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Abstract

Captain Jack and his pirates had acquired some treasure chests as loot. Each
treasure chest was known to contain some gold and some diamonds. The crew agreed to

let Captain Jack take half of the chests for himself.

Captain Jack would like to have at least half the gold and at least half the
diamonds. Could he be guaranteed to do so, for any distribution of gold and diamonds

among the chests?

The problem has been solved by means of higher mathematics. This project uses

only elementary mathematics, and deals with some related problems.

The approach may applied to the distribution of relief goods among disaster
areas, or the sharing of intangible resources like professional expertise or versatile

machines.
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Maximizing the Lion’s Share

Hsin-Po Wang, student, Taipei Municipal Jianguo High School

Captain Jack and his pirates had acquired some treasure boxes as loot. Each treasure box was
known to contain some gold and some diamonds. The crew agreed to let Captain Jack take half of
the boxes for himself.

Captain Jack would like to have at least half the gold and at least half the diamonds. What is
the least number he be guaranteed to do so for any distribution of gold and diamonds among the
boxes?

General Formulation
There are n boxes each contains a number of gold and a number of diamonds. Jack would like
to get at least g/p of the gold and q/p of the diamonds by selecting the minimum number of boxes.
Is there a systematic way to do so?
Let k is number of categories of treasure. Let f (g/p, k, n) be that unique number f, such that:
1.  There exist f boxes fulfilling the requirements for all possible DFDB distributions of the
fruits;
2. There exists a particular DFDB distribution of the fruits that any f—1 boxes fail to fulfill the
requirements.

Lemma 1A

It is possible to divide the boxes into two parts equally, so that the sum of gold of one pile is
almost same as the other. Where “almost same” means: the difference between these two sums is
not more than the maximum number of gold in all boxes.

Proof:

By swapping the “heaviest box” (which contains the most gold) of the “heavier pile” with the
“lightest box” of the “lighter pile”, the difference between the sums of piles is strictly reduced. The
desires result reached when this operation is repeated to the piles.

Lemma 1B
Lemma 1A can be also applied to the case of more than two piles, even if the number of piles
is not a factor of the number of boxes.

Proof:

Alternately “Adjust” any two piles by Lemma 1A, and add empty boxes into some pile if
necessary. (Adding empty boxes only re-enforce the argument psychologically. There is no harm to
the logic.)

In this report, we will not explain such details as parity or rounding too specifically. The
omission of these details does not invalidate our proof; the primary goal is to present the more
important parts clearly.

Case 1l f(1/2, 2, n)

We will start with the simplest and most basic case.

To start, we should construct several examples to give us an idea of where the solution is. See
the diagram:
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L]
12] 36[ n[ {J] 25[ {][ n[ n] i
0 0 62 83 0 53 50 27
Where a single line represents a box, with two numbers represents number of gold and

diamonds.
Or consider an even simpler case, namely:

Clearly, taking just half of the boxes is not sufficient.

At the same time, these examples tell us two things: firstly, by just sacrificing one extra box,
we can bring the amount of obtained gold to the needed level. Secondly, the selection of this extra
box may depend on the existence of the second object. It is not hard to construct a selection based
on this idea. Below is the formalized proof.

First, let us find the box with the most gold (call it G), and separate the remaining boxes into
two piles. By Lemma 1, we can separate the boxes in a balanced way.

Lo

In these two piles, there must be one pile with more diamonds and one pile with less. Pick the
one with more diamonds and add the box G.

N

Now, let's look at how much treasure that we have got. By Lemma 1 we know that Jack has
gotten more than half of the gold; considering the diamonds, since Jack has taken the pile with more
diamonds, we can also guarantee that Jack has more than half of all the diamonds.

therefore,

Theorem 1
f(1/2,2,n)=[ (n-1)/2] +1, Where [ ] is the ceiling function.

Interestingly, if we look at our example and at the diagram used in our solution, we note the

two have a curious correspondence:
-]

0 1 1 1 1 1 1
&
? D D D d d d

One of the resultant ideas quickly leads to the following case:
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Case 2 f(r,1,n)

This case is absolutely trivial. To take more than a certain ratio of the coins, simply take more
than that ratio of the boxes. It should not be necessary to explain this case to anybody.

Therefore,

Theorem 2
f(r, 1, n)=[ nr]

However this simple case leads us to another problem. Whenever Jack comes up with a
certain ratio, the first thing he must do is to convince himself that no counterexample exists.
Therefore the efficient construction of examples is important as well. (Here "efficient™ does not just
mean that the construction should not take too much time, but also that it should be understood
quickly.)

One idea is to assume that each box can only contain one type of treasure. If we make this
assumption:

1. Listing all distributions is much easier.
2. ltis convenient when calculating the number of boxes to take.

The reason is that once this assumption is made, and each problem reduces to a set of cases
where k=1. (Note the k-value of the case we are discussing.) If we can cleanly sort out all the
treasures, the problem will be very trivial.

In fact, in the remaining part of this report, this concept of "different treasures in different
boxes" plays quite an important role, verifying each and every case we test. At first, we worried that
some "magical distribution™ would cause the worst number of boxes, but all the examples produced
by this idea, as in the f (1/2, 2, n) above, work perfectly with the proof, and make us suspicious of
the existence of such a "magical distribution”.

In the other hand, if we could prove that the worst case in any evaluation of f could be
provided with an example with different treasures in different boxes, this problem would become
much simpler.

Case 3 f(1/3, 2, n)

If the vice captain also wanted his/her share of the treasure, Jack would only be able to require
one third of the treasure.

Once more we need a model:

0 1 1 1 1 1 1 1 1
Here no special trick is needed: we can prove it just as we proved f(1/2, 2, n) : the only
difference being that we split the boxes into three piles instead of two. Once this split has been
accomplished, the box we took out, plus any pile, will be at least 1/3. Thus this method also works.
Therefore,

Theorem 3
f(1/3, 2, n)=[ (n-1)/3] +1

Case 4 f (1/p, 2, n)

The same proof can be extended to cover all reciprocals of integers. To prove the lower bound,
we have a perfect example for every case:
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Therefore,

Theorem 4
f(1/p, 2, n)=[ (n-1)/p] +1

Case 5 f(2/3, 2, n)
Let's consider the next fraction.
The first step is still to look at our model:

0 1 1 1 1 1 1 1 1
The proof is just the same as in f (1/2, 2, n) .
Therefore,
Theorem 5

f(2/3,2, n)=[ (n-1)2/3] +1

Unfortunately, things don't always go that smoothly. Let's observe this example carefully:

L
0 0 1 1 1 1 1
Let's go back to our Lemma:
"the difference between these two sums is not more than the maximum number of gold in all

boxes."
Here lies the problem.

Case 5 f(2/3, 2, n) -con't
The real solution is to pick out the two boxes with the most gold, and then split the boxes into

three piles:
? ? D D D D d

Then we can ensure that we get at least 2/3 of the gold.
Therefore,

Theorem 5 -con’t
f(2/3, 2, n)=[ (n-2)2/3] +2

What is the difference between picking out one and two boxes? From this example we can't
see the real reason. The only thing we can be certain of is, by picking out two boxes we are able to
"waste" one more box when taking the piles. But what about other ratios for r? Now we will need to
use our concept of "different treasures in different boxes".
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As explained in this section, we want to know how many boxes we should pick out to be the
most wasteful. All we have to do is plug it into f (r, 1, n) and sum the results. In other words, f (r, 2,
n)>Max: {f(r, 1, a)+f (r, 1, b) | a+b=n}.

Case 6 f(2/5, 2, n)
Now let's move on to the next ratio. To give us an idea, let's look for examples:

EEEEEES
FEEEEER
EAEREER
I

We must take 4, 3, 4, 4 boxes in each of these cases, respectively. The lower bound is not
obvious yet, so let's take a new example:

el

=
—)
=
Tl
=
—)
=
Dy
=
Tl
=

Ll
Ll
Lol

0 0 0 0 1 1 1 1 1 1 1

Here we need 5, 5, 6, 5 boxes respectively. Now our lower bound is more obvious: we should
pick out three of the boxes with most of the gold. Note that this example-searching is not a solution
in itself, and never will be; it is merely an aid in helping us find the answer, and sometimes can give
us upper and lower bounds. Its function is like that of a model car: even though it can't move, it can
help us understand how a car works.

But the problem is not over. In the previous example, we only had to take two boxes from the
three with the most coins. In other words, in this solution, we can only take two of the three we
picked.
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Here we have two problem: First, we chose the piles without considering the gold, Second
and more important, we even chose the box without considering the “!”, and this time Lemma
cannot promise us.

Case 6 f(2/5, 2, n) -con’t

In fact, we discover that in the model, “!” is the box with the least diamond. Which means we
can try to pick up two boxes with the most gold and one with the least diamond.

In view of diamond, if we can get at least 2/5 of diamond from the piles, then we approach the
goal because we can get at least 2/3 in the first three (especially, the equation made if these three
boxes has no diamond.)

In view of gold, assume that these three are equal in gold, or we can adjust them into the same.

The thick line represent a pile, and ranking them in increase order in diamond. As the diagram.

L]
1[ 1[ 1[ ?l ?l ?l ?l ?l o
0 0 0 D D d d d

Again: what we want o do now is, to choose two piles containing 2/5 of diamond, and

containing 2/5 of gold with the other two boxes.
By the Lemma, we can eliminate the five piles as five boxes, where the number of gold is not

larger than the three.
0o 0 0 D D d d
For the example, we take these four boxes, as the diagram:
T
0 0 D D
But the method fail if we exchange some gold:

BEEREEEER

1 1
0 0 0

Tl

1
0

In this case, we got 2/6 of gold, less than 2/5.

Fortunately, we can choose the piles ranking 1 and 3, and still get 2/5 of gold.
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1

Because we can choose from ranking 2 and 3, we get 1/2 of diamond.

-
L
D D d
Within the other five unit, we get two of them.
0o 0 0 d d

Jack approaches his goal again. And also, “different treasures in different boxes” help to find
the answer.
Therefore,

Theorem 6 -con’t
f (2/5, 2, n)=[ (n-3)2/5] +2

Case 7 f (3/5, 2, n)
Let's look for examples:

Here we need 6, 7, 6, 6 boxes in each of these cases, we should pick out two of the boxes with
most of the gold. The same proof of f (2/3, 2, n) can be extended to this case.
Therefore,

Theorem 7
f(3/5, 2, n)=[ (n-2)3/5] +2

Case 8 f (4/5, 2, n)
Let's look for examples:
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L]
1[ 1[ 1[ 1] 0[ n[ 0] 0[ 0
0o 0 0 0 1 1 1 1
We must take 7, 7, 7, 8 boxes in each of these cases, so we should pick out four of the boxes

with most of the gold. The same proof of f (2/3, 2, n) can be extended to this case.
Therefore,

Theorem 8
f (4/5, 2, n)=[ (n-4)4/5] +4

Case 9 f(2/7,2,n)
Let's look for examples:

-1 -] -1 o -] -1 -] -1 o o -1 o -] o -1 [-]

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i
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Here we need 5, 5, 5, 6, 5, 5 boxes respectively, so we should pick out four of the boxes with
most of the gold. But as the case of f (2/5, 2, n) , we can’t take all of these four but two.

Similarly, assume that the first two boxes contains the most gold, and the third and forth
contains the least diamond. And then we adjust them into four boxes within the same gold but no
more diamond.

Use, a thick line to represent a pile, and rank them in increase order in diamond. As the

diagram.
I N N
0 0 0 0 D D d d d d d
In the middle four piles, the pile with the most diamond and either one contains more than 2/7
of diamond, and one of them contains more than 1/3 of gold. As the diagram.

-
D D d d
In the other seven units, we can take the two boxes withe the most gold. As the diagram.
L]
0 0 0 0 d d d
Again, the equation holds when “different treasures in different boxes”.
Therefore,

Theorem 9
f(217,2,n)=[ (n-4)2/7] +2

Case 10 f(3/7,2,n)
Assume that we have already found out the example:

TTTT

Here we need 6 boxes and we should pick out five of the boxes with most of the gold. But as
the case of f (2/5, 2, n) , we can’t take all of these four but three.
Use a thick line to represent a pile, and rank them in increase order in diamond. As the

I R EREEEEEEEE

There is a little bit trouble here. This time we can choose three piles, but how to?
First, we all know that the first pile must be taken.

a
{]l i
D

Second, we can choose one from the second or third.
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Third, we can choose one from the forth or fifth.

Therefore,

Theorem 10
f(2/7,2, n)=[ (n-4)2/7] +2

So far we discuss about a lot of cases, now we will introduce the general method.
General Cases

Let r to be the unique number satisfying rg=1 (mod p). We claim that:

s
Jr [\r;rn 21 It) = "{yt — ll':: ' I';r I i I';r
n ' n n
To substantiate this claim, it suffices to show that:

1.  There is a systematic way to select [ (n—r)g/p] +[ rg/p] boxes to achieve the goal.
2.  There exists a particular distribution of the fruits that any [ (h—r)g/p] +[ ra/p] —1
boxed will never reach the goal.

Proof

To show condition (1) is satisfied, we take these steps:

Step 1: Mark r boxes with the most apples. Divide the remaining into p piles each containing
[ (n—r)g/p] or| (n—r)g/p] boxes such that the differences among the total numbers of apples in
each pile is no larger than the number of apples in each boxes of the r boxes. This is possible in
view of Lemma 1.

Step 2: Arrange the piles in the increasing order of bananas. Pick the pile B that contains the
most bananas, and by applying the one-dimensional greedy algorithm to the remaining p—1 piles to
form g— 1 superpiles. The boxes from B and the one single pile containing the most apples selected
from each of q—1 superpiles comprise the required selection.

Step 3: Of the r boxes marked in Step 1, pick the box with the most apples. Repeat the same
selection as in Step 2 by exchanging bananas with apples to obtain the boxes to be selected in Step
4,

Step 4: [ rg/p] boxes selected in Step 3 together with the [ (n—r)g/p] boxes taken from the
q piles selected in Step 2 make the desired selection.

Condition (1) is now fulfilled. To see condition (2), it suffices to consider the distribution of
the fruits with r boxes each containing one apple and (n—r) boxes each containing one banana.
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Result

From the above process, we can find a value and a strategy for f (g/p, 2, n):
Find the inverse of g mod p, and call it r.

Take out the first r boxes (with the most gold and least diamonds).

Split the remaining boxes into p piles.

Sort the piles.

Determine which piles should be taken.

Finally add the boxes from the first r boxes that should be taken.

ook~ owdE

Discussion

In fact, there are a lot more places where we can discuss. Here we pick out one of the more
interesting parts:

From the previous formulas, we discover that on average Jack is forced to take one extra box.
(After all, [ (n-1)g/p] and [ (n)g/p] are usually the same.) But in our solutions, we never see Jack
take an extra box. Every box is necessary to make the lower bound. Why is this?

We think this is because, strictly speaking, Jack is not taking one "extra box", but two "extra
half-boxes". Let's look again at the example given in f (1/2, 2, n):

o o o L=}
1] DI UI 0 0 0 DI -D[ i
o - o
0 1 1 1 1 1 1 1

Note how all the gold is put in a single box. Therefore, in Theorem, the best method should be
to just take half of that box. (Here, a dashed line will represent half a box.) Similarly, only 3.5 of the
diamond boxes should be taken:

The dashed line is still a line, so since Jack can't take half a box, he ends up taking two "extra
half-boxes":

o = = o -]

o o o o o

Matrix
It is possible to identify a distribution of fruits by a single permutation matrix in which all
entries are 0 except the (i, j)-entry is 1 if a box has i" ranking in apple and j" ranking in banana.
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By swapping appropriate rows and columns successively, taking extra care that the
determinant of the associated two-by-two submatrix decreases, we may convert the permutation
matrix into an “anti-diagonal” matrix.

Now with the Greedy algorithm, it is possible to select corresponding boxes fulfilling the
required condition. Tracing back, we obtain the required selection.

Extension

Here we will discuss the concept of "different treasures in different boxes” (DFDB) in a little
more detail. We want to prove that "all of the worst cases can be constructed with 'different
treasures in different boxes™. Here "worst case™ means a configuration with a fixed set of
parameters (the ratio, types of treasure, and box number) and the maximum required number of
boxes.

In other words, this would-be lemma is measuring how bad "different treasures in different
boxes"-configurations are. Obviously, this doesn't mean that only "different treasures in different
boxes"-configurations can be the worst. Just that, when we list the worst configurations for a set of
parameters, the list must include configurations with this property.

The advantages of this is that, even if other distributions could be the worst, we can still
safely ignore them and focus on determining the worst of "different treasures in different boxes"-
configurations, since we know that the worst value here would be the worst value of the whole
problem.

As an analogy, if we want to know what the lowest grade in a class is, we can ask every
person's grade and find the minimum. Or, if we can "prove" that John always has the lowest grade
in the class, all we have to do is ask for John's grade. At the same time, John is more likely to be
willing to tell us his grade.

The disadvantage is, this doesn't really solve the problem: when we want to prove that John
always has the lowest grade, and we need the grades of the other people (effectively right where we
started). But no matter what, this is a progressive idea.

However, in the case of DFDB, we already have its own result. Let k be the number of
categories of fruits. It is less complicated to substantiate the claims that:

1. There exist [ (n—(k—21)r)a/p] +(k—21)[ rg/p] boxes fulfilling the requirements for all
possible DFDB distributions of the fruits;

2. There exists a particular DFDB distribution of the fruits that any
[ (n—(k—1)na/p] +(k—1)[ ra/p] —1 boxes fail to fulfill the requirements.

Conclusion

Using various techniques such as splitting into piles and sorting by type, we have extended
our proof to all fractions. In other words, we have determined and proved the value of f(r, 2, n), f
(a/p, 2, n)=[ (n-r)a/p] +[ ra/p] , where [ ] isthe ceiling function and r is the inverse of g mod p.

In the past, values of f (r, k, n) for most sets of parameters have been proved with highe r
mathematics (see reference [1]), but due to limitations in its lemmas, the result only applies to when
n is relatively large, as compared to r and k. Particularly when r is irrational, it can be infinitely
closely approximated with rational numbers, but as the approximation is tightened n will no longer
big enough. This is another unfortunate shortcoming of the previous paper.

This paper starts from the most basic cases, and with manipulation of moduli, and we can not
only process all values of n, but also the case where r is irrational.

Furthermore, the idea of "different treasures in different boxes" is also important. If it can be
used well, more problems will certainly be solved.
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Application

The result of this paper can be applied to the distribution of resources in disaster areas, when
the resources (water, food, and so on) are prepackaged and not easy to repackage, so that adequate
distribution to ensure the equality of resources is necessary. This applies also to any resource which
can't be recombined. For example, when starting a new branch of a company, one problem to
consider is the assignment of workers with untransferable abilities. Other problems include frugally
buying all furniture with a set of required capabilities, or combos of various nutritious meals.

We hope that the efficiency of this type of distributions can be improved.
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