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Abstract 

The Boolean Satisfiability problem, called SAT for short, is the problem of 

determining if a set of constraints involving Boolean (True/False) variables can be 

simultaneously satisfied. SAT solvers have become an integral part in many 

computations that involve making choices subject to constraints, such as scheduling 

software, chip design, decision making for robots (and even Sudoku!).  

Given their practical applications, one question is when SAT problems become 

hard to solve. The problem difficulty depends on the constrainedness of the SAT 

instance, which is defined as the ratio of the number of constraints to the number of 

variables. Research in the early 90’s showed that SAT problems are easy to solve both 

when the constrainedness is low and when it is high, abruptly transitioning (“boiling 

over” ) from easy to hard in a very narrow region in the middle.  

My project is aimed at verifying this surprising finding. I wrote a basic SAT solver 

in Python and used it to solve a large number of randomly generated 3SAT problems 

with given level of constrainedness. My experimental results showed that the 

percentage of problems with satisfying assignment transitions sharply from 100% to 0% 

as constrainedness varies between 4 and 5. Right at this point, the time taken to solve 

the problems peaks sharply. Similar behavior also holds for 2SAT and 4SAT. Thus, SAT 

problems do seem to exhibit phase transition behavior; my experimental data supported 

my hypothesis. 
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Background on SAT 

A simple SAT problem is shown in Figure 1. A SAT problem is specified by listing 

a set of variables(P, Q and R in the example), and a set of clauses (or constraints) over 

them (C1, C2 and C3). Each constraint says that at least one of the variables it names 

must have the value it requires them to have. For example, C1 says that either P should 

be false or Q should be false. The solution (also called “satisfying assignment” ) to a 

SAT problem is an assignment of True/False values to the variables that satisfies all 

constraints. For our problem, a solution is P=False, Q=True and R=True. The 

constrainedness of a SAT problem is defined as the number of clauses to the number of 

variables (1 for this example). 

If there are n variables, there will be 2
n 

possible complete assignments, and we 

need to search through them to find a satisfying assignment. A backtracking SAT Solver 

searches over a tree of partial assignments as shown in Figure 1. Here, we start with P 

set to True (left branch), and then Q set to True. At this point, constraint C1 is violated, 

so we backtrack and set Q to False. Next, we find that setting R to either value violates 

a constraint. This necessitates further backtracking, and trying P with False. Next Q is 

set to True and at this point all constraints are satisfied (so the value of R doesn’t 

matter!).  
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Figure 1 Boolean Satisfiability (SAT) Problem: Examples and Concepts 

 

Many problems involving making choices subject to constraints--including how to 

schedule tasks, how to design chips and even how to solve a Sudoku problem--can be 

converted to SAT problems. Because a SAT solver has to search over 2
n
 assignments, it 

can take a long time to solve large problems; in fact SAT is known to be an 

“NP-Complete” problem (in that there are no ways of solving them that can take less 

than exponential time in the worst case). In practice however, SAT problems have been 

found to be easy to solve in many cases. In fact, when constrainedness is very low, then 

almost any assignment is a solution, and when the constrainedness is very high, then the 

problems can be easily shown to be unsolvable (suppose you are trying to schedule 

when you will do your homework on the weekend; if there are very few assignments 

then it is easy to schedule them; if you have way too many assignments, you probably 

will give up.).  
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Question 

The aim of my project is to find out where the hard SAT problems are. I assumed 

they will occur for middle values of constrainedness, but prior research says that they 

occur in a very narrow-band of critical constrainedness. I wanted to verify this.  

Hypothesis & Variables 

The hypothesis for this science project is that the hardness of solving SAT 

problems peaks sharply in the middle as the constrainedness increases. 

My independent variable is constrainedness (γ ). My dependent variables are 

median CPU time (in seconds) taken to solve a random SAT instance, and the 

percentage of instances that have satisfying assignments.  

Approach 

My approach consisted of writing a basic backtracking SAT solver in Python and 

using it to solve a large number of random SAT problems with specified degree of 

constrainedness. I instrumented the program to keep track of the amount of CPU time 

spent in solving each problem as well as the number of problems that were satisfiable 

and those that were shown to be unsatisfiable.  

SAT Solver: I wrote a backtracking SAT solver as a recursive program in Python. 

The procedure is invoked with the SAT variables and constraints (clauses), and an 

empty assignment of variables as its input. At each recursive call, the procedure checks 

to see if the current assignment is violating any clause; if so, it returns with failure. Next 

it checks to see if the current assignment satisfies all clauses; if so, it returns the current 

partial assignment as the solution. If neither of the above cases hold, then it picks the 

next unassigned variable, and calls itself twice recursively, once with that variable 
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assigned True and once with it assigned false.  

Generating Random SAT Problems: I wrote a program that takes v, the number 

of variables in the SAT instance, and the constrainedness parameter γ and makes v* γ 

random clauses. Each clause (constraint) consists of three randomly chosen variables, 

and each variable is randomly chosen to be either True or False. I first focused on 3SAT 

(all clauses of size 3), but then also experimented with 2SAT and 4SAT.  

 
Figure 2. Hardness vs. Problem Size for random 3-SAT instances with 25 and 30 variables. We note 

that hardness peak for constrainedness between 4 and 5. The peak is more pronounced as 

number of variables increase. 

 

Materials & Experiments 

I experimented with kSAT (k=2,3,4) instances of 25 and 30 variables. In each case, 

I varied γ from 1 to 10 in increments of 0.4. For each value of γ, I generated 200 random 

SAT instances. These instances are then fed to the SAT solver and the time taken to 

solve the instance, as well as the fraction of the 200 instances that were found to be 

satisfiable were noted. (I describe results for 25 and 30 variable instances, as instances 

with fewer variables were too easy to solve and those with more were too hard for my 
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basic solver.) The experiments were all run on an iMac with 2.8 gigahertz quadcore 

processor and 8 gigabytes of RAM.  

Results & Analysis 

Figures 2-4 show the results in graphical form. I observed from the plots in Figure 

2 that for both 25 and 30 variables instances, the random SAT problems’ hardness peaks 

sharply when the constrainedness is between 4 and 5. I also observed that the transition 

is more abrupt for the harder 30-variable problems. From Figure 3, where the hardness 

and satisfiability results are juxtaposed, I observed that (i) the percentage of satisfiable 

problems falls sharply from 100% to 0% as constrainedness varies between 4 and 5 and 

(ii) the problem hardness peaks right around the place where fraction satisfiable is 50%. 

This shows that the hardest problems to solve are those where probability that the 

problem has a solution is 0.5 From Figure 4, I observed that 2SAT and 4SAT also have 

boiling points, and that the boiling point increases as the clauses get more loose (since 

more of them are needed to reach the same degree of tightness). 
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Figure 3. Plot showing how hardness and percentage satisfiability align as constrainedness 

increases. 

 

 
Figure 4. Plot showing that 2-SAT and 4-SAT problems boil too, but their transition points are to 

the either side of the transition point for 3-SAT. 
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Conclusion & Future Work 

My hypothesis was that SAT problems would exhibit phase transition behavior. My 

results demonstrate that this is true. The percentage of problems with satisfying 

assignment transitions sharply from 100% to 0% as critical ratio varied between 4 and 5. 

Right at this point, the time taken to solve the problems peaked sharply. Thus, SAT 

problems do seem to exhibit phase transition behavior. 

More recently, working with another student from my school, I have extended this 

work by investigating how phase transition varies with non-uniform random 

distributions of SAT problems. We have considered power-law (or “rich get richer” 

distributions), where some variables take part in clauses more often than others; and 

neighborhood distributions where clauses are comprised of variables that are more 

likely to come from the same neighborhood.  
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評語 

Good theory work. 

Good presentation. 
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