|--------|--------|--------|--------|--------|
| 4.380 | 4.455 | 4.508 | 0.0480 | 0.0456 | 0.0439 | 0.0459 | 0.0012 |
| 5.247 | 5.375 | 5.351 | 0.0263 | 0.0241 | 0.0245 | 0.0250 | 0.0007 |
| 4.952 | 4.472 | 4.692 | 0.0323 | 0.0451 | 0.0387 | 0.0387 | 0.0037 |
| 5.813 | 5.800 | 5.906 | 0.0178 | 0.0179 | 0.0167 | 0.0175 | 0.0004 |
| 4.637 | 4.434 | 4.266 | 0.0402 | 0.0463 | 0.0520 | 0.0461 | 0.0034 |
| 4.221 | 4.207 | 3.989 | 0.0536 | 0.0541 | 0.0630 | 0.0569 | 0.0030 |
| 4.421 | 4.369 | 4.232 | 0.0467 | 0.0484 | 0.0532 | 0.0494 | 0.0020 |
| 3.188 | 3.042 | 3.180 | 0.1097 | 0.1214 | 0.1103 | 0.1138 | 0.0038 |
| 4.297 | 4.303 | 4.137 | 0.0509 | 0.0507 | 0.0568 | 0.0528 | 0.0020 |
| 5.978 | 5.788 | 6.176 | 0.0159 | 0.0181 | 0.0138 | 0.0159 | 0.0012 |
| 4.059 | 4.064 | 4.214 | 0.0600 | 0.0598 | 0.0539 | 0.0579 | 0.0020 |
| 4.199 | 4.696 | 4.474 | 0.0544 | 0.0386 | 0.0450 | 0.0460 | 0.0046 |

RGL2

|                 |     | R1        |            | R2        |            | R3        |            |
|-----------------|-----|-----------|------------|-----------|------------|-----------|------------|
|                 | haa | AVE       | AVE        | AVE       | AVE        | AVE       | AVE        |
|                 | nrs | (UBC-0.5) | (RGL2-0.5) | (UBC-0.5) | (RGL2-0.5) | (UBC-0.5) | (RGL2-0.5) |
| Ler             | 3   | 20.476    | 26.714     | 20.616    | 26.926     | 20.487    | 26.886     |
|                 | 6   | 20.814    | 28.726     | 20.692    | 28.596     | 20.705    | 28.912     |
|                 | 9   | 20.024    | 31.028     | 20.045    | 31.438     | 20.012    | 30.923     |
|                 | 12  | 20.775    | 29.552     | 20.818    | 29.283     | 20.690    | 29.575     |
|                 | 15  | 20.626    | 28.956     | 20.664    | 28.893     | 20.718    | 28.911     |
| bzip16-2        | 3   | 20.434    | 26.682     | 20.417    | 26.816     | 20.416    | 27.017     |
|                 | 6   | 20.731    | 29.177     | 20.732    | 29.054     | 20.738    | 29.202     |
|                 | 9   | 20.135    | 31.820     | 20.139    | 31.556     | 20.127    | 31.795     |
|                 | 12  | 20.606    | 29.347     | 20.638    | 29.817     | 20.596    | 29.580     |
|                 | 15  | 20.462    | 29.183     | 20.416    | 29.429     | 20.424    | 29.524     |
| bZIP16/bzip16-2 | 3   | 20.693    | 28.094     | 20.638    | 27.947     | 20.618    | 27.891     |
|                 | 6   | 20.684    | 28.749     | 20.685    | 28.843     | 20.643    | 28.719     |
|                 | 9   | 19.515    | 30.754     | 19.498    | 31.194     | 19.609    | 30.955     |
|                 | 12  | 20.748    | 29.683     | 20.722    | 30.711     | 20.957    | 30.231     |
|                 | 15  | 20.497    | 27.752     | 20.545    | 29.407     | 20.670    | 29.206     |
| bZIP16ox        | 3   | 20.290    | 26.621     | 20.232    | 26.656     | 20.297    | 26.708     |
|                 | 6   | 20.085    | 27.963     | 20.094    | 27.960     | 20.132    | 27.982     |
|                 | 9   | 19.809    | 30.291     | 19.969    | 30.709     | 19.944    | 30.213     |
|                 | 12  | 20.650    | 29.383     | 20.695    | 29.392     | 20.641    | 29.509     |
|                 | 15  | 20.226    | 29.169     | 20.188    | 28.822     | 20.220    | 28.783     |

| R1-1              | R1-2              | R1-3              | R1-1          | R1-2   | R1-3   | (R1+R2)/3 | STEDV/√n |
|-------------------|-------------------|-------------------|---------------|--------|--------|-----------|----------|
| $\Delta CT(RGL2)$ | $\Delta CT(RGL2)$ | $\Delta CT(RGL2)$ | <b>2</b> -4CT | o-ACT  | o-ACT  | o-ACT     | GEM      |
| -UBQ-ct)          | -UBQ-ct)          | -UBQ-ct)          | 2             | 2      | 2      | 2         | SEM      |
| 6.238             | 6.310             | 6.399             | 0.0132        | 0.0126 | 0.0118 | 0.0126    | 0.0004   |
| 7.912             | 7.904             | 8.207             | 0.0042        | 0.0042 | 0.0034 | 0.0039    | 0.0003   |
| 11.004            | 11.393            | 10.911            | 0.0005        | 0.0004 | 0.0005 | 0.0005    | 0.0000   |
| 8.777             | 8.465             | 8.885             | 0.0023        | 0.0028 | 0.0021 | 0.0024    | 0.0002   |
| 8.330             | 8.229             | 8.193             | 0.0031        | 0.0033 | 0.0034 | 0.0033    | 0.0001   |
| 6.248             | 6.399             | 6.601             | 0.0132        | 0.0118 | 0.0103 | 0.0118    | 0.0008   |
| 8.446             | 8.322             | 8.464             | 0.0029        | 0.0031 | 0.0028 | 0.0029    | 0.0001   |
| 11.685            | 11.417            | 11.668            | 0.0003        | 0.0004 | 0.0003 | 0.0003    | 0.0000   |
| 8.741             | 9.179             | 8.984             | 0.0023        | 0.0017 | 0.0020 | 0.0020    | 0.0002   |
| 8.721             | 9.013             | 9.100             | 0.0024        | 0.0019 | 0.0018 | 0.0020    | 0.0002   |
| 7.401             | 7.309             | 7.273             | 0.0059        | 0.0063 | 0.0065 | 0.0062    | 0.0002   |
| 8.065             | 8.158             | 8.076             | 0.0037        | 0.0035 | 0.0037 | 0.0036    | 0.0001   |
| 11.239            | 11.696            | 11.346            | 0.0004        | 0.0003 | 0.0004 | 0.0004    | 0.0000   |
| 8.935             | 9.989             | 9.274             | 0.0020        | 0.0010 | 0.0016 | 0.0015    | 0.0003   |
| 7.255             | 8.862             | 8.536             | 0.0065        | 0.0021 | 0.0027 | 0.0038    | 0.0014   |
| 6.331             | 6.424             | 6.411             | 0.0124        | 0.0116 | 0.0118 | 0.0119    | 0.0002   |
| 7.878             | 7.866             | 7.850             | 0.0043        | 0.0043 | 0.0043 | 0.0043    | 0.0000   |
| 10.482            | 10.740            | 10.269            | 0.0007        | 0.0006 | 0.0008 | 0.0007    | 0.0001   |
| 8.733             | 8.697             | 8.868             | 0.0024        | 0.0024 | 0.0021 | 0.0023    | 0.0001   |
| 8.943             | 8.634             | 8.563             | 0.0020        | 0.0025 | 0.0026 | 0.0024    | 0.0002   |

# FLC

|          |          | R1        |           | R2        |           | R3        |           |
|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|
|          | <b>1</b> | AVE       | AVE       | AVE       | AVE       | AVE       | AVE       |
|          | nrs      | (UBC-0.5) | (FLC-0.5) | (UBC-0.5) | (FLC-0.5) | (UBC-0.5) | (FLC-0.5) |
| Ler      | 3        | 20.476    | 29.331    | 20.616    | 29.540    | 20.487    | 29.334    |
|          | 6        | 20.814    | 29.496    | 20.692    | 29.466    | 20.705    | 30.084    |
|          | 9        | 20.024    | 29.664    | 20.045    | 29.767    | 20.012    | 29.839    |
|          | 12       | 20.775    | 29.317    | 20.818    | 29.244    | 20.690    | 28.999    |
|          | 15       | 20.626    | 28.979    | 20.664    | 29.368    | 20.718    | 28.939    |
| bzip16-2 | 3        | 20.434    | 26.966    | 20.417    | 26.787    | 20.416    | 26.878    |
|          | 6        | 20.731    | 26.984    | 20.732    | 27.030    | 20.738    | 26.997    |
|          | 9        | 20.135    | 26.725    | 20.139    | 26.705    | 20.127    | 26.674    |

|             |              | 12   | 20.606   | 26.505        | 20.638        | 26.441        | 20.596        | 26.420            |
|-------------|--------------|------|----------|---------------|---------------|---------------|---------------|-------------------|
|             |              | 15   | 20.462   | 26.647        | 20.416        | 26.546        | 20.424        | 26.422            |
| bZIP16/bziį | <i>o16-2</i> | 3    | 20.693   | 27.606        | 20.638        | 27.683        | 20.618        | 27.612            |
|             |              | 6    | 20.684   | 27.807        | 20.685        | 27.860        | 20.643        | 27.321            |
|             |              | 9    | 19.515   | 26.832        | 19.498        | 26.930        | 19.609        | 27.119            |
|             |              | 12   | 20.748   | 26.929        | 20.722        | 27.053        | 20.957        | 27.198            |
|             |              | 15   | 20.497   | 26.860        | 20.545        | 26.926        | 20.670        | 26.958            |
| bZIP16ox    |              | 3    | 20.290   | 29.605        | 20.232        | 29.246        | 20.297        | 29.107            |
|             |              | 6    | 20.085   | 29.282        | 20.094        | 29.320        | 20.132        | 29.157            |
|             |              | 9    | 19.809   | 29.889        | 19.969        | 29.554        | 19.944        | 29.595            |
|             |              | 12   | 20.650   | 29.962        | 20.695        | 29.908        | 20.641        | 29.692            |
|             |              | 15   | 20.226   | 29.556        | 20.188        | 29.707        | 20.220        | 29.358            |
|             |              |      |          |               |               |               |               |                   |
| R1-1        | R1-2         |      | R1-3     | R1-1          | R1-2          | R1-3          | (R1+R2)/3     | STEDV/ $\sqrt{n}$ |
| ΔCT(FLC     | ΔCT(I        | FLC  | ΔCT(FLC  | <b>2</b> -ΔCT | <b>2</b> -ΔCT | <b>2</b> -ΔCT | <b>2</b> -ΔCT | SEM               |
| -UBQ-ct)    | -UBQ         | -ct) | -UBQ-ct) | 2             | 2             | 2             | 2             | SEM               |
| 8.855       | 8.9          | 24   | 8.847    | 0.0022        | 0.0021        | 0.0022        | 0.0021        | 0.0000            |
| 8.682       | 8.7          | 74   | 9.379    | 0.0024        | 0.0023        | 0.0015        | 0.0021        | 0.0003            |
| 9.640       | 9.7          | 22   | 9.827    | 0.0013        | 0.0012        | 0.0011        | 0.0012        | 0.0000            |
| 8.542       | 8.4          | 26   | 8.309    | 0.0027        | 0.0029        | 0.0032        | 0.0029        | 0.0001            |
| 8.353       | 8.7          | 04   | 8.221    | 0.0031        | 0.0024        | 0.0034        | 0.0029        | 0.0003            |
| 6.532       | 6.3          | 70   | 6.462    | 0.0108        | 0.0121        | 0.0113        | 0.0114        | 0.0004            |
| 6.253       | 6.2          | 98   | 6.259    | 0.0131        | 0.0127        | 0.0131        | 0.0130        | 0.0001            |
| 6.590       | 6.5          | 66   | 6.547    | 0.0104        | 0.0106        | 0.0107        | 0.0105        | 0.0001            |
| 5.899       | 5.8          | 03   | 5.824    | 0.0168        | 0.0179        | 0.0177        | 0.0174        | 0.0003            |
| 6.185       | 6.1          | 30   | 5.998    | 0.0137        | 0.0143        | 0.0156        | 0.0146        | 0.0006            |
| 6.913       | 7.0          | 45   | 6.994    | 0.0083        | 0.0076        | 0.0078        | 0.0079        | 0.0002            |
| 7.123       | 7.1          | 75   | 6.678    | 0.0072        | 0.0069        | 0.0098        | 0.0080        | 0.0009            |
| 7.317       | 7.4          | 32   | 7.510    | 0.0063        | 0.0058        | 0.0055        | 0.0058        | 0.0002            |
| 6.181       | 6.3          | 31   | 6.241    | 0.0138        | 0.0124        | 0.0132        | 0.0131        | 0.0004            |
| 6.363       | 6.3          | 81   | 6.288    | 0.0121        | 0.0120        | 0.0128        | 0.0123        | 0.0002            |
| 9.315       | 9.0          | 14   | 8.810    | 0.0016        | 0.0019        | 0.0022        | 0.0019        | 0.0002            |
| 9.197       | 9.2          | 26   | 9.025    | 0.0017        | 0.0017        | 0.0019        | 0.0018        | 0.0001            |
| 10.080      | 9.5          | 85   | 9.651    | 0.0009        | 0.0013        | 0.0012        | 0.0012        | 0.0001            |
| 9.312       | 9.2          | 13   | 9.051    | 0.0016        | 0.0017        | 0.0019        | 0.0017        | 0.0001            |
| 9.330       | 9.5          | 19   | 9.138    | 0.0016        | 0.0014        | 0.0018        | 0.0016        | 0.0001            |

## SOC1

|             |              |                   | R1        |            | R2        |            | R3        |            |
|-------------|--------------|-------------------|-----------|------------|-----------|------------|-----------|------------|
|             |              | <b>h</b>          | AVE       | AVE        | AVE       | AVE        | AVE       | AVE        |
|             |              | nrs               | (UBC-0.5) | (SOC1-0.5) | (UBC-0.5) | (SOC1-0.5) | (UBC-0.5) | (SOC1-0.5) |
| Ler         |              | 3                 | 20.476    | 24.555     | 20.616    | 24.796     | 20.487    | 24.777     |
|             |              | 6                 | 20.814    | 24.308     | 20.692    | 24.291     | 20.705    | 24.417     |
|             |              | 9                 | 20.024    | 24.105     | 20.045    | 23.955     | 20.012    | 24.320     |
|             |              | 12                | 20.775    | 25.231     | 20.818    | 25.242     | 20.690    | 25.235     |
|             |              | 15                | 20.626    | 25.582     | 20.664    | 25.781     | 20.718    | 25.632     |
| bzip16-2    |              | 3                 | 20.434    | 24.870     | 20.417    | 25.181     | 20.416    | 25.197     |
|             |              | 6                 | 20.731    | 24.987     | 20.732    | 24.796     | 20.738    | 24.847     |
|             |              | 9                 | 20.135    | 25.261     | 20.139    | 25.232     | 20.127    | 25.140     |
|             |              | 12                | 20.606    | 25.896     | 20.638    | 25.929     | 20.596    | 25.704     |
|             |              | 15                | 20.462    | 26.395     | 20.416    | 26.380     | 20.424    | 26.311     |
| bZIP16/bzip | <i>o16-2</i> | 3                 | 20.693    | 25.205     | 20.638    | 25.465     | 20.618    | 25.448     |
|             |              | 6                 | 20.684    | 24.230     | 20.685    | 24.419     | 20.643    | 24.272     |
|             |              | 9                 | 19.515    | 24.603     | 19.498    | 24.631     | 19.609    | 24.685     |
|             |              | 12                | 20.748    | 25.659     | 20.722    | 25.684     | 20.957    | 25.547     |
|             |              | 15                | 20.497    | 25.973     | 20.545    | 25.982     | 20.670    | 25.997     |
| bZIP16ox    |              | 3                 | 20.290    | 23.887     | 20.232    | 24.001     | 20.297    | 24.034     |
|             |              | 6                 | 20.085    | 23.187     | 20.094    | 23.200     | 20.132    | 23.274     |
|             |              | 9                 | 19.809    | 24.022     | 19.969    | 24.267     | 19.944    | 24.227     |
|             |              | 12                | 20.650    | 24.472     | 20.695    | 24.576     | 20.641    | 24.578     |
|             |              | 15                | 20.226    | 24.846     | 20.188    | 24.908     | 20.220    | 24.938     |
| -           |              |                   |           |            | •         |            | •         | •          |
| R1-1        | R1-2         | ,                 | R1-3      | R1-1       | R1-2      | R1-3       | (R1+R2)/3 | STEDV/√n   |
| ACT(SOC1    | ΔCT          | (SOC <sup>-</sup> |           |            |           |            |           |            |

|                      |                      |                      |                   |                   |                   | ()/ -             | ~      |
|----------------------|----------------------|----------------------|-------------------|-------------------|-------------------|-------------------|--------|
| ΔCT(SOC1<br>-UBQ-ct) | ΔCT(SOC1<br>-UBQ-ct) | ΔCT(SOC1<br>-UBQ-ct) | 2 <sup>-ΔCT</sup> | 2 <sup>-ΔCT</sup> | 2 <sup>-ΔCT</sup> | 2 <sup>-ΔCT</sup> | SEM    |
| 4.079                | 4.180                | 4.290                | 0.0592            | 0.0552            | 0.0511            | 0.0552            | 0.0023 |
| 3.494                | 3.599                | 3.712                | 0.0888            | 0.0825            | 0.0763            | 0.0825            | 0.0036 |
| 4.081                | 3.910                | 4.308                | 0.0591            | 0.0665            | 0.0505            | 0.0587            | 0.0046 |
| 4.456                | 4.424                | 4.545                | 0.0456            | 0.0466            | 0.0428            | 0.0450            | 0.0011 |
| 4.956                | 5.117                | 4.914                | 0.0322            | 0.0288            | 0.0332            | 0.0314            | 0.0013 |
| 4.436                | 4.764                | 4.781                | 0.0462            | 0.0368            | 0.0364            | 0.0398            | 0.0032 |
| 4.256                | 4.064                | 4.109                | 0.0523            | 0.0598            | 0.0580            | 0.0567            | 0.0022 |
| 5.126                | 5.093                | 5.013                | 0.0286            | 0.0293            | 0.0310            | 0.0296            | 0.0007 |

| 5.290 | 5.291 | 5.108 | 0.0256 | 0.0255 | 0.0290 | 0.0267 | 0.0011 |
|-------|-------|-------|--------|--------|--------|--------|--------|
| 5.933 | 5.964 | 5.887 | 0.0164 | 0.0160 | 0.0169 | 0.0164 | 0.0003 |
| 4.512 | 4.827 | 4.830 | 0.0438 | 0.0352 | 0.0352 | 0.0381 | 0.0029 |
| 3.546 | 3.734 | 3.629 | 0.0856 | 0.0752 | 0.0808 | 0.0805 | 0.0030 |
| 5.088 | 5.133 | 5.076 | 0.0294 | 0.0285 | 0.0296 | 0.0292 | 0.0003 |
| 4.911 | 4.962 | 4.590 | 0.0332 | 0.0321 | 0.0415 | 0.0356 | 0.0030 |
| 5.476 | 5.437 | 5.327 | 0.0225 | 0.0231 | 0.0249 | 0.0235 | 0.0007 |
| 3.597 | 3.769 | 3.737 | 0.0826 | 0.0734 | 0.0750 | 0.0770 | 0.0029 |
| 3.102 | 3.106 | 3.142 | 0.1165 | 0.1161 | 0.1133 | 0.1153 | 0.0010 |
| 4.213 | 4.298 | 4.283 | 0.0539 | 0.0508 | 0.0514 | 0.0520 | 0.0010 |
| 3.822 | 3.881 | 3.937 | 0.0707 | 0.0679 | 0.0653 | 0.0680 | 0.0016 |
| 4.620 | 4.720 | 4.718 | 0.0407 | 0.0379 | 0.0380 | 0.0389 | 0.0009 |

CO

|                  |     | R1        |          | R2        |          | R3        |          |
|------------------|-----|-----------|----------|-----------|----------|-----------|----------|
|                  | hrs | AVE       | AVE      | AVE       | AVE      | AVE       | AVE      |
|                  |     | (UBC-0.5) | (CO-0.5) | (UBC-0.5) | (CO-0.5) | (UBC-0.5) | (CO-0.5) |
| Ler              | 3   | 20.476    | 33.192   | 20.616    | 33.112   | 20.487    | 33.207   |
|                  | 6   | 20.814    | 33.324   | 20.692    | 32.819   | 20.705    | 32.420   |
|                  | 9   | 20.024    | 28.475   | 20.045    | 28.293   | 20.012    | 28.628   |
|                  | 12  | 20.775    | 27.932   | 20.818    | 27.970   | 20.690    | 27.738   |
|                  | 15  | 20.626    | 27.815   | 20.664    | 27.813   | 20.718    | 27.851   |
| bzip16-2         | 3   | 20.434    | 33.113   | 20.417    | 32.429   | 20.416    | 34.016   |
|                  | 6   | 20.731    | 32.953   | 20.732    | 32.204   | 20.738    | 32.967   |
|                  | 9   | 20.135    | 27.578   | 20.139    | 27.975   | 20.127    | 28.073   |
|                  | 12  | 20.606    | 26.832   | 20.638    | 27.430   | 20.596    | 27.839   |
|                  | 15  | 20.462    | 28.237   | 20.416    | 27.735   | 20.424    | 28.002   |
| bZIP16 /bzip16-2 | 3   | 20.693    | 33.947   | 20.638    | 34.094   | 20.618    | 33.609   |
|                  | 6   | 20.684    | 32.890   | 20.685    | 32.969   | 20.643    | 32.355   |
|                  | 9   | 19.515    | 27.865   | 19.498    | 27.969   | 19.609    | 28.060   |
|                  | 12  | 20.748    | 27.696   | 20.722    | 28.037   | 20.957    | 27.975   |
|                  | 15  | 20.497    | 28.070   | 20.545    | 28.215   | 20.670    | 28.370   |
| bZIP16ox         | 3   | 20.290    | 33.612   | 20.232    | 33.709   | 20.297    | 33.787   |
|                  | 6   | 20.085    | 31.320   | 20.094    | 31.511   | 20.132    | 32.018   |
|                  | 9   | 19.809    | 27.446   | 19.969    | 28.001   | 19.944    | 28.471   |
|                  | 12  | 20.650    | 27.075   | 20.695    | 27.421   | 20.641    | 27.743   |
|                  | 15  | 20.226    | 28.035   | 20.188    | 27.859   | 20.220    | 27.950   |

| R1-1     | R1-2     | R1-3     | R1-1              | R1-2              | R1-3              | (R1+R2)/3         | STEDV/√n |
|----------|----------|----------|-------------------|-------------------|-------------------|-------------------|----------|
| ΔCT(CO-U | ΔCT(CO-U | ΔCT(CO-U | 2 <sup>-ΔCT</sup> | 2 <sup>-ΔCT</sup> | 2 <sup>-ΔCT</sup> | 2 <sup>-ΔCT</sup> | SEM      |
| BQ-ct)   | BQ-ct)   | BQ-ct)   |                   |                   |                   |                   |          |
| 12.716   | 12.496   | 12.720   | 0.0001            | 0.0002            | 0.0001            | 0.0002            | 0.0000   |
| 12.510   | 12.127   | 11.715   | 0.0002            | 0.0002            | 0.0003            | 0.0002            | 0.0000   |
| 8.451    | 8.248    | 8.616    | 0.0029            | 0.0033            | 0.0025            | 0.0029            | 0.0002   |
| 7.157    | 7.152    | 7.048    | 0.0070            | 0.0070            | 0.0076            | 0.0072            | 0.0002   |
| 7.189    | 7.149    | 7.133    | 0.0069            | 0.0070            | 0.0071            | 0.0070            | 0.0001   |
| 12.679   | 12.012   | 13.600   | 0.0002            | 0.0002            | 0.0001            | 0.0002            | 0.0000   |
| 12.222   | 11.472   | 12.229   | 0.0002            | 0.0004            | 0.0002            | 0.0003            | 0.0000   |
| 7.443    | 7.836    | 7.946    | 0.0057            | 0.0044            | 0.0041            | 0.0047            | 0.0005   |
| 6.226    | 6.792    | 7.243    | 0.0134            | 0.0090            | 0.0066            | 0.0097            | 0.0020   |
| 7.775    | 7.319    | 7.578    | 0.0046            | 0.0063            | 0.0052            | 0.0054            | 0.0005   |
| 13.254   | 13.456   | 12.991   | 0.0001            | 0.0001            | 0.0001            | 0.0001            | 0.0000   |
| 12.206   | 12.284   | 11.712   | 0.0002            | 0.0002            | 0.0003            | 0.0002            | 0.0000   |
| 8.350    | 8.471    | 8.451    | 0.0031            | 0.0028            | 0.0029            | 0.0029            | 0.0001   |
| 6.948    | 7.315    | 7.018    | 0.0081            | 0.0063            | 0.0077            | 0.0074            | 0.0006   |
| 7.573    | 7.670    | 7.700    | 0.0053            | 0.0049            | 0.0048            | 0.0050            | 0.0001   |
| 13.322   | 13.477   | 13.490   | 0.0001            | 0.0001            | 0.0001            | 0.0001            | 0.0000   |
| 11.235   | 11.417   | 11.886   | 0.0004            | 0.0004            | 0.0003            | 0.0003            | 0.0000   |
| 7.637    | 8.032    | 8.527    | 0.0050            | 0.0038            | 0.0027            | 0.0039            | 0.0007   |
| 6.425    | 6.726    | 7.102    | 0.0116            | 0.0094            | 0.0073            | 0.0095            | 0.0013   |
| 7.809    | 7.671    | 7.730    | 0.0045            | 0.0049            | 0.0047            | 0.0047            | 0.0001   |

FT

|          |     | R1       |          | R2        |          | R3        |          |
|----------|-----|----------|----------|-----------|----------|-----------|----------|
|          | 1   | AVE      | AVE      | AVE       | AVE      | AVE       | AVE      |
|          | nrs | UBC-0.5) | (FT-0.1) | (UBC-0.5) | (FT-0.1) | (UBC-0.5) | (FT-0.1) |
| Ler      | 3   | 20.476   | 34.546   | 20.616    | 37.570   | 20.487    | 35.532   |
|          | 6   | 20.814   | 33.247   | 20.692    | 33.591   | 20.705    | 33.173   |
|          | 9   | 20.024   | 33.251   | 20.045    | 33.571   | 20.012    | 33.748   |
|          | 12  | 20.775   | 35.863   | 20.818    | 33.929   | 20.690    | 33.864   |
|          | 15  | 20.626   | 35.170   | 20.664    | 35.569   | 20.718    | 35.375   |
| bzip16-2 | 3   | 20.434   | 37.477   | 20.417    | 35.020   | 20.416    | 37.477   |
|          | 6   | 20.731   | 35.151   | 20.732    | 36.531   | 20.738    | 36.154   |
|          | 9   | 20.135   | 34.843   | 20.139    | 34.785   | 20.127    | 34.785   |
|          | 12  | 20.606   | 35.228   | 20.638    | 34.712   | 20.596    | 36.474   |
|          | 15  | 20.462   | 38.113   | 20.416    | 37.417   | 20.424    | 37.387   |
| bZIP16/bzip | 16-2 | 3     | 20.693   | 33.933        | 20.638        | 35.990        | 20.618        | 36.160   |
|-------------|------|-------|----------|---------------|---------------|---------------|---------------|----------|
|             |      | 6     | 20.684   | 35.488        | 20.685        | 36.463        | 20.643        | 35.278   |
|             |      | 9     | 19.515   | 34.631        | 19.498        | 33.772        | 19.609        | 34.636   |
|             |      | 12    | 20.748   | 34.357        | 20.722        | 35.466        | 20.957        | 35.243   |
|             |      | 15    | 20.497   | 36.883        | 20.545        | 36.588        | 20.670        | 36.552   |
| bZIP16ox    |      | 3     | 20.290   | 35.342        | 20.232        | 35.197        | 20.297        | 35.288   |
|             |      | 6     | 20.085   | 33.573        | 20.094        | 32.734        | 20.132        | 33.333   |
|             |      | 9     | 19.809   | 34.132        | 19.969        | 35.468        | 19.944        | 35.178   |
|             |      | 12    | 20.650   | 33.183        | 20.695        | 33.621        | 20.641        | 33.818   |
|             |      | 15    | 20.226   | 33.256        | 20.188        | 33.587        | 20.220        | 34.682   |
|             | •    |       |          |               |               | ·             |               |          |
| R1-1        | R1-2 |       | R1-3     | R1-1          | R1-2          | R1-3          | (R1+R2)/3     | STEDV/√n |
| ∆CT(FT-U    | ΔCT( | (FT-U | ΔCT(FT-U | <b>2</b> -ΔCT | <b>2</b> -ΔCT | <b>2</b> -ΔCT | <b>2</b> -ΔCT | SEM      |
| BQ-ct)      | BQ-c | :t)   | BQ-ct)   | 2             | 2             | 2             | 2             | SEM      |
| 14.070      | 16   | .954  | 15.045   | 0.0001        | 0.0000        | 0.0000        | 0.0000        | 0.0000   |
| 12.433      | 12   | .899  | 12.468   | 0.0002        | 0.0001        | 0.0002        | 0.0002        | 0.0000   |
| 13.227      | 13   | .526  | 13.736   | 0.0001        | 0.0001        | 0.0001        | 0.0001        | 0.0000   |
| 15.088      | 13   | .111  | 13.174   | 0.0000        | 0.0001        | 0.0001        | 0.0001        | 0.0000   |
| 14.544      | 14   | .905  | 14.657   | 0.0000        | 0.0000        | 0.0000        | 0.0000        | 0.0000   |
| 17.043      | 14   | .603  | 17.061   | 0.0000        | 0.0000        | 0.0000        | 0.0000        | 0.0000   |
| 14.420      | 15   | .799  | 15.416   | 0.0000        | 0.0000        | 0.0000        | 0.0000        | 0.0000   |
| 14.708      | 14   | .646  | 14.658   | 0.0000        | 0.0000        | 0.0000        | 0.0000        | 0.0000   |
| 14.622      | 14   | .074  | 15.878   | 0.0000        | 0.0001        | 0.0000        | 0.0000        | 0.0000   |
| 17.651      | 17   | .001  | 16.963   | 0.0000        | 0.0000        | 0.0000        | 0.0000        | 0.0000   |
| 13.240      | 15   | .352  | 15.542   | 0.0001        | 0.0000        | 0.0000        | 0.0000        | 0.0000   |
| 14.804      | 15   | .778  | 14.635   | 0.0000        | 0.0000        | 0.0000        | 0.0000        | 0.0000   |
| 15.116      | 14   | .274  | 15.027   | 0.0000        | 0.0001        | 0.0000        | 0.0000        | 0.0000   |
| 13.609      | 14   | .744  | 14.286   | 0.0001        | 0.0000        | 0.0001        | 0.0001        | 0.0000   |
| 16.386      | 16   | .043  | 15.882   | 0.0000        | 0.0000        | 0.0000        | 0.0000        | 0.0000   |
| 15.052      | 14   | .965  | 14.991   | 0.0000        | 0.0000        | 0.0000        | 0.0000        | 0.0000   |
| 13.488      | 12   | .640  | 13.201   | 0.0001        | 0.0002        | 0.0001        | 0.0001        | 0.0000   |
| 14.323      | 15   | .499  | 15.234   | 0.0000        | 0.0000        | 0.0000        | 0.0000        | 0.0000   |
| 12.533      | 12   | .926  | 13.177   | 0.0002        | 0.0001        | 0.0001        | 0.0001        | 0.0000   |
| 13.030      | 13   | .399  | 14.462   | 0.0001        | 0.0001        | 0.0000        | 0.0001        | 0.0000   |

|                 |     | R1        |              | R2        |              | R3        |              |
|-----------------|-----|-----------|--------------|-----------|--------------|-----------|--------------|
|                 | has | AVE       | AVE          | AVE       | AVE          | AVE       | AVE          |
|                 | ms  | (UBC-0.5) | (LFY-0.2)    | (UBC-0.5) | (LFY-0.2)    | (UBC-0.5) | (LFY-0.2)    |
| Ler             | 3   | 20.476    | 33.429       | 20.616    | Undetermined | 20.487    | 33.470       |
|                 | 6   | 20.814    | Undetermined | 20.692    | 35.165       | 20.705    | Undetermined |
|                 | 9   | 20.024    | 39.815       | 20.045    | Undetermined | 20.012    | Undetermined |
|                 | 12  | 20.775    | 33.010       | 20.818    | 33.241       | 20.690    | 33.294       |
|                 | 15  | 20.626    | Undetermined | 20.664    | Undetermined | 20.718    | 34.592       |
| bzip16-2        | 3   | 20.434    | 34.581       | 20.417    | 35.164       | 20.416    | 34.127       |
|                 | 6   | 20.731    | 35.103       | 20.732    | 35.077       | 20.738    | Undetermined |
|                 | 9   | 20.135    | 34.967       | 20.139    | Undetermined | 20.127    | Undetermined |
|                 | 12  | 20.606    | 35.334       | 20.638    | 33.503       | 20.596    | 34.140       |
|                 | 15  | 20.462    | Undetermined | 20.416    | 33.817       | 20.424    | 33.729       |
| bZIP16/bzip16-2 | 3   | 20.693    | 34.199       | 20.638    | Undetermined | 20.618    | 35.157       |
|                 | 6   | 20.684    | 35.040       | 20.685    | 35.412       | 20.643    | 34.972       |
|                 | 9   | 19.515    | 35.930       | 19.498    | 35.361       | 19.609    | 33.646       |
|                 | 12  | 20.748    | 34.202       | 20.722    | 35.133       | 20.957    | 35.040       |
|                 | 15  | 20.497    | 34.508       | 20.545    | 35.108       | 20.670    | 33.451       |
| bZIP16ox        | 3   | 20.290    | 35.986       | 20.232    | 34.839       | 20.297    | Undetermined |
|                 | 6   | 20.085    | 33.362       | 20.094    | Undetermined | 20.132    | 35.085       |
|                 | 9   | 19.809    | 35.120       | 19.969    | Undetermined | 19.944    | Undetermined |
|                 | 12  | 20.650    | 35.095       | 20.695    | 35.266       | 20.641    | 35.123       |
|                 | 15  | 20.226    | 34.975       | 20.188    | 35.232       | 20.220    | 34.362       |

| R1-1     | R1-2     | R1-3     | R1-1          | R1-2          | R1-3          | (R1+R2)/3     | STEDV/√n |
|----------|----------|----------|---------------|---------------|---------------|---------------|----------|
| ΔCT(LFY- | ΔCT(LFY- | ΔCT(LFY- | <b>2</b> -ΔCT | <b>2</b> -ΔCT | <b>2</b> -ΔCT | <b>2</b> -ДСТ | SEM      |
| UBQ-ct)  | UBQ-ct)  | UBQ-ct)  | 2             | 2             | 2             | 2             | SEIVI    |
| 12.953   | #VALUE!  | 12.983   | 0.0001        | #VALUE!       | 0.0001        | #VALUE!       | #VALUE!  |
| #VALUE!  | 14.473   | #VALUE!  | #VALUE!       | 0.0000        | #VALUE!       | #VALUE!       | #VALUE!  |
| 19.791   | #VALUE!  | #VALUE!  | 0.0000        | #VALUE!       | #VALUE!       | #VALUE!       | #VALUE!  |
| 12.235   | 12.423   | 12.604   | 0.0002        | 0.0002        | 0.0002        | 0.0002        | 0.0000   |
| #VALUE!  | #VALUE!  | 13.874   | #VALUE!       | #VALUE!       | 0.0001        | #VALUE!       | #VALUE!  |
| #REF!    | 14.164   | 14.748   | #REF!         | 0.0001        | 0.0000        | #REF!         | #REF!    |
| #REF!    | 14.371   | 14.339   | #REF!         | 0.0000        | 0.0000        | #REF!         | #REF!    |
| #REF!    | 14.828   | #VALUE!  | #REF!         | 0.0000        | #VALUE!       | #REF!         | #REF!    |

| #REF!  | 14.696  | 12.907  | #REF!  | 0.0000  | 0.0001  | #REF!   | #REF!   |
|--------|---------|---------|--------|---------|---------|---------|---------|
| #REF!  | #VALUE! | 13.393  | #REF!  | #VALUE! | 0.0001  | #REF!   | #REF!   |
| 13.506 | #VALUE! | 14.539  | 0.0001 | #VALUE! | 0.0000  | #VALUE! | #VALUE! |
| 14.356 | 14.727  | 14.329  | 0.0000 | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| 16.415 | 15.863  | 14.037  | 0.0000 | 0.0000  | 0.0001  | 0.0000  | 0.0000  |
| 13.454 | 14.411  | 14.083  | 0.0001 | 0.0000  | 0.0001  | 0.0001  | 0.0000  |
| 14.011 | 14.563  | 12.781  | 0.0001 | 0.0000  | 0.0001  | 0.0001  | 0.0000  |
| 15.696 | 14.607  | #VALUE! | 0.0000 | 0.0000  | #VALUE! | #VALUE! | #VALUE! |
| 13.277 | #VALUE! | 14.953  | 0.0001 | #VALUE! | 0.0000  | #VALUE! | #VALUE! |
| 15.311 | #VALUE! | #VALUE! | 0.0000 | #VALUE! | #VALUE! | #VALUE! | #VALUE! |
| 14.445 | 14.571  | 14.482  | 0.0000 | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| 14.749 | 15.044  | 14.142  | 0.0000 | 0.0000  | 0.0001  | 0.0000  | 0.0000  |

## bZIP16

|                 |             | R1     |                       | R2        |                       | R3        |                       |
|-----------------|-------------|--------|-----------------------|-----------|-----------------------|-----------|-----------------------|
|                 | 1           | AVE    | AVE                   | AVE       | AVE                   | AVE       | AVE                   |
|                 | (UBC-0.5) ( |        | ( <i>bzip16</i> -0.5) | (UBC-0.5) | ( <i>bzip16-0.5</i> ) | (UBC-0.5) | ( <i>bzip16-0.5</i> ) |
| Ler             | 3           | 20.476 | 25.985                | 20.616    | 25.998                | 20.487    | 26.311                |
|                 | 6           | 20.814 | 26.803                | 20.692    | 26.94                 | 20.705    | 26.896                |
|                 | 9           | 20.024 | 26.511                | 20.045    | 26.648                | 20.012    | 26.591                |
|                 | 12          | 20.775 | 26.564                | 20.818    | 26.661                | 20.690    | 26.499                |
|                 | 15          | 20.626 | 26.576                | 20.664    | 26.85                 | 20.718    | 26.453                |
| bzip16-2        | 3           | 20.434 | 31.779                | 20.417    | 32.431                | 20.416    | 32.329                |
|                 | 6           | 20.731 | 32.437                | 20.732    | 32.086                | 20.738    | 32.566                |
|                 | 9           | 20.135 | 31.859                | 20.139    | 32.493                | 20.127    | 32.119                |
|                 | 12          | 20.606 | 30.863                | 20.638    | 31.187                | 20.596    | 31.242                |
|                 | 15          | 20.462 | 31.319                | 20.416    | 31.431                | 20.424    | 31.348                |
| bZIP16/bzip16-2 | 3           | 20.693 | 24.787                | 20.638    | 24.91                 | 20.618    | 25.171                |
|                 | 6           | 20.684 | 25.014                | 20.685    | 25.193                | 20.643    | 25.225                |
|                 | 9           | 19.515 | 24.77                 | 19.498    | 24.727                | 19.609    | 24.93                 |
|                 | 12          | 20.748 | 24.964                | 20.722    | 25.079                | 20.957    | 24.935                |
|                 | 15          | 20.497 | 24.942                | 20.545    | 24.921                | 20.670    | 25.083                |
| bZIP16ox        | 3           | 20.290 | 24.267                | 20.232    | 24.463                | 20.297    | 24.563                |
|                 | 6           | 20.085 | 23.565                | 20.094    | 23.839                | 20.132    | 23.945                |
|                 | 9           | 19.809 | 22.966                | 19.969    | 23.072                | 19.944    | 23.113                |
|                 | 12          | 20.650 | 22.16                 | 20.695    | 22.384                | 20.641    | 22.39                 |
|                 | 15          | 20.226 | 21.645                | 20.188    | 21.59                 | 20.220    | 21.641                |

| R1-1                | R1-2                | R1-3                | R1-1   | R1-2   | R1-3          | (R1+R2)/3     | STEDV/√n |
|---------------------|---------------------|---------------------|--------|--------|---------------|---------------|----------|
| $\Delta CT(bzip16)$ | $\Delta CT(bzip16)$ | $\Delta CT(bzip16)$ | a-ACT  | o-ACT  | <b>2</b> -4CT | <b>2</b> -4CT |          |
| -UBQ-ct)            | -UBQ-ct)            | -UBQ-ct)            | 2      | 2      | 2             | 2             | SEM      |
| 5.509               | 5.382               | 5.824               | 0.0220 | 0.0240 | 0.0177        | 0.0212        | 0.0019   |
| 5.989               | 6.248               | 6.191               | 0.0157 | 0.0132 | 0.0137        | 0.0142        | 0.0008   |
| 6.487               | 6.603               | 6.579               | 0.0111 | 0.0103 | 0.0105        | 0.0106        | 0.0003   |
| 5.789               | 5.843               | 5.809               | 0.0181 | 0.0174 | 0.0178        | 0.0178        | 0.0002   |
| 5.950               | 6.186               | 5.735               | 0.0162 | 0.0137 | 0.0188        | 0.0162        | 0.0015   |
| 11.345              | 12.014              | 11.913              | 0.0004 | 0.0002 | 0.0003        | 0.0003        | 0.0000   |
| 11.706              | 11.354              | 11.828              | 0.0003 | 0.0004 | 0.0003        | 0.0003        | 0.0000   |
| 11.724              | 12.354              | 11.992              | 0.0003 | 0.0002 | 0.0002        | 0.0002        | 0.0000   |
| 10.257              | 10.549              | 10.646              | 0.0008 | 0.0007 | 0.0006        | 0.0007        | 0.0001   |
| 10.857              | 11.015              | 10.924              | 0.0005 | 0.0005 | 0.0005        | 0.0005        | 0.0000   |
| 4.094               | 4.272               | 4.553               | 0.0586 | 0.0518 | 0.0426        | 0.0510        | 0.0046   |
| 4.330               | 4.508               | 4.582               | 0.0497 | 0.0439 | 0.0418        | 0.0451        | 0.0024   |
| 5.255               | 5.229               | 5.321               | 0.0262 | 0.0267 | 0.0250        | 0.0260        | 0.0005   |
| 4.216               | 4.357               | 3.978               | 0.0538 | 0.0488 | 0.0635        | 0.0554        | 0.0043   |
| 4.445               | 4.376               | 4.413               | 0.0459 | 0.0482 | 0.0469        | 0.0470        | 0.0007   |
| 3.977               | 4.231               | 4.266               | 0.0635 | 0.0533 | 0.0520        | 0.0562        | 0.0036   |
| 3.480               | 3.745               | 3.813               | 0.0896 | 0.0746 | 0.0711        | 0.0785        | 0.0057   |
| 3.157               | 3.103               | 3.169               | 0.1121 | 0.1164 | 0.1112        | 0.1132        | 0.0016   |
| 1.510               | 1.689               | 1.749               | 0.3511 | 0.3101 | 0.2975        | 0.3196        | 0.0162   |
| 1.419               | 1.402               | 1.421               | 0.3740 | 0.3784 | 0.3735        | 0.3753        | 0.0016   |

|          |       | Input  | IP     | ΔCT(IP-input)    | $2^{-\Delta CT}$ | Ave<br>2 <sup>-ΔCT</sup> | STEDV  | Template<br>ratio | %           |
|----------|-------|--------|--------|------------------|------------------|--------------------------|--------|-------------------|-------------|
| Ler      | pFLC  | 24.973 | 31.992 | 7.01900100708007 | 0.0077           | 0.0070                   | 0.0012 | 10                | 0.077102801 |
| Ler      | pFLC  | 24.943 | 32.400 | 7.45700073242187 | 0.0057           |                          |        | 10                |             |
| Ler      | pFLC  | 24.932 | 31.958 | 7.02600097656250 | 0.0077           |                          |        | 10                |             |
| Ler      | FLC   | 23.593 | 30.580 | 6.98699951171875 | 0.0079           | 0.0106                   | 0.0028 | 10                | 0.078832186 |
| Ler      | FLC   | 23.716 | 30.273 | 6.55700111389160 | 0.0106           |                          |        | 10                |             |
| Ler      | FLC   | 23.965 | 30.182 | 6.21699905395507 | 0.0134           |                          |        | 10                |             |
| Ler      | UBC21 | 25.150 | 32.730 | 7.57999992370605 | 0.0052           | 0.0051                   | 0.0001 | 10                | 0.052262798 |
| Ler      | UBC21 | 24.961 | 32.619 | 7.65799903869628 | 0.0050           |                          |        | 10                |             |
| Ler      | UBC21 | 24.978 | 32.596 | 7.61800003051757 | 0.0051           |                          |        | 10                |             |
| bZIP16ox | pFLC  | 24.883 | 27.129 | 2.24600028991699 | 0.2108           | 0.2054                   | 0.0053 | 10                | 2.108077352 |
| bZIP16ox | pFLC  | 24.902 | 27.187 | 2.28499984741210 | 0.2052           |                          |        | 10                |             |
| bZIP16ox | pFLC  | 24.826 | 27.147 | 2.32099914550781 | 0.2001           |                          |        | 10                |             |
| bZIP16ox | FLC   | 23.696 | 28.040 | 4.34400177001953 | 0.0492           | 0.0507                   | 0.0066 | 10                | 0.492408075 |
| bZIP16ox | FLC   | 23.834 | 27.943 | 4.10900115966796 | 0.0580           |                          |        | 10                |             |
| bZIP16ox | FLC   | 23.547 | 28.022 | 4.47499847412109 | 0.0450           |                          |        | 10                |             |
| bZIP16ox | UBC21 | 25.063 | 30.977 | 5.91399955749511 | 0.0166           | 0.0173                   | 0.0007 | 10                | 0.165847427 |
| bZIP16ox | UBC21 | 25.107 | 30.947 | 5.84000015258789 | 0.0175           |                          |        | 10                |             |
| bZIP16ox | UBC21 | 24.989 | 30.791 | 5.80200004577636 | 0.0179           |                          |        | 10                |             |

|--|

|       | Input                                        | IP                                                                                        | ΔCT(                                                                                                    | IP-input)                                                                                                                                 | <b>2-</b> ΔCT                                                                                                                                                                                                        | Ave 2-∆CT                                                                                                                                                                                                                                                     | STEDV                                                                                                                                                                                                                                                                                                      | Template<br>ratio                                                                                                                                                                                                                                                                                                                                   |
|-------|----------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pFLC  | 24.949                                       | 32.117                                                                                    | 7.167                                                                                                   | 33423868815                                                                                                                               | 0.0070                                                                                                                                                                                                               | 0.0070                                                                                                                                                                                                                                                        | 0.0012                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                  |
| FLC   | 23.758                                       | 30.941                                                                                    | 6.586                                                                                                   | 99989318847                                                                                                                               | 0.0106                                                                                                                                                                                                               | 0.0106                                                                                                                                                                                                                                                        | 0.0028                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                  |
| UBC21 | 25.030                                       | 32.648                                                                                    | 7.618                                                                                                   | 66633097331                                                                                                                               | 0.0051                                                                                                                                                                                                               | 0.0050                                                                                                                                                                                                                                                        | 0.0001                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                  |
| pFLC  | 24.870                                       | 27.154                                                                                    | 2.283                                                                                                   | 99976094564                                                                                                                               | 0.2053                                                                                                                                                                                                               | 0.2053                                                                                                                                                                                                                                                        | 0.0053                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                  |
| FLC   | 23.692                                       | 28.002                                                                                    | 4.309                                                                                                   | 33380126953                                                                                                                               | 0.0507                                                                                                                                                                                                               | 0.0507                                                                                                                                                                                                                                                        | 0.0066                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                  |
| UBC21 | 25.053                                       | 30.905                                                                                    | 5.851                                                                                                   | 99991861979                                                                                                                               | 0.0173                                                                                                                                                                                                               | 0.0173                                                                                                                                                                                                                                                        | 0.0006                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                  |
|       | pFLC<br>FLC<br>UBC21<br>pFLC<br>FLC<br>UBC21 | Input   pFLC 24.949   FLC 23.758   UBC21 25.030   pFLC 24.870   FLC 23.692   UBC21 25.053 | InputIPpFLC24.94932.117FLC23.75830.941UBC2125.03032.648pFLC24.87027.154FLC23.69228.002UBC2125.05330.905 | InputIPΔCT(pFLC24.94932.1177.167FLC23.75830.9416.586UBC2125.03032.6487.618pFLC24.87027.1542.283FLC23.69228.0024.309UBC2125.05330.9055.851 | InputIPΔCT(IP-input)pFLC24.94932.1177.16733423868815FLC23.75830.9416.58699989318847UBC2125.03032.6487.61866633097331pFLC24.87027.1542.28399976094564FLC23.69228.0024.30933380126953UBC2125.05330.9055.85199991861979 | InputIPΔCT(IP-input)2-ΔCTpFLC24.94932.1177.167334238688150.0070FLC23.75830.9416.586999893188470.0106UBC2125.03032.6487.618666330973310.0051pFLC24.87027.1542.283999760945640.2053FLC23.69228.0024.309333801269530.0507UBC2125.05330.9055.851999918619790.0173 | InputIPΔCT(IP-input)2-ΔCTAve 2-ΔCTpFLC24.94932.1177.167334238688150.00700.0070FLC23.75830.9416.586999893188470.01060.0106UBC2125.03032.6487.618666330973310.00510.0050pFLC24.87027.1542.283999760945640.20530.2053FLC23.69228.0024.309333801269530.05070.0507UBC2125.05330.9055.851999918619790.01730.0173 | InputIPΔCT(IP-input)2-ΔCTAve 2-ΔCTSTEDVpFLC24.94932.1177.167334238688150.00700.00700.0012FLC23.75830.9416.586999893188470.01060.01060.0028UBC2125.03032.6487.618666330973310.00510.00500.0001pFLC24.87027.1542.283999760945640.20530.20530.0053FLC23.69228.0024.309333801269530.05070.05070.0066UBC2125.05330.9055.851999918619790.01730.01730.0173 |

|          | ODC  | -21  | 25.055     |    | 50.905 | 5.651 |
|----------|------|------|------------|----|--------|-------|
| %        |      | % S7 | ΓEDV       |    | fold   |       |
| 0.077102 | 2801 | (    | 0.0002309  | 96 |        |       |
| 0.078832 | 2186 | (    | ).0005560  | 02 |        |       |
| 0.052262 | 2798 |      | 2.75062E-0 | 05 |        |       |
| 2.10807  | 7352 | (    | 0.00106839 | 91 | 27.    | 34113 |
| 0.492408 | 8075 | (    | 0.00132354 | 41 | 6.3    | 86384 |
| 0.165847 | 7427 | (    | 0.00013592 | 26 | 2.1    | 50991 |

## 評語

探討 bZIP16 對開花的影響,創新度很好,深度也夠,是一件頗為完整的作品, 學生對研究主題瞭解透徹,對問題的對答,有令人激賞的表現。