
i

2012年臺灣國際科學展覽會

優勝作品專輯

國家：United States

編號：110008

作品名稱

Do SAT Problems Have Boiling Points？

得獎獎項

二等獎

作者姓名

Soumya C. Kambhampati

ii

Abstract

The Boolean Satisfiability problem, called SAT for short, is the problem of

determining if a set of constraints involving Boolean (True/False) variables can be

simultaneously satisfied. SAT solvers have become an integral part in many

computations that involve making choices subject to constraints, such as scheduling

software, chip design, decision making for robots (and even Sudoku!).

Given their practical applications, one question is when SAT problems become

hard to solve. The problem difficulty depends on the constrainedness of the SAT

instance, which is defined as the ratio of the number of constraints to the number of

variables. Research in the early 90’s showed that SAT problems are easy to solve both

when the constrainedness is low and when it is high, abruptly transitioning (“boiling

over”) from easy to hard in a very narrow region in the middle.

My project is aimed at verifying this surprising finding. I wrote a basic SAT solver

in Python and used it to solve a large number of randomly generated 3SAT problems

with given level of constrainedness. My experimental results showed that the

percentage of problems with satisfying assignment transitions sharply from 100% to 0%

as constrainedness varies between 4 and 5. Right at this point, the time taken to solve

the problems peaks sharply. Similar behavior also holds for 2SAT and 4SAT. Thus, SAT

problems do seem to exhibit phase transition behavior; my experimental data supported

my hypothesis.

1

Background on SAT

A simple SAT problem is shown in Figure 1. A SAT problem is specified by listing

a set of variables(P, Q and R in the example), and a set of clauses (or constraints) over

them (C1, C2 and C3). Each constraint says that at least one of the variables it names

must have the value it requires them to have. For example, C1 says that either P should

be false or Q should be false. The solution (also called “satisfying assignment”) to a

SAT problem is an assignment of True/False values to the variables that satisfies all

constraints. For our problem, a solution is P=False, Q=True and R=True. The

constrainedness of a SAT problem is defined as the number of clauses to the number of

variables (1 for this example).

If there are n variables, there will be 2
n

possible complete assignments, and we

need to search through them to find a satisfying assignment. A backtracking SAT Solver

searches over a tree of partial assignments as shown in Figure 1. Here, we start with P

set to True (left branch), and then Q set to True. At this point, constraint C1 is violated,

so we backtrack and set Q to False. Next, we find that setting R to either value violates

a constraint. This necessitates further backtracking, and trying P with False. Next Q is

set to True and at this point all constraints are satisfied (so the value of R doesn’t

matter!).

2

Figure 1 Boolean Satisfiability (SAT) Problem: Examples and Concepts

Many problems involving making choices subject to constraints--including how to

schedule tasks, how to design chips and even how to solve a Sudoku problem--can be

converted to SAT problems. Because a SAT solver has to search over 2
n
 assignments, it

can take a long time to solve large problems; in fact SAT is known to be an

“NP-Complete” problem (in that there are no ways of solving them that can take less

than exponential time in the worst case). In practice however, SAT problems have been

found to be easy to solve in many cases. In fact, when constrainedness is very low, then

almost any assignment is a solution, and when the constrainedness is very high, then the

problems can be easily shown to be unsolvable (suppose you are trying to schedule

when you will do your homework on the weekend; if there are very few assignments

then it is easy to schedule them; if you have way too many assignments, you probably

will give up.).

3

Question

The aim of my project is to find out where the hard SAT problems are. I assumed

they will occur for middle values of constrainedness, but prior research says that they

occur in a very narrow-band of critical constrainedness. I wanted to verify this.

Hypothesis & Variables

The hypothesis for this science project is that the hardness of solving SAT

problems peaks sharply in the middle as the constrainedness increases.

My independent variable is constrainedness (γ). My dependent variables are

median CPU time (in seconds) taken to solve a random SAT instance, and the

percentage of instances that have satisfying assignments.

Approach

My approach consisted of writing a basic backtracking SAT solver in Python and

using it to solve a large number of random SAT problems with specified degree of

constrainedness. I instrumented the program to keep track of the amount of CPU time

spent in solving each problem as well as the number of problems that were satisfiable

and those that were shown to be unsatisfiable.

SAT Solver: I wrote a backtracking SAT solver as a recursive program in Python.

The procedure is invoked with the SAT variables and constraints (clauses), and an

empty assignment of variables as its input. At each recursive call, the procedure checks

to see if the current assignment is violating any clause; if so, it returns with failure. Next

it checks to see if the current assignment satisfies all clauses; if so, it returns the current

partial assignment as the solution. If neither of the above cases hold, then it picks the

next unassigned variable, and calls itself twice recursively, once with that variable

4

assigned True and once with it assigned false.

Generating Random SAT Problems: I wrote a program that takes v, the number

of variables in the SAT instance, and the constrainedness parameter γ and makes v* γ

random clauses. Each clause (constraint) consists of three randomly chosen variables,

and each variable is randomly chosen to be either True or False. I first focused on 3SAT

(all clauses of size 3), but then also experimented with 2SAT and 4SAT.

Figure 2. Hardness vs. Problem Size for random 3-SAT instances with 25 and 30 variables. We note

that hardness peak for constrainedness between 4 and 5. The peak is more pronounced as

number of variables increase.

Materials & Experiments

I experimented with kSAT (k=2,3,4) instances of 25 and 30 variables. In each case,

I varied γ from 1 to 10 in increments of 0.4. For each value of γ, I generated 200 random

SAT instances. These instances are then fed to the SAT solver and the time taken to

solve the instance, as well as the fraction of the 200 instances that were found to be

satisfiable were noted. (I describe results for 25 and 30 variable instances, as instances

with fewer variables were too easy to solve and those with more were too hard for my

5

basic solver.) The experiments were all run on an iMac with 2.8 gigahertz quadcore

processor and 8 gigabytes of RAM.

Results & Analysis

Figures 2-4 show the results in graphical form. I observed from the plots in Figure

2 that for both 25 and 30 variables instances, the random SAT problems’ hardness peaks

sharply when the constrainedness is between 4 and 5. I also observed that the transition

is more abrupt for the harder 30-variable problems. From Figure 3, where the hardness

and satisfiability results are juxtaposed, I observed that (i) the percentage of satisfiable

problems falls sharply from 100% to 0% as constrainedness varies between 4 and 5 and

(ii) the problem hardness peaks right around the place where fraction satisfiable is 50%.

This shows that the hardest problems to solve are those where probability that the

problem has a solution is 0.5 From Figure 4, I observed that 2SAT and 4SAT also have

boiling points, and that the boiling point increases as the clauses get more loose (since

more of them are needed to reach the same degree of tightness).

6

Figure 3. Plot showing how hardness and percentage satisfiability align as constrainedness

increases.

Figure 4. Plot showing that 2-SAT and 4-SAT problems boil too, but their transition points are to

the either side of the transition point for 3-SAT.

7

Conclusion & Future Work

My hypothesis was that SAT problems would exhibit phase transition behavior. My

results demonstrate that this is true. The percentage of problems with satisfying

assignment transitions sharply from 100% to 0% as critical ratio varied between 4 and 5.

Right at this point, the time taken to solve the problems peaked sharply. Thus, SAT

problems do seem to exhibit phase transition behavior.

More recently, working with another student from my school, I have extended this

work by investigating how phase transition varies with non-uniform random

distributions of SAT problems. We have considered power-law (or “rich get richer”

distributions), where some variables take part in clauses more often than others; and

neighborhood distributions where clauses are comprised of variables that are more

likely to come from the same neighborhood.

Bibliography

1. Cheeseman, Peter, Bob Kanefsky and William M. Taylor. "Where the Really Hard

Problems Are." Proc. International Joint Conference on Artificial Intelligence

(1991): 331-337.

2. Gomes, Carla P. and Bart Selman. "Can Get Satisfaction." Nature (2005): 751-752.

3. Gomes, Carla P., Henry Kautz, Ashish Sabharwal and Bart Selman. “Satisfiability

Solvers,” Handbook of Knowledge Representation (2008):89:134

4. Lutz, Mark, “Learning Python,” O’Reilly Media Inc. (2009)

5. Hayes, Brian. "Can't Get No Satisfaction." American Scientist (1997): 108-112.

8

評語

Good theory work.

Good presentation.

	110008
	Abstract
	Background on
SAT
	Question
	Hypothesis & Variables

	Experiments & Materials

	Analysis & Results

	Conclusion & Future Work

	Bibliography

	評語

