中華民國第63屆中小學科學展覽會作品說明書

高中組 工程學(一)科

052303

超低頻物質波感測系統

學校名稱:開南學校財團法人臺北市開南高級中等學

校

作者:

職二 林韋伶

職二 李侑叡

職二 徐顥文

指導老師:

張丕白

許良村

關鍵詞:感測器、類比訊號、複合材料

摘要

最近國內外災害頻傳,因此我們自製超低頻物質波感測器。融合類比訊號處理電路、數位化的分析系統。擷取外界環境或人體微弱的訊息,匯入電腦存入資料庫,加以辨識,將分析結果傳輸至筆記型電腦,供相關人員處理。提供災害預警與諮詢,達到遠端監控、現場搜救、守護國民安全之目的,本研究系統包含下列功能:

- 一、偵測超低頻物質波 研發超低頻物質波感測器,能偵測到微弱的超低頻物質波。
- 二、類比訊號處理電路利用運算放大器,組合成多階濾波器,去除雜訊。
- 三、自動化檢測介面

全自動訊號取樣,並進行訊號處理與分析,並立即顯示時域、頻域訊號的波形。可以即 時偵測地震,或災難時偵測生命跡象。

壹、研究動機

我國已步入高齡社會,老年人口比率逐年攀升[1]。面對高齡化社會,老年人的安全、健康,成為大家特別關注的課題。並且臺灣位於板塊交界處,地震頻仍,災後救難與搜救非常艱困。我們研究本系統,藉由筆記型電腦,偵測人體呼吸、脈搏。可以搜尋生命跡象,與健康預警。能隨時得知民眾的健康狀況,達成關懷人群的淑世目標,讓人免於病痛的折磨。(表 1)為本研究與《技術高級中學電機與電子群》,課程相關性之說明。

表 1 技術高級中學課程學習相關內容

科目名稱	年級	內 容	作品應用部分		
基本電學	回 [直流暫態	電源濾波、交連電容器的設計		
		交流電波形	振動、呼吸、脈搏波形辨識		
		非諧振電路	訊號處理、高低通濾波		
物理	高一	物理量及單位	各種物理量級單位的換算		
		波動	震動、呼吸、脈搏波形分析		
		力 學	自動量測系統結構設計		
化 學	高一	溫度與熱	測裝置之比熱、溫差、熱傳、熱平衡		
	高一	程式設計	電腦程式設計		
計算機概論		資料庫	震動、呼吸、脈搏波形資料庫		
		多媒體	自動量測系統的語音報知系統		
基本電學實習	高一	配線	系統機內配電		
數學	高一 11	指數與對數	電路中電容器與電感器暫態分析		
		三角函數	震動、呼吸、脈搏波形辨識		
		機率與統計	震動、呼吸、脈搏分析		
電子學	11	二極體	電源電路、繼電器的保護裝置		
		電晶體	訊號放大與控制電路		
		運算放大器	儀表放大電路與主動濾波電路		
電子實習	11	電子儀器	系統實作之量測、校正、檢修		
		二極體	電源電路、繼電器保護裝置		
		電晶體	訊號處理電路		
		運算放大器	儀表放大電路與主動濾波電路		
	·	1			

貳、研究目的

本研究目的係運用所學,將材料科學融合固態物理學研究,避免誤差過大影響實驗結果。將自行研發之導電複合材料,運用於感測器。由於必須具備良好的能量轉換曲線、頻率響應與溫度特性。因此我們進行了下列六項實驗:

實驗一:直流阻抗

實驗二:摻雜濃度與電阻係數

實驗三:電阻溫度特性

實驗四:交流特性

實驗五:能量轉換特性

實驗六:電子顯微鏡結構分析

叁、研究設備及器材

本研究所用之設備及器材,可分為三類:

一、研究設備:參閱(表2)所列。

表 2 研究設備一覽表

研究設備	規格	數量	備 註
函數信號產生器		1	產生標準訊號提供校正與測試
電源供應器		1	
數位示波器		1	生理訊號波形觀測
三用電表	類比與數位	2	

二、研究器材:參閱(表3)所列。

表 3 研究器材一覽表

研究器材	規格	數 量	備 註
音效卡	USB	1	
筆記型電腦		2	
印表機		1	
曝光機		1	製作感光電路板
類比資料擷取卡	USB	1	
變壓器		1	
氯化鐵		3	每瓶 500 毫升 (ml)

三、工具機:參閱(表4)所列。

表 4 研究工具機一覽表

工具機	規格	數量	備 註
電烙鐵	40W	2	具有恆溫控制
尖嘴鉗	電子用	2	無牙
斜口鉗	電子用	2	
剝線鉗	電子用	1	
螺絲起子組	電子用	2	
麵包板	電子用	3	
IC 拔取器		1	
IC 整腳器		1	
電鑽		1	
銼刀		1	
電動砂輪機		1	
鋸子		1	

肆、研究過程或方法

一、吸附與導電性

將本研究自製的導電複合材料加熱,熔點較低的聚合物完全蒸發後,只剩下石墨微粒。這些石墨微粒的質量、粒徑並沒有改變,因此碳與聚合物材料為「物理吸附」(physisorption)又稱「凡得瓦吸附」(van der Waals adsorption),非「化學吸附」(chemisorption),沒有產生化學反應(chemical reaction),碳與橡膠性聚合物材料吸附,產生的導電特性如下:(一)聚合物與石墨微粒的吸附反應

吸附是指物質的界面,吸引周圍介質的質點,使它暫時停留的現象。物質能將周圍介質,吸引在自己表面稱為「吸附劑」。被吸附劑吸附的物質,則稱為「吸附物」。本研究以石墨微粒,與活性碳微粒,作為導電複合材料的吸附劑。石墨微粒的表面,能吸引聚合物分子。使聚合物受到內部分子的吸引力,又增加與石墨微粒之間的吸引力。這兩種力互相抵銷,減弱石墨微粒表面分子,受內部分子的引力,降低表面吸附能力。

吸附反應取決一個熱力學函數,此為「吉布士函數」(Gibbs function),又稱為「吉布士能」(Gibbs energy),以符號 G 表示。

$$G \equiv H - TS$$
 (1)

定温時,吉布士方程為

$$dG = dH - TdS \tag{2}$$

由式(2)得知於定溫定壓的條件下,物理吸附反應的平衡條件為式(3)

$$dG=0 \tag{3}$$

因此本吸附反應平衡條件,以熱力學原理可簡略表示為式(4):

$$dH - TdS = 0 (4)$$

式(4)中的 S,為系統的「熵值」(entropy),dH 為熱量變化。本研究導電複合材料的吸附反應,於定壓下的開放容器中進行。定壓下反應等於 H(焓,enthalpy)的變化,式(4)於此條件下,可表示為式(5)

$$dH - TdS = 0 (5)$$

函數 G 由 H、T 與 S 等狀態函數所組成,所以 G 也是狀態函數。定溫定壓的狀態,達到平衡的示意圖(圖 1)所示。可知系統向最小吉布士能之狀態移動。石墨微粒表面的質點,位於不平衡的力場。具有多餘的吸引力,所以分子有過剩的表面吉布士函數,能吸引降低表面吉布士函數的物質。石墨碳的表面張力下降,會降低吉布士函數。當吉布士函數小於零時,是自發過程。因此石墨能吸附其他物質的分子,到自己的表面。簡略表示為式(6)

$$dG_{face} = Ad_{\sigma} < 0$$
 (6)

吉布士能 *G* ≡ *H* − *TS*

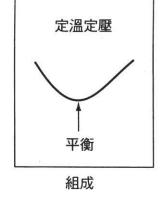


圖 1 化學平衡之條件,與定溫定壓下,系統朝向最小吉布士能狀態移動[2]。

式 (6) 中 $dG_{face}<0$, 表示為自發性過程,由式 (6) 得知,當石墨微粒導電聚合物,吸附在表面時。聚合物分子由三維空間運動,變成限制在二維平面運動。亂度 (S) 升高,會降低熵值,即 dS>0。則-TdS<0,dG<0,物理吸附是放熱反應,故 $\triangle G<0$ 。

石墨微粒表面吸附在聚合物分子,並非靜止不動。它們受熱擾動、彈性碰撞,離開吸附劑表面,重新回到周圍的介質,這種現象稱為「解吸」。吸附與解吸為可逆反應,物理吸附具有表面吸附飽合的特性,在固定溫度時,隨反應時間達到平衡的穩定狀態,稱為「吸附平衡」,吸附平衡可由基本的動力學模型與統計力學方法求得。可用下式做最簡單的表示:

(二)碳摻雜濃度與導電係數

聚合物分子的「堆積方式」(molecular packing),影響對物理特性深遠。石墨微粒的物理吸附作用,縮減聚合物的分子距離,大幅增加分子間的吸引力。以 SEM 電子顯微鏡,觀測不同摻雜濃度的聚氨脂橡膠(polyunethane rubber),其吸附作用的影像如(圖 2)至(圖 6)所示。這幾張圖顯示聚合物的第二級「鍵結力」(bonding forces),與高分子量,造成分子內的「殘餘力」(high residual force)很高。石墨微粒摻雜濃度過高,產生極大的吸引力。使分子緊密堆積在一起,排列出高度規則性結構。然而聚合物有高分子量,與結構的缺陷,無法平行地排列。

圖 2 聚氨脂橡膠

圖 4 聚氨脂橡膠摻雜 20M 濃度的石墨微粒

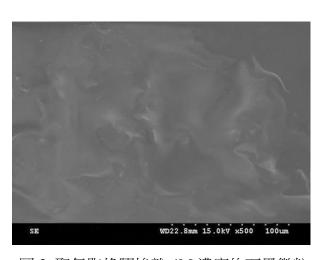


圖 3 聚氨脂橡膠摻雜 4M 濃度的石墨微粒

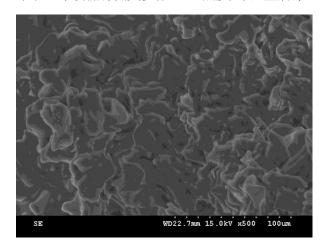


圖 5 聚氨脂橡膠摻雜 40M 濃度的石墨微粒

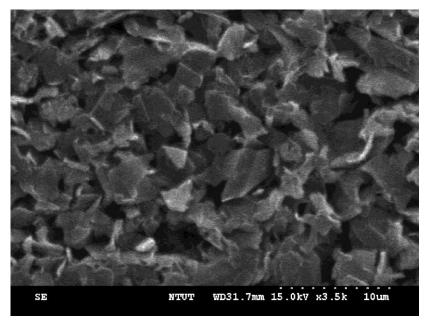


圖 6 聚氨脂橡膠掺雜 40M 濃度的石墨微粒,噴印於 PET 的樣品

碳原子排列成「石墨結構」(graphite structure)時,由三個「sp²混成軌域」(sp² hybridized orbits)組成。原子靠近時會互相影響,電子狀態(electronic state)為 2s-2p。每層的原子以 σ 鍵,結合鄰近的三個碳原子,形成很強的共價鍵。各層之間的垂直方向,由許多未混成 p 軌域(unhybridized p orbits)形成「 π 鍵」(π bond)。由於共振關係, π 鍵的能 隙很窄。價電子(valence electrons)容易在 π 軌域中移動,導電性良好。由(圖 2)至(圖 6),SEM 電子顯微鏡觀測的影像,顯示增加石墨微粒的濃度,能提升物理吸附作用,石墨微粒間的距離,接近「凡得瓦半徑」(0.3354 ± 0.000001 nm)。價電子在分子間 交疊,電阳大幅降低。

有足夠的碳原子互相接近,如(圖 7)所示,會形成連續能階。使原本固定於價電帶的電子,可以在原子間移動。這些電子無法區分屬於那個原子,稱為「電子的共有化」(electron sharing)。它們既有圍繞原子運動的特性,又有共有化運動的特性,分裂成多組「能階」(energy level)。每一組的能階很接近,近似連續。組成一個具有特定寬度的帶(band),這種能階緊密排列的帶狀,稱為「能帶」(energy band)。

孤立的單一原子,電子被束縛在特定的能階(energy levels)。另一個原子非常接近時,原子的交互作用,使能階分裂成二個,產生簡併狀態(degenerate state)。再多一個原子靠近,會分裂成三個能階。因此 N 個原子形成一個固體,會分裂成 N 個能階,且這些能帶彼此接近。每一個獨立的碳原子,電子結構都是 $1s^22s^22p^2$ 。因此單獨的碳原子,

有二個 1s 狀態;二個 2s 狀態;6 個 2p 狀態與較高的能量狀態。N 個碳原子,則有 $2\times N$ 個 1s 狀態; $2\times N$ 個 2s 狀態與 6 個 2p 狀態。

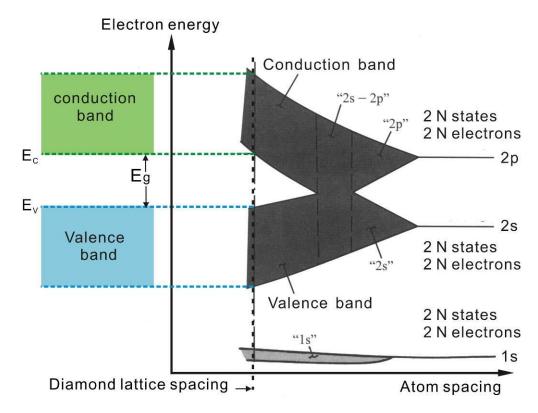
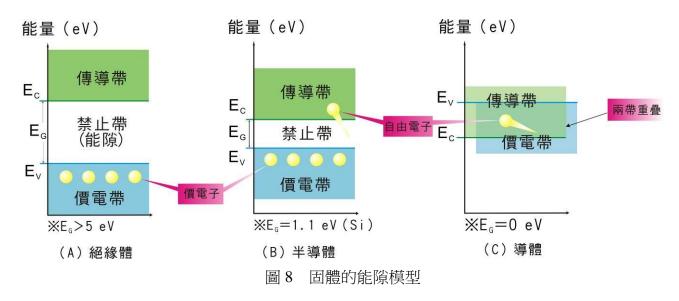



圖 7 碳原子的電子結構[3]

(圖 8)為固體能隙模型(solid energy gap model),不同能階(energy level)間區域,沒有任何電子,稱為能隙(energy gap)或禁止帶(forbidden band)。能隙寬度是區別絕緣體、半導體與導體的指標。石墨微粒的碳原子,能隙很窄,所以電阻值很低。

碳原子之間的距離再拉近,碳原子就會形成為鑽石晶格(diamond lattice)(圖 9), 2S-2P 能階分散成二個能階,具有 $8\times N$ 個狀態。上面的能階稱為導帶(conduction band), 有 $4\times N$ 個狀態,下面的能階稱為價帶(valence band),也有 $4\times N$ 個狀態。這兩個能階 被很寬的能隙(energy gap)分開,所以鑽石晶格的碳為絕緣體[4]。

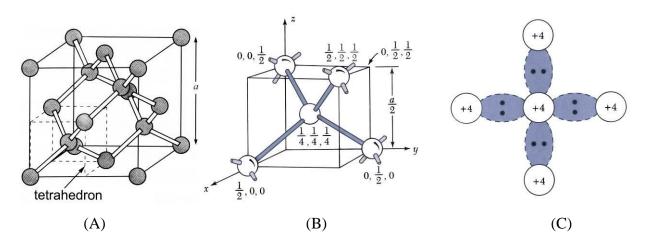


圖 9 鑽石晶格 (diamond lattice,例如: Si、Ge、C等)(A)四面體鍵結組成的鑽石晶格(B)四面體鍵結(tetrahedron bond)(C)四面體鍵結的二度空間示意圖[5]。

二、導電複合材料的製作

運用彈性聚合物材料柔軟、保溫、耐用的特性,設計出貼身的感測器。雖然彈性聚合物材料不具導電性,但石墨微粒能強力吸附有些彈性聚合物。將聚合物加溫熔化,添加高濃度極細的石墨微粒,即可導電。搜尋相關資料並反覆實驗,選擇聚氨脂橡膠作為基材。其重複結構單元如(圖 10)所示,為熱塑性橡膠(TPR, Thermoplastic Rubber),沒有毒性兼具橡膠與熱塑性的材料特性。常溫時具有硫化天然橡膠的黏彈性,加熱後就有熱塑性加工特性。

$$-\left\{0-\left(CH_{2}\right)_{m}-NH-C\right\}_{n}$$

圖 10 聚氨脂的重複結構單元

熱塑性橡膠有兩個分離的聚合物相,常溫時為一相流體(溫度高於 Tg-玻璃化溫度),

另一相為固體(使溫度低於 Tg 或等於 Tg),兩者相互作用。具有柔軟的觸感,加熱溶解添加互溶的物質,能調整物理特性。可以注模鑄造,或擠壓成型。邊料溢料可以 100%回收,符合環保。無須硫化就有硫化橡膠的特性,能防止空氣污染,防水性佳且耐低溫(212K)。

為了增加延展性,加入長鏈單鍵結構。將符合 F.D.A (醫療良品級)的聚氨脂樹脂,加熱後添加 15%醫療用石蠟油 (Liquid petrolatum)。石蠟油是原油分餾、無色無味的混合物,含有 16~35 個碳原子的正烷烴,有少量的異構烷烴和環烷烴。將聚氨脂添加石蠟油加熱至 393K,攪拌配製而成高分子化合物 (圖 11)。將高分子化合物加溫熔化,添加高濃度極細的石墨粉,灌入模型後取得導電複合材料軟片。本材料清潔衛生,不會飛散、不滴落、不污染環境,不會刺激眼睛或皮膚。

圖 11 高分子化合物加温熔化實驗

三、導電複合材料電學特性實驗

(一)電阻

電荷 (Q) 移動形成電流,任何材料對電荷移動,都有阻力。抵抗電荷移動的阻力,稱為電阻(簡寫R)。其單位為歐姆(Ohm),簡稱 Ω 。決定電阳有以下三個因素:

- 1. 材料:每種材料的電阻係數 (ρ) 不同,電阻係數與電阻成正比。
- 2. 材料長度(1):電阻值與材料長度成正比。
- 3. 材料截面積(A):電阻值與材料截面積成反比。

以上關係可以用(8)式表示:

$$R = \rho \frac{l}{A} \tag{8}$$

(8) 式中, ρ 為材料的電阻係數,SI 制單位為 Ω -m。l 的單位為公尺,A 的單位為平方公尺。

(二) 導電複合材料的能量轉換實驗

將導電複合材料切割成適當大小,兩端貼上銅箔,形成歐姆接觸,依(8)式產生電阻值。將電源供應器輸出的穩定電壓,連接導電複合材料兩端的銅箔,產生固定電流(圖12)。接著測試導電複合材料是否依據動能壓力、電功率、歐姆定律,產生合理的變化(圖13)、(圖14),再進行以下相關實驗。

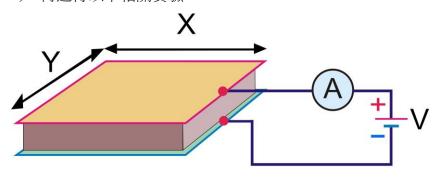


圖12 導電複合材料歐姆定律測試圖

圖13 導電複合材料與接線



圖14 歐姆定律實驗

(三)交流特性實驗

由於交流電為目前供電主要來源,許多電子裝置必須藉由交流電源維持運作,因此進行交流特性的相關實驗。

(四)電阻溫度係數實驗

為了研究橡膠性聚合物材料的電阻受溫度的影響,藉由國立臺北科技大學化學工程

系的恆溫箱,模擬不同的溫度環境(圖 15)。將導電複合材料樣品放入箱中,通電加熱 記錄電阻的變化數值。

(五)電子顯微鏡結構分析

物質結構決定了橡膠性聚合物材料的物理特性,因此與國立臺北科技大學化學工程系進行研究交流,以掃瞄式電子顯微鏡(Scanning Electron Microscope,簡稱 SEM)進行測試。利用電子槍產生電子束,透過電磁透鏡所組成的電子光學系統,使其聚集成微小的電子東照射至試片表面,並將表面產生的訊號加以收集,經放大處理後,輸入到同步掃瞄之陰極射線管,以顯示試片的表面影像。

圖 15 電阻溫度係數實驗

伍、研究結果

一、導電複合材料特性方程式

為了研究石墨微粒摻雜濃度的電學特性,製作不同摻雜濃度的橡膠性聚合物材料,選 擇對碳吸附性很強的聚氨脂(polyunethane)橡膠作為試料。

(一)石墨微粒摻雜濃度與電阻係數

試料的石墨微粒摻雜濃度(doping concentration,CD)與電阻係數(resistivity,ρ)的關係如(圖 16)所示,其電阻係數與摻雜濃度成反比。溫度 300K 石墨微粒摻雜濃度 35M,導電性急遽增加;石墨微粒摻雜濃度增加至 40M,即進入導電的穩定狀態(steady state);石墨微粒摻雜濃度至 55M,石墨微粒吸附太強,導致試料(specimen)的彈性降低;石墨微粒摻雜濃度至 60M 已達吸附飽和(saturation),使得試料硬化,表面出現許多裂痕,65M 吸附過度飽和,石墨微粒會從試料表面解吸(desorption)。經多次實驗,推導出石墨微粒摻雜濃度的電阻特性方程式如下:

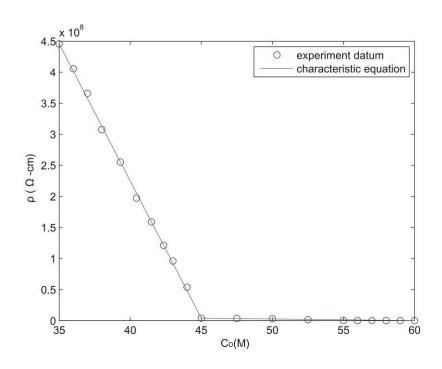


圖 16 石墨微粒摻雜濃度與電阻係數

$$\rho = \begin{cases} (\rho_c - \rho_s) \frac{C_s - C_c}{C_D - C_c}, & \text{if } C_D > C_c \\ (\rho_0 - \rho_c) \frac{C_c - C_D}{C_c - C_0}, & \text{if } C_D < C_c \end{cases}$$

$$(9)$$

式 (9) 中, C_0 為聚合物成為電阻材料(resistance material)所需要的最低掺雜濃度; ρ_0 是最低掺雜濃度 C_0 之電阻係數; C_0 為導體穩定狀態的臨界掺雜濃度(critical doping concentration); ρ_c 為臨界掺雜濃度之電阻係數; C_0 為吸附飽和掺雜濃度(Saturated doping concentration); ρ_s 為吸附飽和掺雜濃度之電阻係數。溫度 300K 時,聚氨脂橡膠掺雜石墨 微 粒 之 C_0 =35M 、 C_0 =45M 、 C_0 =4.456×10 $^8\Omega$ -cm 、 ρ_c =4.40 $^6\Omega$ -cm 、 ρ_c =1.12×10 $^4\Omega$ -cm。

(二)活性碳摻雜濃度與電阻係數

(圖 17)為導電複合材料的活性碳摻雜濃度(C_D),與電阻係數(ρ)的關係。活性碳摻雜濃度至 75M,導電性急遽增加,活性碳摻雜濃度 79M 時,即進入導電的穩定狀態(steadystate)。摻雜濃度至 90M,活性碳的吸附飽和,聚合物的彈性開始劣化,所以試料的邊緣有微小的裂縫。

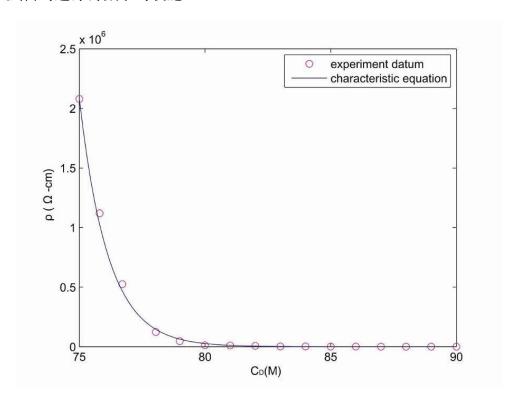


圖 17 活性碳摻雜濃度與電阻係數

經由多次實驗,推導出活性碳摻雜濃度的電阻特性方程式如下:

$$\rho = \rho_{s} + \rho_{0}. \quad e^{-Q_{m} \frac{C_{D} - C_{0}}{C_{c} - C_{0}}}$$
(10)

式(10)中, C_0 為聚合物成為電阻材料(resistance material)所需要的最低摻雜濃度; ρ_0 為最低摻雜濃度 C_0 之電阻係數; C_c 為導電穩定狀態的臨界摻雜濃度(critical

concentration); Cs 為吸附飽和摻雜濃度(Saturation concentration); ρ_s 為吸附飽和摻雜濃度之電阻係數; Q_m 為材料的品質因素(quality factor),為無因次(dimensionless),石墨粉的 Q_m 值為 4。溫度 300K 時,聚氨脂橡膠摻雜活性碳之 C_0 =75M、Cc=80M、Cs=90M、 ρ_0 =2.08×10 $^6\Omega$ -cm、 ρ_s =3.04×10 $^2\Omega$ -cm。當 CD 小於 Cc 時,式(10)可簡化如下:

$$\rho = \rho_0. \quad e^{-Q \frac{C_D - C_0}{C_c - C_0}} \tag{11}$$

(三)物理吸附的電阻溫度係數

物理吸附沒有進行化學反應,所以需要能量較小,容易進行反應,因此低溫就能快速反應。吸附是放熱反應,因此聚合物的物理吸附所產生的電阻與溫度成正比。物理吸附的主要作用力為微弱的凡得瓦力(van der Waals force),容易受到溫度影響,因此電阻溫度係數變化很大 [6,7]。掺雜 80M 濃度活性碳的聚氨脂橡膠,其電阻溫度特性如(圖18)所示。其中電阻係數(ρ)與溫度的特性方程式如下:

$$\rho_{0} \text{ , if } T_{e} < T_{0}$$

$$\rho_{0} + (\rho_{1} - \rho_{0}). e^{Q_{Td}.D_{m}\frac{(T_{e}-T_{0})}{T_{l}-T_{0}}} \text{ , if } T_{e} < T_{1}$$

$$(\rho_{c} - \rho_{pl}) \frac{T_{c} - T_{e}}{T_{c} - T_{l}} \text{ , if } T_{pl} < T_{e} < T_{c}$$

$$(\rho_{nl} - \rho_{c}) \frac{T_{nl} - T_{e}}{T_{nl} - T_{c}} \text{ , if } T_{c} < T_{e} < T_{nl}$$

$$-Q_{Td} \frac{T_{e} - T_{c}}{T_{m} - T_{c}} \text{ , if } T_{e} > T_{c}$$

$$\rho_{c}. e^{-Q_{Td} \frac{T_{e} - T_{c}}{T_{m} - T_{c}}} \text{ , if } T_{e} > T_{c}$$

式(12)中, T_0 為開始解吸的溫度; ρ_0 為溫度 T_0 時的電阻係數; T_{pl} 為正溫度係數線性區的起始溫度; ρ_{pl} 為溫度 T_{pl} 時的電阻係數; T_c 為彈性聚合物的正負溫度係數的臨界溫度(critical temperature); ρ_c 為溫度 T_c 時的電阻係數; T_{nl} 為負溫度係數線性區的截止溫度; ρ_{nl} 為溫度 T_{nl} 時的電阻係數; T_m 為彈性聚合物的溶解(melt)溫度; ρ_m 為溫度 T_m 時的電阻係數; T_e 為測試的環境(environment)溫度; Q_{Td} 為材料的熱力學(thermodynamics)特性,為無因次(dimensionless),活性碳的 Q_{Td} 為 2; D_m 為材料的熱解吸特性,為無因次(dimensionless),活性碳的 D_m 為 3。聚氨脂橡膠掺雜 80M 濃度的活性碳,其 T_0 =267K、 T_{pl} =312K、 T_c =319K、 T_{nl} =322.5K、 T_m =343K、 ρ_0 =1.296× $10^3\Omega$ -cm、 ρ_{pl} =4.88× $10^4\Omega$ -cm、 ρ_c =5.712× $10^4\Omega$ -cm、 ρ_{nl} =4.936× $10^4\Omega$ -cm、 ρ_m =7.04× $10^3\Omega$ -cm。

圖 18 聚氨脂橡膠摻雜 80M 濃度活性碳的電阻溫度特性

聚氨脂橡膠摻雜石墨微粒,其電阻溫度特性如(圖 19)。其中電阻係數(ρ)與溫度的特性方程式,也符合式(5)。聚氨脂橡膠摻雜濃度 40M 的石墨微粒,其 Q_{Td} =1.3、 D_m =7.7、 T_0 =277K、 T_p =333K、 T_c =335K、 T_n =337K、 T_m =343K、 ρ_0 =2.856×10⁶Ω-cm、 ρ_p =9.384×10⁶Ω-cm、 ρ_c =9.912×10⁶Ω-cm、 ρ_n =7.696×10⁶Ω-cm、 ρ_m =2.088×10⁶Ω-cm。

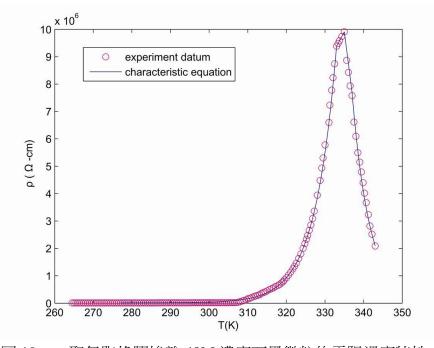
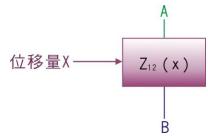


圖 19 聚氨脂橡膠摻雜 40M 濃度石墨微粒的電阻溫度特性

由於 ρ_m 比 ρ_0 高出很多,導電複合材料的電阻值,為物理吸附所產生。環境溫度 T_e 高於 T_c 時,價電帶的電子動能增加,使能隙變小。此時導電複合材料的電阻溫度特性,

與半導體相同。因此導電複合材料的電阻溫度係數,具有金屬導體,與半導體的雙重特性。

彈聚合物摻雜石墨粉或活性碳,產生物理吸附的電阻溫度係數,其特性方程式相同,物理特性相同。只是石墨微粒的表面積較大,因此材料的熱力學特性(\mathbf{Q}_{Td})及材料的熱解吸特性(\mathbf{D}_m)的數值不同,使得石墨微粒的溫度特性曲線較為尖銳。


二、超低頻物質波感測器

(一) 超低頻物質波測器設計與製作

本研究藉由薄膜的形變,而改變電阻值。接上固定的電壓源,通電後依據歐姆定律,產生電流變化。以厚度只有 100μ m 的 PET(化學名詞為 positron emission tomography,聚對苯二甲酸乙二酯)薄膜作為基底材料,裁切成 A4 的尺寸。在表面噴塗自行研發的導電複合材料,於薄膜兩端貼上雙面銅箔膠帶,作為感測器的兩個電極。位移與薄膜重直的集中力為 F 施加在隔膜上,電極位移改變了電阻抗(圖 20)。將 PET 薄膜兩側黏貼柔軟的銅箔,在銅箔間噴塗導電彈性聚合物,形成導電薄膜。薄膜位於待測位置,待測面的位移與薄膜垂直,將動能視為集中力 F 持續的施加在隔膜上,電極產生位移變化改變了電阻抗。感測器的等效電路如(圖 21)所示,圖中 212 (x):阻抗隨 x 微動改變。

圖 20 超低頻物質波感測器

(二) 超低頻物質波感測器特性測試

1. 直流阻抗,測試圖(圖22)

為分析超低頻物質波感測器理想的直流工作區間,研發多種結構的感測器,經長

時間連續測試其輸入電流與輸出電壓之關係曲線,以找出接近線性關係的條件。

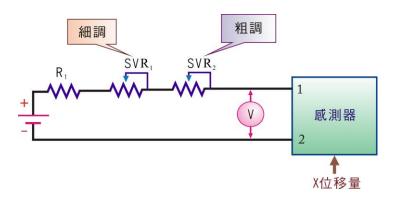


圖 22 超低頻物質波感測器直流阻抗測試圖

2. 能量轉換特性曲線

超低頻物質波感測器兩端輸出電壓與薄膜位移量(X)之能量轉換,經(圖 23) 之量測架構多次實驗,探索更接近線性的能量轉換曲線感測器架構。(圖 24)則為微 動量位移量具設計圖。

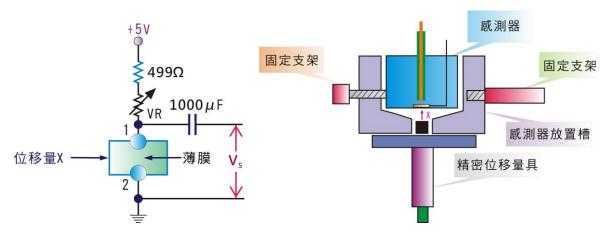


圖 23 能量轉換實驗接線圖

圖 24 超低頻物質波位移量具設計圖

3. 交流特性測試(圖 25)

交流電為目前供電主要來源,許多裝置以交流電源運作,因此進行交流特性實驗。

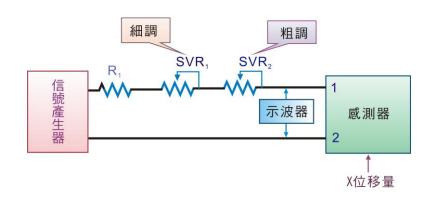


圖 25 超低頻物質波感測器交流特性實驗

二、系統整合

(圖 26)為超低頻物質波感測系統方塊圖,將固定直流電壓串聯一個電阻,連接導電彈性聚合物的兩個電極,依分壓定律隨著感測器接點的位移,使輸出電壓產生相對變化,藉由電容交連濾除直流偏壓。以緩衝級放大器將電壓加大,再以濾波器將高頻雜訊去除,最後將訊號轉換成數位訊號匯入電腦。

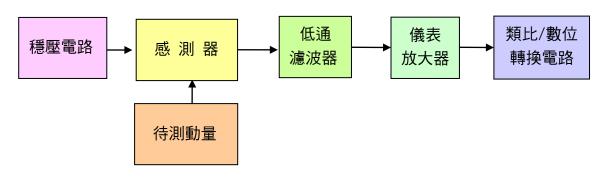


圖 26 超低頻物質波感測系統方塊圖

(一) 儀表放大器

人體呼吸所產生的壓力較弱,必須將感測器擷取的訊號放大才能進行後續處理。(圖27)為儀表放大器電路。由於各種量測對象的動量不同,所以放大電路的增益為可調式, 其增益為 30dB 至 60dB。由於電壓放大倍率很高,提升 S/N 比(訊號對雜訊比)為此電路之核心,主動元件採用低雜訊運算放大器將雜訊大幅降低。

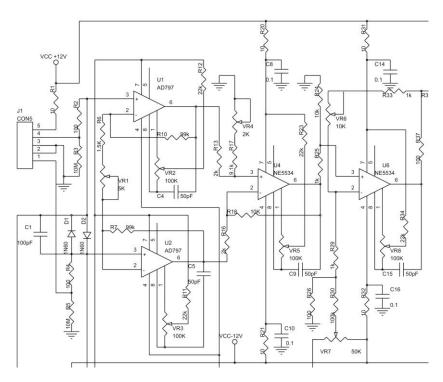


圖 27 超低頻物質波感測器系統儀表放大器

(二) 濾波電路

濾波電路係由一階 0.01Hz 被動高通濾波器 (圖 28),以及六階<u>巴特霍斯</u>低通主動濾波器 (Butterworth low pass filter)組成。高通截止頻率 0.01Hz 濾波器,可降低直流漂移所造成的干擾。低通截止頻率為 30Hz,訊號增益為 4 倍。濾掉高於 30Hz 的頻率成分,主要目的在將一般市電 60Hz,與振盪電路產生的載波都濾掉。確保所擷取到的訊號沒有上述雜訊。

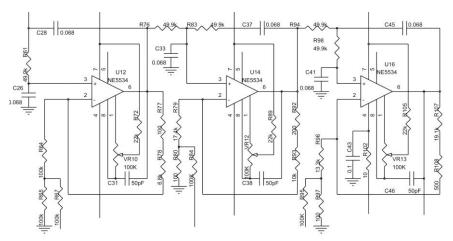


圖 28 濾波電路電路圖

(三)電路整合

(圖 29)為本作品類比訊號處理系統,完整的電路圖。電路板實體如(圖 30)、(圖 31) 所示。

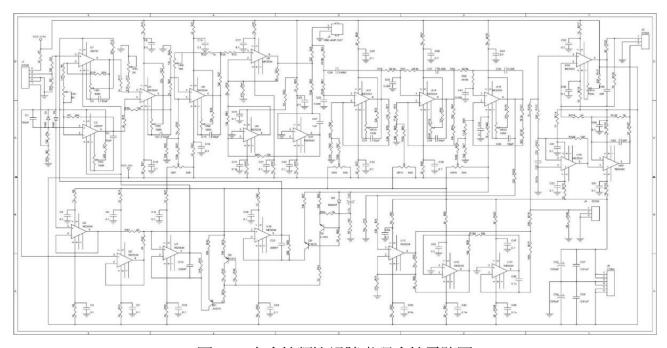
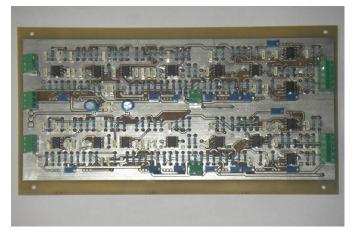



圖 29 本系統類比訊號處理系統電路圖

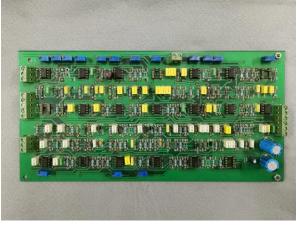


圖 30 初期純手工製作的類比系統電路板

圖 31 委託工廠製作的類比系統電路板

(四)數位化分析系統

將超低頻物質波感測器的輸出訊號,轉換成數位訊號。再用 USB 介面匯入電腦,撰寫應用程式,其人機介面如(圖 32)所示,能隨時進行訊號分析,並且兼具遠端監控功能。從電腦螢幕顯示的數位化呼吸波形(圖 33),證實我們自製的超低頻物質波感測器,能在老人身旁一公尺,感測到他們的呼吸動量。並且可以從波形與頻率,分析健康的差異性。

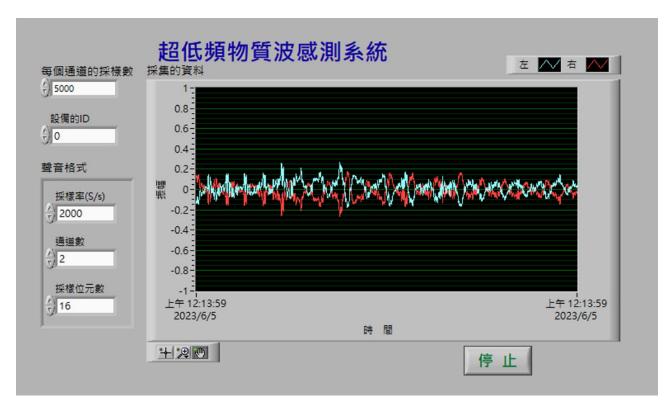


圖 32 本系統的人機介面

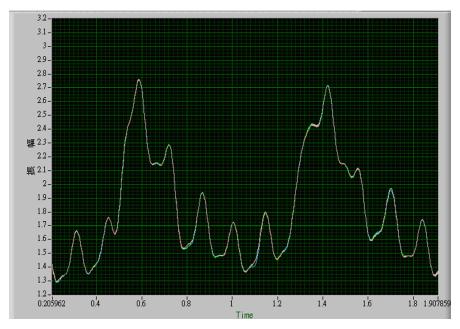


圖 33 本系統顯示的老人呼吸波形

陸、討論

一、問題:導電複合材料相關電路的電子訊號,對於人體、生物與醫療器材有無影響?

討論:本系統傳送的訊號,為導體傳送之直流與低頻交流電訊號。不是無線電所用的電磁波,或是會震動物體的物質波,因此沒有電磁波造成的干擾,亦無超音波干擾之疑慮。

解決方案:請教醫生,醫生表示不會有影響。

二、問題:本研究如何大量生產?

討論:本研究導電複合材料,能用界面活性劑、有機溶劑溶解。可以用網版印刷的方式,印製在絕緣的底材,如 PET 薄膜或布面。也可以用自動化噴塗設備,就能大量生產。

三、問題:OPA 會有直流偏移,無訊號時會有直流輸出,應如何調整?

討論:將 OPA Off-set 的兩支接腳,接上可變電阻 $20K\Omega$ 兩端,可變電阻中間可變端,接至 OPA 的負電源。調整可變電阻後,雖然沒有直流輸出,卻使輸出波形失真。

解決方案:經過多次實驗,發現設定放大倍率的兩顆電阻,將接地端改接 10μF 電解質電容器至地端。即交流訊號浮接接地;直流則以運算放大器虛接地,自動平衡。達成沒有直流偏移,且波形不失真的目標。

柒、結論

一、結論

石墨微粒由碳原子組成,能藉由物理吸附,改變彈性聚合物的分子堆積方式(molecular packing),縮短分子間的距離,造成分子內很高的殘餘力(high residual force)。石墨微粒能將分子緊密地堆積在一起,減少能隙寬度,使聚合物具有半導體的物理特性,並且沒有電感性,十分適合無線電射頻之運用。因此,近十年來有機電子學蓬勃發展,深具電子科技的實用價值 [8]。

石墨微粒的掺雜濃度,與電阻係數為線性關係。因此石墨微粒的表面積與粒徑(particle size)比例,會影響導電特性。石墨微粒的表面積,與粒徑之比例甚大時,摻雜濃度與電阻係數為線性關係。比例較低則為指數關係,這個特性有深入研究之價值。

二、電子顯微鏡的研究

(一)聚合物的物理力學特性

物質的凝聚狀態包括晶態、液態、玻璃態與液晶態。高分子聚合物也包含了這些凝聚狀態。然而高分子化學鍵既長又柔軟,形成有秩序或無秩序的排列,使結構具有特殊的複雜性。每個高分子的化學鍵,是由成千上萬個結構單元所組成。每個結構單元等於一個小分子,所以每一條高分子化學鍵,有可能存在獨特的鍵結狀態。

藉由電子顯微鏡的觀察,得知高分子聚合物的凝聚狀態結構,是加工過程所形成的, 也是決定物理力學特性的關鍵因素。因此,理解凝聚態結構,與形成的條件,合理地調 整加工條件,進而控制凝聚態結構,是提升研究系統十分重要的環節。

(二) 固體型式

非晶(amorphous)、多晶(polycrystalline)及單晶(single crystal)為固體的三種普遍型式。每一種型式可由材料中,具有規律性區域的尺寸大小來界定。所謂規律性區域,表示原子或分子在此空間上,具有整齊的週期性排列方式。非晶材料僅具有數個原子,或分子大小的規律性區域。而多晶材料則具有數十、百個原子或分子的規律性區域。這些尺寸不一致的規律性區域(可視為局部的單晶區)的原子,或分子之排列方向,並不相同。此等尺寸、方向互不一致的局部性規律性區域,稱為「晶粒」(grain)。晶粒之間,

以所謂的「晶界」(grain boundary)相互分離。理想上,單晶材料具有完整的原子或分子的週期性排列。亦即其規律性區域,擴及至整個材料空間。由於晶界會降低電子特性表現,一般而言,單晶材料比非單晶的材料具有較佳的電性。(圖 34)顯示非晶、多晶及單晶材料中,其原子或分子在二維空間排列的型式。

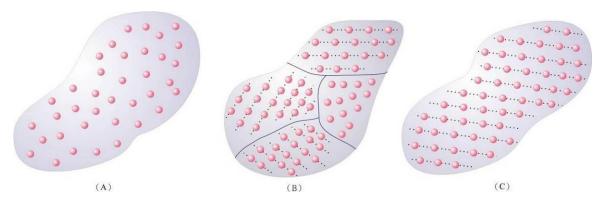
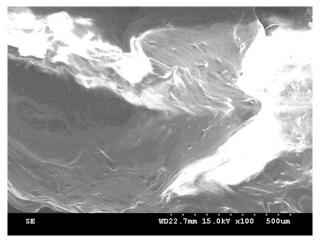



圖 34 (A) 非晶(B) 多晶(C) 單晶

體積莫耳濃度 4M 的導電複合材料,其側邊撕裂處 SEM 電子顯微鏡攝影如(圖 35) 所示。與丁二烯之斷面不同(圖 36),丁二烯加入異戊二烯,含量提升至 25%時,共聚 物的衝擊強度大幅提升,進而發生「脆韌轉變」。以 SEM 電子顯微鏡觀察,呈現出剪切 帶。以電子顯微鏡的觀察得知,導電複合材料側邊撕裂處無此現象,因此介於多晶與非 晶之間的結構,並且比較偏向非晶結構。而半導體與金屬,十分接近單晶。因此電阻特 性、比熱、可塑性、彈性等,都有很大的差異,值得深入研究。

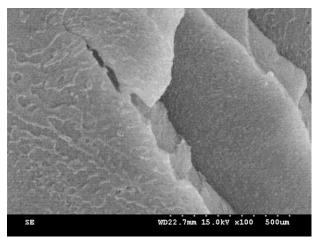


圖 36 丁二烯之斷面撕裂處

捌、參考資料及其他

- [1] 內政部戶政司(2021)。人口政策資料彙集。作者出版。
- [2] Laidler&Meiser原著,郭冠麟、王榮英、陳寶祺合譯(2006)。物理化學(初版,頁153)。學 富文化。
- [3] Alexander Kraft, Int. J. (2007), *Electrochem. Sci.*, 2, 355-385.
- [4] Iwasita, T.; Schmickler, W. Ber. Bunsen-Ges, (1985), Electron transfer at different electrode materials: Metals, semiconductors, 89, 138-42.
- [5] Iwasita, T.; Schmickler, W. Ber. Bunsen-Ges, (1985), Electron transfer at different electrode materials: Metals, semiconductors, 89, 138-42.
- [6] Royea, W. J.; Hamann, T. W.; Brunschwig, B. S.; Lewis, N. S. J. (2006) Phys. Chem. B, 110, 19433-19442.
- [7] C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14, (2002), Organic thin film transistors for large area electronics, 99-117.
- [8] C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14, (2002), *Organic thin film transistors* for large area electronics, 99-117.
- [9] 曾國輝 (2002)。 化學。 藝軒圖書出版社。
- [10] 林敬二等(2007)。高中物質科學化學篇(下冊)。三民書局。
- [11] 中華民國科學教育館(1990)。中小學科展作品專輯。豐山彩色印書有限公司。
- [12] 劉省宏(1999)。醫用電子實習(二版)。全華科技圖書。
- [13] 施威銘主編(2016)。Android App 程式設計教本之無痛起步(初版)。旗標。
- [14] Arthur C. Guyton (1998)。蓋統生理學上冊 (初版)。華杏書局。

【評語】052303

- 作品自製超低頻電阻式感測器,可偵測微弱的超低頻震動訊號,如呼吸波形,希望能應用於偵測地震,或災難時偵測生命跡象, 有應用價值。
- 物質波通常用在量子力學中,描述物質具波動性時使用。在這裡可以考慮使用其他的名稱,避免混淆。
- 3. 作者可以對作品相關研究做更深入的了解,並說明作品的創新性 或進步性,同時說明感測元件設計的原理及其架構的由來。
- 4. 對於感測元件的使用及限制可以更仔細的探究,並詳實說明測試 感測元件、電路、及如何裝設,對於得到訊號可以做更多分析, 例如做頻譜分析及背景雜訊的比較。

作品海報

超低頻 物質污鬼說測不統

▶ 壹、研究動機

我國已步入高齡社會,老年人口比率逐年攀升,面對此一高齡社會,安全與健康成為特別關注之課題。並且臺灣位板塊交界處地震頻仍,災後要搜尋生還者是一大難題。我們研究本系統,藉由電腦與手機遙測方式,進行人體呼吸、脈搏之偵測,達成生命跡象偵測,與病理預警之功能,並隨時得知民眾健康狀況,達成關懷人群的淑世目標,使人們免於病痛的恐懼。。

▶ 貳、研究目的

本研究目的係運用所學,將材料科學融入固態物理學研究的範疇,避免過多的誤差影響實驗結果。如果將導電複合材料運用於感測器,必須具備良好的能量轉換曲線、頻率響應與溫度特性。因此我們進行相關實驗,探究設法加以改善。

▶ 參、研究過程或方法

一、吸附與導電性

將摻雜碳粉的橡膠性聚合物材料加熱,熔點較低的聚合物完全蒸發後剩下碳粉,這些碳粉的質量與粒徑並沒有改變,因此碳與橡膠性聚合物材料為物理吸附(physisorption)又稱凡得瓦吸附,沒有化學反應,碳與橡膠性聚合物材料吸附所產生的導電特性如下:

(一) 聚合物與活性碳的吸附反應

吸附是指物質的界面,吸引周圍介質的質點,使其暫時停留的現象。物質能將周圍介質,吸引在自己表面上的物質稱為吸附劑,被吸附劑吸附的物質則稱為吸附物,本研究以石墨與活性碳粉末作為固體導電性吸附劑。

(二)碳摻雜濃度與導電係數

聚合物的分子堆積方式對物理特性有重大影響。碳的物理吸附作用,縮減聚合物分子間距離,使分子間的吸引力大幅增加。不同摻雜濃度的聚氨脂橡膠,其吸附作用以SEM電子顯微鏡觀測的影像如圖(1)至圖(4)所示,顯示聚合物的第二級鍵結力與高分子量,造成分子內很高的殘餘力,碳摻雜濃度過高則會有極大的吸引力,分子會緊密地堆積在一起,分子緊密地排列呈現高度的規則性結構。因為聚合物具有高分子量與結構的缺陷,無法平行地排列。

TE WD22.8mm 15.0kV M500 100mm

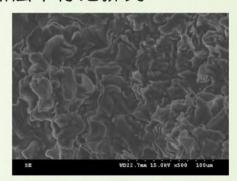


圖1 聚氨脂橡膠

圖2 摻雜4M的活性碳

圖3 摻雜20M的活性碳

圖4 摻雜40M的活性碳

當碳原子排列成石墨結構時,碳原子由三個sp2混成軌域組成,彼此靠近會互相影響。電子狀態為2s-2p。每層的原子以σ鍵與鄰近的三個碳原子結合,形成很強的共價鍵鍵結,各層之間垂直方向的聯結,由許多未混成p軌域形成π鍵,π鍵因共振的關係,所以能隙很窄,價電子很容易在π軌域中移動,有良好的導電性。圖(1)至圖(4)顯示增加活性碳的濃度,提升物理吸附作用,碳粉間的距離接近凡得瓦半徑(0.3354,價電子在分子間交疊,大幅提升導電性。二、導電複合材料的製作

運用橡膠性聚合物材料柔軟、保溫、耐用的特性,但不具導電性。碳對有些聚合物的吸附性很強,將聚合物加溫熔化,添加高濃度極細的碳粉即可導電。搜尋相關資料並反覆實驗,選擇對石墨吸附性很強的聚氨脂橡膠作為主要材料。其重複結構單元如(圖5),為熱塑性橡膠,沒有毒性具橡膠與熱塑性,常溫時具有硫化天然橡膠的黏彈性,加熱後即有熱塑性加工特性。

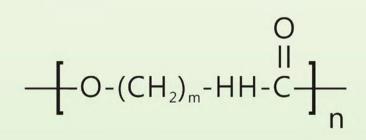


圖5 聚氨脂的重複結構單元

圖6 聚氨脂橡膠添加石蠟油圖7高分子添加細碳粉攪拌

為了增加延展性,加入長鏈單鍵結構,將符合F. D. A(醫療良品級)聚氨脂樹脂,加熱後添加15%醫療用石蠟油。石蠟油是原油分餾、無色無味的混合物,含有16~35個碳原子的正烷烴,有少量的異構烷烴和環烷烴。將聚氨脂添加石蠟油加熱至120℃攪拌成高分子化合物(圖6),將高分子化合物加溫熔化,添加高濃度極細的石墨(圖7),灌入模型後取得薄膜。此薄膜清潔衛生,不會飛散、不滴落、不污染環境,不會刺激眼睛或皮膚。

三、導電複合材料電學特性實驗

(一)電阻

電荷移動形成電流,任何材料對電荷移動一定具有阻力,反抗電荷移動的阻力稱為電阻。電阻單位為歐姆(Ohm),簡稱 Ω 。決定電阻的因素如下:1. 材料種類:不同材料電阻係數(ρ)不同,與電阻成正比。2. 導體的長度(I):R值與I成正比。3. 導體截面積(A):R值與A成反比。以上關係可以用式(1)表示,式(1)中 ρ 為電阻係數,SI制單位為 Ω -m,I的單位為公尺,A的單位為平方公尺。 $R=\rho$ -式(1)

(二)導電複合材料能量轉換實驗

將導電軟片剪裁適當大小,依(1)式產生電阻值。將定電壓連接軟片兩端,通電產生固定電流(圖8),再 再測試軟片是否依據動能壓力、電功率、歐姆定律發出合理的電流變化(圖9),再進行下列相關實驗。

(三)交流特性實驗

由於交流電為目前供電主要來源,許多電子裝置必須藉由交流電源維持運作,因此進行交流特性相關實驗。 (四)電阻溫度係數實驗

為了研究導電複合材料特的電阻受溫度的影響,藉由恆溫低溫箱,模擬不同的溫度環境。將橡膠性聚合物 導電軟片放入箱中,通電加熱記錄電阻的變化數值。

(五)電子顯微鏡結構分析

物質結構決定了導電複合材料特的物理特性,因此與國立大學化學工程系進行研究交流,以掃瞄式電子顯 微鏡(Scanning Electron Microscope,簡稱SEM)進行測試(圖10)。

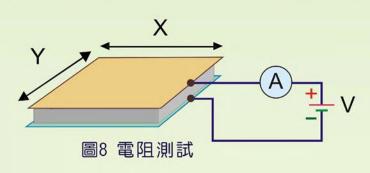
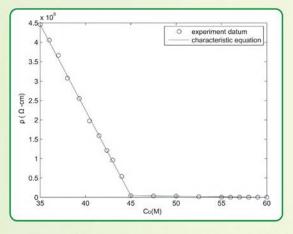


圖9歐姆定律實驗

10 掃瞄式電子顯微鏡實驗系統


▶ 肆、研究結果

一、導電複合材料特性方程式 (一)石墨粉摻雜濃度與電阻係數

試料的石墨粉摻雜濃度與電阻係數(ρ)的關係如圖(11),電阻係數與摻雜濃度成反比。溫度300K石墨粉摻 雜濃度35M,導電性急遽增加;石墨粉摻雜濃度增加至40M,即進入導電的穩定狀態;石墨粉摻雜濃度至55M,石墨 粉吸附太強,導致試料的彈性降低;石墨粉摻雜濃度至60M吸附飽和,使得試料硬化,表面出現許多裂痕,65M吸附 過度飽和,石墨粉會從試料表面解吸。經多次實驗,推導出碳摻雜濃度的電阻特性方程式如下:

$$\rho = \begin{cases} (\rho_c - \rho_s) \frac{C_s - C_c}{C_D - C_c}, & \text{if } C_D > C_c \\ (\rho_0 - \rho_c) \frac{C_c - C_D}{C_c - C_0}, & \text{if } C_D < C_c \end{cases}$$

 $\begin{cases} (\rho_c - \rho_s) \frac{C_s - C_c}{C_D - C_c}, \text{ if } C_0 > C_c \\ \vec{C}_D - C_c \end{cases}$ $\vec{C}_C - C_c \qquad \vec{C}_C = \vec{C}_C + \vec{C}_C = \vec{C}_C + \vec{C}_C = \vec{C}_C = \vec{C}_C + \vec{C}_C = \vec{C}_C =$ 數。溫度300K,聚氨脂橡膠摻雜石墨粉之C。=35M、Cc=40M、Cs=60M、ρ。= 4. $456 \times 108 \Omega$ - cm \ ρ c=4×106 Ω - cm \ ρ s=1. $12 \times 104 \Omega$ - cm \circ

石墨粉摻雜濃度與電阻係數

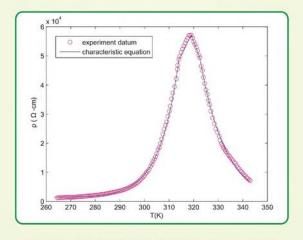


圖12 聚氨脂橡膠摻雜40M濃度 石墨粉的電阻溫度特性

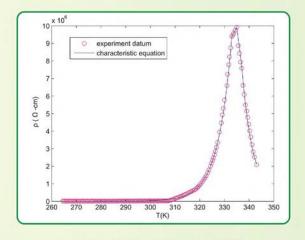


圖13 聚氨脂橡膠摻雜 活性碳的電阻溫度特性

(二)物理吸附的電阻溫度係數

物理吸附沒有進行化學反應,需要能量較小,容易進行反應,低溫就能快速反應。吸附是放熱反應,因此聚合 物的物理吸附所產生的電阻與溫度成正比。物理吸附的主要作用力為微弱的凡得瓦力,容易受到溫度影響,電阻溫 度係數變化很大。摻雜40M濃度石墨的聚氨脂橡膠,其電阻溫度特性如圖(12)。聚氨脂橡膠摻雜活性碳,電阻溫 度特性如圖(13)。活性碳的表面積較大,材料的熱力學特性(QTd)及材料的熱解吸特性(Dm)不同,使活性碳 的溫度特性曲線較尖銳。

二、超低頻物質波感測器

本研究藉由薄膜的形變,而改變電阻值。接上固定電壓源,通電後依據歐姆定律,產生電流變化。以厚度只有 100μm的PET(化學名詞為positron emission tomography,聚對苯二甲酸乙二酯)薄膜作為基底材料,裁切成A4 的尺寸。在表面噴塗自行研發的導電複合材料,於薄膜兩端貼上雙面銅箔膠帶,作為感測器的兩個電極。位移與薄 膜垂直的集中力為F施加在隔膜上,電極位移改變電阻抗(圖14)。將PET薄膜兩側黏貼銅箔,在銅箔間噴塗導性聚 合物,形成導電薄膜。薄膜位於待測位置,待測面的位移與薄膜垂直,將動能視為集中力F持續的施加在隔膜上, 電極產生位移改變電阻抗。感測器的等效電路如(圖15)所示,圖中Z12(x):阻抗隨x微動改變。

超低頻物質波感測器

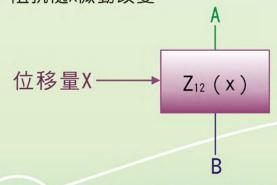


圖15 感測器等效電路

◇伍、討論

石墨粉由碳原子組成,能藉由物理吸附,改變橡膠性聚合物材料的分子堆積方式,縮短聚合物分子間的距離,造成分子內很高的殘餘力。石墨粉能將分子緊密地堆積在一起,減少了能隙的寬度,使聚合物具有半導體的物理特性,並且沒有電感性,十分適合無線電射頻之運用。因此,近十年來有機電子學蓬勃發展,深具電子科技的實用價值。石墨粉的摻雜濃度與電阻係數為線性關係,因此石墨粉的表面積與粒徑比例會影響導電特性,石墨粉的表面積與粒徑之比例甚大時,碳的摻雜濃度與電阻係數為線性關係,比例較低則為指數關係,這個特性有深入研究之價值。

體積莫耳濃度4M的導電彈性聚合物,其側邊撕裂處SEM電子顯微鏡攝影如(圖16)所示。與丁二烯之斷面不同(圖17),當丁二烯加入異戊二烯含量提升至25%時,共聚物的衝擊強度大幅提升,進而發生「脆韌轉變」,以SEM電子顯微鏡觀察,呈現出剪切帶。以電子顯微鏡的觀察得知,導電彈性聚合物側邊撕裂處則無此現象,因此介於多晶與非晶之間的結構,並且比較偏向非晶結構。而半導體與金屬十分接近單晶,因此電阻特性、比熱、可塑性、彈性等,都有很大的差異,值得深入研究。

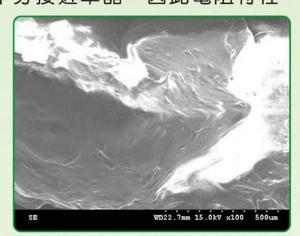


圖16 添加碳4M 的聚合物側邊撕裂處

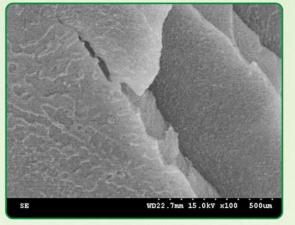


圖17 丁二烯之斷面撕裂處

◇陸、結論

一、感測器特性

(一)直流阻抗

為分析超低頻物質波感測器理想的直流工作區間,研發多種結構的感測器,經長時間連續測試其輸入電流與輸出電壓之關係曲線,研發出接近線性關係,並且直流阻抗很近似標準麥克風。

(二)能量轉換特性曲線

感測器兩端輸出電壓,與薄膜位移量(X)之能量轉換,經(圖18)之量測架構多次實驗,能量轉換曲線很接近線性變化。 二、系統整合

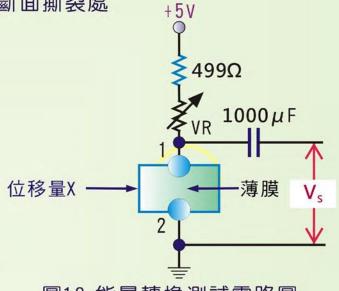
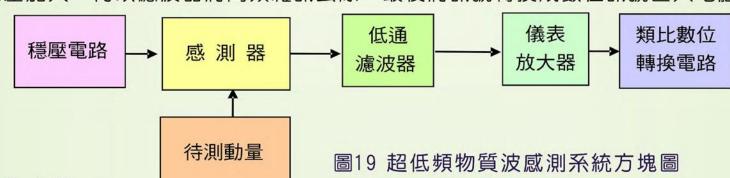



圖18 能量轉換測試電路圖

(圖19)為本系統方塊圖,將固定直流電壓串聯一個電阻,連接導電彈性聚合物的兩個電極,依分壓定律隨著感測器接點的位移,使輸出電壓產生相對變化,藉由電容交連濾除直流偏壓。以緩衝級放大器將電壓加大,再以濾波器將高頻雜訊去除,最後將訊號轉換成數位訊號匯入電腦。

(一)儀表放大器

人體呼吸所產生的壓力較弱,必須將感測器擷取的訊號放大才能進行後續處理。(圖20)為儀表放大器電路。由於各種量測對象的動量不同,所以放大電路的增益為可調式,其增益為30dB至60dB。由於電壓放大倍率很高,提升S/N比(訊號對雜訊比)為此電路之核心,主動元件採用低雜訊運算放大器將雜訊大幅降低,能偵測到兩公尺外微弱的超低頻物質波。

(二)濾波電路

濾波電路由一階0.01Hz被動高通濾波器(圖20),與六階巴特霍斯低通濾波器組成。高通濾波可降低直流漂移造成的干擾。低通截止頻率30Hz,訊號增益為4倍。濾掉高於30Hz的頻率成分,主要目的將一般市電60Hz,與振盪電路產生的載波都濾掉。確保所擷取到的訊號沒有上述雜訊。

(三)數位化分析系統

將超低頻物質波感測器的輸出訊號,轉換成數位訊號。再用USB介面匯入電腦,撰寫程式介面如(圖21)所示,能隨時進行訊號分析,並且兼具遠端監控、雲端運用與無線傳輸功能。從電腦螢幕顯示的數位化呼吸波形,證實我們自製的超低頻物質波感測器,能在老人身旁一公尺,感測到他們的呼吸動量。並且可以從波形與頻率,分析健康的差異性。

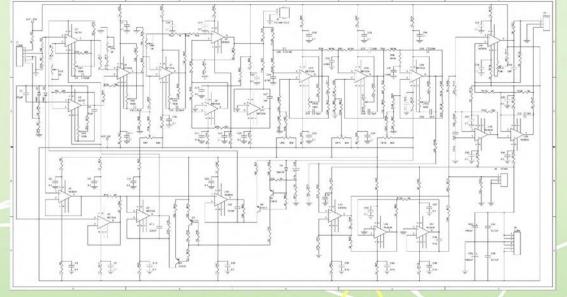


圖21 本系統顯示的老人呼吸波形