中華民國第64屆中小學科學展覽會作品說明書

國小組 物理科

080107

急速「傘」耀-降落傘終端速度的探討

學校名稱: 臺北市松山區民權國民小學

作者:

小五 陳冠愷

小五 郭以珞

小五 蔡旻哲

小五 鞠宗祐

小五 黃映曦

指導老師:

張益修

邱澤瑋

關鍵詞: 降落傘、加速度、終端速度

摘要

影響降落傘使用安全性的變因有哪些?降落傘速度多快時,會開始平穩緩慢降落?因為好奇這些問題,我們先自製簡易降落傘,再作實驗探討,可能影響它的安全性的變因有哪些。參考過去相關研究作品後,發現影響降落傘平安降落與否的「終端速度」,無人嘗試探討過,我們用 micro:bit(V2 版本),測量降落傘降落過程的加速度與時間數值後,用物理學計算方法,算出不同方式製作的降落傘,降落過程中達到的終端速度有多快。最後發現當降落傘符合傘面半徑大、總重量輕、傘繩長度讓傘面展開最適當的面積、傘繩數量少、傘面材質輕且沒有破損等這些條件時,終端速度會越慢,安全性也越高。希望此次研究能讓降落傘的製作更完善,也許可搶救更多高空意外現場的性命呢!

壹、前言

一、研究動機:

國小四下的康軒版自然課本,指出小學生可自製簡易玩具,課本提出的自製簡易玩具範例中,包含了降落傘。上完這段課程後,我們就有了自製簡易降落傘的念頭。後來自然老師與我們討論,參加校外科展的研究主題時,我們從上述課程得到靈感,提議以降落傘作為研究主題,並獲得老師的認可。

確認這個研究主題後,我們便開始蒐集與降落傘有關的課外資料。根據文獻記載,人類起先嘗試設計降落傘,目的是為了滿足,一些雜耍表演者的工作需求—表演從高處一躍而下卻毫髮無傷,但由於古代欠缺技術,設計的降落傘很簡陋,雜耍表演者跳下的高度,也不能高得太誇張。後來隨著熱氣球、滑翔翼、飛船、飛機等飛行工具陸續被發明後,天生沒有翅膀的人類,終於可以靠著它們翱翔天際。但是隨著飛行工具使用日益頻繁,高空事故的發生次數也越來越多,為了挽救在高空發生意外的人的性命,降落傘的改良需求日益增加。

就算撇開高空意外不談,有些熱愛冒險的人,搭乘飛機飛上天空後,想挑戰從高空中跳 下並平安落地的刺激快感;製作出軍用飛機後,有軍事將領想到,若能讓部隊從天而降並平 安降落,或許能更快速移動部隊,給對手出乎意料之外的致命一擊,提高打仗的勝算。在這 些情形的促使下,降落傘的改良,成了許多科學家投入的研究主題之一;近年隨著超高摩天 大樓越蓋越多,這類大樓發生火災時,內部的人如何從高處平安逃生,也日漸受到重視,國外甚至有人為此發明「高樓逃生降落傘」呢!

我們這次的研究,除了滿足自製簡易降落傘的心願,也想順便搞清楚,降落傘能讓人平安降落的原理是什麼?降落速度快慢會影響降落傘的安全性,哪些因素會影響降落傘的降落速度?如果我們能對物體降落時的安全著地速度研究,提供一些小小貢獻,進而讓降落傘的使用安全性增加的話,那就更好了。

二、研究目的:

我們決定先製作出簡易的降落傘,成功製作後,進一步擬定本次科展實驗的研究目的如下:

- (一)探討傘面半徑不同,對降落傘終端速度的影響。
- (二)探討總重量不同,對降落傘終端速度的影響。
- (三)探討傘繩長度不同,對降落傘終端速度的影響。
- (四)探討傘繩數量不同,對降落傘終端速度的影響。
- (五)探討傘面材質不同,對降落傘終端速度的影響。

三、文獻回顧:

我們在開始實驗前,先花時間搜尋與降落傘有關的知識,再進一步搜尋過去相關研究作品,希望能夠讓實驗規劃更為完善,甚至能比過去的作品更有所突破。

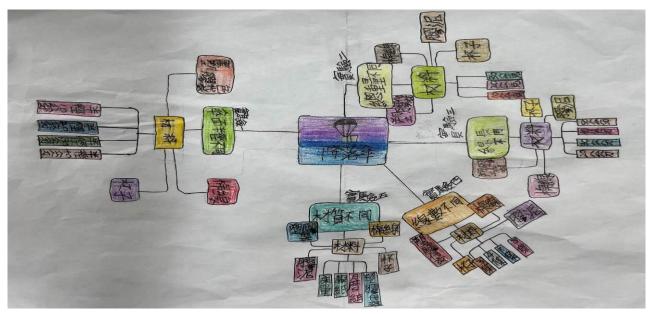
根據課外資料,任何物品從地球的任何高處降落的過程,都屬於「自由落體運動」,受到重力(在地球是地球引力)的影響。降落過程中,隨著空氣阻力的影響,降落速度會逐漸變慢,當空氣阻力與物體重量(地球引力對物品的吸力)達到平衡互相抵銷時,該物品受到的合力為零,物體的運動狀態保持不變,即「靜者恆靜,動者恆作等速度運動」。等速度運動的意思,就是加速度為零,我們想利用micro:bit板加上鋰電池板,其內建加速度感測器,用來測量多種不同降落傘降落過程的加速度變化,找出它們在垂直方向進行等速度運動(加速度為零)時,「終端速度」有無差異,以及哪些變因會影響「終端速度」的快慢。

什麼是「終端速度」呢?降落傘在地球開始降落時,因為地球引力,降落的加速度為9.8 公尺/秒²,但受到空氣阻力的影響,加速度逐漸變小,當空氣阻力與地球引力互相抵銷後,加速度會為零,讓降落傘持續以相同的速度降落到地面。當加速度為零時,降落傘此時的降落速度,達到最終的穩定數值,稱為「終端速度」,降落傘最終會以終端速度,穩定的降落在地面。我們看了以上說明後認為,如果降落傘開始降落後,終端速度的數值越慢,代表降落傘的安全性越好。蒐集文獻資料後發現,因為測量困難,與終端速度有關的問題,以前沒有學生探討過,我們決定要來試試看,是否可用物理學知識與降落相關數據,分別計算出不同方式製作的降落傘,它們平穩降落的終端速度,並確認終端速度與降落傘的製作方式有無關聯性。

蒐集資料後發現,數學上,終端速度可用這個式子表示: $V_1 = \sqrt{2mg/\rho AC_d}$ 。其中 V_1 為終端速度,m是質量,g為地球引起的重力加速度, C_4 為阻力係數, ρ 為物體落下時所處的流體密度,A為物體的投影面積。討論後大家覺得,扣除在本次實驗中不會改變的定值(例如g、 ρ 、 C_4)後,最適合我們規劃實驗的方向,是「調整m或A」,我們要以此規劃方向,設計本次科展的實驗方式。

我們在開始實驗前,找到了三件相關作品,第一件是全國科展第42屆國小組的〈天降神兵一降落傘實驗〉,這件作品提示我們,影響降落傘降落時間的可能變因有哪些。第二件是全國科展第46屆國中組的〈降落傘阻力大追查〉,這件作品告訴我們,影響降落傘降落效果的阻力來源是空氣。第三件是雲林縣虎尾高中學生作的研究報告〈我把手機從五樓丟下去〉提到,可直接將手機置入保麗龍球內再從高處丟下,使用手機程式分析自由落體的加速度-時間關係圖,分析加速度與時間的變化情形,計算出終端速度,用以討論空氣中之自由落體的終端速度與空氣阻力的關聯。我們決定參考這三件作品,以及前文提到的「調整m或A」,測試不同的傘面半徑、總重量、傘繩長度、傘繩數量、傘面材質作出的降落傘,搭配micro:bit內建的加速度感測器與設計程式語言,測量不同降落傘從高處降落到地面的速度與時間關係,進而計算出降落傘的終端速度。

終端速度要如何算出來呢?地球上的任何物體,在還沒開始掉落前(一般定義向上為正),它受到的重力加速度都大約等於9.8公尺/秒²,向下受到重力,掉落過程中受到空氣阻力向上的影響,整體加速度會開始下降,速度增加量愈慢。降落傘所受空氣阻力與它掉落的瞬間速度平方有關,下降過程中它所受空氣阻力會愈大,直到重力與空氣阻力相等合力為零,此時加速度為零,速度不再變化,就達到終端速度,而降落傘從開始降落(初速度為零),到抵達終端速度時,在a(加速度)-t(時間)關係圖中曲線與時間軸所圍成的面積,表示這段時間速度變化量也就是終端速度。


我們雖然只是小學生,操作實驗的技巧能力還很有限,但此次科展,不論是製作降落傘,或是測試降落傘降落效果的實驗流程,只要確定施放降落傘的地點夠安全,所有步驟難度都不高,我們都全力投入操作。本作品說明書中使用的圖片,除了第10頁的「加速度三維方向圖」取自micro:bit的官網網頁(如此,其他的都是由指導老師於我們操作實驗、進行統計時,幫忙拍攝或擷取電腦操作的書面而來,特別在此提出說明。

貳、研究設備及器材

剪刀、膠帶、黑色大塑膠袋、棉線、尺、奇異筆、鉛筆、傘杯、計時器、micro:bit、床單、 月曆紙、報紙、膠泥。

參與肆、研究過程方法與結果

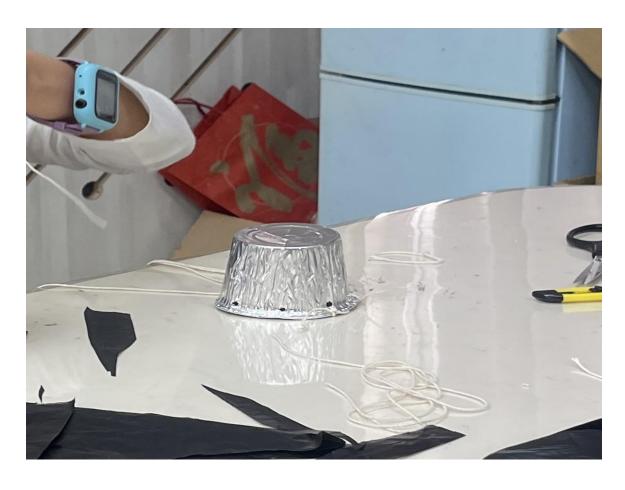
下面是我們這次科展實驗專題探討的研究架構圖:

我們必須成功自製簡易降落傘,並將測試降落加速度的小型儀器 micro:bit,固定於降落傘裝置後,才能測出需要的數據,進一步探討前面提到的研究目的。因此我們先自製簡易降落傘、固定測試用的小型儀器,成功讓降落傘降落成功,並取得適用的降落相關數據後,再進行數據分析,完成本次科展的研究目的探討相關實驗。

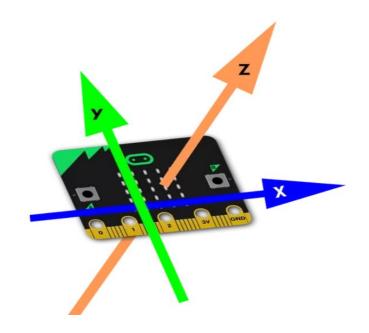
製作簡易降落傘與取得降落相關數據的方法,依序如下:

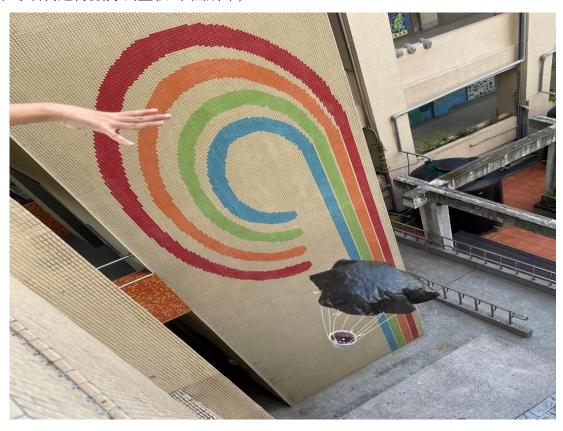
一、決定傘面材質後,剪下特定半徑長度的圓,作為降落傘的傘面,再準備數條等長的棉線。

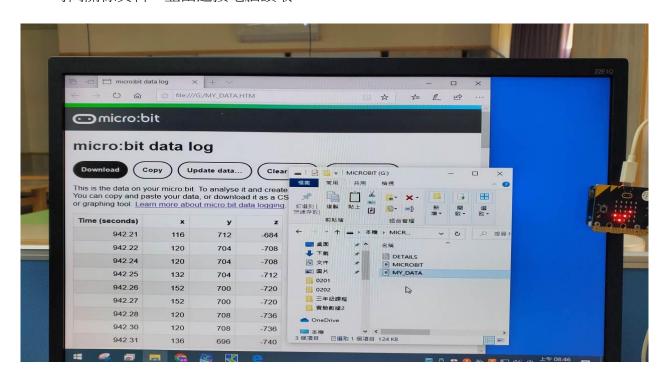
二、從剪下的圓形降落傘面,製作出將傘面等分若干份數的分界線,可用測量相同角度後畫線,或多次對折的方式來等分圓形降落傘面。



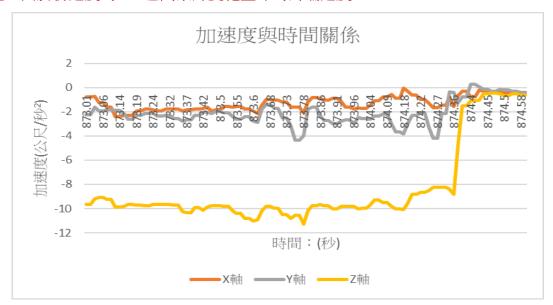
三、在傘面每條分界線的末端,各割一個小洞,並分別穿過一條棉線後,用膠帶+打結固定棉 線於傘面上。


五、將每條棉線的另一頭,分別穿過傘杯杯壁上的一個小洞並打結固定,完成簡易降落傘。


六、將測試降落加速度用的 micro:bit,板面黏貼固定於降落傘下的傘杯後,就可以進行降落 測試。


加速度三維方向圖如下:


七、施放降落傘很簡單,只要將降落傘抓穩拿到高處圍籬外,手保持水平後,輕輕鬆開手, 降落傘就開始降落,若降落傘到達地面前,傘面有正常張開、沒有與周遭物件發生碰撞, 即可順利進行數據測量(如下圖所示)。

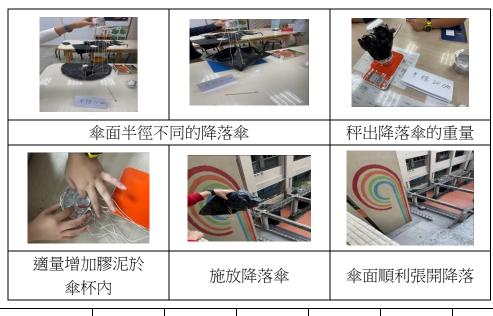

八、透過固定在降落傘下傘杯中的 micro:bit, 記錄降落傘開始降落到落地過程中加速度與時間關係資料,並由連接電腦讀取。

九、micro:bit 記錄加速度與時間關係使用的程式語言如下圖所示(記錄時間間格為 10 毫秒):

十、將讀取的資料轉至 excel,並製作加速度與時間關係圖,由圖中加速度開始減少至 0 時, Z 軸曲線與時間軸圍成的面積,在 excel 中輸入梯形面積公式來計算,可以計算速度變化量,由於初速度為 0,區間累計變化量即為終端速度。

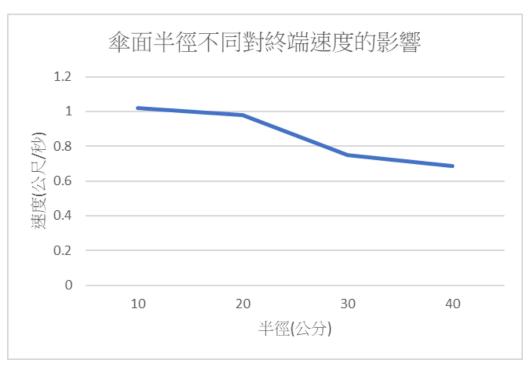
本文接下來若又提到製作降落傘、測量加速度、計算終端速度,製作、測量、計算的方法都如同前文所說的內容,不再重複敘述。

實驗一:探討傘面半徑不同,對降落傘終端速度的影響。


(一) 說明:

傘面越大,降落傘遇到的空氣阻力越大,影響降落傘到達終端速度的時間,那麼傘面的大小,是否會影響降落傘的終端速度?我們討論後,決定先剪下多種不同半徑長度的圓形,做出多種不同傘面的降落傘,並將它們輪流從樓上垂降至地面,看看對於終端速度的快慢有何影響。

(二)步驟與結果:


- 1.根據前面敘述製作降落傘的方法,製作傘面半徑 10 公分、20 公分、30 公分、40 公分的 降落傘各一個,本實驗的傘面材質為黑色大塑膠袋,棉線共 8 條,每條棉繩長 60 公分。
- 2.分別秤出四個降落傘的重量後,透過適量增加膠泥於傘杯的方式,使四個降落傘的總重量都等同於最重的降落傘—傘面半徑 40 公分的降落傘。
- 3.將傘面半徑 10 公分的降落傘,從三樓走廊的邊牆外放下,測量傘面半徑 10 公分的降落傘, 五次成功降落的加速度與時間數據。

4.重複步驟 3,但依序替換為傘面半徑 20 公分、30 公分、40 公分的降落傘,分別各自取得 五次成功降落的數據。之後計算、比較四種不同傘面半徑的降落傘,終端速度有無差異。

		第1次	第2次	第3次	第4次	第5次	平均值
傘面半徑	10cm	1.121	0.81	0.77	1.703	1.134	1.022
不同對終	20cm	1.08	1.204	0.788	1.061	0.793	0.978
端速度	30cm	0.969	0.412	0.211	0.87	0.972	0.75
(公尺/秒) 的 影 響	40cm	0.269	0.238	1.1	0.684	2.59	0.684

本表終端速度平均值的算法,是將四種不同傘面半徑的降落傘,各自成功降落五次的終端速度數值,去除與其他數值相差較多的最高值與最低值(不列入平均值計算的數值,已加上「雙刪除線」,表格不加底色),再將剩下的三次終端速度數值總和除以3,算出終端速度平均值。

(三)結果分析:

1.傘面半徑長短不同,對降落傘的終端速度有影響。

終端速度由快到慢依序是: 半徑 10 公分>半徑 20 公分>半徑 30 公分>半徑 40 公分。

2.我們有另外製作、施放半徑 45cm 的降落傘,發現當傘面積很大、重量又輕(傘面半徑 加長 5cm 後仍只重 9g)的情況下,會出現開傘即達終端速度的現象,造成 micro:bit 測量加速度量值無法判斷,因此我們不再製作、施放傘面半徑更長的降落傘。

實驗二:探討總重量不同,對降落傘終端速度的影響。

(一)說明:

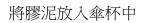
我們想了解,降落傘的總重量如果不同,對於降落傘的安全效果有無影響。

本實驗調整總重量的方式,是在同一個降落傘的傘杯內,依序置放裝有不同重量膠泥的夾鏈袋;調整好總重量後,再從高處放下,看看總重量不同,對降落傘的終端速度有無影響。

實驗一我們在室外操作,降落時曾經歷多次碰撞、卡住,讓實驗一花相當久的時間才完成。我們想改到本校室內活動中心做實驗,但羽球隊在那裏練球,不方便開放場地給我們進行實驗。幸好後來發現,從本校大門口川堂上方的二樓走廊,可施放降落傘到一樓川堂,該環境風力極小,實驗成功率較高,且 micro:bit 仍能測出降落相關數據,因此特別說明,本次科展實驗,從實驗二開始,施放降落傘地點一律改到本校大門口川堂上方的二樓走廊。

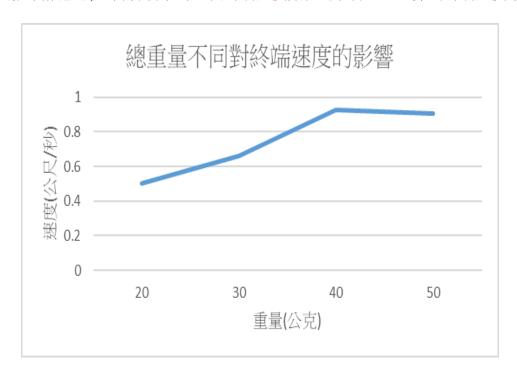
(二)步驟與結果:

- 1.製作一個傘面半徑 30 公分、8 條棉線、傘繩長度 60 公分、傘面材質為黑色大塑膠袋的降落傘,透過置放裝有膠泥的夾鏈袋於傘杯內,讓降落傘的總重量為 20g。
- 2.將降落傘從大門川堂的二樓走廊的邊牆外放下,測量降落傘總重量為 20g, 五次成功降落的加速度與時間數據。
- 3.重複步驟 2,但施放降落傘前,透過置放裝有不同重量膠泥的夾鏈袋於傘杯內,將降落傘 總重量依序調整為 30g、40g、50g,分別各自取得五次成功降落的加速度與時間數據。 之後計算、比較四種不同總重量的降落傘,終端速度有什麼不同。



秤出不同膠泥+夾鏈袋的重量,以便調整降落傘總重量

於二樓施放降落傘



降落傘傘面張開 順利降落

	第1次	第2次	第3次	第4次	第5次	平均值
降 落 傘 總	1.404	0.658	0.19	0.559	0.281	0.499

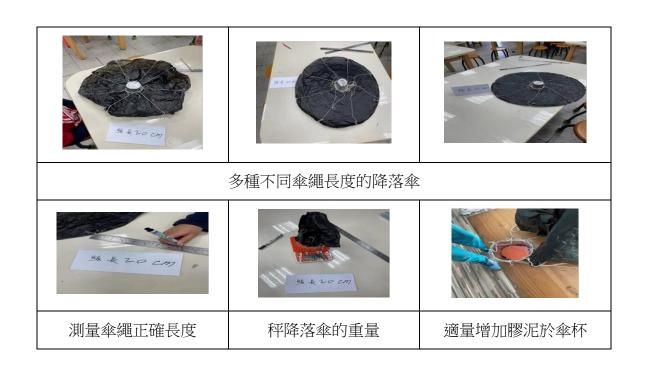
重量不同	30g	1.02	0.675	0.792	0.37	0.509	0.659
對終端速度	40g	0.753	0.947	0.889	0.936	0.991	0.924
(公尺/秒) 的 影 響	50g	0.936	0.849	0.929	1.102	0.575	0.905

本表終端速度平均值的算法,是將四種不同總重量的降落傘,各自成功降落五次的終端速度 數值,去除與其他數值相差較多的最高值與最低值(不列入平均值計算的數值,已加上「雙刪 除線」,表格不加底色),再將剩下的三次終端速度數值總和除以3,算出終端速度平均值。

(三)結果分析:

1.總重量不同,會影響降落傘的終端速度。

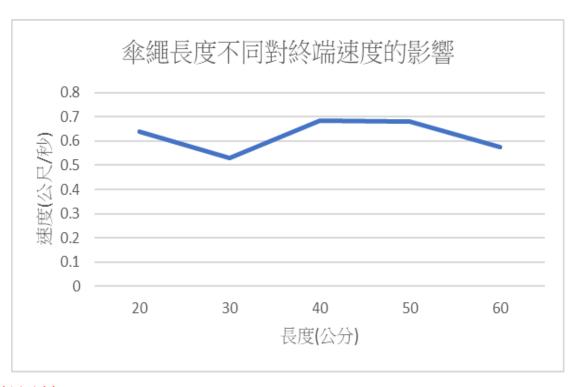
終端速度由快到慢,依序為:40g≒50g>30g>20g。


實驗三:探討傘繩長度不同,對降落傘終端速度的影響。

(一) 說明:

降落傘的傘繩長度不同,對於終端速度有無影響呢?我們想製作多個不同傘繩長度的降 落傘,依序輪流施放完成、取得降落數據後,比較傘繩長度不同的降落傘,終端速度有什麼 差異。

(二)步驟與結果:


- 1.製作傘繩繩長 20cm、30cm、40cm、50cm、60cm 的降落傘各一個,它們的傘面半徑都是 30 公分、都是 8 條棉線、傘面材質都是黑色大塑膠袋。
- 2.分別秤出五個降落傘的重量後,透過適量增加膠泥於傘杯的方式,使五個降落傘的總 重量都等同於最重的降落傘—傘繩繩長 40 公分的降落傘。
- 3.將繩長 20 公分的降落傘,從大門川堂的二樓走廊的邊牆外放下,測量它五次成功降落的加速度與時間數據。
- 4.重複步驟 3,但測試的降落傘依序調整為繩長 30cm、40cm、50cm、60cm 的降落傘,分別各自取得五次成功降落的加速度與時間數據。之後比較五種不同傘繩長度的降落傘,終端速度的快慢差異。

		第1次	第2次	第3次	第4次	第5次	平均值
學 嬺 悞	20cm	0.734	0.652	0.709	0.555	0.457	0.639
度 不 同	30cm	0.649	0.384	0.559	0.346	0.708	0.531
對 終 端	40cm	0.269	0.238	1.1	0.684	2.59	0.684
速 度 (公尺/秒)	50cm	0.612	0.814	0.553	0.614	2.414	0.68
的 影 響	60cm	0.495	0.613	0.616	0.401	1.3	0.575

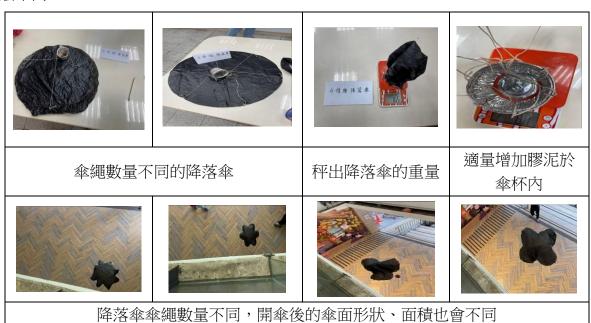
本表終端速度平均值的算法,是將五種不同傘繩長度的降落傘,各自成功降落五次的終端速度數值,去除與其他數值相差較多的最高值與最低值(不列入平均值計算的數值,已加上「雙刪除線」,表格不加底色),再將剩下的三次終端速度數值總和除以3,算出終端速度平均值。

(三)結果分析:

1.傘繩長度不同,會影響降落傘的終端速度。

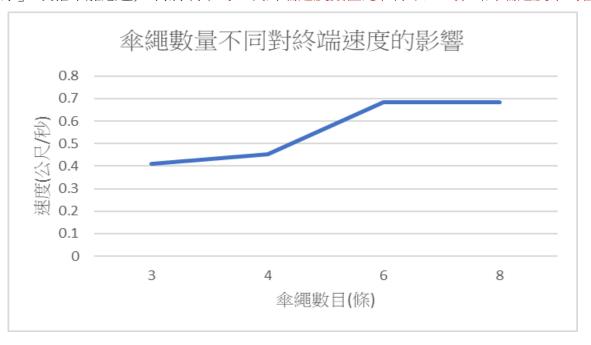
終端速度由快到慢,依序為:**傘繩40cm≒傘繩50cm>傘繩20cm>傘繩60cm>傘繩30cm。**

實驗四:探討傘繩數量不同,對降落傘終端速度的影響。


(一)說明:

有同學好奇,降落傘使用的棉繩數量不同,會不會影響它的終端速度呢?若真有影響,是不是降落傘攤開的傘面面積不同,才影響了終端速度呢?為了解決這些疑問,我們嘗試調整降落傘的傘繩數量來找出解答。

(二)步驟與結果:


- 1.製作傘繩數 3 條、4 條、6 條、8 條的降落傘各一個,它們的傘面半徑都是 30 公分、傘面 材質都是黑色大塑膠袋、傘繩長度都是 40 公分。
- 2.分別秤出四個降落傘的重量後,透過適量增加膠泥於傘杯的方式,使四個降落傘的總重量都等同於最重的降落傘—傘繩數量 8 條的降落傘。
- 3.將繩數 3 條的降落傘,從大門川堂的二樓走廊的邊牆外放下,測量它五次成功降落的加速度與時間數據。

4.重複步驟 3,但測試的降落傘依序調整為傘繩數量 4條、6條、8條的降落傘,分別各自取得五次成功降落的加速度與時間數據。之後比較四種不同繩數的降落傘,終端速度有什麼不同。

		第1次	第2次	第3次	第4次	第5次	平均值
到 終端速度 (公 的 i	3 條	1.482	0.403	0.286	0.502	0.328	0.411
	4 條	0.404	0.548	0.3	0.423	0.533	0.453
	6 條	0.552	0.858	0.723	0.31	0.771	0.682
	8 條	0.269	0.238	1.1	0.684	2.59	0.684

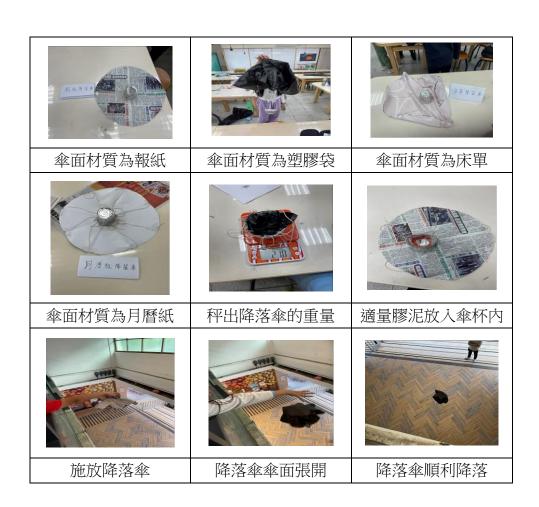
本表終端速度平均值的算法,是將四種不同傘繩數量的降落傘,各自成功降落五次的終端速度數值,去除與其他數值相差較多的最高值與最低值(不列入平均值計算的數值,已加上「雙刪除線」,表格不加底色),再將剩下的三次終端速度數值總和除以3,算出終端速度平均值。

(三)結果分析:

降落傘的繩數不同,會影響降落傘的終端速度。終端速度快到慢依序為:
 傘綢8條≒傘綢6條>傘繩4條>傘繩3條。

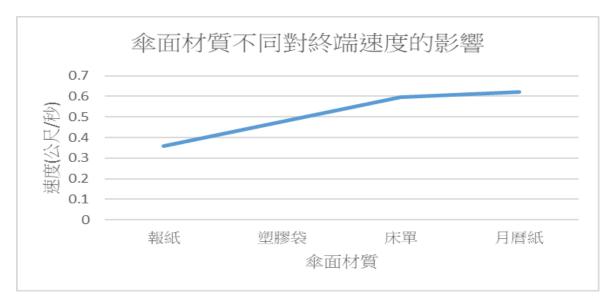
實驗五:探討降落傘傘面材質不同,對降落傘終端速度的影響。

(一) 說明:


根據課外資料,第二次世界大戰以前,降落傘的傘面用絲綢做成,第二次世界大戰開打後, <u>美國</u>、<u>日本</u>處於敵對狀態,因為絲綢在戰前多從<u>日本</u>出口,<u>美國</u>開始研究,改用尼龍布製作 降落傘的傘面,獲得了成功。這個故事告訴我們,降落傘的傘面材質,是有可能替換的。

何種材質適合用來製造傘面呢?考量費用與取得難易度後,我們選擇報紙、塑膠袋、床單、 月曆紙,分別作為不同降落傘的傘面材料,希望能找出怎樣的材質較適合製作傘面。

(二)步驟與結果:


1.製作傘面分別為報紙、塑膠袋、床單、月曆紙的降落傘各一個,它們的傘面半徑都是 30公分、都是8條棉線、傘繩長度都是40公分。

- 2.分別秤出四個降落傘的重量後,透過適量增加膠泥於傘杯的方式,使四個降落傘的總重量都等同於最重的降落傘—傘面材質為月曆紙的降落傘。
- 3.將傘面用報紙製作的降落傘,從大門川堂的二樓走廊的邊牆外放下,測量它五次成功降 落的加速度與時間數據。
- 4.重複步驟 3,但測試的降落傘依序調整為塑膠袋傘面、床單傘面、月曆紙傘面的降落傘, 分別各自取得五次成功降落的加速度與時間數據。之後比較四種不同傘面材質的降落傘, 終端速度有什麼不同。

			第2次	第3次	第4次	第5次	平均值
傘面材質	報紙	0.407	0.307	0.326	0.381	0.367	0.358
不同對終	塑膠袋	0.557	0.432	0.439	0.415	0.716	0.476
於 端 速 度	床單	0.544	0.556	0.683	0.815	0.483	0.594
(公尺/秒) 的 影 響	月曆紙	0.644	0.59	0.81	0.574	0.635	0.623

本表終端速度平均值的算法,是將四種不同傘面材質的降落傘,各自成功降落五次的終端速度數值,去除與其他數值相差較多的最高值與最低值(不列入平均值計算的數值,已加上「雙刪除線」,表格不加底色),再將剩下的三次終端速度數值總和除以3,算出終端速度平均值。

(三)結果分析:

1.傘面材質不同,會影響降落傘的終端速度,終端速度由快到慢依序為: 月曆紙傘面≒床單傘面>塑膠袋傘面>報紙傘面。

伍、討論

- 一、問:降落傘的終端速度,與降落傘使用時的安全性有何關聯?
 - 答:人體從高處降落接觸地面時,地面會對人體帶來一股衝擊力,衝擊力越大對人體越 危險。根據我們玩耍時的經驗,自己與他人、其他物體碰撞時的速度若越快,自己 會越痛、越容易受傷。交通事故新聞也證實,車輛在高速行駛時碰撞,對車體或人 體造成的傷害,明顯比低速行駛時大得多。因此使用降落傘降落時,終端速度越慢, 人體降落到地面時,地面對人體的衝擊力會越低,使用起來越安全。
- 二、問:為何傘面半徑不同,會影響降落傘的終端速度?傘面半徑要如何設定,才能讓降落 傘使用時較安全?
 - 答:根據 $V_i = \sqrt{2mg/\rho AC_d}$,傘面的投影面積,會影響終端速度。降落傘的圓形傘面面積,可用圓面積=半徑×半徑×圓周率算出,圓周率是近似於 3.14 的固定數值,所以半徑越大,圓面積越大,反之則越小。本次實驗發現,半徑越長傘面面積越大,終端速度越慢,安全降落的機率越大,所以廠商製作降落傘時,傘面半徑應盡量加長。
- 三、問:降落傘的總重量不同,終端速度不一致,代表落地所需時間會不一樣,這樣是否與 伽利略的比薩斜塔實驗發現的結論有矛盾呢?
 - 答:無矛盾,<u>伽利略</u>將兩顆重量不同的鐵球,同時從<u>比薩斜塔</u>上放下,讓它們受地球引力吸引而落地,雖然兩者落地所需時間仍不一致,但差距極小,<u>伽利略</u>認為,空氣阻力會對物體落地的速度與時間造成影響,無空氣阻力干擾時(也就是真空狀態下),兩者才會同時落地。本次科展實驗地點是有空氣阻力的環境,因此降落傘總重量不同,終端速度不一致,落地所需時間不同,並無問題。
- 四、問:改變降落傘的總重量時,為何不直接置放要添加的膠泥於傘杯內就好,還要先將要添加的膠泥放入夾鏈袋後,才將膠泥、夾鏈袋一起放入傘杯呢?
 - 答:為了測量降落數據,有黏貼 micro:bit 於傘杯中,若將膠泥直接置放於傘杯中,讓它直接貼近 micro:bit, 怕會影響 micro:bit 正常運作,所以我們先將膠泥放入夾鏈袋後, 才將膠泥、夾鏈袋一起放入傘杯。

五、問:傘繩長度不同,會影響降落傘的終端速度嗎?為什麼?

答:會,傘繩長度不同,會影響降落傘的終端速度,我們覺得,有可能不同的傘繩長度,會影響降落時,傘面的張開程度,也就是傘面的投影面積。傘繩太長或太短,都可能讓傘面無法完全張開;傘繩長度居中的時候,傘面會最大。根據 $V_t = \sqrt{2mg/\rho AC_d}$,傘面的投影面積,會影響終端速度。

六、問: 傘繩數量不同, 會影響降落傘的終端速度嗎? 為什麼?

答:會,傘繩數量不同,會導致傘面張開程度不一,進而影響終端速度。例如只裝三條 傘繩時,傘面圖形會很像<u>米老鼠</u>,四條繩線時,傘面圖形會很像四片葉子的酢漿草, 傘繩數量不同,不但會造成傘面的形狀不同,還會影響傘面的投影面積。

根據 $V_t = \sqrt{2mg/\rho AC_d}$,傘面的投影面積,會影響終端速度。所以,傘繩數量不同,不但會影響傘面的投影形狀,還會進而影響傘面的投影面積與終端速度。

七、問:為什麼不製作,傘繩數量多於8條的降落傘呢?

答:從高處施放降落傘的過程中,傘繩數量越多,傘繩越容易發生糾纏打結,導致測試數據不能被採用,當我們施放8條傘繩的降落傘時,明顯感受到傘繩糾纏打結的頻率多過3條、4條、6條傘繩的降落傘,若想測試更多條傘繩的降落傘,不但是製作難度更高,完成後的施放,可能傘繩糾纏打結又更嚴重,影響實驗進行的效率,故我們此次製作降落傘時,傘繩數量設定最多只使用8條。

八、問:傘面材質不同,會影響降落傘的終端速度嗎?為什麼?

答:會,我們用報紙、塑膠袋、床單、月曆紙製作不同的降落傘傘面,發現會影響降落 傘的終端速度,月曆紙傘面、床單傘面的終端速度分居最快的第一、二名,但兩者 差距不大,我們懷疑,傘面透不透氣,可能會影響空氣阻力大小,進而影響降落傘 的終端速度,但這只是猜測,仍需以後操作實驗,來證實此猜測是否正確。

陸、結論

- 一、降落傘的傘面半徑越短,終端速度越快,反之則越慢。降落傘的傘面半徑越大,終端速度越慢,安全性愈高。
- 二、降落傘的總重量越重,終端速度越快,反之則越慢。降落傘的總重量越輕,終端速度越慢,安全性愈高。
- 三、降落傘的傘繩長度會影響降落傘的終端速度。本次實驗的傘繩長度為 30cm 時,降落傘終端速度最慢,安全性最高,可能是因為此種傘繩長度,讓傘面展開最適當的面積。
- 四、降落傘的傘繩數量越多,終端速度越快,反之則越慢。降落傘的傘繩數量越少,終端速度越慢,安全性愈高。
- 五、降落傘的傘面材質會影響降落傘的終端速度,可能是因為空氣阻力會不一樣。傘面材質 輕且沒有破損時,降落傘終端速度最慢,安全性最高。

柒、參考文獻資料

- 一、王美芬等(民 113)。國民小學自然科學第四冊(初版 2 刷)。新北市:康軒。
- 二、33 號放映室(2022 年 1 月 11 日)發明的故事:降落傘的發明史。Youtube。 取自 https://www.youtube.com/watch?v=sYit-3mdZ9M
- 三、住展雜誌 MyHousing(2013 年 5 月 26 日)。等候救援不及,高樓逃生降落傘問世。 住展雜誌 MyHousing。取自 https://www.myhousing.com.tw/life-style/building-materials/94536/
- 四、吳榮恩、范宏楷、洪國峰(民 91)。天降神兵—降落傘實驗,臺灣網路科教館。 取自 https://www.ntsec.edu.tw/science/detail.aspx?a=21&cat=39&sid=738
- 五、鄒達文、許力仁、林立、李易儒(民 95)。降落傘阻力大追查,臺灣網路科教館。 取自 https://www.ntsec.edu.tw/science/detail.aspx?a=21&cat=43&sid=1878
- 六、鐘文翎、王敬雅、廖凱葳(2019)。我把手機從五樓丟下去,2019 GSF 資優校際高峰論壇。 取自 https://2019cgsf.weebly.com/292892970232068-physics.html

七、黃瑋絜(民國 108 年 6 月 6 日)。第一次尼龍降落傘測試成功,國家科學及技術委員會 「科技大觀園」科普網站。取自

https://scitechvista.nat.gov.tw/Article/c000003/detail?ID=36c211d2-b7e0-4772-b128-5bbf9ee56751

- 八、終端速度(2022 年 11 月 30 日)。美國加州:維基百科。取自
 https://zh.wikipedia.org/zh-tw/%E7%B5%82%E7%AB%AF%E9%80%9F%E5%BA%A6
- 九、Movement data logger (2018 年 9 月 1 日)。英國倫敦:Micro:bit Educational Foundation。 取自 https://microbit.org/zh-tw/

【評語】080107

該實驗以精巧的速度量測裝置,結合硬體與軟體,量測降落傘落下的速度。並改變各種降落傘的參數,以探討降落傘落下的終端速度。探索影響該終端速度的各種變因。是一個非常有趣的實驗。在數據的處理上有些許改進的空間,例如數據的刪除與選擇方式可以有更科學的方式加以決定。整體而言,這是一個頗具完成度的實驗,但也留下許多可以進一步精進的空間,希望未來能夠加以續努力,使得實驗更為完整,或具有真正的實用的價值,可以運用在各種降落傘的設計上。

作品簡報

摘要

影響降落傘使用安全性的變因有哪些?降落傘速度多快時,會開始平穩緩慢降落?因為好奇這些問題,我們先自製簡易降落傘,再作實驗探討,可能影響它的安全性的變因有哪些。參考過去相關研究作品後,發現影響降落傘平安降落與否的「終端速度」,無人嘗試探討過,我們用 micro:bit (V2版本),測量降落傘降落過程的加速度與時間數值後,用物理學計算方法,算出不同方式製作的降落傘,降落過程中達到的終端速度有多快。最後發現當降落傘符合傘面半徑大、總重量輕、傘繩長度讓傘面展開最適當的面積、傘繩數量少、傘面材質輕且沒有破損等這些條件時,終端速度會越慢,安全性也越高。

書前言

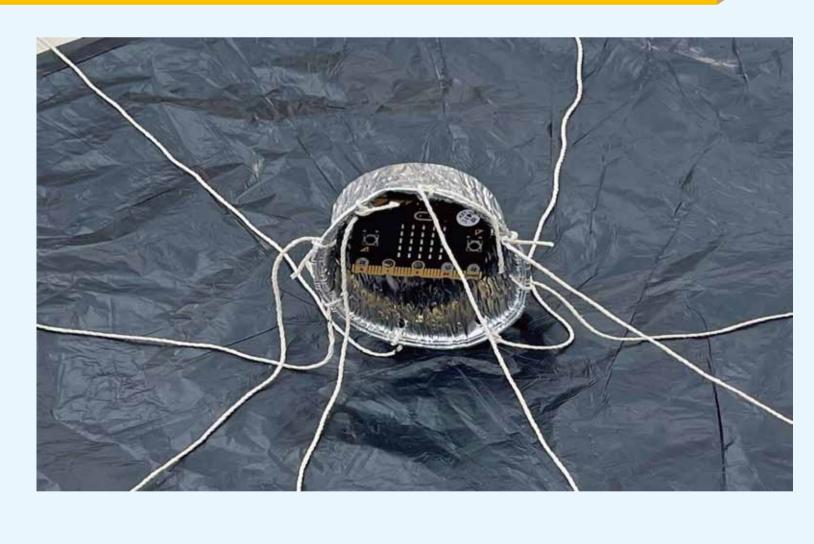
一、研究動機:

降落速度快慢會影響降落傘的安全性,我們這次研究想了解,哪些因素會 影響降落傘的終端速度?

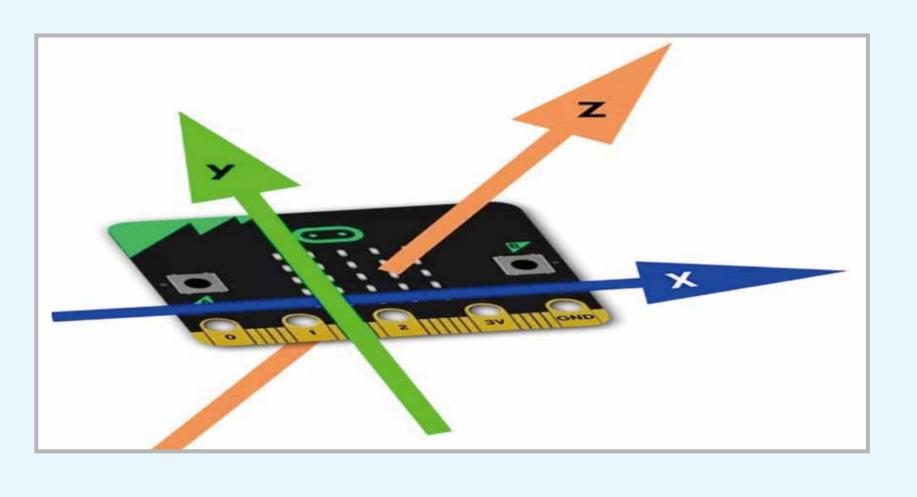
二、研究目的:

- (一)探討傘面半徑不同,對降落傘終端速度的影響。
- (二)探討總重量不同,對降落傘終端速度的影響。
- (三)探討傘繩長度不同,對降落傘終端速度的影響。
- (四)探討傘繩數量不同,對降落傘終端速度的影響。
- (五)探討傘面材質不同,對降落傘終端速度的影響。

三、文獻回顧:

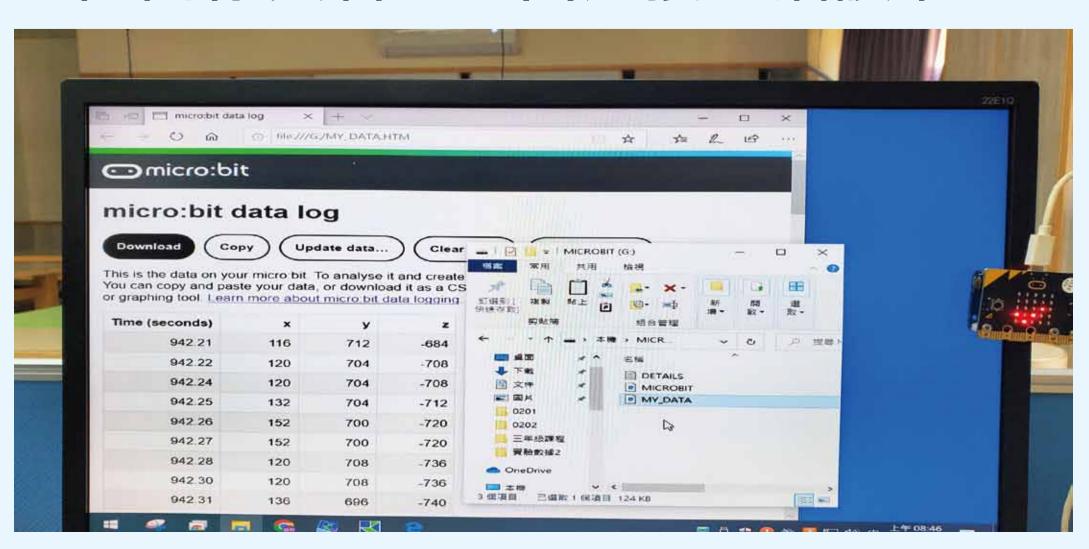

終端速度可用這個式子表示: $V_t = \sqrt{2mg/\rho AC_d}$,扣除在本次實驗中不會改變的定值後,最適合我們規劃實驗的方向,是「調整m或A」,我們以此為本次科展的規劃方向,測試不同的傘面半徑、總重量、傘繩長度、傘繩數量、傘面材質作出的降落傘,搭配 micro:bit內建的加速度感測器與設計程式語言,測量不同降落傘從高處降落到地面的速度與時間關係,進而計算出降落傘的終端速度。

研究設備及器材

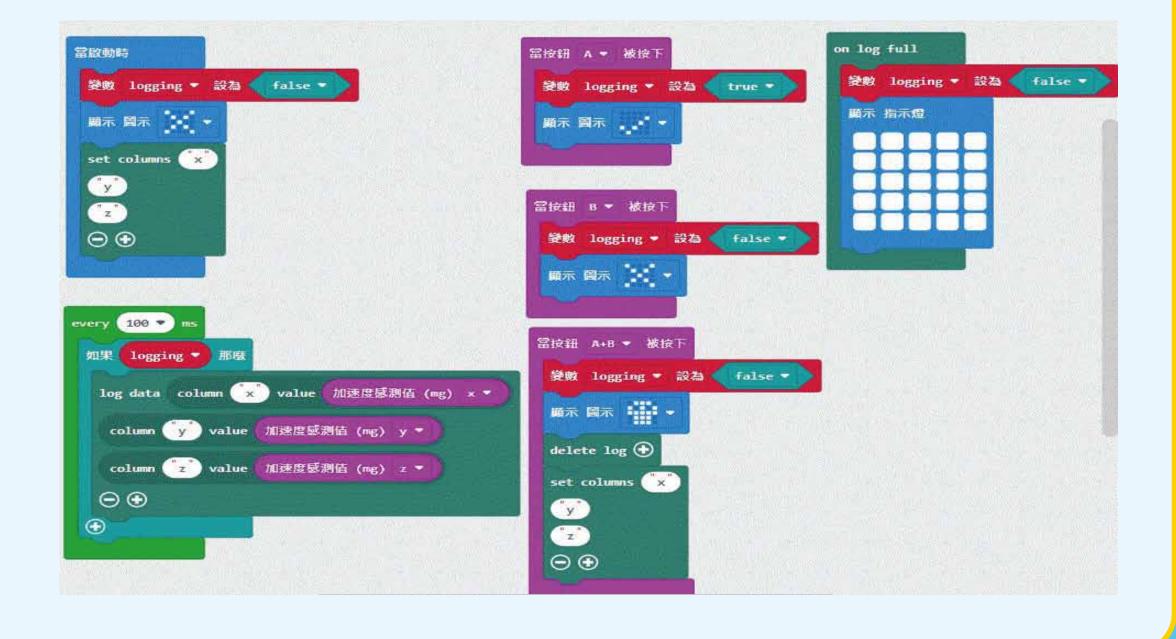

剪刀、膠帶、黑色大塑膠袋、棉線、尺、奇異筆、鉛筆、傘杯、計時器、micro:bit、床單、月曆紙、報紙、膠泥。

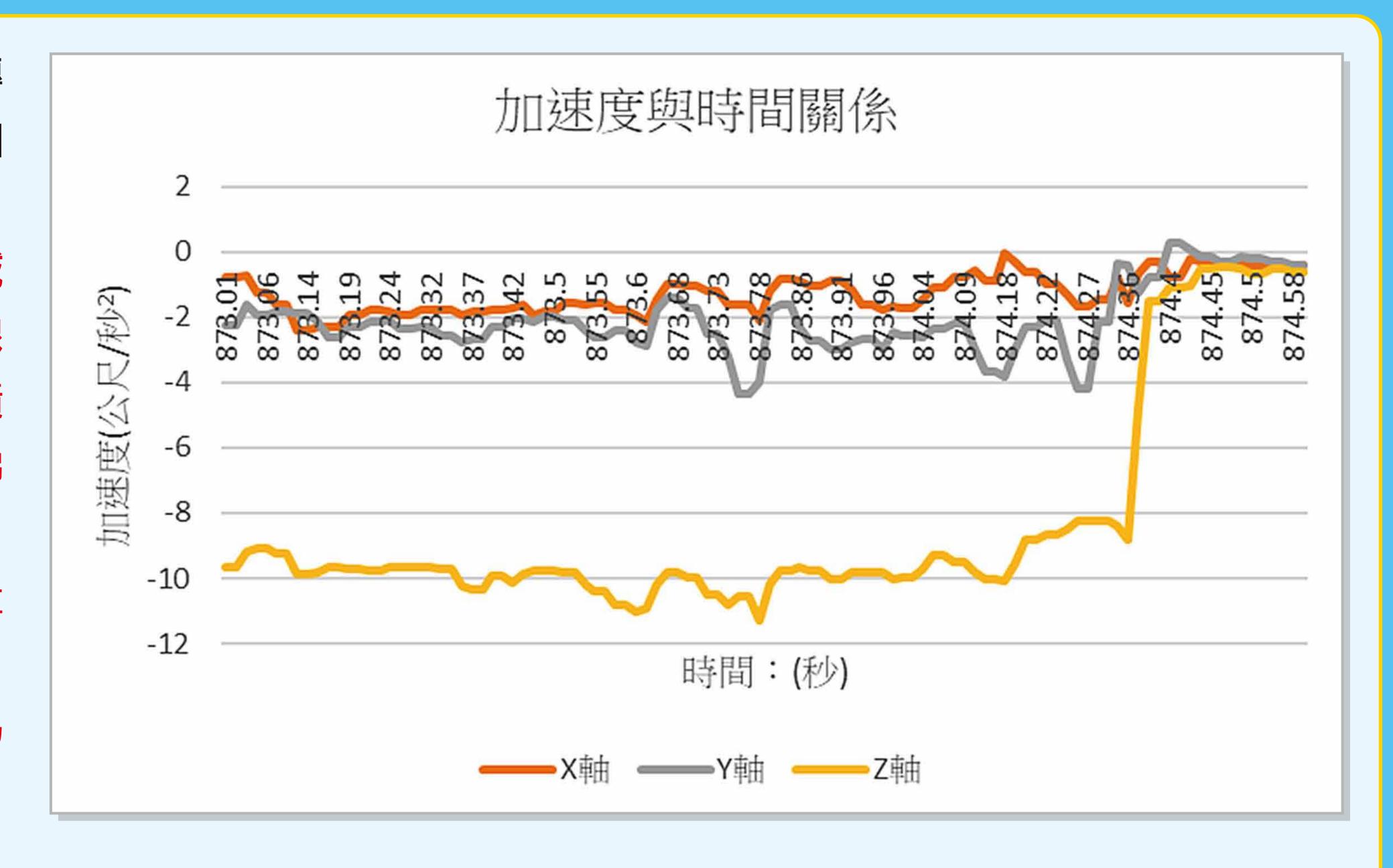
一 研究過程與結果

我們先成功自製簡易降落傘,並將測試降落加速度的小型儀器 micro:bit,固定於降落傘裝置後,測出加速度數據,進一步探討前面提到的研究目的。成功自製降落傘後,將 micro:bit 黏貼固定於降落傘下的傘杯,就可以進行降落測試。



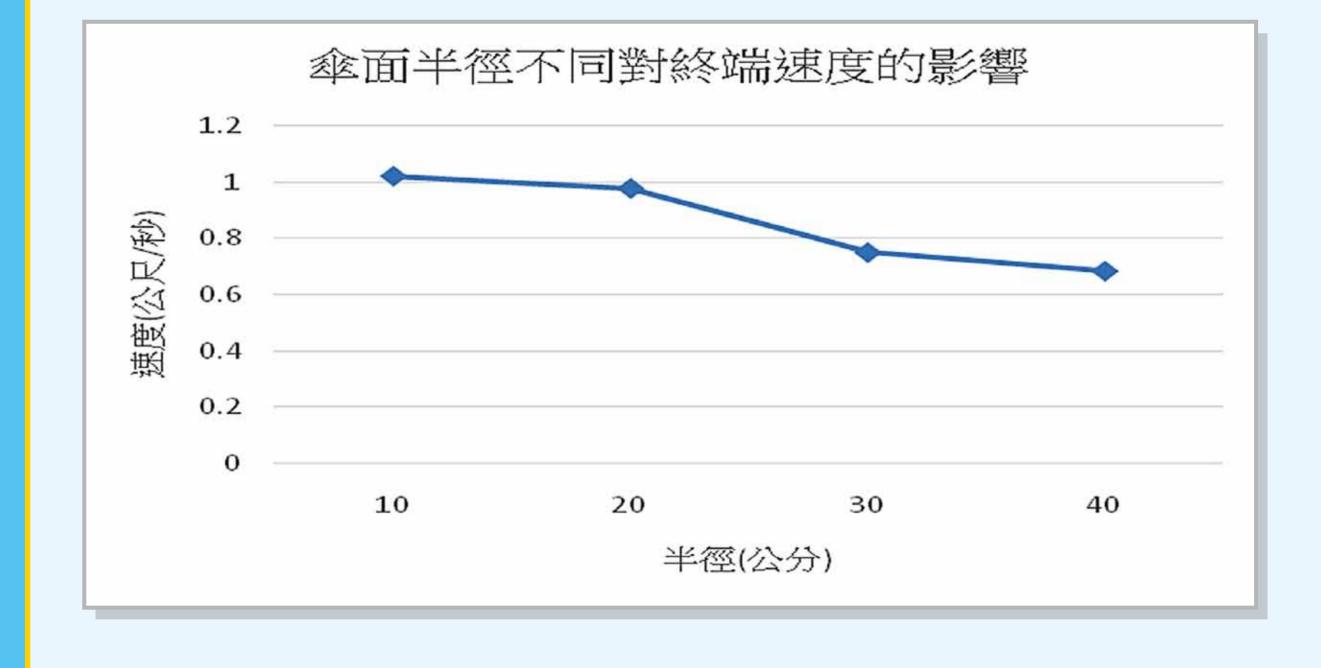
加速度三維方向圖如下:




本作品中使用的圖片,除了「加速度三維方向圖」取自micro:bit的官網網頁(https://microbit.org/zh-tw),其他的都是實地拍攝或擷取電腦操作的畫面而來。

成功施放降落傘後,透過固定在降落傘下傘杯中的 micro:bit, 記錄降落傘開始降落到落地過程中加速度與時間關係資料,並由連接電腦讀取。

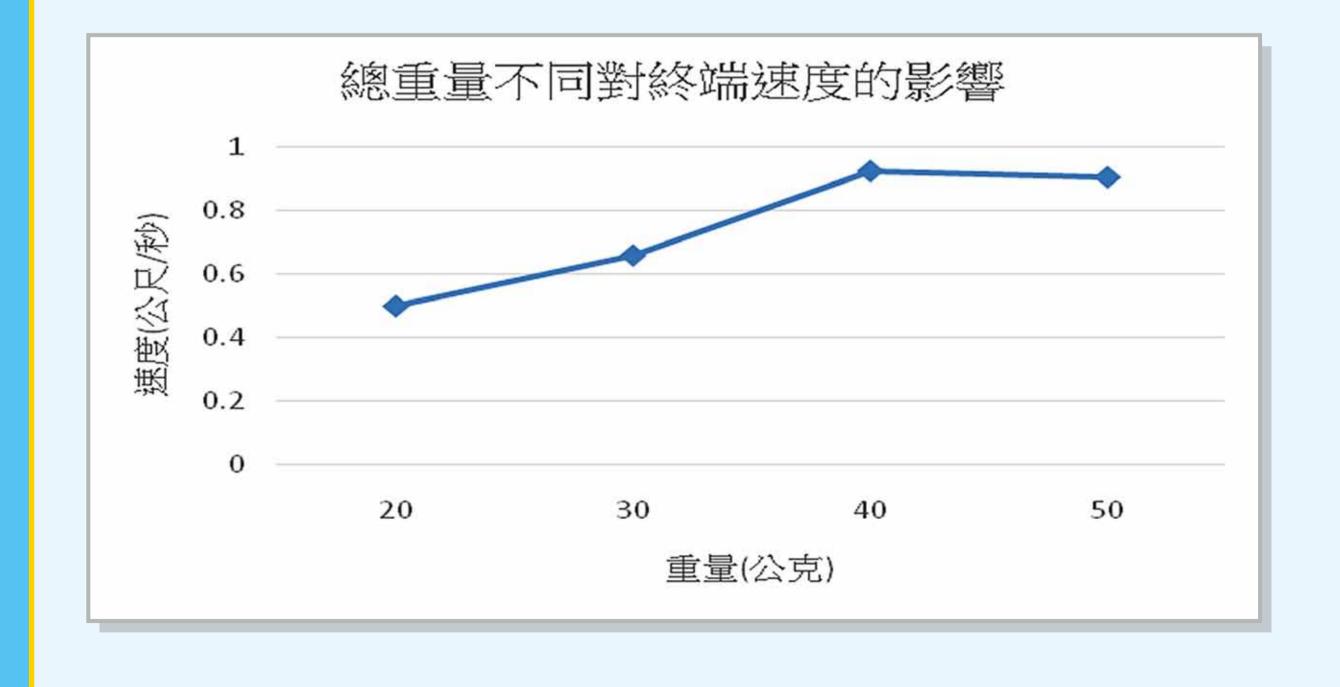
micro:bit 記錄加速度與時間關係使用的程式語言如下圖所示(記錄時間間格為10毫秒):



實驗一探討傘面半徑不同,對降落傘終端速度的影響

(單位:公尺/秒)

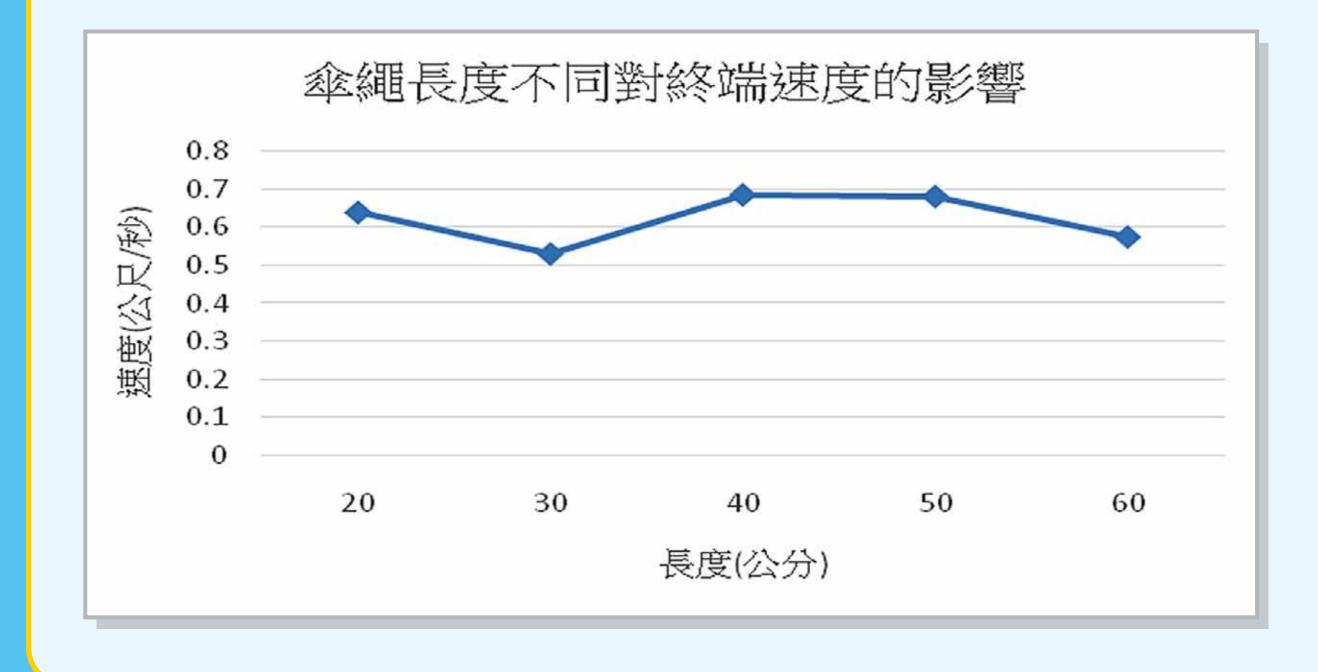
				(— — — / () /
終端速度次數 傘面半徑	第1次	第2次	第3次	平均值
10 公分	1.12	0.81	1.13	1.02
20 公分	1.08	1.06	0.79	0.98
30 公分	0.97	0.41	0.87	0.75
40 公分	0.27	1.10	0.68	0.68



傘面半徑長短不同,對降落傘的終端速度有 影響。

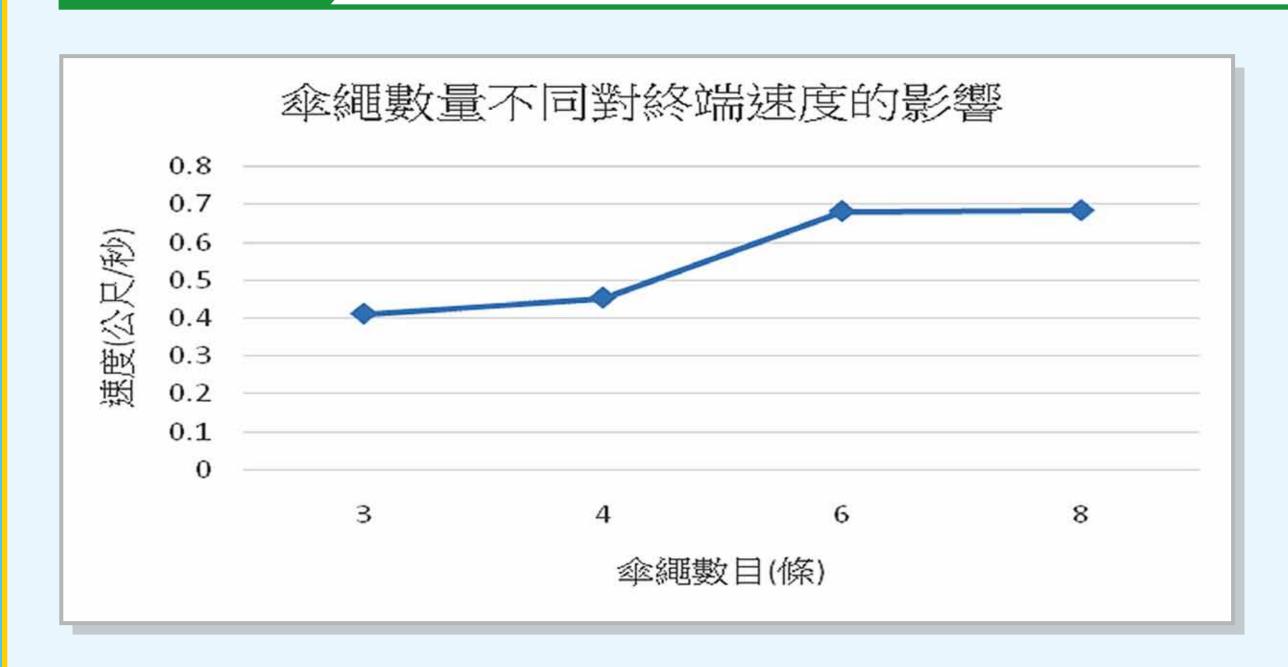
終端速度由快到慢依序是:

半徑10公分>半徑20公分>半徑30公分>


實驗二探討總重量不同,對降落傘終端速度的影響

總重量不同,會影響降落傘的終端速度。 終端速度由快到慢,依序為:

 $40g = 50g > 30g > 20g \circ$


實驗三探討傘繩長度不同,對降落傘終端速度的影響

傘繩長度不同,會影響降落傘的終端速度。 終端速度由快到慢,依序為:

傘繩40cm≒傘繩50cm>傘繩20cm> 傘繩60cm>傘繩30cm。


實驗四探討傘繩數量不同,對降落傘終端速度的影響

降落傘的繩數不同,會影響降落傘 的終端速度。終端速度快到慢依序 為:

傘繩8條≒傘繩6條>傘繩4條> 傘繩3條。

實驗五探討降落傘傘面材質不同,對降落傘終端速度的影響

傘面材質不同,會影響降落傘的 終端速度,終端速度由快到慢依 序為:

月曆紙傘面:床單傘面>塑膠袋 傘面>報紙傘面。

肆討論

- 一、我們用micro:bit測出加速度值,再用excel製作加速度與時間關係圖,可以計算速度變化量,得到終端速度。其他作品用「手機物理實作」軟體測試,測試時間間隔為0.05秒,我們是0.01秒,更為精確。
- 二、micro:bit(含電池)只重23g,手機重量可達900g,重量越重,對本實驗的結果影響越大;此實驗有器材損毀風險,micro:bit(含電池)約1000元,手機價格以萬元為單位計算,價格昂貴許多。「重量輕損毀率低、測試儀器便宜」這兩個特點,讓我們實驗成本相對便宜。

伍 結論

- 一、降落傘的傘面半徑越短,終端速度越快,反之則越慢。降落傘的傘面半徑 越大,終端速度越慢,安全性愈高。
- 二、降落傘的總重量越重,終端速度越快,反之則越慢。降落傘的總重量越輕 ,終端速度越慢,安全性愈高。
- 三、降落傘的傘繩長度會影響降落傘的終端速度。本次實驗的傘繩長度為30cm時,降落傘終端速度最慢,安全性最高,可能是因為此種傘繩長度,讓傘面展開最適當的面積。
- 四、降落傘的傘繩數量越多,終端速度越快,反之則越慢。降落傘的傘繩數量 越少,終端速度越慢,安全性愈高。
- 五、降落傘的傘面材質會影響降落傘的終端速度,可能是因為空氣阻力會不一樣。傘面材質輕且沒有破損時,降落傘終端速度最慢,安全性最高。

- 一、終端速度(2022年11月30日)。美國加州:維基百科。 取自 https://zh.wikipedia.org/zh-tw/%E7%B5%82%E7%AB%AF%E9% 80%9F%E5%BA%A6
- 二、鐘文翎、王敬雅、廖凱葳(2019)。我把手機從五樓丢下去,2019 GSF資優校際高峰論壇。
 - 取自 https://2019cgsf.weebly.com/292892970232068-physics.html
- 三、賈賀、包進進、榮偉(2020)。設計參數及大氣參數對降落傘充氣性能的影響, 航天返回與遙感, 2020年03期期刊。取自 https://reurl.cc/VzrE4Z