中華民國第64屆中小學科學展覽會作品說明書

國小組 物理科

第三名

080114

彈簧蹺蹺板的簡諧運動

學校名稱: 新北市三重區重陽國民小學

作者:

小六 陳妍昕

小六 林于婷

小六 詹子樂

小四 黄采琁

指導老師:

黃鵬翔

林坤稜

關鍵詞: 彈簧蹺蹺板、簡諧運動、彈性係數

摘要

首先我們用目測法、節拍器共振法,以及 Tracker 測量法測量擺動週期;再測量彈 簧壓縮以及橫向的彈性係數;然後利用木夾子、螺帽來增加質量;再來利用重物位置來 改變施力臂的長度,最後比較對稱與不對稱的的差異。了解影響彈簧蹺蹺板擺動週期因 素後,我們探討彈簧蹺蹺板與彈簧擺飾的共振現象,得到結論如下:

- 一、彈性係數(k 值)越大週期越小;質量(M)越大、施力臂(R)越長,週期越大。
- 二、增加重物重量、墊高層數越多、質量 (M)越大,以及施力臂(R)越長時,共振的週期和同步時間會變大,但擺動的振幅則變小。
- 三、彈簧擺飾的左右以及上下振動的週期隨質量增加而變大;前後擺動的週期會大於上下振動的週期。

壹、前言

一、研究動機

公園有一個彈簧蹺蹺板(圖 1), 我們發現體重較重的人坐上去,它擺動得比較慢,而當人坐得越後面,擺動也會變慢;市售彈簧擺飾(圖 2)的點頭週期與搖頭週期會不相同,為了

圖1:公園彈簧蹺蹺板(圖1、 2照片由指導老師拍攝)

圖 2: 市售彈簧擺飾

如何測量它們擺動的快慢?六年級自然課「簡單機械」單元中,有提到槓桿平衡與物品質量,以及施力臂長短有關,那這些因素也會影響彈簧蹺蹺板與彈簧擺飾擺動週期嗎?

二、研究目的

(一) 週期(T)、彈性係數(k 值)、質量(M)、施力臂(R)的測量

方便研究,我們思考如何自製彈籌蹺蹺板與彈籌擺飾,並想著

- (二) 影響彈簧翹翹板擺動週期(T)的因素
 - 1. 彈性係數(k 值)、質量(M)、施力臂(R)對彈簧蹺蹺板週期(T)的影響
 - 2. 對稱與不對稱彈簧蹺蹺板對擺動週期的影響
- (三) 探討彈簧蹺蹺板與彈簧擺飾的共振現象
 - 1. 探討彈簧蹺蹺板與節拍器共振的條件
 - 2. 影響彈簧蹺蹺板與節拍器共振的因素
 - 3. 自製彈簧擺飾的共振現象

三、文獻回顧

在科展資訊管理系統中搜尋「彈簧」、「週期」、「共振」,與主題相關的有以下作品,如下表:

表1:前人研究相關紀錄表

科展題目	實驗方法	與本研究相關實驗結果與本次研究物理運用
簡諧運動彈簧等效質量 之測定	彈簧參與簡諧的有效 質量與彈簧原質量的 關係	$T = 2\pi\sqrt{\frac{m + CM}{K}}$ C 為關係常數、m 為物體質量、M 為彈簧質量、 K 為彈性係數
神奇的殊途「同」歸一探討不同變因對於節拍器達到同步時間的影響	利用節拍器擺動對於達到同步來回的情形	1.節拍器越多、頻率越低,同步的時間增加 2.板子越重、表面材質摩擦力越大,同步的時間 增加
甜蜜交織的共振擺	探討共振擺中的「介質」與「交替晃動次數、能量轉換衰退」 之間的關係	1. 以 Tracker 進行分析擺動軌跡 2. 介質張力的大小會影響晃動。

三篇前人研究主要是研究彈簧在振動時的物理特性,以及節拍器或物體間的共振 現象;而本次研究是觀察彈簧蹺蹺板的週期,以及彈簧蹺蹺板與節拍器;自製彈簧擺 飾與振盪器共振的現象。因此本研究是可以深入研究施力臂(R)對週期的變化,以及不 同物質共振的現象,這是其他三篇前人研究沒有涉入的部分。

貳、研究設備及器材

- 一、 觀測彈簧蹺蹺板擺動週期設備及器材:自製彈簧蹺蹺板、自製壓縮彈性係數測 量裝置、自製角度觀測裝置、熱熔膠槍、熱融膠、手機、平板、電子秤。
- 二、 觀測共振設備及器材:節拍器、雷射筆、自製彈簧擺飾、自製軌跡測量裝置、 自製上下振動器、自製左右擺動器、塑膠圓瓶、飛機圓木棒、珍珠板、海綿圓輪。

參、研究過程與結果

※本研究所有實驗相關相片都為第一作者/指導老師拍攝。

彈簧蹺蹺板的簡諧運動研究架構圖

-、 研究目的一:週期(T)、彈性係數(k 值)、質量(M)、施力臂(R)的測量

(一) 自製彈簧蹺蹺板

1. 第一版自製彈簧蹺蹺板

我們用鐵絲纏繞在筆管上做出彈簧,彈簧纏繞的間距盡量一樣,後來發現纏繞間 距不容易控制,於是改用間距相等的玩具螺帽來控制間距,再利用不同鐵絲的型號來製 作不同彈性係數的彈簧。我們發現 28 號以上容易變形不適合。將珍珠板切出一大一小 正方形,用熱熔膠將彈簧黏在珍珠板上,再將吸管黏於小正方形珍珠板上方。同樣的方 法製作不同型號的彈簧蹺蹺板(表 4 有呈現照片)。

2. 第二版自製彈簧蹺蹺板

我們利用熱融膠將小圓與大圓飛機木黏合於彈簧兩側,木棒畫上刻度(5 cm 一藍線;1 cm 一紅線),將木棒黏於小圓飛機木上(中心點與小圓圓心上),完成第二版的自製彈簧蹺蹺板(表 4 有呈現照片),在製作過程中,我們發現 26 號鐵絲還是太軟,無法直立。我們依使用的鐵絲種類分成兩種,詳細介紹如下表所示。

表 2: 第二版自製彈簧蹺蹺板(編號 1~8)的觀察記錄(照片由第一作者拍攝)

編號	1	2	3	4	(5)	6	7	8
照片	- Pinon-	A TOTAL MARIENTA	Separate Comments	James	a market	Wild Browning and Control of the Con	SWALL BURNE	Samment of A
型號(#)	24	22	20	18	24	24	24	24
鐵絲(cm)	30	30	30	30	30	60	60	60
圏數(圏)	9	9	9	9	12	26	23	20
自然高度 (cm)	3.0	3.0	3.0	3.0	2.4	4.5	4.5	4.5
線徑(mm)	0.55	0.7	0.9	1.2	0.7	0.7	0.7	0.7
外徑(cm)	1.35	1.35	1.35	1.35	1.1	1.0	1.1	1.3
質量(g)	1.0	1.0	1.5	3.0	1.0	2.0	2.0	2.0

3. 第三版自製彈簧蹺蹺板

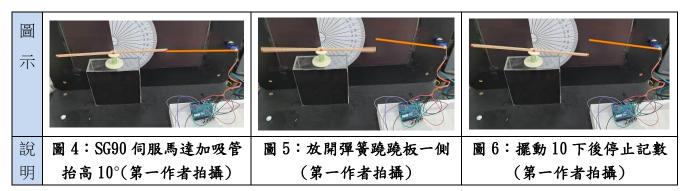
除了使用市售彈簧取代自製彈簧外,其餘材料同第二版自製彈簧蹺蹺板,組裝方 式也是同第二板彈簧蹺蹺板(表 4 有呈現照片)。我們依使用的彈簧高度進行編號,詳細介紹如下表所示。

表 3: 第三版自製彈簧蹺蹺板(編號 9~16)的觀察記錄(照片由第一作者拍攝)

編號	9	10	11)	12)	13	14)	15)	16
照片							Maccontinui	
圏數(圏)	9	8	7	8	10	11	13	11
自然高度 (cm)	3.0	3.3	3.5	4.0	5.5	5.8	5.8	9
線徑(mm)	1.0	0.7	0.5	0.8	0.6	0.6	1.0	0.8
外徑(cm)	1.15	1.75	1.75	1.55	1.15	1.15	1.45	1.45
質量(g)	3.1	1.8	1.3	3	2.5	3.5	4.5	4

表 4: 三種版本自製彈簧蹺蹺板的比較(照片由第一作者拍攝)

分類	第一版	第二版	第三版
照片	ADDRESS DA GENTLES DE LA CONTRACTION DE LA CONTR	2	0 170 160 150 150 150 150 150 150 150 150 150 15
彈簧	自行纏繞	自行纏繞	工廠製作
物品	油土	夾子	螺帽
製作 原因	初步構想	飛機木較輕且堅固,刻度容易 畫,夾子較接近像人坐上	工廠製作的彈簧較為均勻且上 下平整,螺帽較容易固定
優點	簡單	夾子較容易換重心	彈簧晃動時較規律,螺帽重心 在中心且較容易定量


(二) 彈簧蹺蹺板擺盪週期(T)的測量

1. 方法一: 目測法

當製作出彈簧蹺蹺板後,我們想知道它擺盪的週期,在四年級時,我們有學到計算單擺擺動的週期(擺動十次花費的時間)的方法,因此我們採用相同的方法,用目測的方式,一人按馬錶,一人將木棒一側利用 SG90 伺服馬達加吸管抬高 10°(圖 4),同時按下與放手(圖 5),在上下來回十次後(圖 6),測量經過的時間,這樣即可以得出週期。

圖3:目測法測量裝置(第一作者拍攝)

將第二版八種彈簧蹺蹺板用目測法的方式測量,得到結果如下表所示:

表 5: 第二版自製彈簧蹺蹺板目測法的測量結果

	編號	1	2	3	4	(5)	6	7	8
擺盪	第一 次(秒)	8.96	4.48	2.78	太快了	4.41	8.36	7.55	8.69
<u>细</u> 10 次	第二 次(秒)	9.07	4.55	2.75	太快了	4.28	8.08	7.88	8.73
時間	第三次(秒)	8.90	4.60	2.81	太快了	4.33	8.25	7.69	8.80
(秒)	平均 (秒)	8.98	4.54	2.78	無法測	4.34	8.23	7.71	8.74
週期	期(秒)	0.90	0.45	0.28	無法測	0.43	0.82	0.77	0.87

每次測量的差異不大,目測法有一定的準確性,但當擺動週期太小時,眼睛跟不上擺動速度導致無法記數。

2. 方法二: 節拍器測量法

我們將節拍器和彈簧蹺蹺板放於 珍珠板上,可是蹺蹺板沒有擺動。細看 網路影片,發現板子也會擺動,所以我 們用彈珠置於珍珠板下,改變節拍器週 期,讓彈簧蹺蹺板也會跟著擺動(圖7)。

將第二版八種彈簧蹺蹺板用節拍 器測量法的方式測量,節拍器刻度為1

圖7:觀測共振設備(第一作者拍攝)

分鐘多少下;左晃到右即為1下,因此週期為120/刻度,得到結果如下表所示:

表 6:第二版自製彈簧蹺蹺板節拍器測量法的測量結果

編號	1	2	3	4	(5)	6	7	8
接拍器 刻度(秒)	126	太快了	太快了	太快了	太快了	144	144	132
週期(秒)	0.95	無法測	無法測	無法測	無法測	0.83	0.83	0.91

節拍器測量法可以測得擺動週期,但因為範圍只能測 0.577 秒以上的週期,因此有 些彈簧蹺蹺板無法測得。

3. 方法三:Tracker 測量法

上述的兩個方法雖然可以測量出週期,但如果擺動得太快,用眼睛與節拍器無法 精準測量,於是我們改用手機錄影再用 Tracker 分析,實驗裝置如右圖 8,將木棒一側 利用 SG90 伺服馬達加吸管,將飛機木抬高 10°,放開開關之前按下錄影,擺動超過十 下後結束錄影。將實驗結果用 Tracker 進行分析,分析方法如圖 9 所示。

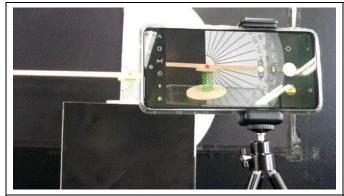


圖 8: Tracker 測量法實驗裝置(第一作者拍攝)

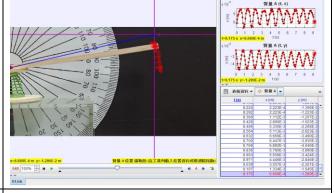


圖 9: Tracker 分析(第一作者截圖)

將 Tracker 分析用 Y 軸變化(較明顯)來測量,來回十次共有十個波形,將擺動第十

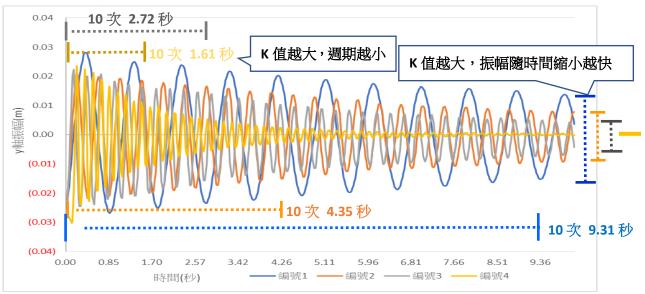
次的時間除以10,合併方法一、方法二結果得到表格如下:

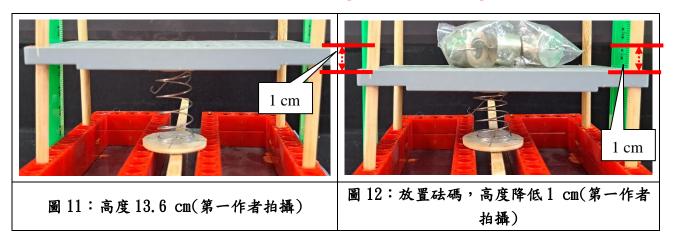
表7:三種測量週期方法實驗結果對照表

	編號	1	2	3	4	5	6	7	8
週	目測法	0.90	0.45	0.28	無法測	0.43	0.82	0.77	0.87
期平均	節拍器 共振法	0.95	無法測	無法測	無法測	無法測	0.83	0.83	0.91
(秒)	Tracker 測量法	0.931	0.435	0.272	0.161	0.433	0.801	0.807	0.910

三種測量法有測量到的數值差異不大,而 Tracker 測量法是最準確與能測到較快速的擺動,所以我們後續皆採用這個方法進行實驗。

將數據輸入 EXCEL 中,可利用波形得知振幅變化,十次週期時間等,可幫助我們對數據變化的理解。




圖 10:不同鐵絲型號的彈簧翹翹板(編號 1~4)擺動時 Y 軸軌跡波形圖(第一作者繪製) 彈簧的 k 值和彈簧的型號有關,型號越大的越小(1號 k 值最小; 4號 k 值最大)。 由圖 10 得知, k 值越大, 擺動週期越大; k 值越大, 振幅隨時間縮小越快。

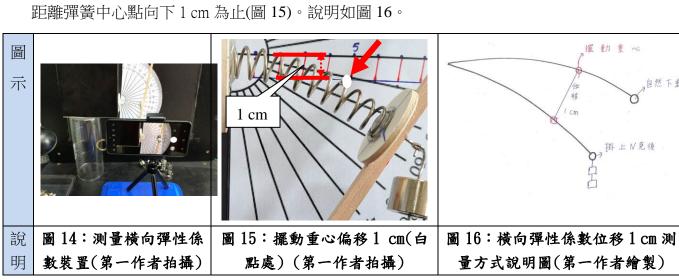
(三) 彈性係數(k 值)的測量

1. 壓縮彈性係數的測量

從文獻資料中得知彈性係數分成壓縮與伸長的彈性係數;左右擺動的橫向彈性係數;扭轉的彈性係數。本研究主要針對壓縮的彈性係數與橫向彈性係數進行探討。

虎克定律中, 施力與壓縮的彈性係數成正比。為了測量力的大小,我們使用砝碼來精準測量(圖 11),可是發現砝碼數太多時不容易固定,於是過重時換成用手按住上方積木板四周,均勻施力壓下,當兩旁塑膠尺刻度被壓下 1 cm 時,此時電子秤讀數即是

2. 横向彈性係數的測量

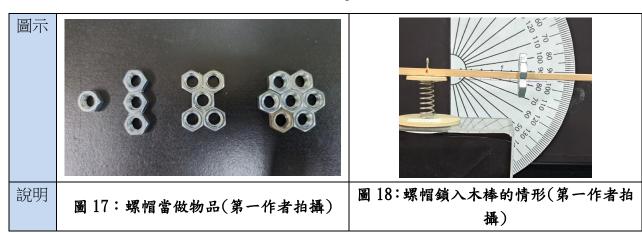

(1) 彈簧擺動重心的測量

彈簧蹺蹺板是一種左右擺動的運動方式,因此橫向彈性係數較切合研究的主題。因為彈簧蹺蹺板擺動的重心會影響擺動的週期, 所以我們先測量彈簧蹺蹺板的重心位置,說明 圖如圖 13,測量方法利用重心公式得知:

$\mathbf{R} \stackrel{\text{d}}{=} (\frac{1}{2} \mathbf{R} \overset{\text{d}}{=} \mathbf{M} \overset{\text{d}}{=} \mathbf{H} \overset{\text{d}}{=} \mathbf{M} \overset{\text{d}}{=} \mathbf{$

(2) 横向彈性係數的測量

測量裝置如圖 14 所示。我們先將彈簧蹺 圖 13: 擺動重心說明圖(第一作者繪製) 蹺板側放固定,這樣彈簧會因為木棒組(7 gw)的質量而下垂,再將量角器對照表的中心 點對準彈簧蹺蹺板底部,90 度線對準支點位置。我們開始持續增加砝碼質量,直至下垂 距離彈簧中心點向下 1 cm 為止(圖 15)。說明如圖 16。



(四) 質量(M)的測量:

第一版第一代彈簧蹺蹺板我們是採用油土做為改變質量的物品,發現油土有形狀不容易固定、油土不好移動等缺點,於是思考有無其他替代物品;第一版第二代彈簧蹺 蹺板我們是採用砝碼做為改變質量的物品,配合上掛勾,發現砝碼會搖晃,會影響擺動次數變少,而且還有需要加掛勾等缺點。

第二版我們改用夾子來改變物品質量,我們蒐集了六種不同的夾子,夾子具有可隨意改變位置和可固定住而不搖晃的優點,我們選取三種適合的夾子(A 是 1.5 g、B 是 3.0 g、C 是 6.0 g)來進行實驗,可以組裝成七種情形。

雖然夾子具有可隨意改變位置的特性,也有可固定住而不搖晃的優點,但夾子可能有重心不在木棒的疑慮。於是我們第三版時,利用剛好可以鎖入木棒大小的螺帽來當作重物(圖17),每個螺帽的質量都差不多(3.2 g),缺點是螺帽鎖入木棒很耗費時間(圖18)。

第三版增加質量實驗中,我們用每邊 1 顆,以及黏合的 3、5、7 顆螺帽來進行實驗,而且鎖入位置都在距木棒的中心點 7.5 cm 處,共有 4 種情形。

(五) 施力臂(R)的測量

我們想知道施力臂(R)對彈簧蹺蹺板擺動的週期會不會有影響,所以需要找到施力點的位置。將蹺蹺板置於水平位置,在蹺蹺板的兩側放置兩個相同的重物。第二版我們利用木夾子(6gw)重;第三版我們利用螺帽(3.2gw)重,測量施力點的位置,每個間隔2.5cm,從2.5cm開始,至最後端15cm為止,共6組,說明圖如圖19。

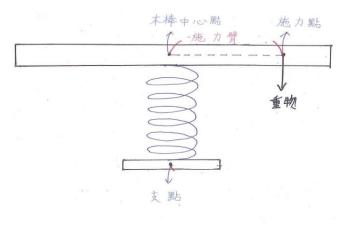


圖 19: 施力臂說明圖(第一作者繪製)

二、 研究目的二:影響彈簧翹翹板擺動週期(T)的因素

(一)彈性係數對週期的影響(T 與 k 值的關係)

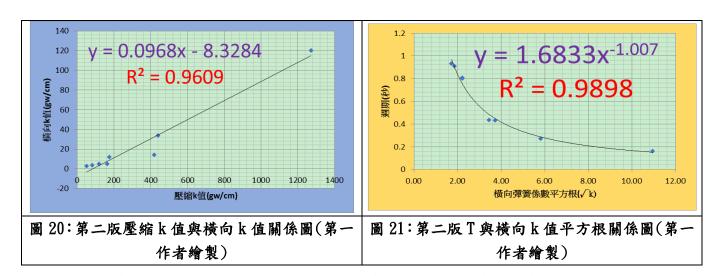

1. 第二版自製彈簧蹺蹺板彈性係數的測量結果

表 8: 第二版自製彈簧蹺蹺板彈性係數的分析記錄(照片第一作者拍攝)

編號	①	2	3	4	(5)	6	7	8
壓縮 k 值 (gw/cm)	52	175	440	1272	419	162	118	81
彈簧重心 (cm)	3.21	3.21	3.10	2.83	2.66	4.31	4.31	4.31
照片	1000	TO TO THE TOTAL	01 65 - 65	5 65 65 65 65 65 65 65 65 65 65 65 65 65	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	28 8 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 or of
砝碼重 (g)	3	12	34	120	14	5	5	3.5
横向 k 值 (gw/cm)	3	12	34	120	14	5	5	3.5
\sqrt{k}	1.73	3.46	5.83	10.95	3.74	2.24	2.24	1.87
T(秒)	0.931	0.435	0.272	0.161	0.433	0.801	0.807	0.910

2. 壓縮彈性係數與橫向彈性係數的關係

將上面的實驗結果輸入 EXCEL 中進行分析,得到下面第二版壓縮 k 值與橫向 k 值 關係圖(圖 20),以及第二版週期(T)與橫向 k 值平方根關係圖(圖 21)。

由圖 20 來看,我們知道壓縮 k 值與橫向 k 值呈現正相關。由圖 21 來看,週期和 橫向 k 值平方根(\sqrt{k})大約呈反比。

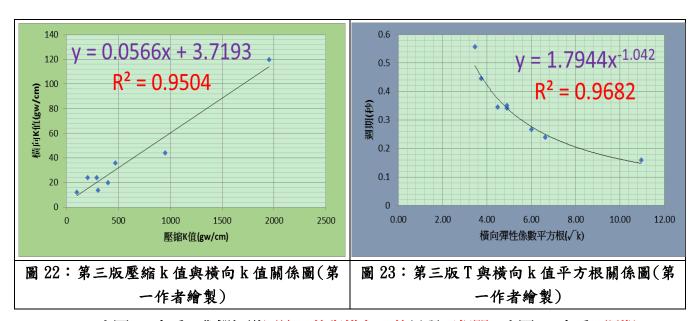

3. 第三版自製彈簧蹺蹺板彈性係數的測量結果

表 9: 第三版自製彈簧蹺蹺板彈性係數的分析記錄(第一作者拍攝)

編號	9	10	11)	12)	13)	14)	15)	16
壓縮 k 值 (gw/cm)	1951	204	102	470	303	292	950	400
彈簧重心 (cm)	2.82	3.30	3.60	3.67	5.04	5.05	4.84	7.50
照片	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 mm m	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E 9.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	of of the	The state of the s	2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
砝碼重(g)	120 g	24 g	12 g	36 g	14 g	24 g	44 g	20 g
横向 k 值 (gw/cm)	120	24	12	36	14	24	44	20
\sqrt{k}	10.95	4.90	3.46	6.00	3.74	4.90	6.63	4.47
T(秒)	0.158	0.340	0.556	0.265	0.445	0.350	0.238	0.343

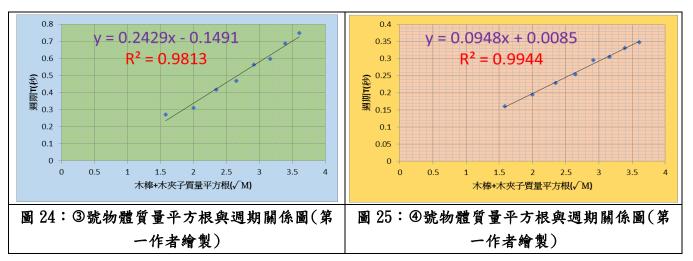
4. 第三版自製彈簧蹺蹺板壓縮彈性係數與橫向彈性係數的關係

將上面的實驗結果輸入 EXCEL 中進行分析,得到下面第三版壓縮 k 值與橫向 k 值關係圖(圖 22),以及第三版週期(T)與橫向 k 值平方根關係圖(圖 23)。

由圖 22 來看,我們知道壓縮 k 值與橫向 k 值呈現正相關。由圖 23 來看,週期(T) 和橫向 k 值平方根(\sqrt{k})大約呈反比,與第二版結果相同。

(二)物體質量對週期的影響(T 與 M 的關係)

1. 第二版彈簧蹺蹺板樣本:


我們利用木夾子來改變物體質量,一半的木棒質量為 2.5 g,施力點距木棒中心點的 距離皆設定為 7.5 cm。至於彈簧蹺蹺板方面,我們發現 6 g 的夾子對於編號①、②、⑥、 ⑦,以及®的會因木夾子太重而倒下,而編號⑤擺動重心太低。因此我們選用編號③、 ④的做為樣本,實驗數據在實驗日誌中,報告書只呈現編號③相關數據,如下表所示:

編號 30 $\Im A$ 3B 3C 3AC 3BC $\Im AB$ 3 ABC 照片 質量 2.5 4.0 5.5 **7.0** 8.5 **10** 11.5 **13** (g) \sqrt{M} 1.58 2.35 2.65 3.39 2.00 2.92 3.16 3.61 MAAAAAA MAAAAAA MANAVAA MAMAMA MAMAMA WWW. 波形 T(秒) 0.272 0.30 0.4 0.46 0.56 0.59 0.68 0.74

表 10:第二版彈簧蹺蹺板彈簧編號③不同木夾子質量的週期記錄(第一作者拍攝)

2. 第二版彈簧蹺蹺板實驗結果:

將實驗日誌的實驗結果輸入 EXCEL 中進行分析,得到下面③號彈簧蹺蹺板,以及 ④號彈簧蹺蹺板的的物體質量平方根與週期關係圖(圖 24、圖 25)。

由圖 28、29 來看,木夾子的質量越重,彈簧蹺蹺板<mark>擺動的週期越大,週期和質量</mark>平方根約成正比。

3. 第三版對稱彈簧蹺蹺板樣本:

我們利用不同螺帽數量(一顆 3.2 g, 有 1 顆、3 顆、5 顆、7 顆)來改變物體質量,一半的木棒質量為 2.5 g, 施力臂的位置為 7.5 cm。我們選用編號⑨、⑩的做為我們的第三版對稱彈簧蹺蹺板樣本(兩邊相同質量),實驗數據在實驗日誌中,報告書只呈現編號⑩相關數據,如下表所示:

編號 ⑩對稱 1 ⑩對稱 3 ⑩對稱 5 ⑩對稱 7 照片 質量(g) 5.7 12.1 18.5 24.9 波形 T(秒) 0.500 0.771 1.104 1.438

表 11: 第三版對稱彈簧蹺蹺板彈簧編號@不同螺帽質量的週期記錄(第一作者拍攝)

4. 第三版不對稱彈簧蹺蹺板樣本:

我們依舊選用編號⑨、⑩的做為我們的不對稱彈簧蹺蹺板樣本;一樣的不同螺帽數量,只是原本兩邊增加相同質量變成只增加一邊質量。實驗數據在實驗日誌中,報告書只呈現編號⑩相關數據,如下表所示:

編號 ⑩不對稱1 ⑩不對稱3 ⑩不對稱 5 **⑩**不對稱 7 照片 18.5 24.9 質量(g) 5.7 12.1 **50** 傾斜角度(°) **10 30 40** 波形 T(秒) 0.467 0.498 0.410 0.511

表 12:第三版不對稱彈簧蹺蹺板編號⑩不同螺帽質量的週期記錄(第一作者拍攝)

5. 第三版彈簧蹺蹺板實驗結果:

將實驗日誌的⑨號對稱、⑨號不對稱,以及⑩號對稱、⑩號不對稱 4 組實驗結果數據輸入 EXCEL 中分析,得到不同質量與週期折線圖,圖形如圖 26 所示:

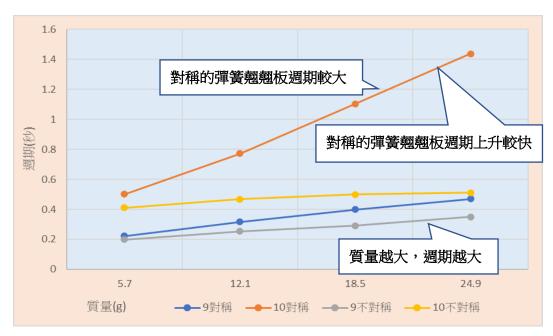


圖 26:編號⑨對稱、不對稱;編號⑩對稱、不對稱,不同質量與週期折線圖(第一作者繪製)

由圖 26 來看,對稱與不對稱的彈簧翹翹板都是<mark>質量越大,週期越大;對稱的彈簧</mark> 翹翹板週期較大,且週期隨質量的增加而上升的趨勢明顯較快。

將編號®對稱、編號®不對稱的彈簧蹺蹺板 Y 軸軌跡繪製成波形圖,如下圖所示:

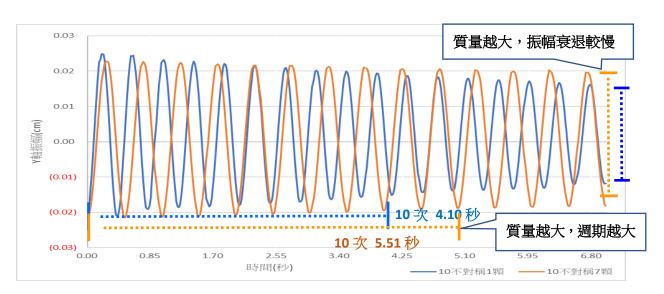


圖 27: ⑩號不對稱螺帽數 1 顆與 7 顆 Y 軸軌跡繪製成折線圖(第一作者繪製)

由圖 27 來看,質量越大,週期越大;質量越大,Y 軸振幅減少越慢。

(三)施力臂(R)對週期的影響(T與R的關係)

1. 第二版彈簧蹺蹺板樣本:

我們利用木夾子(6g)夾在木夾的位置來改變施力臂長度,間隔2.5cm,共6組。至於彈簧蹺蹺板方面,我們選用編號③(彈簧長3cm)、編號④(彈簧長3cm)做為我們的彈簧蹺蹺板樣本。實驗數據在實驗日誌中,報告書只呈現編號③相關數據,如下表所示:

3 I ③ ∏ ③ Ⅲ 3 IV $\Im V$ 3 VI 編號 照片 施力臂 2.5 5 7.5 **10** 12.5 15 (cm) WWWWW 波形 T(秒) 0.408 0.474 0.560 0.680 0.782 0.900

表 13:第二版彈簧蹺蹺板彈簧編號③不同木夾子位置的週期記錄(第一作者拍攝)

2. 第三版對稱彈簧蹺蹺板樣本:

我們利用螺帽鎖在木棒的位置來改變施力臂長度,間隔 2.5 cm, 共 6 組。至於彈簧 蹺蹺板方面,我們選用編號⑨(彈簧長 3 cm)、⑩(彈簧長 3.3 cm)的做為我們的彈簧蹺蹺 板樣本。實驗數據在實驗日誌中,報告書只呈現編號⑩相關數據,如下表所示:

表 14: 第三版對稱彈簧蹺蹺板彈簧編號⑩不同螺帽位置的週期記錄(第一作者拍攝)

編號	(1) I	⑩ Ⅱ	₩ Ш	10 IV	10 V	10 VI
照片						
施力臂 (cm)	2.5	5	7.5	10	12.5	15
波形	MINNI			超額額		
T(秒)	0.384	0.433	0.500	0.586	0.673	0.754

3. 第二、三版對稱彈簧蹺蹺板實驗結果:

將實驗日誌中實驗編號③、編號④、編號⑨、編號⑩皆對稱的彈簧蹺蹺板,不同施力臂長度的週期相關紀錄繪製成折線圖,圖形如圖 28 所示:

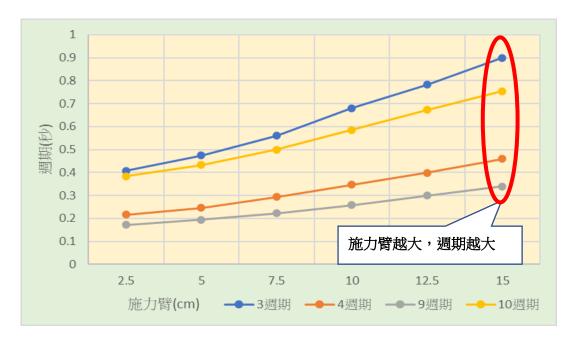


圖 28:編號③、④、⑨、⑩對稱的情形,不同施力臂(R)與週期(T)關係圖(第一作者繪製) 由圖 28 來看,施力臂越大,週期越大,約成正相關。

4. 第三版不對稱彈簧蹺蹺板樣本:

我們選用編號®、編號®做為不對稱彈簧蹺蹺板樣本,原本兩邊增加相同質量變成 只增加一邊質量。實驗數據在實驗日誌中,報告書只呈現編號®相關數據,如下表所示:

表 15:第三版不對稱彈簧蹺蹺板編號@不同螺帽位置的週期記錄(第一作者拍攝)

編號	1 0 I	(I) II	₩ Ш	10 IV	10 V	₩VI
照片		\$ 58-				
施力臂 (cm)	2.5	5	7.5	10	12.5	15
波形	MMMMM	WWWW	14.WWW	<u>Wwwww</u>	WWWW	//////////////////////////////////////
T(秒)	0.360	0.377	0.410	0.447	0.493	0.539

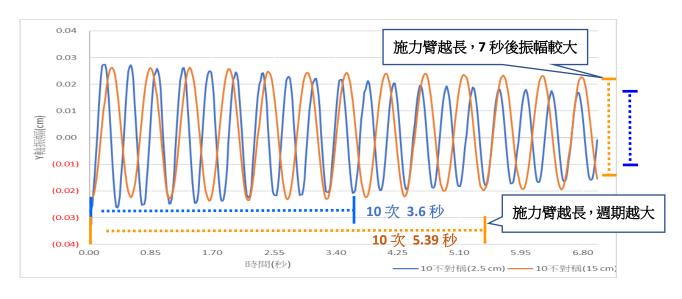
5. 第三版對稱與不對稱彈簧蹺蹺板實驗結果:

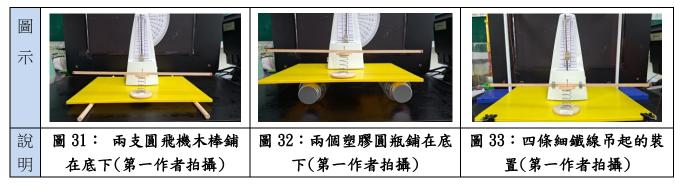
將施力臂與編號⑨對稱、編號⑩不對稱、編號⑩對稱、編號⑩不對稱彈簧蹺蹺板的 週期相關紀錄繪製成折線圖,圖形如下圖 29 所示:

圖 29: ⑨號對稱與不對稱施力臂與週期關係圖(第一作者繪製)

由圖 29 來看,對稱與不對稱的彈簧翹翹板都是施力臂越大,週期越大;對稱的彈 簧彈簧翹翹板週期較大,而且施力臂長度增長時上升的趨勢較明顯。

將編號@對稱、編號@不對稱的彈簧蹺蹺板 Y 軸軌跡繪製成波形圖,如圖 30 所示:




圖 30: ⑩號不對稱螺帽數施力臂 2.5 cm 與 15 cm 的 Y 軸軌跡繪製成波形圖(第一作者繪製) 由圖 30 來看,施力臂越長,週期越大; Y 軸振幅減弱較慢。

三、 研究目的三:探討彈簧蹺蹺板與彈簧擺飾的共振現象

(一) 探討彈簧蹺蹺板與節拍器共振的條件

1. 實驗裝置的改良

首先我們用彈珠鋪在底下,因為彈珠分布位置不同而且不好操作,接著改用兩支 圓飛機木棒鋪在底下(圖 31),可是不太晃動;再改用兩個塑膠圓瓶,可以順利共振(圖 32);最後改用四條細鐵線吊起,晃動變得更加劇烈,共振效果更明顯(圖 33)。

2. 節拍器週期對擺動情形的影響

我們用彈珠、兩支圓飛機木棒,以及兩個塑膠圓瓶鋪在底下的裝置,都沒有發生 節拍器停止的情形,可是改用四條細鐵線的裝置,節拍器晃動幾下就停止了,推論應該 是晃動幅度過大,於是我們思考如何不會讓節拍器停止。

將節拍器放置在四條細鐵線的裝置上,節拍器與裝置成平行,調整節拍器週期由 最底下刻度(0.577 秒)開始,觀察週期與裝置的擺動情況。結果如下:

表 16:不同週期節拍器放置在四條細鐵線的裝置擺動情形記錄(第一作者拍攝)

週期(秒)	0.577	0.6	0.625	0.652	0.681	0.714
照片						
擺動次 數(次)	2.5	3	4.5	14	持續不斷	持續不斷

實驗結果表明,節拍器週期會對節拍器擺動是否停止產生影響,週期越大的越不容易停止,擺動的次數也會較多。

3. 節拍器與彈簧蹺蹺板(編號(11))共振與不共振,Tracker 圖形分析的差異

在共振情況下,節拍器的頻率等於或接近彈簧蹺蹺板的固有頻率。此時,蹺蹺板 會受到節拍器的持續影響,其振幅會逐漸增大,直至達到最大值。通過分析 Tracker 的 數據所得到的波形圖,可以判斷節拍器與彈簧蹺蹺板是否共振,如下圖所示:。

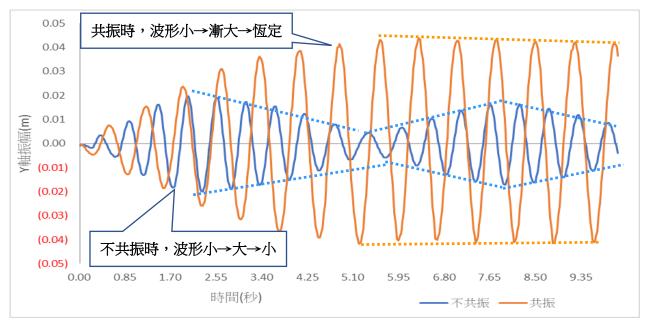
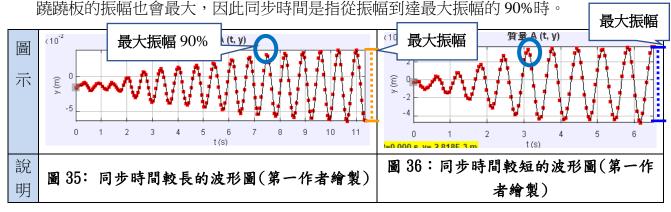



圖 34: 節拍器與彈簧蹺蹺板共振與不共振(拍頻)時波形圖的差異(第一作者繪製)

由圖 34 得知,共振情況下,波形圖會呈現出由小到漸大到恆定的波動;不共振(拍頻)情況下,波形圖則會呈現出由小到大再到小的波動。

在節拍器與彈簧蹺蹺板的系統中,共振是指當節拍器的週期與彈簧蹺蹺板的固有 週期相等時,系統會發生最大振幅的振動。此時,節拍器對蹺蹺板的能量傳遞效率最高,

由圖 35、36 來看,圖 35 的同步時間較長(接近 7.5 秒),上下振動第 12 次時同步;圖 36 的同步時間較短(大約 3 秒),上下振動第 5 次時同步。

(二) 影響彈簧蹺蹺板與節拍器共振的因素

1. 底板加重物對彈簧蹺蹺板與節拍器共振的影響

節拍器與彈簧蹺蹺板(編號①,自然擺動週期 0.67 秒)置於裝置上,打開節拍器,調整其週期(皆為 0.681 秒),再將油土(1 個 100 g)各一個放在底板的兩側,觀察振動情況,增加油土數量至 4 塊、6 塊,得到結果如下:

表 17:	不同油十數	量對彈簧蹺蹺	扳與箭拍器 ‡	共振記錄(第	一作者拍攝)
10 11			ハアンイアロコロコロン		1 [7] 3 [14] [14]

加重	沒加重油土	加重2塊油土	加重4塊油土	加重6塊油土
照片				
波形	FWWW		-	
10 次(停止)時間 (秒)	2.651 秒停止	6.831	6.864	6.983
刻度週期(秒)	0.681	0.681	0.681	0.681
Y 軸最大振幅 (cm)	8.47	8.354	7.916	5.784
同步時間 (秒)	沒同步	5.165	7.204	7.969

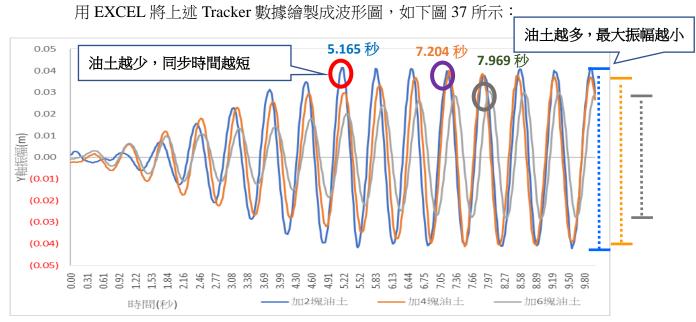
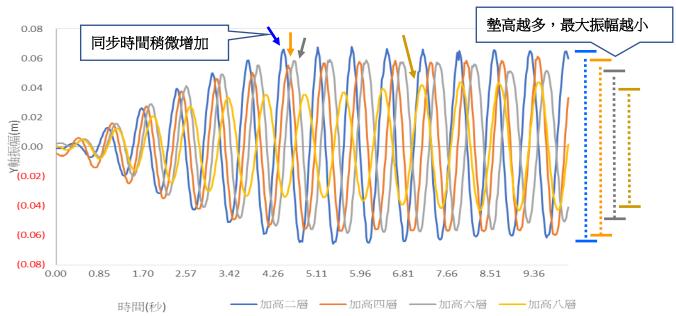


圖 37: 節拍器與彈簧蹺蹺板共振時,不同油土數量波形圖的差異(第一作者繪製) 由圖 37 得知,增加的油土數量越多,同步時間越長;10 秒後 Y 軸振幅會越小。

2. 墊高彈簧蹺蹺板對共振的影響


我們利用海棉車輪來加高彈簧蹺蹺板,將節拍器放在墊高彈簧蹺蹺板的正後方, 打開節拍器,調整其週期(0.681 秒),觀察彈簧蹺蹺板的共振情況。結果如下:

墊高層數 沒墊高 墊高 9 cm 墊高 12 cm 墊高 3 cm 墊高 6 cm 照片 波形 停止(10次)時 2.651 秒停止 6.780 6.915 7.102 7.510 間(秒) 刻度週期(秒) 0.714 0.681 0.681 0.681 0.681 Y軸最大振幅 8.47 12.585 8.685 12.126 11.295 (**cm**) 同步時間(秒) 沒同步 4.384 4.520 4.639 7.833 自然擺動週期

表 18:不同墊高高度對彈簧蹺蹺板與節拍器共振記錄(第一作者拍攝)

0.683

0.696

0.736

0.762

圖 38: 節拍器與彈簧蹺蹺板共振不同墊高層數波形圖的差異(第一作者繪製)

由圖 38 得知,節拍器與彈簧蹺蹺板的週期會隨墊高高度的增加而稍微變大;同步

的時間也會增加; 10 秒後 Y 軸的振幅越小。

0.670

(秒)

3. 對稱彈簧蹺蹺板不同質量對節拍器共振的影響

利用螺帽數量來改變彈簧蹺蹺板的質量,觀察不同質量(1、3、5、7顆)的對稱彈簧 蹺蹺板與節拍器共振情況。結果如下:

編號 **@**3 **10**5 **@**7 1 1 照片 波形 5.675 10 次時間(秒) 8.020 10.756 幾乎不動 刻度週期(秒) 0.577 0.789 1.111 1.428 Y軸最大振幅 3.946 6.983 1.406 幾乎不動 (**cm**) 同步時間(秒) 沒同步 沒同步 15.598 20.084 自然擺動週期(秒) 0.5 0.771 1.438 1.104

表 19:不同施力臂對彈簧蹺蹺板與節拍器共振記錄(第一作者拍攝)

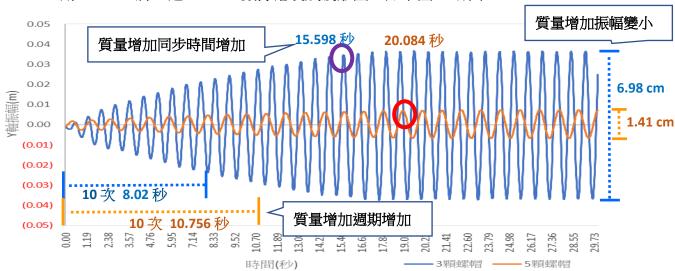


圖 39: 節拍器與彈簧蹺蹺板共振 3 顆螺帽與 5 顆螺帽波形圖的差異(第一作者繪製)

由圖 39 得知,節拍器與彈簧蹺蹺板的<mark>週期隨質量的增加而增大;質量越大(5</mark> 顆螺帽)時,振幅會變小;質量較重(5 顆螺帽),節拍器和彈簧蹺蹺板同步時間較慢,推論是週期越大,擺動越慢,能量傳遞越慢。

4. 彈簧蹺蹺板不同施力臂長度(螺帽位置)對節拍器共振的影響

我們利用螺帽來改變彈簧蹺蹺板的施力臂長度,將節拍器放在彈簧蹺蹺板的正後方,調整節拍器週期,觀察不同施力臂彈簧蹺蹺板的共振情況。結果如下:

螺帽位置	2.5 cm	5 cm	7.5 cm	10 cm	12.5 cm	15 cm
照片						
波形		₩₩₩				05
10 次時間	2.651 秒停	F 25	0.420	0.600	11 04	纵立工事
(秒)	止	7.35	8.428	9.600	11.24	幾乎不動
刻度週期	0.691	0.750	0.022	0.053	1 111	1 264
(秒)	0.681	0.750	0.833	0.952	1.111	1.364

4.120

14.77

0.853

2.445

27.645

0.975

幾乎不動

沒同步

1.364

1.722

48.25

1.125

表 20:不同施力臂對彈簧蹺蹺板與節拍器共振記錄(第一作者拍攝)

8.320

4.79

0.744

Y軸最大振

幅(cm) 同步時間

(秒) 自然擺動

週期(秒)

8.470

沒同步

0.670

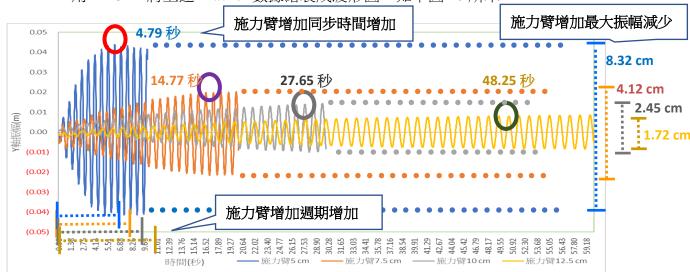


圖 40: 節拍器與彈簧蹺蹺板共振時,不同施力臂長度波形圖的差異(第一作者繪製) 由圖 40 得知,施力臂最短時,節拍器和蹺蹺板的能量傳遞效率最高,振幅最大; 較短的施力臂,節拍器和蹺蹺板會更快同步。

(三) 自製彈簧擺飾的簡諧運動

1. 自製彈簧擺飾

市面上有售一種彈簧擺飾,利用彈簧的上下振動以及前後的擺動來進行遊玩。我們將市售彈簧,利用前述研究方式測量橫向 \mathbf{k} 值,得到彈簧重心左右偏移 \mathbf{l} cm 需 $\mathbf{60}$ g;測量壓縮 \mathbf{k} 值,得到向下壓縮 \mathbf{l} cm 需 $\mathbf{365}$ g,得知壓縮 \mathbf{k} 值大於橫向 \mathbf{k} 值。

我們將市售彈簧上方貼上不同數量的鐵環 (一個鐵環約 10 g),鐵環上加裝鏡片(鏡片也算入 頭的重量),製作自製彈簧擺飾。利用鏡子反射 雷射光,我們即可得知上下振動的軌跡,因而得 知擺動週期。我們將自製彈簧擺飾依照 2 個鐵 環、4 個鐵環、6 個鐵環、8 個鐵環排列成一排, 裝在自製擺動平台上(圖 41)。

2. 智慧積木製作左右擺動振動器

我們想利用共振來讓自製彈簧擺飾可以持續左右擺動,我們需要提供動力來源,於是想到利用智慧積木來組裝左右擺動振動器,因為智慧馬達的轉速固定,我們利用大小不同的齒輪,以大齒輪帶動小齒輪,轉速變快;以小齒輪帶動大齒輪,轉速變慢,以及不同數量的接觸棒(數量越多越快)來改變振動的週期。

圖 41: 自製彈簧擺飾與擺動平台(第 一作者拍攝)

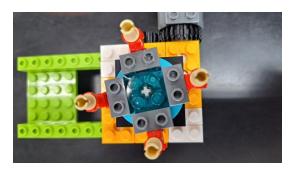


圖 42:智慧積木左右擺動振動器(第 一作者拍攝)

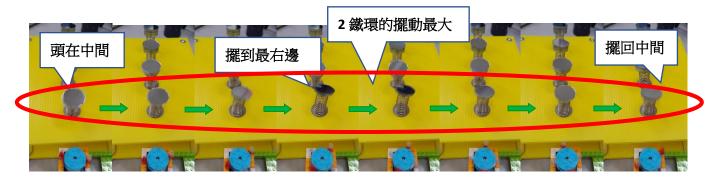


圖 43: 間隔 1/30 秒的左右振盪定格畫面連續圖(第一作者拍攝)

用定格畫面連續圖可以測量不同自製彈簧擺飾的左右擺動週期。如果我們將轉速 漸漸變快,彈簧擺飾會由8鐵環→6鐵環→4鐵環→2鐵環依序擺動,如下圖44:



圖 44: 自製彈簧擺飾隨擺動速度加快而依序擺動(第一作者拍攝)

3. Arduino 製作上下振動振動器

上下振動週期較左右擺動還快,所以思考能提供更快轉速的動力來源,於是想到利用 Arduino 來組裝上下振盪器,利用可變電阻控制轉速,以及不同數量的接觸棒(數量越多越快)來改變上下振動的週期,再用手機支架固定馬達,如右圖。

4. 雷射光放大振幅

單靠錄影並用 Tracker 分析,會因 為彈簧擺飾上下振動的振幅過小(圖 46),而無法測得較準確的週期,因此我 們利用雷射光來放大振幅。我們使用 紅、綠兩支雷射筆(1mw),雷射光照射 位置為自製彈簧擺飾頭部鏡片,再反射 到方格布幕。

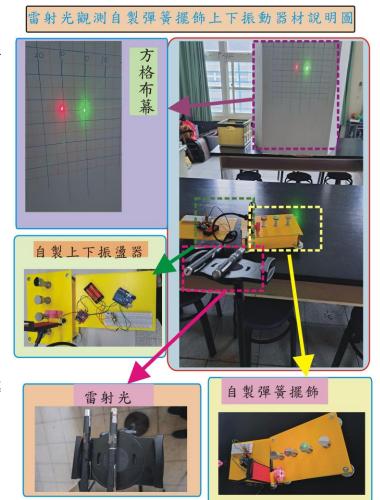


圖 45: 雷射光觀測上下振動器材說明圖(第一作者製作)

圖 46: 間隔 1/30 秒的上下振動定格畫面連續圖(4 鐵環出現微量快速上下振動)(第一作者拍攝)

5. 上下振動週期測量方法一:雷射光上下位移次數與經過的時間

將手機錄影定為每秒 30 張,再將影片轉化成定格畫面,得到下面連續圖 47。因為 是上下來回,為了方便判讀,我們放大 X 軸軌跡,並將軌跡連接起來(圖 48)。

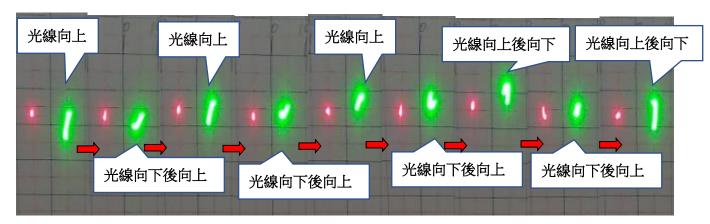


圖 47:間隔 1/30 秒的<mark>上下振動</mark>定格畫面連續圖(<mark>紅光</mark>是 6 鐵環、<mark>綠光</mark>是 4 鐵環)(第一作者拍攝)

圖 48: 間隔 1/30 秒的上下振動電腦繪製示意圖(<mark>紅光</mark>是 6 鐵環、綠光 4 鐵環)(第一作者繪製)

由圖 46×47 得知,<mark>綠光</mark>的振幅較<mark>紅光振幅大</mark>,共振時振幅會較大; <mark>綠光 9 張</mark>定格畫面光點上下了 5 次,週期為 0.06 秒;红光 6 鐵環上下了 4 次,週期為 0.075 秒。

6. 上下振動週期測量方法二:由上下振盪器與彈簧擺飾共振時的頻率測得

因為方法一又要手機錄影,又要定格畫面,最後還要一起討論可能的軌跡與週期, 我們思考如何能較簡便的測量,於是我們想到用共振的方式,只要能夠測量出上下振盪 器的振動週期,可以跟這個頻率一起共振的,就能測得這個彈簧擺飾的週期。我們使用 可變電阻改變轉速(圖 49),用光轉速計測量轉速(圖 50),再將每秒轉速乘上接觸海綿數 量(圖 51),即可得到每秒振動次數。

7. 自製彈簧擺飾的週期測量結果

用定格畫面連續圖我們可以測量自製彈簧擺飾左右擺動的週期;用方法一、方法 二可以測量彈簧擺飾上下振動的週期,結果如下表:

表 21:不同自製彈簧擺飾週期實驗記錄(第一作者拍攝)

編號	2 鐵環	4 鐵環	6 鐵環	8 鐵環
照片				
頭重量(g)	22.4	42.3	62.3	82.9
左右擺動週期(秒)	0.179	0.285	0.357	0.521
方法一週期(秒)	0.053	0.060	0.075	0.103
方法二頻率(Hz)	16.13	14.39	12.07	8.67
方法二週期(秒)	0.062	0.069	0.089	0.115

將不同自製彈簧擺飾週期繪製成折線圖,如圖 52 所示:

由圖 52 來看,彈簧擺飾的左 右和上下振動的週期都隨質量增 加而變大,所以振動底盤的共振頻 率須隨彈簧擺飾質量增加而遞減 或變慢,振動頻率更慢才能共振; 左右擺動的週期 > 上下振動的週 期,推論是橫向 k 值 < 壓縮 k 值 所致;方法一、方法二差異不大。

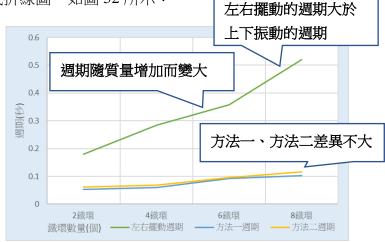
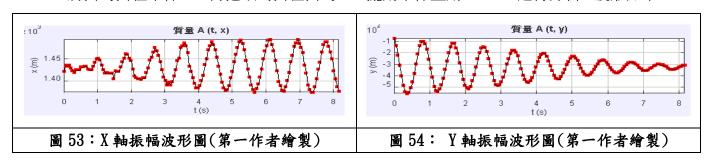
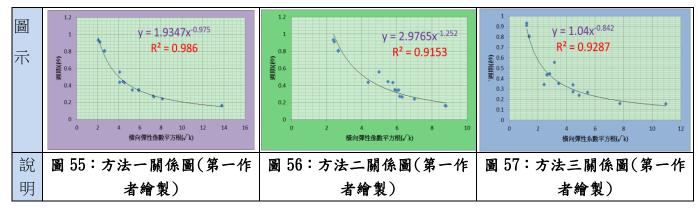



圖 52:不同擺動方式與測量方法的自製彈簧擺飾 週期折線圖(第一作者繪製)

肆、討論


一、 會搖動的砝碼振動的波形(彈簧蹺蹺板編號⑤為說明樣本) 將掛勾掛在木棒上,再把砝碼掛在掛勾上,擺動木棒並用 Tracker 進行分析,波形如下:

由圖 53、54 來看,彈簧蹺蹺板由原本的上下振動較明顯,變成左右擺動較明顯。

二、横向k值的定義

我們測量橫向 k 值是測量擺動重心偏移 1 cm 所需的砝碼質量(方法一),將自製的 16 個彈簧蹺蹺板進行線性分析,得到圖 55。採用方法二:彈簧頂端往下 10°的砝碼質量,得到圖 56;採用方法三:統一測量彈簧 3 cm 處偏移 10°所需的砝碼質量,得到圖 57。

由圖 $55 \times 56 \times 57$ 來看,三個測量方法橫向彈性係數平方根(\sqrt{k})的大小不同,但週期(\mathbf{T})與橫向彈性係數平方根(\sqrt{k})都約呈現反比,但以方法一較為明顯。

三、擺動裝置自然週期對共振的影響

四、彈簧擺飾與振動源的共振

我們將可變電阻慢慢調快,共振的彈簧擺飾會由 8 鐵環→6 鐵環→4 鐵環→2 鐵環依序振動,轉速計讀

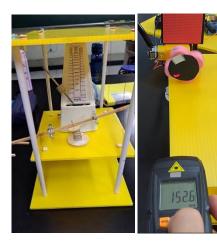


圖 58:細鐵絲 圖 59:振動源 長 20 cm (第一 與光轉速計(第 作者拍攝) 一作者拍攝)

數也會漸漸增加(圖 59)。過程中接觸位置會影響轉速,離底板太遠,轉速會較快(阻力變小),但振幅較小;離底板太近,轉速會較慢(阻力變大),但振幅較大。利用馬達與轉速計可以測量彈簧擺飾振動的頻率,可以設置不同的彈簧擺飾在音箱共振或地震感測上。

五、 討論彈簧擺飾左右擺動與上下振動時, 共振時雷射光軌跡差異

我們用雷射光放大振幅左右擺動軌跡(圖 60),與上面研究(圖 47)比較,可以看出左右擺動的雷射光點位移 > 上下振動位移;由來回經過時間可以知道左右擺動週期 > 上下振動週期。雷射光偵測微量振動是可行的,可應用在地震、橋梁(高架橋)振動量測上。

圖 60:間隔 1/30 秒的左右擺動連續圖(紅光是 6 鐵環、綠光是 4 鐵環)(第一作者拍攝) 伍、結論

- 一、不固定的物體會影響擺動的規律性。
- 二、影響彈簧蹺蹺板週期的因素有:A. 彈性係數(k)越大週期(T)越小,週期(T)約與彈性 係數平方根(√k)成反比;B.質量(M)越大週期(T)越大,週期(T)約與質量(M)成正比; C.施力臂(R)越大週期(T)越大,週期(T)約與施力臂(R)成正比。
- 三、對稱的彈簧蹺蹺板較不對稱的彈簧蹺蹺板擺動週期大。
- 四、增加重物重量、墊高層數越多、質量 (M)越大,以及施力臂(R)越長,節拍器與彈簧 蹺蹺板共振時的週期、同步時間越大,擺動的振幅越小。
- 五、彈簧擺飾的**前後**以及**上下振動的週期**會因**質量增加而變大**;**左右擺動**的**週期**皆大於 **上下振動的週期**。

六、未來的運用:

- 1. 可改良彈簧蹺蹺板的擺動週期,讓彈簧蹺蹺板更加安全、舒適。
- 2. 不固定的物品會讓振幅減少更明顯,也較容易改變震動的方向,可用於減震。
- 3. 可以利用彈簧蹺蹺板來製作阻尼器。
- 4. 彈簧擺飾上下左右的微量晃動共振現象,可應用在微量振動的量測上。

陸、參考文獻

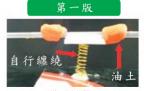
- 一、維基百科(無日期)。「彈力位能」、「彈力」、「振幅」、「週期」、「彈性係數」、「畢氏定理」、「共振」。2023年8月1日,取自https://zh.wikipedia.org/wiki/
- 二、蔡坤憲(2022-06-01)。從「物理感」來理解簡諧運動的數學公式。物理雙月刊。2023 年 8 月 1 日,取自 https://pb.ps-taiwan.org/modules/news/article.php?storyid=706
- 三、第26屆中小學科學展覽會~簡諧運動彈簧等效質量之測定
- 四、第 55 屆中小學科學展覽會~神奇的殊途「同」歸一探討不同變因對於節拍器達到同 步時間的影響
- 五、第62屆中小學科學展覽會~甜蜜交織的共振擺

【評語】080114

這個分析之前科展中相關的研究成果,並且說明此研究的主軸。工作 利用彈簧的擺動來討論簡協運動的週期。研究內容詳細敍述如何自製 彈簧蹺蹺板,擺盪週期的測量,彈性係數測量,質量及施力臂測量。 工作也利用 Tracker 軟體來分析整體的工作。相對上會是個較精確地 架構。工作中也討論了不同情況的震盪波形。後續同學又進一步學習 了利用節拍器來學習共振的情況。除了上述的工作之外,同學更進一 步學習的上下震盪的情況,這個工作中利用雷射光來追蹤軌跡。後續 也做了一些關對應的討論。整個工作算是蠻廣泛地研究一個共振主 題。測量其性質,再來瞭解物理現象,完整的科學性探討。 作品簡報

二、研究目的

公園有一個彈簧蹺蹺板,我們發現體重較重的人坐上去,它擺動得比較慢,而當人坐得越後面,擺動也會變慢,市售彈簧擺飾的點頭測與搖頭週 運業發發度異素推作 期會不相同,我們對此感到好奇。



- (一)週期、彈性係數、質量、施力臂的測量 (二)彈性係數、質量、施力臂,以及是否對稱 對週期的影響
- (三)探討彈簧蹺蹺板與彈簧擺飾的共振現象

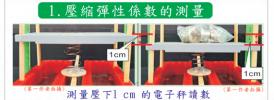

貳、研究設備與器材

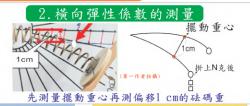
- 一、觀測擺動週期設備及器材:自製彈簧蹺蹺板、自製壓縮彈性係數測量裝置、自製角度觀測裝置、熱熔膠槍、手機、平板、電子秤。二、觀測共振設備及器材:節拍器、雷射筆、自製彈簧擺飾、自製軌跡測量
- 裝置、自製上下振動器、自製左右擺動器、塑膠圓瓶、珍珠板、海綿圓輪。

研究過程與結果

方法三:Tracker测量法

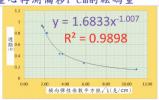
方法一:目測法





不夠

▶三種測量法的數值差異不大;Tracker測量法是最準確與範圍最廣


彈性係數的測量 以及與週期的關係

編號	1	2	3	4	(5)	6	7	8
医 納 K 漁	52	175	440	1272	419	162	118	81
彈簧 重心 (cm)	3.21	3.21	3.10	2.83	2.66	4.31	4.31	4.31
熊片			1					
砝碼重 (g)	3	12	34	120	14	5	5	3. 5
横向 K值 (gwicm)	3	12	34	120	14	5	5	3. 5
√K	1, 73	3, 46	5.83	10.95	3.74	2, 24	2, 24	1.87
T(#)	0.931	0.435	0, 272	0, 161	0.433	0.801	0.807	0.910

編號	9	10	11	12	13	14	15	16
壓縮 [基稿]	1951	204	102	470	303	292	950	400
彈養 重(cm)	2.82	3.30	3.60	3.67	5.04	5.05	4.84	7.50
照月	N.			5	Z.	N.	1	
法馬重 (g)	120	24	12	36	14	24	44	20
横向 K值 (gw/cm)	120	24	12	36	14	24	44	20
√ĸ	10.95	4.90	3.46	6.00	3.74	4.90	6.63	4.47
T(#)	0.158	0.340	0.556	0.265	0.445	0.350	0.238	0.343

第二版壓縮k值與橫向k值關係圖

y = 0.0566x + 3.7193

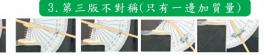
第二版T與橫向k值平方根關係圖 $y = 1.7944x^{-1.042}$ $R^2 = 0.9682$

第三版實驗結果 (第一作者整理、繪製)

第三版壓縮k值與橫向k值關係圖

第三版T與橫向k值平方根關係圖

▶壓縮彈性係數與橫向彈性係數成正相關;週期約與橫向彈性係數平方根成反比 ▶▶


(1)每組增加1.5g,共8組

8 % 8

(2)施力臂皆為7.5 cm

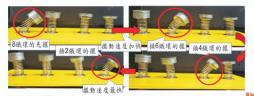
(3)第二版使用編號3、編號4彈簧蹺蹺板

2. 第三版對稱(兩邊質量相同)螺帽改變質量

(2)施力臂皆為7.5 cm

(3)第三版使用編號9、編號10彈簧蹺蹺板

智慧積木左右搖動器


Arduino上下振盪器

2. 週期測量方法與結果

(1)定格畫面測量左右擺動週期

間隔1/30秒的左右擺動定格畫面連續圖

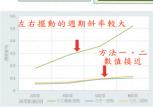
自製彈簧擺飾隨擺動速度加快而依序擺動

▶1.轉速越快,8→6→4→2鐵環依序擺動,週期逐漸變小 實驗發現

雷射光觀測自製彈簧擺飾上下振動器材說明圖 2.上下振動振幅太小、速度更快,需更精準的方法測量

(2) 測量上下振動週期方法一: 雷射光放大振幅


間隔1/30秒的上下振動定格畫面連續圖(紅光是6鐵環、綠光是4鐵環) ▶

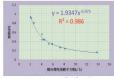

間隔1/30秒的上下振動光點位移示意圖(紅光是6鐵環、綠光是4鐵環)

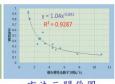
(3)測量上下振動週期方法二:光轉速計測量 (4)實驗結果

自製彈簧擺飾週期實驗記錄

自製彈簧擺飾週期折線圖

實驗發現一左右和上下振動的週期會隨質量增加而變大;左右擺動的週期斜率較大


、會搖動的砝碼振動的波形:由上下振動較明顯,變成左右擺動較明顯


、横向k值的定義:

方法一:擺動重心偏移1cm, 方法二:彈簧頂端往下10°

方法三:彈簧3 cm處偏移10°

, 以方法一較貼近文獻

方法一關係圖

方法二關係圖

v = 2.9765x-1.25

方法三關係圖

、擺動裝置自然週期對共振的影響: ▶

擺動裝置(20 cm)自然週期與其他裝置差不多時,三者 會同步擺動,相反的(26 cm)會出現不同步(拍頻出現)。

四、彈簧擺飾與振動源的共振:

振動源接觸位置離底板更近時,轉速會變慢、底板振幅 會變大。利用轉速計可以測量彈簧擺飾振動的頻率,能 設置多個彈簧擺飾在音箱振動或地震感測上。

的擺動裝置

振動源與 光轉速計

、左右擺動與上下振動共振時雷射光軌跡差異:

左右擺動的雷射光點位移 > 上下振動位移 ;由來回時間知道左右擺動週期 > 上下振 動週期。雷射光偵測微量振動可應用在地 震、橋梁(高架橋)振動量測上。

間隔1/30秒的左右擺動連續圖 (紅光是6鐵環、綠光是4鐵環)

伍、結論

- 一、不固定的物體會影響擺動的規律性。
- 二、影響彈簧蹺蹺板週期的因素有:
 - A. 彈性係數(k)越大時,週期(T)越小,週期(T)約與彈性係數平方根 (\sqrt{k}) 成反比。 B. 質量(M)越大時,週期(T)越大,週期(T)約與質量平方根 (\sqrt{M}) 成正比
- C.施力臂(R)越大時,週期(T)越大,週期(T)約與施力臂(R)成正比。
- 三、對稱的彈簧蹺蹺板較不對稱的彈簧蹺蹺板擺動週期大
- 四、增加重物重量、墊高層數越多、質量(M)越大,以及施力臂(R)越長,節拍器與彈簧蹺蹺板共振時的週期、同步時間越大,擺動的振幅越小。
- 五、彈簧擺飾的前後以及上下振動的週期會因質量增加而變大;左右擺動的週期斜率較上下 振動的大
- 六、未來運用:
 - A. 可改良彈簧蹺蹺板讓它更加安全、舒適。
 - B.不固定的物品會較容易改變振動的方向,可用於減震。
 - C.可以利用彈簧蹺蹺板來製作阻尼器。
 - D.彈簧擺飾上下左右的微量晃動共振現象,可應用在微量振動的量測上。