中華民國第63屆中小學科學展覽會作品說明書

高中組 物理與天文學科

團隊合作獎

051811

三面骰子機率與解析度

學校名稱:國立嘉義女子高級中學

作者:

高二 王珮熒

高二 蔡沄杉

高二 賴柔嘉

指導老師:

黄志仁

吳孟修

關鍵詞:機率、微擾、解析度

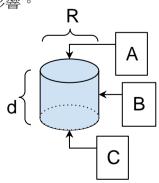
摘要

本研究探討「三面骰」機率,由直徑厚度比(R/d)入手,製作不同 R/d 骰子 111 種 各擲 300 次,計 33300 次,繪製機率與 R/d 關係圖。側面機率 100%的 R/d 界線為 0.52,0%的 R/d 界線為 8.15,33.33%的 R/d 範圍為 1.86 至 2.10,三面機率相同時三面面積 1:2:1。再分別以面積、環形、球體理論建模,發現理論趨勢與實驗相符(P<0.001***, R^2 =0.9185)。

另發現其他物理量亦影響機率,進行「投擲高度、初速度、初角速度、恢復係數」為變因的實驗,擲 18000 次,顯示各參數對機率的影響。於是參考文獻並建模骰子動力理論,精確計算骰子的最終面,但實驗上骰子各面為何仍存在機率呢?我們發現機率來自參數的微擾,而各骰子對微擾的敏感度不同,進而提出骰子對微擾的「解析度」概念,評估骰子的公平性。

壹、前言

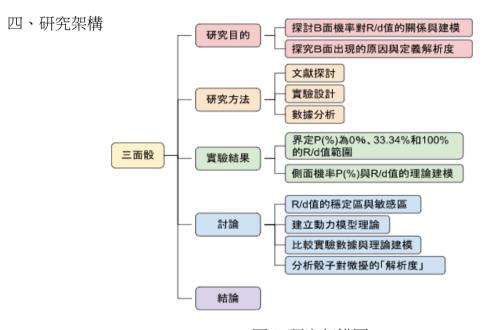
一、研究動機


有次投販賣機時,翻找零錢導致散落一地,錢幣雖會以側面(圖一B側環面)滾動,可是靜止在B面的機率卻微乎其微,而是以圖一的A面或C面靜止。擔任值日生擦黑板時,發現黑板溝中的粉筆都是B面靜止,鮮見以A面或C面直立。

在此之前,我們一直認為骰子的機率是完全隨機的,但或許骰子的幾何性質會影響到落地面,依照機率學來說,我們發想,如果改變圖一的三面骰子長寬高比例,亦即調整正反面與側環面的面積大小,其落地機率是否會發生改變?這次研究由幾何比例的改變延伸到其他可能影響機率的變因,如:高度、角速度等...,進而探討這些物理量之間的關係。

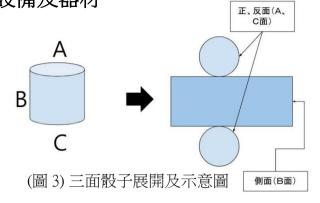
我們使用透明壓克力板切割出不同直徑厚度比(圖一的 R/d 值)的圓柱,圓柱即三面骰子。「三面」分別為圓柱之兩個圓形底面(圖一的 A 和 C 面)與側環面(圖一的 B 面)。異於其他骰子,三面骰為「奇數」,我們好奇,「三面機率皆 33.33%時,三面面積是否相同」?本研究透過改變三面骰的 R/d 值,觀察幾何特徵如何影響落於各面的機率,進而推廣到其他物理參數對側面落地機率的影響。

二、研究目的


- (一) B 面機率 P(%)與 R/d 值的關係
- (二) B 面機率 P(%)與 R/d 值的理論建模
- (三)建立三面骰出現面的動力理論
- (四) 探究 B 面機率出現的原因並定義骰子 對微擾的「解析度」
- (五) 探究不同 R/d 值三面骰對投擲高度之解析位移

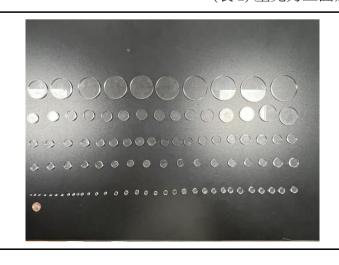
(圖 1) 三面骰子。設上下面為 A 和 C 面,B 為側環面。R 為圓直徑,d 為厚度。

三、文獻回顧


- (一) 林秀豪(2010) 指出,系統在未受外力做功之條件下力學能守恆,當物體被置於一定高度時,物體具備重力位能,其可由物體運動狀態的改變而由重力位能轉為動能,其中包含移動能及轉動動能等。
- (二) Murray & Damp; Teare (1993)指出,不同的隨機初始條件下,各式形狀物體落地面可由動態模型及一連串速度、角度、能量、角度公式模擬與計算得知,其理論已經由實驗操作證實其精準度。
- (三) Boas (2006)指出,當測量值是隨機變數的時候,應使用機率密度的概念,來描述所累積的機率。而自然界中的機率密度函數,多數的物理量呈現高斯分布。
- (四) Vulović 和 Prange (1986)針對硬幣建構物理模型並經過數學計算後,指出一枚硬幣的投擲結果並非完全隨機的,而與投擲硬幣時變因控制的精準度以及環境的擾動具有較大關聯。
- (五) Ford (1983) 指出, 骰子投擲之結果並非如同牛頓提出的決定論,實際上物體的運動並不然具有秩序性,未必能以牛頓之因果關係準確預測投擲結果,導致機率之存在。
- (六)綜上文獻,影響三面機率的因子:透過文獻的探討,可推測直徑與厚度比(R/d)、高度(h)、初速度(Vo)、恢復係數(r)、角速度(ω)皆會影響靜止於三面機率。我們建模見「肆、研究結果」。


(圖2)研究架構圖

貳、研究設備及器材


- 一、認識三面骰
- (一) 三面骰子為一圓柱體,且有無限多種圓直徑與厚度比組合。
- (二) 以三面骰子展開圖(圖 3)為依據, 將上下兩個圓形視為 A 面和 C 面, 長方形則為 B 面。

二、研究設備及器材(表1和表2)

(表 2) 壓克力三面骰

直徑不同,厚度皆為 0.5 公分的壓克 力骰子,直徑最小值為 0.18 公分,最 大值為 6.00 公分。(以一元硬幣為比 例尺)

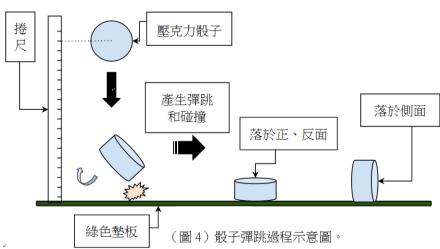
参、研究過程或方法

一、B 面機率 P(%)與 R/d 值的關係

(一)變因設計

- 1. 控制變因:將固定 R/d 值的三面骰以正反圓形底面(A+C 面)垂直水平面之方式放,由 距地面 15 公分高度靜止落下,接觸面材質統一為綠色墊板,骰子材質為壓克力。
- 2. 操縱變因:三面骰的直徑與厚度比(R/d 值)
- 3. 應變變因:三面骰子落於側面(B)的機率 P(%)

(表 3)R/d 值實驗之變因。


直徑厚度比 R/d	高度(cm)	初速度(m/s)	初角速度 (rad/s)	恢復係數
操縱變因	15.0	0	0	0.26(綠色墊板)

(二)切割不同 R/d 值的三面骰

- 1. 壓克力板厚度 0.5 公分。R/d 之比例從 0.36 到 5.00,每上升 0.04 的比例切一骰子,即 0.36、0.40、0.44…4.92、4.96、5.00,總共 117 個骰子。另外,R/d 之比例由 5.0 到 12.0,每上升 0.2 的比例切一骰子,即 5.0、5.2、5.4…12.0,共 36 個骰子。其中 5.00 和 5.0 其實相同;故本研究原始設計並切割 152 個(117+36-1)不同 R/d 值的三面骰。
- 2. 切割後,再用游標尺精準測量各個三面骰的直徑,其直徑可能與原先設計稍有異, 以實際游標尺測量值為準。另,部分三面骰原先設計時直徑不同,但切割後測量 值相同;所以,本研究原始設計 152 個不同 R/d 值的三面骰,而實際得 111 種不 同 R/d 值的三面骰。

(三)投擲並記錄落地結果

每一種 R/d 值的三面骰 各擲 300 次,記錄最後落地 為正反圓形底面(A+C 面)或側 環面(B面)。本研究擲 111 種不同 R/d 值的三面骰,每 種擲 300 次,總共 33300 次

(四)以「SPSS 統計軟體」(邱皓政, 2005)執行卡方檢定

- 1. 統計「不同 R/d 值三面骰出現 B 面的機率」是否有顯著差異。
- 2. 找出 B 面機率為 0%及 100%的 R/d 值範圍,找出骰子三面機率皆為 33.33%的 R/d 值範圍。最後以 Excel 繪製「R/d 值與 B 面機率關係圖」。

二、B 面機率 P(%)與 R/d 值的理論建模

我們參考資料 Stand-up Maths(2018),發想骰子側面落地機率可能受到三面面積、接觸地面之環形長度與包圍骰子的球體大小有關,接著進行相關計算。

三、建立三面骰出現面的動力理論

参考文獻資料林秀豪(2010)、Murray & Teare (1993)(請見「壹、前言,三、文獻回顧,(一)、(二)點」,將文獻結合本研究進行運算。

四、探究 B 面機率出現的原因並定義骰子對微擾的「解析度」

透過文獻的探討(請見「壹、前言,三、文獻回顧,(六)」),可推測直徑與厚度比 (R/d)、高度(h)、初速度(V)、角速度 (ω) 、恢復係數(r)皆會影響靜止於三面機率。因此我們設計實驗,將上述四個參數當作操縱變因分別進行其與三面骰側面(B)落地機率的關係。

(一) 高度(h)與側面(B)落地機率的關係

我們選擇固定 R/d 值(=2)的一種骰子,改變初始高度進行實驗。由 5.0cm 開始依 5.0cm 為間隔增加至 50.0cm,即 5.0cm、10.0cm、15.0cm、20.0cm、25.0cm、30.0cm、35.0cm、40.0cm、45.0cm、50.0cm 共 10 種高度,實驗相關變因如表 4 所示。

(表4) 高度(h)實驗之變因。

直徑厚度比 R/d	高度(cm)	初速度(m/s)	初角速度(rad/s)	恢復係數
2	操縱變因	0	0	0.26(綠色墊板)

(二)初速度(V)與側面(B)落地機率的關係

一樣使用 R/d=2 的骰子改變初始速度進行實驗。由小至大,依序為 $1.0 \times 1.4 \times 1.6 \times 1.7 \times 2.0 \times 2.2 \times 2.4 \times 2.6 \times 3.0 \times 3.1$ (單位:m/s),共 10 種初速度,實驗變因如表 5 所示。

(表5)初速度實驗之變因。

直徑厚度比 R/d	高度(cm)	初速度(m/s)	初角速度(rad/s)	恢復係數
2	15.0	操縱變因	0	0.26(綠色墊板)

(三)初角速度(ω)與側面(B)落地機率的關係

繼續使用 R/d 值=2 的骰子改變初始角速度(ω)進行實驗,以探討初始角速度與側面(B)機率之關係。依 $H = \vec{\tau} \times \Delta t = \Delta \vec{L} = I \times \omega - I \times \omega_0$,又 $\omega_0 = 0$,可得 $\vec{\tau} \times \Delta t = I \times \omega$,因此若固定力矩($\tau = N \cdot x$)、轉動慣量(I)、及接觸時間(Δt),則可於每次的實驗中獲得相同之初角速度,並可透過改變支撐點與質心之距離(x)改變角速度之量值。我們以此為基礎設計實驗,實驗相關變因如表 6 所示。

(表6)初角速度(ω)實驗之變因

	直徑厚度比 R/d	質量(kg)	$\Delta t(s)$	高度(cm)	初速度(m/s)	初角速度(rad/s)	恢復係數
ľ	2	0.009	0.01	15.0	0	操縱變因	0.26(綠色墊板)

(四)恢復係數(r)與側面(B)落地機率的關係

恢復係數: 衡量兩個物體在碰撞後的反彈程度。若恢復係數為 1,則為彈性碰撞;若恢復係數小於 1 而大於或等於 0,則為非彈性碰撞;若恢復係數為 0,則為完全非彈性碰撞,兩個物體撞擊後黏貼在一起。計算方式如式(一):

$$C_r = \frac{v2_f - v1_f}{v1_i - v2_i}$$

其中, $v1_i$ 與 $v1_f$ 為分別為第一個物體碰撞前後的速度; $v2_i$ 與 $v2_f$ 為第二個物體碰撞前後的速度。

因實驗之三面骰為自由落體,且接觸面固定不動,固可由三面骰初始及彈起高度計算恢復係數,如式(二):

$$C_r = \sqrt{\frac{h}{H}}$$

H 是物體掉落前的高度, h 是物體彈回的高度。

此次實驗使用 tracker 軟體分析三面骰初始及觸地後彈起高度,利用式(二)計算其恢復係數。

(表7)恢復係數(r)實驗之變因

直徑厚度比 R/d	高度(cm)	初速度(m/s)	初角速度(rad/s)	恢復係數
2	15.0	0	0	操縱變因

五、探究不同 R/d 值三面骰對投擲高度之解析位移

(一) 六面骰子實驗

- 1. 生活中常見的六面骰子為正立方體,六面點數分別為1至6點。我們使用邊長 10mm的六面骰改變初始高度進行實驗。
- 2. 先擲 8 種高度,分別為 5.0cm、15.0cm、25.0cm、35.0cm、45.0cm、65.0cm、85.0cm 及 105.0cm;後又加擲 4.0cm、3.0cm、2.0cm,總共 11 種高度。投擲方式同三面骰, 裝置示意圖如圖 5 所示,而實驗相關變因見表 8-1。4.0cm 擲 50 次,其他高度 100 次,共計 1050 次,丟擲並記錄落地靜止時點數 1 出現的次數再換算成機率。
- 3. 再固定高度 15cm, 改變初角速度進行實驗, 共探究五種初角速度, 實驗相關變因 見表 8-2。每種角速度執 100 次, 共 500 次, 記錄落地靜止時點數 1 出現的次數再 換算成機率。

(表 8-1) 改變六面骰投擲高度實驗之變因

骰子	高度(cm)	初速度(m/s)	初角速度(rad/s)	恢復係數
邊長 10mm 之六面骰	操縱變因	0	0	0.26(綠色墊板)

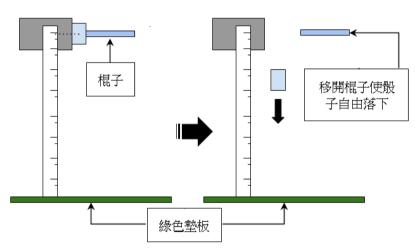
(表 8-2) 改變六面骰投擲角速度實驗之變因

	******	- · · · · · · · · · · · · · · · · · · ·		
骰子	高度(cm)	高度(cm) 初速度(m/s) 初角速		恢復係數
邊長 10mm 之六面骰	15	0	操縱變因	0.26(綠色墊板)

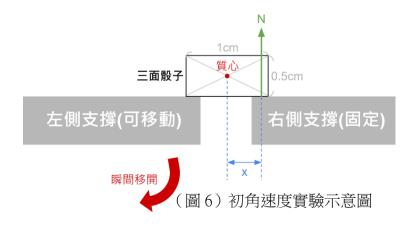
(二) 探究不同高度落下,三面骰 B 面的機率

- 1. R/d 值由小到大,選擇 12 種 R/d 值的三面骰:R/d=0.56、0.88、1、1.1、1.42、1.58、1.70、1.80、2、2.98、4 及 8。
- 2. 由 5.0cm 開始增加至 105.0cm 共 8 種高度,即 5.0cm、15.0cm、25.0cm、35.0cm、45.0cm、65.0cm、85.0cm 及 105.0cm。由固定高度以 A、C 面垂直水平面的方式使之自静止自由落下,實驗裝置示意圖如圖 5 所示,而實驗相關變因見表 9。
- 3. 每次實驗丟擲 100 次,共計 9600 次,丟擲並記錄 B 面落地次數,再換算成機率。

(表9) 12 種三面骰投擲 8 種高度實驗之變因


直徑厚度比 R/d	高度(cm)	初速度(m/s)	初角速度(rad/s)	恢復係數
由 0.56~8 共 12 種	由 5.0~105.0 共 8 種	0	0	0.26(綠色墊板)

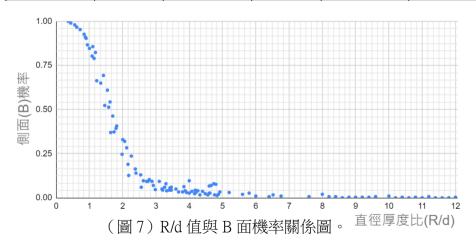
六、實驗裝置示意圖


(一)R/d 值、高度、初速度、 恢復係數實驗裝置側視示意 圖(圖5)

(二)初角速度實驗裝置示意圖 (圖6)

(三)另外,參考文獻資料 Boas (2006)、Vulović & Prange (1986)、Ford (1983) (請見「壹、 前言,三、文獻回顧,(三)、 (四)、(五)」),我們發現投擲 三面骰時,不同參數會各自 產生偏離預定值的微小擾動, 而這些微擾發生的機率呈高 斯分布,因而造成落地結果 的不同。

(圖5) R/d 值、高度、初速度、恢復係數實驗設計示意圖


肆、研究結果

一、B 面機率 P(%)與 R/d 值的關係

(一)實驗結果原始數據如表 10,繪製為圖 7

(表 10) R/d 值與 B 面機率實驗原始數

直徑厚度比(R/d) 俱 0.36	則面(B)機率				側面(B)機率
	1.000	直徑厚度比(R/d) 2.62	側面(B)機率 0.097	直徑厚度比(R/d) 4.66	0.070
0.44	0.990	2.72	0.093	4.74	0.080
0.56	0.980	2.76	0.093	4.76	0.000
0.62	0.967	2.80	0.103	4.80	0.017
0.72	0.953	2.88	0.103	4.84	0.017
0.84	0.927	2.92	0.033	4.88	0.013
0.88	0.910	2.98	0.070	4.92	0.020
0.90	0.903	3.10	0.047	5.20	0.033
0.94	0.867	3.18	0.050	5.60	0.030
1.00	0.847	3.20	0.030	5.80	0.020
1.08	0.803	3.26	0.043	6.00	0.027
1.10	0.857	3.30	0.080	6.40	0.010
1.14	0.790	3.32	0.040	6.52	0.007
1.18	0.790	3.40	0.040	6.76	0.017
1.22	0.663	3.42	0.043	7.60	0.010
1.34	0.650	3.46	0.060	8.00	0.020
1.42	0.693	3.48	0.043	8.20	0.020
1.46	0.523	3.60	0.050	8.40	0.007
1.54	0.610	3.68	0.030	8.60	0.007
1.58	0.513	3.80	0.033	8.80	0.003
1.62	0.543	3.84	0.063	9.00	0.003
1.64	0.370	3.88	0.040	9.20	0.003
1.70	0.463	3.92	0.030	9.40	0.003
1.74	0.403	4.00	0.097	9.60	0.007
1.80	0.393	4.02	0.027	10.00	0.010
1.82	0.407	4.08	0.037	10.20	0.000
1.98	0.347	4.16	0.023	10.40	0.003
2.00	0.330	4.18	0.043	10.60	0.000
2.06	0.320	4.20	0.030	10.78	0.000
2.12	0.283	4.26	0.040	10.80	0.003
2.16	0.190	4.32	0.017	11.00	0.000
2.18	0.127	4.40	0.037	11.20	0.007
2.26	0.237	4.48	0.023	11.40	0.000
2.38	0.163	4.56	0.017	11.60	0.000
2.40	0.140	4.58	0.067	11.80	0.000
2.54	0.130	4.60	0.027	12.00	0.003
2.56	0.060	4.62	0.027		

- (二)使用數據統計(卡方檢定)界定 B 面機率的 R/d 值範圍
 - 1. 界定 B 面機率為 0% 及 100%的 R/d 值範圍
 - (1)理論:以「SPSS 統計軟體」(邱皓政,2005)執行卡方檢定。表 11 顯示若擲 300 次,B 面出現 300 次與出現 295 次差異不顯著(P=0.081 ns),B 面出現 300 次與出現 294 次有顯著差異(P=0.018*)。
 - (2)實驗: 擲 111 種三面骰各 300 次,總計 33300 次實驗數據,彙整為表 12。表 12 可知 B 面 100%的界線,在 R/d 值 0.44 和 0.56 之間,我們用內插法估算,若 B 面次數 295 次,R/d 值為 0.52。
 - (3)理論: 若擲 300 次, B 面出現 0 次與出現 3 次差異不顯著(P=0.134 ns), 出現 0 次與出現 4 次有顯著差異(P=0.011*)。(表 11)
 - (4) 實驗:表 12 編號 32~91 共 60 種骰子,其中有 3 種骰子的實驗數據 B 面 \leq 3 次,但是,編號 91 號骰子 B 面 6 次(超過 4 次有顯著差異)。編號 92~111 共 20 種骰子,全部 20 種骰子的 B 面皆 \leq 3 次(\leq 3 次與 0 次的差異不顯著)。
 - (5)表 12 可知 B 面 0%的界線,在 R/d 值 8.0 和 8.2 之間,我們用內插法估算,若 B 面次數 3 次,R/d 值為 8.15。另,我們測量新台幣一圓硬幣,R/d 值約 12.57。

表11、若三面骰擲 300 次,卡方檢定 B 面機率 100%、33.33%、0%的範圍。

AC 面	B面	P值	B面機率
次數和	次數	「 」且	差異不顯著
0	300	-	100%
5	295	0.081 ^{ns}	100%
6	294	0.018*	
188	112	0.047*	
189	111	0.056ns	
200	100	-	33.33%
211	89	0.056 ^{ns}	
212	88	0.047*	
296	4	0.011*	
297	3	0.134 ^{ns}	0%
300	0	-	U70

表12、作者擲 111 種三面骰各 300 次, 總計 33300 次實驗數據。

公民日 コココ	00 人貝歌	女人]]		
骰子	R/d	AC 面	B面	
編號		次數和	次數	
1	0.36	0	300	
2	0.44	3	297	◆B 面 100%界線
3	0.56	6	294	D 田 100/03下級
4	0.62	10	290	
5 ~21	0.72~1.62	14~146	286~154	
22	1.64	189	111	
23	1.7	161	139	
24	1.74	188	112	
25	1.8	182	118	
26	1.82	178	122	
27	1.98	196	104]
28	2	201	99	┣B 面 33.33%範圍
29	2.06	204	96	J
30	2.12	215	85	
31	2.16	243	57	
32 ~90	2.18~7.6	229~298	71~2	
91	8	294	6	D 云 00/ 田/柏
92	8.2	298	2	◆ B 面 0%界線
93 ~111	8.4~12.0	297~300	3~0	

- 2. 界定骰子三面機率皆為 33.33%的 R/d 值範圍
 - (1)理論(表 11): 經卡方檢定, 擲 300 次, B 面出現 100 次與出現 111 次差異不顯著, 出現 100 次與出現 89 次差異亦不顯著(P=0.056 ns); B 面出現 100 次與出現 112 次有顯著差異, 出現 100 次與出現 88 次亦差異顯著(P=0.047*)。
 - (2)實驗:表 12 顯示「B 面機率 33.33%的骰子」與編號 27 號、28 號、29 號骰子差 異不顯著。與 26 號或 30 號骰子有顯著差異。

- (3)以內差法估算 B 面機率 33.33%的 R/d 值範圍: 擲 300 次, B 面出現 111 次的 R/d 值 為 1.86; B 面出現 89 次的 R/d 值 2.1。 B 面機率 33.33%的 R/d 值範圍為 1.86~2.1。

二、B 面機率 P(%)與 R/d 值的理論建模

(一)面積理論

- 1. 依六面骰子各面面積相等而落地機率相同的概念構思,假設側面(B面)的面積為總面積的的三分之一,推測側面(B)之面積與落地機率成正比。
- 2. R 為直徑,另設 r 為半徑。則圓形底面(A 面或 C 面)面積= πr^2 ,側環面(B 面)面積=R π d。理論機率為側環面面積/(側環面面積+兩圓形底面面積和)。

(二)環形理論(圖8)

$$P(\%) = R\pi d / (R\pi d + 2 \cdot \pi r^2)$$

- 1. 依靜力平衡的概念構思,將圓柱骰子置於一環形中,假設有三分之一的區域會落於弧狀區域內,推測圓周周長與落地機率成正比(Stand-up Maths, 2018)。
- 2. 兩段弧長所對應夾角

$$^{\circ}$$
 $\theta = \tan^{-1}(\frac{d}{R})$,兩段弧長所對應夾角= $4\theta = 4\tan^{-1}(\frac{d}{R})$
 故 $P(\%) = \frac{4\theta}{2\pi} = \frac{2\tan^{-1}(\frac{d}{R})}{\pi} \times 100\% = \frac{2}{\pi}\tan^{-1}\frac{1}{(\frac{R}{A})} \times 100\%$

(三)球體理論(圖9)

1.將圓柱骰子包覆於一圓球體中,假設球體面積裡有 1/3 的區域會落於帶狀區域內,帶狀區域兩側的面積各為 1/3, 推測球體面積與落地機率成正比(Stand-up Maths, 2018)。 2.帶狀部分面積

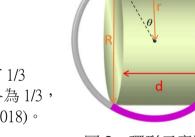
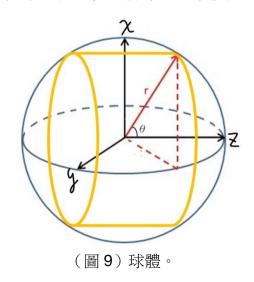
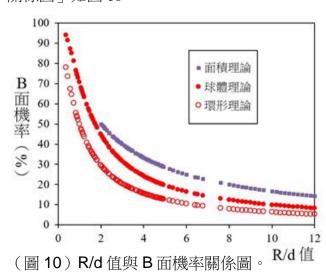




圖 8、環形示意圖

$$= 2 \int_0^{2\pi} \int_{\theta}^{\frac{\pi}{2}} r \times d\theta \times r \sin \theta \times d\phi = 2r^2 \int_0^{2\pi} \cos \theta \times d\phi = 2r^2 \times 2\pi \times \cos \theta = 4\pi r^2 \cos \theta$$

(四)上述三種理論的「R/d 值與 B 面機率關係圖」如圖 10。

三、建立三面骰出現面的動力理論

(一) 建模

以「轉動、碰撞與能量」動力理論建模,找出三面骰子的落地面。

1.我們定義三面骰運動過程中相關物理量如下:

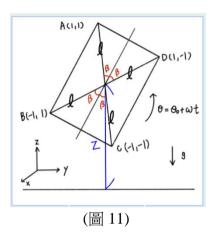
化:由質心到頂點的距離

ω:角速度

t:時間

 θ :水平軸和質心之夾角。 θ = θ_0 + ω t

 β : ℓ 和質心之夾角


Z: 質心到地面之距離

E:能量

m:三面骰質量

Vz:垂直方向的速度

g:重力加速度,其值為9.8 m/s²

I:轉動慣量,參考轉動慣量列表,得到半徑為 \mathbf{r} ,高為 \mathbf{h} ,質量為 \mathbf{m} 的三面骰 (實心圓柱)以 \mathbf{x} -y 平面方向為轉軸時的轉動慣量: $I_X = I_Y = \frac{1}{12} m (3r^2 + h^2)$

2. 骰子幾何繪於下(圖 11):將骰子轉換為以質心座標為原點的平面座標系,與地面的距離為 Z0,若觸地,觸地點必為四角中其一,每個角的 Z座標為 Zj1,j2,可由位移公式推得可推得觸地點座標(Murray & Teare,1993)。

$$\overrightarrow{Z}_{j1,j2} = \overrightarrow{Z_0} + \overrightarrow{V_{0Z}} t - \frac{1}{2} \overrightarrow{g} t^2 + lj_1 \sin(\theta_0 + \omega t + j_2 \beta) \quad (\text{R} \equiv)$$

當三面骰(圓柱)落地時, $\vec{Z}_{_{j1,j2}}=0$,經移項後得:

$$\stackrel{\rightarrow}{Z_0} + \stackrel{\rightarrow}{V_{0Z}} t - \frac{1}{2} \stackrel{\rightarrow}{g} t^2 = -lj_1 \sin(\theta_0 + \omega t + j_2 \beta) \ (\text{cl})$$

為了判斷哪個頂點落地,取函數 $f_1(t)$ 及 $f_2(t)$,以函數繪圖軟體 desmos 繪製函數圖形,取在 x>0 且 4 個函數中 x 最小時, $f_1(t)$ (一元二次拋物線)和帶入 4 個頂點 $\vec{Z}_{j1,j2}$ 座標的 $f_2(t)$ (sin 圖形)的交點:

$$f_1(t) = \overrightarrow{Z_0} + \overrightarrow{V_{0Z}} t - \frac{1}{2} \overrightarrow{g} t^2 \quad (\text{RE}) \qquad f_2(t) = -lj_1 \sin(\theta_0 + \omega t + j_2 \beta) \quad (\text{RE})$$

(圖 12)

如圖 12,則 D 點先落地。

- 3.分析骰子落地前後瞬間的能量、速度、角速度。
 - (1)能量理論:分析骰子具有的所有能量,包含了動能、位能和轉動動能(余健治等, 2013)。如果總能量小於骰子往上彈跳所須位能,則骰子能量穩定,不再進行碰撞。

$$E = \frac{1}{2}mV_z^2 + \frac{1}{2}I\omega^2 + mgZ$$
 (武七)

(2)碰撞後速度:依照碰撞後的速度公式(Murray & Teare, 1993)可得骰子著地後的速度。

$$V'' = V' - (1+\gamma)K^2 \left(\frac{V' + y\omega'}{K^2 + y^2}\right)$$
 (\overrightarrow{x}

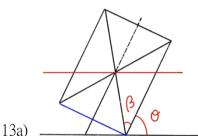
(3)碰撞後角速度:依照碰撞後的角速度公式(Murray & Teare, 1993)可以得出骰子著 地後的角速度。

$$\omega'' = \omega' - (1+\gamma)y \left(\frac{V'+y\omega'}{K^2+y^2}\right)$$
 (
 \overrightarrow{x}

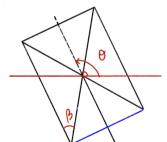
V':落地前瞬間的 V_z V'':落地碰撞後瞬間的 V_z

 ω' :落地前瞬間的 ω ω'' :落地碰撞後瞬間的 ω

 γ :接觸面恢復係數K:迴轉半徑=(d 為圓柱厚度、r 為圓柱半徑)


$$y$$
:接觸點的位置 $y = lj_1 \cos(\theta_0 + \omega t + j_2 \beta)$ $\sqrt{\left(\frac{d}{2}\right)^2 + r^2} = l$

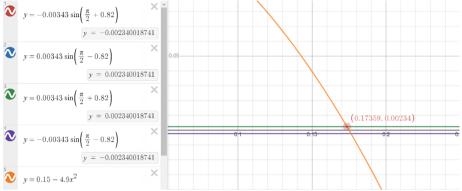
重複將求出之碰撞後資料帶入式七,計算直到E < mgl 為止。


4. 骰子最終顯現側面滿足的角度條件。

角度條件:以觸地點為支點所產生的重力力矩可推論出,若骰子軸心與地面夾角滿足 $n\pi + \frac{\pi}{2} - \beta < \theta < n\pi + \frac{\pi}{2} + \beta$ (式十),則三面骰子會落於側面。

(圖 13b)

(圖 13a)


(二)動力模型理論的實際運算

1.以直徑 1 公分、厚度 0.5 公分(R/d=2)的三面骰為例,相關物理量如表 13。

Ł	ω_0	β	$ heta_0$	Z_0	g	m	γ	I
0.0056 (m)	0 (rad/s)	0.47 (rad)	π /2 (rad)	0.15 (m)	9.8 (m/s^2)	0.00044 (kg)	0.26	0.00000000 3666666667 (kg*m^2)

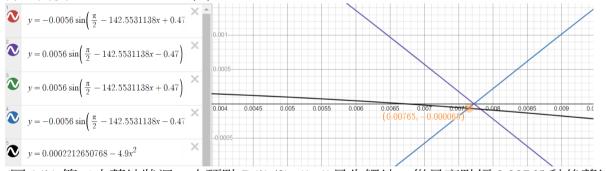
2.步驟

(1)將表 13 資料帶入式五、六之等加速度運動位移公式,並使用 desmos 函數繪圖軟體 找出最先觸地的頂點及觸地時間。

(圖 14a) 第一次落地狀況,由頂點 C(j1,j2)=(-1,-1)和頂點 B(j1,j2)=(-1,1)同時觸地,從最高點經 0.17249 秒後著地。

(2)計算觸地瞬間的能量是否符合能量穩定的假設。

此 R/d 值骰子之 mgl=0.0000241472


由式七計算落地瞬間能量:

E=1/2*0.00044*(1.715)^2+1/2*0.000000003666666667*0^2+0.00044*9.8*0.000004954823894 =0.0006253138526> mgl, 故三面骰會彈起。

(3)由式八、九重新計算觸地後的速度、角速度、彈起高度,並重新繪製第二次著地圖形。 v'=-0.0658543507(m/s)

 $\omega' = -142.5531138 \text{(rad/s)}$

彈起高度= 0.0002212650768(m)

(圖 14b) 第二次著地狀況,由頂點 D(j1,j2)=(1,-1)最先觸地,從最高點經 0.00765 秒後著地。

(4) 反覆進行計算並繪圖,直到能量<mgl=0.0000241472。經計算得表 14 資料。

第一次著地能量	0.0006253138526
第二次著地能量	0.00003821063932
第三次著地能量	0.0001222704195
第四次著地能量	0.0000001861868365

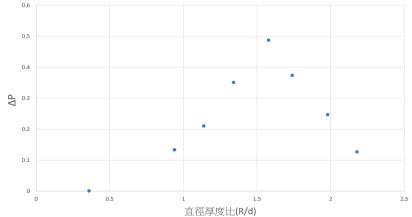
(表 14)

第四次著地符合能量穩定的假設,三面骰不再彈起。

(5)對照式十角度範圍,得知落地結果。

經計算得知第四次落地 θ =0.975(rad), 角度未位於落於側面的範圍,故落於正反面。

(三)實驗結果與動力模型理論的比較


1.進行不同物理量(R/d 值、高度、初速度、初角速度、恢復係數)對三面骰側面落地機率的影響後,我們試著將理論與實驗結果進行比較。我們在全部範圍的骰子中選擇 8 種不同大小的三面骰,且其側面落地機率大致將機率 100%分成 8 等分,骰子大小及機率如下表所示。接著,運用動力模型理論算出 8 種骰子理論上的落地結果,並將理論所得的側面落地機率(0%或 100%)與表經實驗所得的機率相減,取絕對值,即得到機率變化量(ΔP)。

(表 15) 動力模型理論與實驗結果比較之機率	※巡變化量
-------------------------	-------

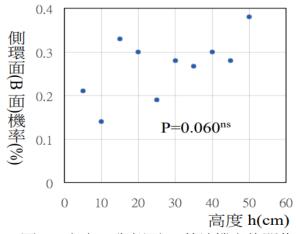
落地面	理論側面 機率	ΔΡ%	R/d	正反面(A+C) 總和次數	側面(B) 次數	側面(B) 機率	總次數
側面	1.0	0.0	0.36	0	300	1	300
側面	1.0	0.133333	0.94	40	260	0.8667	300
側面	1.0	0.21	1.14	63	237	0.79	300
側面	1.0	0.35	1.34	105	195	0.65	300
側面	1.0	0.486667	1.58	146	154	0.5133	300
正反面	0.0	0.373333	1.74	188	112	0.3733	300
正反面	0.0	0.2466666667	1.98	226	74	0.2467	300
正反面	0.0	0.1266666667	2.18	262	38	0.1267	300

2.我們將表 15 整理為圖 15。由表 15 及圖 15 可觀察到動力模型理論與實驗結果比較之「機率變化量與 R/d 值的關係」呈現「對稱分布」,在 R/d 值為 1.58 時機率變化量最大,由理論計算出的側面落地機率 1.00 降至 0.513333。而 R/d 值越大及越小的骰子機率變化量遞減, R/d 值最小(0.36)三面骰的實驗結果完全符合動力模型理論,機率變化量為 0,即 300 次都落於側面。

(圖 15) 動力模型理論與實驗結果比較之機率變化量

四、探究B面機率出現的原因並定義骰子對微擾的「解析度」

實驗原先設計每次投擲 300 次,但在投擲骰子過程中發現總次數 300 次與 50 次的機率相近,故改變為投擲 50 次,以增加實驗效率。

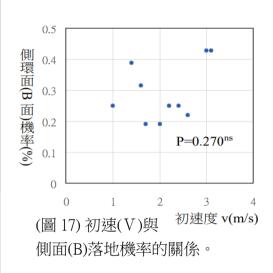

(一) 高度(h)與側面(B)落地機率的關係

1.高度 15 公分擲 300 次的數據來自表 10,另擲骰子 1450 次,共 1750 次。實驗結果原始數據如表 16。

(表 16)高度(h)與側面(B)落地機率的關係

高度 h(cm)	直徑厚度 比(R/d)	正反面(A+C)總和 次數	側面(B) 次數	側面(B)機率	總次數
5.000	2	237	63	0.21	300
10.000	2	43	7	0.14	50
15.000	2	201	99	0.33	300
20.000	2	35	15	0.3	50
25.000	2	243	57	0.19	300
30.000	2	36	14	0.28	50
35.000	2	220	80	0.2667	300
40.000	2	35	15	0.3	50
45.000	2	216	84	0.28	300
50.000	2	31	19	0.38	50

2.我們將表 16 整理為圖 16,由表 16 及圖 16 可以看出,三面骰「高度與 B 面落地機率關係不顯著(P=0.060[™])」,而若仍以線性函數進行擬合,相關係數 R=0.6128(高度相關),但與 1 仍有一段差距,無法觀察到有近似正相關的趨勢。

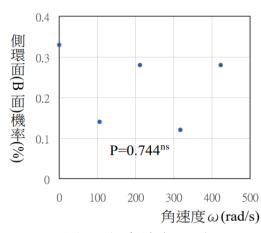

(圖 16) 高度(h)與側面(B)落地機率的關係

(二) 初速(V)與側面(B)落地機率的關係

- 1.共擲骰子500次,實驗結果原始數據如表17。
- 2.我們將表 17 整理為圖 17,由表 17 及圖 17 可以看出,三面骰「初速度度與 B 面落地機率關係不顯著(P=0.270[™])」「三面骰 B 面落地機率隨初速度上升並無明顯相關趨勢」,而若仍以線性函數進行擬合,相關係數 R=0.126,為低度相關,無法觀察到有近似正相關的趨勢,僅能顯示出骰子投擲時的敏感性。

(表 17)初竦(V)與側面(B)落地機率的關係

初速度 V(m/s)	直徑 厚度比 (R/d)	正反面 總和 (A+C)	側面 (B) 次數	側面(B) 機率	總次數
0.990	2	40	10	0.25	50
1.400	2	36	14	0.3889	50
1.715	2	38	12	0.3158	50
1.980	2	42	8	0.1905	50
2.214	2	42	8	0.1905	50
2.425	2	40	10	0.25	50
2.619	2	40	10	0.25	50
2.800	2	41	9	0.2195	50
2.970	2	35	15	0.4286	50
3.130	2	35	15	0.4286	50



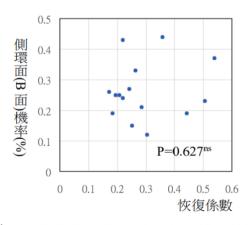
(三) 初角速度(ω)與側面(B)落地機率的關係

- 1.初角速度 0 擲 300 次的數據來自表 10,另擲骰子 200 次,共 500 次。數據如表 18。
- 2.我們將表 18 整理為圖 18,由表 18 及圖 18 可以看出,三面骰「角速度與 B 面落地機率關係不顯著(P=0.744[™])」,若仍以線性函數進行擬合,相關係數 R=0.2025, 為低度相關,並無法看出明顯趨近正相關或負相關之走向。

(表 18) 初角速度(ω)與側面(B)落地機率的關係

初角速度 (ω)	直徑厚度 比(R/d)	正反面 總和 (A+C)	側面 (B) 次數	側面(B) 機率	總次數
0.00	2	201	99	0.33	300
105.84	2	43	7	0.14	50
211.68	2	36	14	0.28	50
317.52	2	44	6	0.12	50
423.36	2	36	14	0.28	50

(圖 18) 初角速度(ω)與 側面(B)落地機率的關係。


(四)恢復係數(r)與側面(B)落地機率的關係

1.綠色墊板擲 300 次數據來自表 10,另擲骰子 2200 次,共 2500 次。實驗結果原始數據如表 19。

(表 19) 恢復係數與側面(B)落地機率的關係

地面材質	恢復係數	直徑厚度 比(R/d)	正反面(A+C)總和 次數	側面(B) 次數	側面(B)機 率	總次數
毛巾	0.184	2	243	57	0.19	300
衛生紙	0.208	2	225	75	0.25	300
滑鼠墊	0.252	2	255	45	0.15	300
綠色墊板	0.263	2	201	99	0.33	300
大理石	0.506	2	231	69	0.23	300
厚書	0.242	2	73	27	0.27	100
紙板	0.172	2	74	26	0.26	100
毛衣	0.358	2	56	44	0.44	100
衣服	0.443	2	81	19	0.19	100
書	0.285	2	79	21	0.21	100
帆布袋	0.219	2	57	43	0.43	100
塑膠板	0.219	2	76	24	0.24	100
保麗龍	0.539	2	63	37	0.37	100
金屬	0.195	2	75	25	0.25	100
圍巾	0.304	2	88	12	0.12	100

2.我們將表 19 整理為圖 19。由表 19 及圖 19 可以看出,,三面骰「恢復係數與 B 面落地機率關係不顯著(P=0.627[™])」,若仍以線性函數進行擬合,相關係數 R=0.1265, 為低度相關,並無法看出明顯趨近正相關或負相關之走向。

(圖 19) 恢復係數與側面(B)落地機率的關係

五、探究不同 R/d 值三面骰對投擲高度之解析位移

(一)六面骰子實驗

- 1.不同高度落下,六面骰1面的機率,共擲1050次,實驗原始數據如表20-1。
- 2.表 20-1 顯示,從高度 5 至 105 公分擲落,1 面朝上的機率皆近 1/6(0.167); 但是,高度小於 4 公分落下,1 面機率急劇升高,大於 0.167。即 1 面機率會因為 投擲高度的不同而異。

(表 20-1) 從 8 種不同高度落下, 1 面出現機率

高度 h(cm)	1 面 次數	2~6 面 總次數	總 次數	1 面 機率
2	50	0	50	1.00
3	79	21	100	0.79
4	79	21	100	0.79
5	19	81	100	0.19
15	15	85	100	0.15
25	16	84	100	0.16
35	17	83	100	0.17
45	16	84	100	0.16
65	17	83	100	0.17
85	15	85	100	0.15
105	17	83	100	0.17

- 3.固定 15cm,不同角速度落下,共擲 500次,實驗原始數據如表 20-2。
- 4.表 20-1 的高度實驗顯示,高度小於 4 公分,1 面機率劇升。所以,我們固定高度 15 公分,進行改變角速度的實驗。結果發現,角速度 0.00 (1/秒)的 1 面機率 0.16,近似 0.167;但是,其他四種角速度,1 面機率大於 0.167。即 1 面機率會因為投擲角速度的不同而異。

(表 20-2) 初角速度(ω)與1面落地機率

初角速 ω (1/秒)	1 面 次數	2~6 面 總次數	1面 機率	總 次數
0.00	16	84	0.16	100
105.84	31	69	0.31	100
211.68	30	70	0.30	100
317.52	29	71	0.29	100
423.36	24	76	0.24	100

(二) 探究不同高度落下,三面骰 B 面的機率

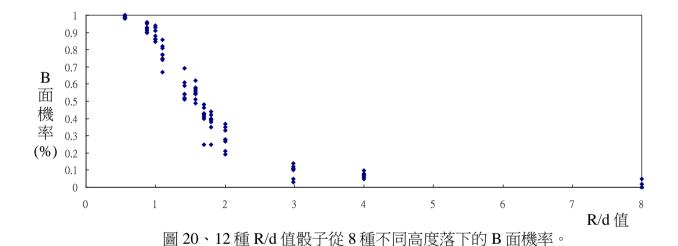

1.高度 15 公分落下的 3600 筆數據 (12 種骰子各擲 300 次) 來自表 10,另擲 8400 次, 共計 12000 次,實驗原始數據如表 21。

表 21、12 種三面骰從 8 種高度落下, B 面的機率。

r/d	h	В	A+C	Total	p(B)
8	5	5	95	100	0.05
8	15	6	294	300	0.02
8	25	0	100	100	0
8	35	0	100	100	0
8	45	0	100	100	0
8	65	0	100	100	0
8	85	0	100	100	0
8	105	0	100	100	0
4	5	6	94	100	0.06
4	15	29	271	300	0.097
4	25	7	93	100	0.07
4	35	7	93	100	0.07
4	45	5	95	100	0.05
4	65	6	94	100	0.06
4	85	8	92	100	0.08
4	105	7	93	100	0.07
2.98	5	3	97	100	0.03
2.98	15	14	286	300	0.047
2.98	25	11	89	100	0.11
2.98	35	11	89	100	0.11
2.98	45	12	88	100	0.12
2.98	65	10	90	100	0.1
2.98	85	14	86	100	0.14
2.98	105	11	89	100	0.11
2	5	63	237	300	0.21
2	15	99	201	300	0.33
2	25	57	243	300	0.19
2	35	80	220	300	0.267
2	45	84	216	300	0.28
2	65	28	72	100	0.28
2	85	37	63	100	0.37
2	105	35	65	100	0.35
1.8	5	25	75	100	0.25
1.8	15	118	182	300	0.393
1.8	25	38	62	100	0.38
1.8	35	42	58	100	0.42
1.8	45	35	65	100	0.35
1.8	65	44	56	100	0.44
1.8	85	40	60	100	0.4
1.8	105	39	61	100	0.39
1.7	5	25	75	100	0.25
1.7	15	139	161	300	0.463
1.7	25	43	57	100	0.43
1.7	35	43	57	100	0.43
1.7	45	41	59	100	0.41
1.7	65	48	52	100	0.48
1.7	85	42	58	100	0.42
1.7	105	40	60	100	0.4

r/d	h	В	A+C	Total	n/B)
1.58	- 11	57	43	100	p(B) 0.57
				300	
1.58	15 25	154	146 51		0.513
1.58		49		100	
1.58	35	55	45	100	0.55
1.58	45	54	46	100	0.54
1.58	65	56	44	100	0.56
1.58	85 105	62 58	38	100	0.62
1.58	105 5		42 41	100	0.58
		59		100	
1.42	15	208	92	300	0.693
1.42	25	61 54	39	100	0.61
	35		46	100	0.54
1.42	45	52	48	100	0.52
1.42	65	54	46	100	0.54
1.42	85	52	48	100	0.52
1.42	105	51	49	100	0.51
1.1	5	67	33	100	0.67
1.1	15	257	43	300	0.857
1.1	25	75	25	100	0.75
1.1	35	81	19	100	0.81
1.1	45	77	23	100	0.77
1.1	65	74	26	100	0.74
1.1	85	82	18	100	0.82
1.1	105	77	23	100	0.77
1	5	86	14	100	0.86
1	15	254	46	300	0.847
1	25	91	9	100	0.91
1	35	88	12	100	0.88
1	45	86	14	100	0.86
1	65	93	7	100	0.93
1	85	94	6	100	0.94
1	105	86	14	100	0.86
0.88	5	92	8	100	0.92
0.88	15	273	27	300	0.91
0.88	25	90	10	100	0.9
0.88	35	93	7	100	0.93
0.88	45	96	4	100	0.96
0.88	65	95	5	100	0.95
0.88	85	96	4	100	0.96
0.88	105	90	10	100	0.9
0.56	5	99	1	100	0.99
0.56	15	294	6	300	0.98
0.56	25	99	1	100	0.99
0.56	35	99	1	100	0.99
0.56	45	98	2	100	0.98
0.56	65	100	0	100	1
0.56	85	100	0	100	1
0.56	105	100	0	100	1
				.00	

- 2.將表 21 繪製為圖 20,加上輔助線成圖 21,呈現「兩端窄,中間寬」的圖形。
 - (1)不同於前文圖 7,圖 7是 111種骰子從 15公分高落下,所繪製之圖,每種骰子在圖 7中是一個點。圖 21使用 12種骰子擲 8種高度,每種骰子在圖 21中有 8個點。
 - (2)「R/d 與 B 面機率關係圖」由圖 7 的「一條細長的反 S 形趨勢圖形」,變成圖 21 「兩端窄,中間寬的反 S 形趨勢圖形」。
 - (3)中間區 R/d 值 1.1、1.42、1.58、1.7、1.8、2 的三面骰對高度較敏感,於 5.0cm 及 105.0cm 的 B 面落地機率差異較大;兩端 R/d 值較小(0.56、0.88、1)或較大(2.98、4、8)的骰子,B 面落地機率則較為穩定。
 - (4)綜上所述,我們認為「不同 R/d 值之三面骰於 8 種高度 B 面落地機率」形成「兩端窄,中間寬」的圖形,中間位置 R/d=1.42、1.58、1.7,B 面機率變化最大,即圖形最寬;隨著 R/d 值變大或變小,寬度漸窄,而兩端 R/d=0.56 和 8 為最細。

1 0.9 0.8 0.7 В 0.6 面 0.5 機 0.4 率 0.3 **(%)** 0.2 0.1 0 0 3 5 2 R/d 值 圖 21、加上輔助線,呈現「兩端窄、中間寬」的趨勢圖。

伍、討論

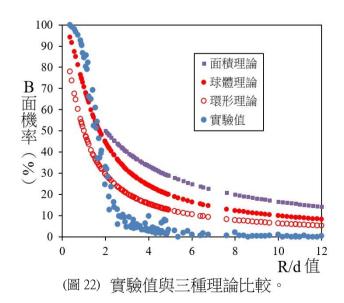
一、B 面機率 P(%)與 R/d 值的關係

(一)實驗結果原始數據

依照圖 7,顯示當 R/d 值越大,即圓柱越扁(接近硬幣狀)落於側面(B)之機率越小, 反之則越大。

(二) 使用數據統計(卡方檢定)界定 B 面機率的 R/d 值範圍

1. 根據表 12, B 面機率 100%的 R/d 值界線為 0.52; B 面機率 0%的 R/d 值界線為 8.15; 而估算 B 面機率 33.33%的 R/d 範圍為 1.86~2.10。其中,編號 28 號三面骰最接近三面機率 33.33%,其 R/d=2,即直徑 1cm、厚度 0.5cm,R/d 值=2 的圓柱體。因為其三面落地機率幾乎相等,我們使用 R/d=2 的 28 號三面骰進行之後高度、初速度、初角速度及恢復係數對側面(B)落地機率影響的實驗。


2. 三面骰子 R/d 值穩定區與敏感區:

在圖 7 中,可觀察到位於圖形兩側之數據點較為集中,而 R/d 值位於中間值者數據點則較為分散,在接近極端機率值(100%、0%)之三面骰子其 R/d 值界線較為明確,當其直徑厚度比值≤0.52 或≥8.15 後其統計上之機率維持於 100%或0%,稱之為穩定區。反之,機率 33.33%之三面骰子其側面(B)次數較難觀察到規律的變化,側面機率多為跳動之變化,稱為敏感區。

二、B 面機率 P(%)與 R/d 值的理論建模

(一) 理論與實驗數據的比較

- 1. 彙整圖 7 實驗數據與圖 10 的三種理論,繪製為圖 22。圖 22 顯示 R/d 值 2 以下時,實驗值近似球形理論; R/d 值 2 至 12 時,實驗值比三種理論都低。
- 2. 綜觀圖 22,實驗數據所構成的曲線,較接近環形理論曲線。圖 23 顯示,相同 R/d 值時,「環形理論的 B 面機率」與「實驗出現 B 面機率」呈顯著正相關 $(P<0.001****, R^2=0.9185)。$

100 實 80 驗 \mathbb{B} 60 面 機率 40 P<0.001*** $R^2 = 0.9185$ (% % 20 0 60 20 40 80 100 環形理論 B 面機率(%)

(圖 23) 實驗與環形理論在相同 R/d 值時, 出現 B 面機率的關係。

- 三、建立三面骰出現面的動力理論
- (一) 實驗結果與動力模型理論的比較
 - 1.由表 15 機率變化量的大小可知, R/d 值接近 1.58 的骰子機率變化量越大,顯示其越敏感,易因為小微擾就改變三面骰落地狀況。而圖 15 呈現對稱性, R/d 值較 1.58 大或小的骰子受微擾影響情形隨圖越往右或往左遞減。
 - 2.我們可以歸結:在圖 15 的左邊,即 R/d 值較小的骰子,理論側面落地機率為 1.00(落在側面),圖形往右,骰子受微擾的影響越大,側面落地機率由 1.00 逐漸下降,因此 ΔP 上升。相反地,在圖 15 的右邊,即 R/d 值較大的骰子,理論側面落地機率為 0.00(落在正反面),圖形往左,骰子受微擾的影響越大,側面落地機率由 0.00 逐漸上升,因此 ΔP 上升。
- 四、探究B面機率出現的原因並定義骰子對微擾的「解析度」
- (一) 高度、初速度、初角速度及恢復係數對側面落地機率的影響
 - 1.在進行完直徑厚度比(R/d 值)與 B 面落地機率關係的實驗後,我們找到側面落地機率為 33.3%的三面骰,即直徑 1cm、厚度 0.5cm, R/d 值=2 的圓柱體。並以 R/d 值=2 的骰子進行操縱變因為高度、初速度、初角速度及恢復係數的實驗,接著以線性函數分別擬合實驗數據。
 - 2.圖 16 至圖 19 顯示,高度、初速度、初角速度及恢復係數與 B 面出現機率關係皆不顯著 (P=0.060^{ns}、0.270^{ns}、0.744^{ns}、0.627^{ns})。我們推論,在實驗「直徑厚度比 (R/d 值)與側面(B)落地機率的關係」中,已經確定 R/d 值=2 的骰子位於敏感區,一點點的小擾動(以高度為例:如±0.1cm),即會影響骰子 B 面機率。而操縱變因為高度、初速度、初角速度及恢復係數的實驗,對於三面骰來說產生了「大擾動」(以高度為例:實驗設計由 5.0cm 開始依 5.0cm 為間隔增加至 50.0cm),導致落地情形十分不規則,因此 4 個參數與側面(B)落地機率的關係皆不顯著。
 - 3.由本研究目的四中「高度對 R/d=2 三面骰 B 面落地機率之影響」的實驗,除了由表 16 及圖 16 推測:「高度對於三面骰產生了大擾動,因而造成其關係不顯著。」另外,我們聯想到,或許三面骰對於高度的敏感程度也可與圖 7 相呼應,即不同 R/d 的三面骰對高度的敏感程度是否也會不同?結合圖 15,我們好奇 R/d=1.58 附近的骰子是否也會對高度最敏感,因而導致其在不同高度丟擲時,側面落地機率相較於其他 R/d 值的骰子落差最大?由此,我們著手進行不同 R/d 值之三面骰於不同高度下的側面落地機率實驗,因而有了目的五「不同 R/d 值三面骰對投擲高度之解析度」的產生。

(二) 微擾造成的波動

- 1.經由「動力模型理論」的計算,理論上,所有參數均固定的情況下,只會有一種結果, 落於正反面(A 面和 C 面)或側面(B 面)。然而實際操作實驗時,在所有參數固定的情況下, 300次的投擲中卻會出現正反面與側面不同的機率。
- 2.針對此現象,我們推想理論與實驗的差距,即 ΔP之所以會產生,是因為每次投擲在看似固定的條件下,都無可避免地含有微小的擾動。例如:設定投擲高度為 15 公分,但每一次實驗的確切高度都仍會有微小的差異,讓我們丟下的高度存在些許的不確定值。
- 3.微擾是物理量本身的不確定值,當確切找出微擾因子,並精確控制的時候,骰子各面的出現即不再產生機率,只剩下 0%或是 100%,那麼就不再有擲骰子隨機出現的概念。
- 4.Boas (2006)指出,當測量值是隨機變數時,應使用機率密度概念,描述所累積的機率。 而自然界中的機率密度函數,多數的物理量呈現高斯分布。因此我們推論,在不同參數 都有微小擾動的交互作用下,導致了機率的產生。高斯函數之公式及說明如下所示。

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma)^2} \qquad (\overrightarrow{x} + -)$$

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-(t-\mu)^2/(2\sigma)^2} dt (\overrightarrow{x} + -)$$

5.依 Boas (2006)所指出之機率密度概念,我們分析影響骰子落地的相關因子,並推測實驗設計中的四個控制變因:高度(h)、初速度(Vo)、初角速度(ω)、恢復係數(r)在實驗的進行中均存在不確定度,其各別機率可經由累加後繪製成各自機率密度函數圖形,而其圖形均呈現高斯分布,如圖 24 至 27 所示。當四個高斯分佈圖形被統整為一,加上機率的一個維度,可得一五維高斯分佈圖形。Chuong (2019)指出,多維度的高斯函數公式為:

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right) (\pm \pm \pm)$$

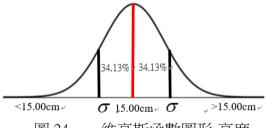
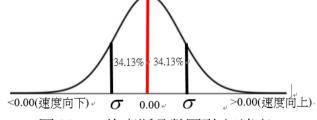
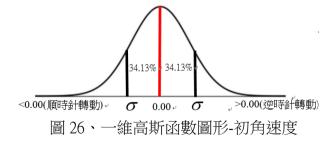
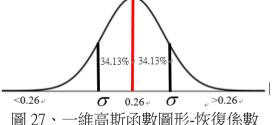
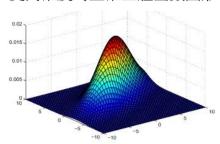


圖 24、一維高斯函數圖形-高度


圖 25、一維高斯函數圖形-初速度

6.以高度 15 公分為例,投擲時出現 14.9 或 15.1 公分的機率較高,而與 15 公分落差越大的高度(如 13 公分、17 公分)出現的機率較小。

7.此圖呈現二維的高斯函數圖形,而本研究中 4個參數(高度 h、初速度 Vo、角速度 ω、恢 復係數 r)均會產生不確定度,因此會呈現比 圖 28 更高維度的五維立體函數圖形。

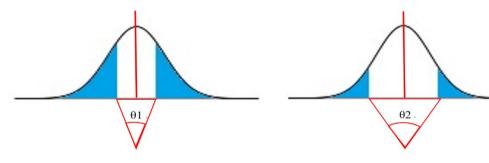
(圖 28) 二維高斯函數圖形 (圖 28) 資料來源: Junfei Wang(2017 年 4 月 23 日)

| Temperature |

STANDARD NORMAL TABLE (Z)

(圖 29) 高斯函數之香表

(三) 骰子對微擾的「解析度」


如討論(二)所述,機率源自於參數的微小擾動,然而不同三面骰對於擾動的敏感程度不同, R/d 值位於中段的三面骰,對於微小的擾動較為敏感,故 ΔP 較大;反之, R/d 位於兩端的三面骰,對於微小擾動較不敏感, ΔP 較小。

- 1.擾動對骰子的影響應有一個範圍。也就是說,當擾動極其微小時,對骰子不具有 影響,但當擾動大過某一界線,就會對骰子產生影響。而此一界線距離高斯峰值 的遠近可用來衡量骰子的敏感程度。
- 2.將高斯函數兩側骰子可承受最大之擾動界線的夾角,定義為「解析角」;骰子對 微擾的敏感程度則定義為「解析度」,解析度定義為:「1/解析角(對微擾偵測性)」。界線距離高斯峰值越多個標準差,代表骰子解析角越大,解析度越低,對 擾動越不敏感;當界線距離高斯峰值越少個標準差,代表骰子解析角越小,解析度越高,對擾動越敏感。
- 3.由上述 1.和 2.,R/d 值位於中段的骰子,對擾動越敏感,解析角越小,解析度越高,界線距離高斯峰值較少個標準差;R/d 位於兩端的三面骰,對擾動越不敏感,解析角越大,解析度越低,界線距離高斯峰值較多個標準差。ΔP 應為高斯函數於若干個標準差以外的面積相加,而三面骰結果會被高度、初速度、初角速度與恢復係數四種參數所影響,藉由計算實驗時每次投擲參數實際資料的標準差,可得骰子可承受擾動的界線值,再查表(圖 29)得知界線內高斯函數之面積,並以此計算標準差的範圍,可求得解析角及解析度。
- 4.我們假設,高度、初速度、初角速度及恢復係數這 4 個物理參數為獨立變數且對三面骰的擾動程度影響力均等。因此,不能控制的物理參數個數越多,則對於三面骰的擾動越大, ΔP 也越大。反之,若能控制的物理參數個數越少,甚至降至0,即四項物理參數均能被精準控制,則 ΔP 將趨近於 0,而骰子的落地結果也將完全符合理論值,B 面落地機率為 0 或 1。

- 5.圖 30 以 R/d 值 1.58 的骰子為例,其 ΔP 為 0.486667,解析角為 θ 1,表示在解析角内(如圖 30 未鋪色區)的擾動不會對骰子產生影響,而其擾動界線以外的部分(如圖 30 鋪色區)則造成了 ΔP 的產生,故圖 30 鋪色區之面積為全部之 48.6667%,而此塊造成 ΔP 的面積則是由四種參數綜合影響形成。圖 31 為 R/d 值 1.98 的骰子,其 ΔP 為 0.2466666667,解析角為 θ 2,將圖 30 與圖 31 做比較,R/d 值 1.98 的 ΔP 較小,鋪色面積較小,則解析角 θ 2> θ 1。故可由 ΔP 推得解析角之大小,並判斷骰子受擾動之敏咸程度。
- 6.在實驗時我們透過測量每次投擲的實際數據,測量每次實驗數值的微小擾動,進而計算各項參數的標準差如表 22。

(表 22) 高度、初速度、初角速度及恢復係數於實驗時的標準差

參數	高度	初速度	初角速度	恢復係數
標準差	0.025	0.013	0.90	0.024

- (圖 30) R/d 值 1.58 三面骰解析角示意圖 (圖 31) R/d 值 1.98 三面骰解析角示意圖
 - 7.此兩張圖僅為示意圖,面積無精準計算,且在四種參數影響的情況下,圖形應為五維的高斯函數,但考量到五維無法以圖形呈現,故以一維高斯函數表達解析角之涵義。
 - 8.解析角的實際運算舉例:以圖 30R/d 值 1.58 的骰子為例,鋪色區之面積為全部之 0.486667,故未鋪色面積為(1-0.486667)=0.513333。將 4 個參數(高度、初速度、初角速度、恢復係數)視為獨立變數且影響力均等,故將 0.513333 開四次方根可得 0.846433,此即為單一參數高斯函數中間未塗色的面積。再將之/2,對照高斯函數查表,得到此參數對骰子影響界限的標準差倍率 1.43。接著,將此倍率分別乘以四個變數的標準差(如表 22 所列),便可得此種三面骰的解析度一高度 =15.000±0.036(cm),初速度=0.000±0.019(m/s),初角速度=0.00±1.29(rad/s),恢復係數 =0.260±0.034。
 - 9.解析角與骰子公正性:當骰子解析角越小、解析度越高,代表其越容易被微小的擾動干擾,產生機率的改變。也因為此種骰子只需要一點點的干擾結果,就會有所改變,因此更容易被人為操控而不被發現,故公正性較低。反之,當骰子解析角越大、解析度越低,代表其能承受較大程度的干擾,擁有較高的穩定性,是相對公正理想的骰子。

- 五、探究不同 R/d 值三面骰對投擲高度之解析位移
- 註:本研究前文所述的「解析度」,係指「骰子對微擾的敏感程度」。而此處研究五, 「不同的高度投擲」是指「巨大的擾動」,此處用「巨擾」一詞描述,其意思與前文 「微擾」有所差別。

(一)六面骰子實驗

- 1.原始數據見前文表 20-1 和表 20-2。卡方檢定是否有顯著差異?統計結果摘要為表 23-1 和表 23-2。5cm 落下與 15 或 85cm 落下,1 面機率為 0.19 和 0.15,與機率 0.167 差異不顯著(顯著性=0.537ns 和 0.649ns)。3 或 4cm 落下 1 面機率為 0.79,與機率 0.167 有顯著差異(顯著性<0.001***)。
- 2.表 23-1 顯示,當落下高度小於 4cm,六面骰能偵測到巨擾。所以,擇落下高度 15cm,檢視六面骰對角速度的敏感度。表 23-2 顯示,初角速度 0(1/秒)的 1 面機率 為 0.16,與 0.167 差異不顯著(顯著性=0.851ns); 105.84 和 423.36(1/秒) 的 1 面機 率為 0.31 和 0.24,與 0.167 有顯著差異(顯著性<0.001***和=0.050*)。

(表 23-1)卡方檢定不同高度落下,六面骰 1 面機

高度 h (cm)		2~6 面 總次數	總 次數	1 面 機率	顯著性
3或4	79	21	100	0.79	<0.001***
5	19	81	100	0.19	=0.537ns
15 或 85	15	85	100	0.15	=0.649ns

(表 23-2)卡方檢定不同初角速度,六面骰1面機率

初角速 (1/秒)		2~6 面 總次數	總 次數	1 面 機率	顯著性
0.00	16	84	100	0.16	=0.851ns
105.84	31	69	100	0.31	<0.001***
423.36	24	76	100	0.24	=0.050*

(二)探究不同高度落下(巨擾),三面骰 B 面的機率

- 1. 「不同 R/d 值三面骰對投擲高度之解析度」實驗結果,可呼應(圖 7)「R/d 值與 B 面機率實驗散佈圖」及(圖 15)「動力模型理論與實驗結果比較之機率變化量 ΔP 」。
- 2.承「討論一(二)2.」,於圖 15 中,我們可觀察到 R/d 值接近 1.58 的三面骰位於敏 感區,一點點微小的擾動就可以被之偵測,因而導致 ΔP 非常大,側面落地機率接近 0.5。而這樣的情形也反映在圖 20、圖 21,論述如下。
- 3.共 12 種三面骰以不同顏色符號呈現,繪製為下一頁圖 32,中間區(敏感區) R/d=1.1、1.42、1.58、1.7、1.8、2、2.98,B 面機率分布範圍較寬;兩端 R/d=0.56、0.88、1 以及 R/d=4、8,B 面機率分布範圍較窄。位於敏感區的骰子對 高度改變(巨擾)較敏感,所以「不同高度的側面落地機率」的變化大,於圖 32 中分布寬。而 R/d 值大或小的骰子位於圖 32 穩定區,對高度較不敏感,導致了圖 21「中間寬,兩端窄」的圖形產生。
- 4.由此實驗,我們推得,R/d 值接近圖 32 中位於「討論一(二)2.」中敏感區之骰子, 對於高度的敏感程度愈大,即對高度的解析度愈大,而對於投擲高度變化(巨擾) 時,敏感區骰子的解析度亦有變化,我們稱此現象為「解析位移」。
- 5.結合「研究目的一、四、五的結果」,我們合理推測,不同 R/d 值三面骰對於「初速度、初角速度及接觸面恢復係數」之解析度,也會呈現與「高度」相似的結果;而在「巨擾」的情況下,也應存在「解析位移」。

(三)六面骰與三面骰的比較

- 1.表 24 擷取表 21 部分數據,擷取各種三面 骰由「高度 15 公分落下」的數據,及各種 三面骰各種高度落下「B 面機率的最大值 和最小值」,每種骰子有三列數值。若 「高度 15 公分落下」的數據就是最大值或 最小值,便只有兩列數據。
- 2.進行卡方檢定,「B面機率的最大值和最小值」的顯著性以紅字表示,「高度 15 公分落下的 B面機率和差距最大者」顯著性以藍字表示。藍字≧紅字。
- 3.以 R/d=1.58 骰子為例,高度 25 和 85 公分落下的 B 面機率分別為最小的 0.49 和最大的 0.62,兩者有顯著差異(P=0.009**)。 高度 15 公分落下 B 面機率 0.513,和 0.62 有顯著差異(P=0.032*)。其他 R/d 值骰子解讀方式,以此類推。
- 4.六面骰落下高度大於 5cm 時,1 面機率統計差異不顯著;高度小於 4cm 的巨大擾動才影響其機率(表 23-1)。三面骰(除了表 24 的 R/d=4 骰子)從不同高度落下,B面機率顯著不同,顯示三面骰的解析度很感敏,能偵測出高度上的微擾和巨擾,因而造成 B 面機率顯著不同。

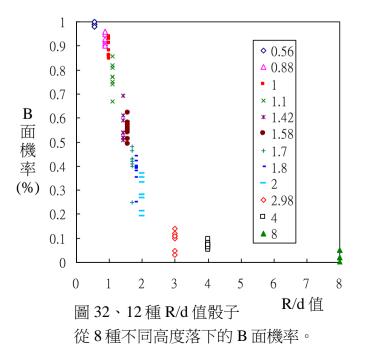
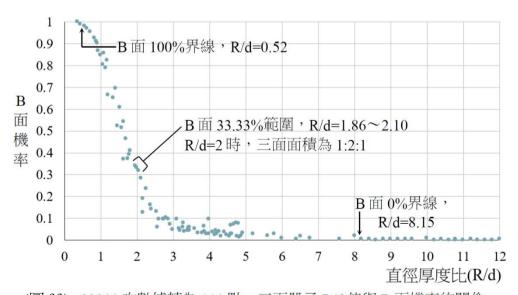


表 24、卡方檢定不同高度落下,

三面骰 B 面的機率。

紅字表示最大值和最小值差異顯著性,

藍字表示「『與 15 公分的 B 面機率數值差距較大』的最大值或最小值」的差異顯著性。


以八』 印取八直以取小直」 印左共線百庄								
R/d	h	В	A+C	Total	p(B)			
8	5	5	95	100	0.05			
<0.001***	15	6	294	300	0.02			
=0.169ns	25	0	100	100	0			
4	4.5	00	074	200	0.007			
=0.112ns	15	29	271	300	0.097			
=0.112ns	45	5	95	100	0.05			
2.98	5	3	97	100	0.03			
<0.001***	15	14	286	300	0.047			
<0.001***	85	14	86	100	0.14			
2	15	99	201	300	0.33			
<0.001***	25	57	243	300	0.19			
=0.003**	85	37	63	100	0.37			
1.8	5	25	75	100	0.25			
<0.001***	15	118	182	300	0.393			
=0.003**	65	44	56	100	0.44			
1.7	5	25	75	100	0.25			
<0.001***	15	139	161	300	0.463			
<0.001***	65	48	52	100	0.48			
1.58	15	154	146	300	0.513			
=0.009**	25	49	51	100	0.49			
=0.032*	85	62	38	100	0.62			
1.42	4.5	200		000	0.000			
<0.001***	15	208	92	300	0.693			
<0.001***	105	51	49	100	0.51			
1.1	5	67	33	100	0.67			
<0.001***		_						
<0.001***	15	257	43	300	0.857			
1	15	254	46	300	0.847			
=0.010*	10	201	70		0.047			
=0.010*	85	94	6	100	0.94			
0.88	15	273	27	300	0.91			
=0.002**	25&105	90	10	100	0.9			
=0.011*	45&85	96	4	100	0.96			
0.56	15&45	294	6	300	0.98			
<0.001***	10040	234	U	300	0.90			
<0.001***	65~105	100	0	100	1			

六、未來展望

此次研究選擇結構最簡單的圓柱三面骰來進行,藉由改變其幾何特徵(R/d值) 與物理特徵(高度、初速度、初角速度、恢復係數)來觀察其機率變化。然而,在日常生活中極少會使用到三面骰,應是六面骰的運用較為廣泛。因此,我們也好奇三面 骰所得出的研究結果是否可推廣到六面骰,甚至更多面的骰子?三面骰的公正性會因 為解析角的大小有所不同,而六面骰的公正性是否也會有疑慮,進而對我們生活上的 使用造成影響?將三面骰的建模推廣,建立多面骰子亦適用的理論模型,是此研究未來可拓展之方向。

陸、結論

- 一、B 面機率 P(%)與 R/d 值的關係
- (一) 表 11 顯示擲三面骰 300 次, B 面出現 300 次與出現 295 次差異不顯著(P=0.081ns)。 表 12「1~2 號三面骰」與「B 面機率 100%的三面骰」差異不顯著。估算 B 面機率 100%的 R/d 值界線為 0.52。
- (二) 表 11 顯示, B 面出現 0 次與出現 3 次差異不顯著(P=0.134ns)。表 12「92~111 號三面骰」與「B 面機率 0%的三面骰」差異不顯著。估算 B 面機率 0%的 R/d 值界線 為 8.15。
- (三)表 11 顯示 B 面出現 100 次(B 面機率 33.33%),分別與出現 111 次和 89 次差異不顯著(P=0.056ns)。表 12 的 27 號、28 號、29 號等三面骰落在 B 面機率 33.33%的統計範圍內。估算 B 面機率 33.33%的 R/d 範圍為 1.86~2.10。編號 28 號三面骰最接近三面機率皆 33.33%,其 R/d=2。本研究擲 111 種骰子 33300 次,彙整為圖 33。

(圖 33) 33300 次數據轉為 111 點,三面骰子 R/d 值與 B 面機率的關係。

- 二、B 面機率 P(%)與 R/d 值的理論建模
- (一)我們共建構了三種理論。「面積理論:依六面骰子各面面積相等而落地機率相同的概念構思,推測 B 面之面積與落地機率成正比。」「環形理論:依靜力平衡的概念構思,將圓柱骰子置於一環形中,推測圓周周長與落地機率成正比。」「球體理論:將圓柱骰子包覆於一圓球體中,推測球體面積與落地機率成正比。」
- (二)比較實驗數據與三種理論的 R/d 值與 B 面機率關係圖(圖 22),實驗數據曲線較接近環形理論曲線。相同 R/d 值時,「環形理論的 B 面機率」與「實驗出現 B 面機率」呈顯著正相關(圖 23,P<0.001****, $R^2=0.9185$)。
- 三、建立三面骰出現面的動力理論
- (一)透過動力模型理論方程式計算出骰子落地面的理論值,與實驗數據進行比較,可得出理論與實際的差值 ΔP ,進而比較 R/d 值與 ΔP 的關係(圖 15)。
- (二)由於機率變化量圖(圖 15)成對稱分佈,可得知當 R/d 值越接近 1.58,其 Δ P 越大, 越容易因爲微小的擾動產生機率的跳動,而敏感度逐漸往兩側遞減,越靠近兩端 點,其 Δ P 越小,顯示其越不易受到微擾影響。
- 四、探究B面機率出現的原因並定義骰子對微擾的「解析度」
- (一)實驗結果: R/d 值與 B 面機率關係,為 R/d 值越大,落於 B 面機率越小;反之則越大(圖7)。高度、初速度、初角速度、恢復係數與 B 面機率關係皆不顯著(圖 16 至圖 19),因為 R/d=2 的骰子屬於敏咸區,受大擾動的影響大,落地結果十分不規則。
- (二)定義骰子對微擾的解析度:定義為「骰子對微擾的敏感度」,又因與解析角呈負相關,故可表示為「1/解析角」,即解析角越大,解析度越小,微擾對骰子機率造成的影響越小。(圖 30 和圖 31)
- 五、探究不同 R/d 值三面骰對投擲高度之解析位移
- (一)六面骰小於 4cm 高度落下,卡方檢定 1 面機率與 0.167 有顯著差異;15cm 高度以不同角速度落下,1 面機率與 0.167 亦有顯著差異(表 23-1、表 23-2)。
- (二)12 種三面骰從 8 種不同高度落下,「R/d 與 B 面機率關係圖」為「兩端窄,中間寬的反 S 形趨勢圖形」(圖 21)。R/d 值愈接近 1.58 的三面骰,對於高度的敏感程度愈大,即對高度的解析度愈大(圖 32)。卡方檢定三面骰從不同高度落下,B面機率顯著不同,顯示三面骰的解析度很敏感(表 24)。
- (三)結合「研究目的一、四、五的結果」,我們合理推測,不同 R/d 值三面骰對於「初速度、初角速度及接觸面恢復係數」之解析度,也會呈現與「高度」相似的結果。

六、總結

賭博時若採隨機丟擲,「高度、初速度、初角速度、恢復係數4個物理參數所形成之微擾」看似都很大,落地情形十分不規則。然而,正是因為有這些三面骰可以偵測到的擾動,才會導致落地面在莊家意料之外,對賭客其實才公平。反之,若丟擲過程全部標準化,則落地情形幾乎全在莊家的掌控之中。由此,我們歸結:看似愈公正的丟擲過程,似乎對賭客公平;其實,莊家愈容易掌控骰子機率,反而對賭客愈不利。

柒、參考文獻資料

林秀豪(主編)(2010)。選修物理Ⅱ力學二與熱學。龍騰文化。

Boas, M. L. (2006). Mathematical methods in the physical sciences. (3rd ed.). John Wiley & Sons, Inc.

Murray, D. B., & Teare, S. W. (1993). Probability of a tossed coin landing on edge. Physical review E, 48(4), 2547-2552.

Vulović, V. Ž., & Prange, R. E. (1986). Randomness of a true coin toss. Physical review A, 33(1), 576-582.

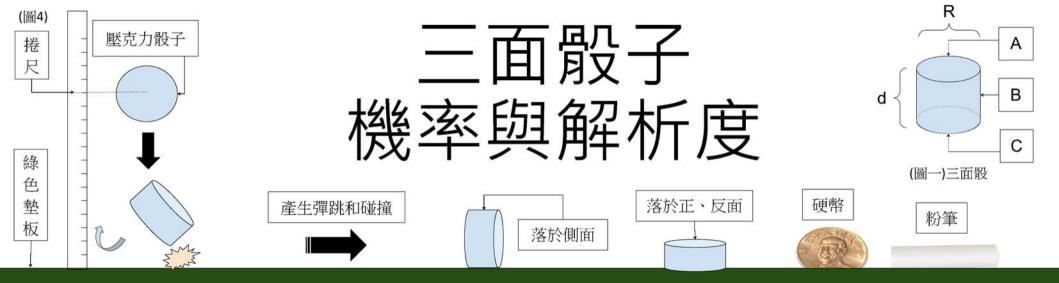
Ford, J. (1983). How random is a coin toss? Physics Today, 36(10), 40-47.

邱皓政(2005)。量化研究與統計分析。五南圖書出版股份有限公司。

余健治、陳家駒、閔振發、褚德三、蔣亨進、蔡尚芳(2013)。普通物理(第三版)。東華書局。

Stand-up Maths(2018年1月23日)。 How thick is a three-sided coin?[影片]。YouTube。https://youtu.be/-gqPKKOU-yY

Junfei_Wang(2017 年 4 月 23 日)。 一维高斯分布与多维高斯分布。 https://www.cnblogs.com/rhyswang/p/6798973.html


sastry(2020年12月7日)。 Normal Distribution。 https://www.aplustopper.com/normal-distribution/

Chuong B. D.(2019 年 7 月 10 日)。 The Multivariate Gaussian Distribution。 http://cs229.stanford.edu/summer2020/gaussians.pdf

【評語】051811

本作品探討柱狀搬子投擲之機率,研究透過改變三面骰子的 R/d 值,觀察幾何特徵如何影響落於各面的機率,進而推廣到其他物理參數對側面落地機率的影響。特別是探討高度、初速度、初角速度及恢復係數對側面落地機率的影響,結論是這些變數對結果機率分佈看似影響很大。文中建立骰子動力理論,計算骰子最終面,但提出微擾的解析度概念,應當配合實驗設計來證明會比較有完整性。三面骰子研究有許多參考的文獻,應該有不同的實驗設計,以得到較為新穎的論證。

作品海報

本研究探討「三面骰」各面機率,由幾何特徵直徑厚度比(R/d)入手,製作不同R/d 值骰子 111 種各擲 300 次, 計 33300 次,繪製機率 P(%)與 R/d 值關係圖;再分別以面積、環形、球體理論建模,理論趨勢與實驗相符 (P<0.001***, R²=0.9185)。側環面機率 100%的 R/d 界線為 0.52, 0%的 R/d 界線為 8.15, 33.33%的 R/d 範圍為 1.86 至 2.10,三面機率相同時三面面積 1:2:1。

另發現操作的物理量亦影響機率,於是進行「投擲高度、初速度、初角速度、恢復係數」為變因的實驗,共計 5250次,顯示各參數對骰子機率敏感性的影響。於是參考文獻並建模骰子動力理論,精確計算骰子最終出現何面。 然而實驗上骰子各面為何仍存在機率呢?我們發現機率來自各參數的微擾,而各骰子對微擾的敏感程度不同,進而提 出骰子對微擾「解析度」的概念評估骰子的公平性。

一、研究動機

壹、前言

有次投販賣機時,翻找零錢導致散落一地,錢幣雖會以側面(圖一B側環面)滾動,可是靜止在B面的機率卻微 乎其微,而是以圖一的A面或C面靜止。擔任值日生擦黑板時,發現黑板溝中的粉筆都是B面靜止,鮮見以A面或C面 首立。

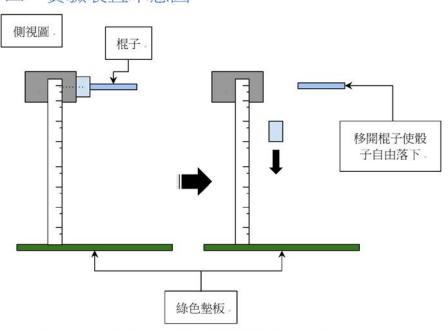
在此之前,我們一直認為骰子的機率是完全隨機的,但或許骰子的幾何性質會影響到落地面,依照機率學來說 ,我們發想,如果改變圖一的三面骰子長寬高比例,亦即調整正反面與側環面的面積大小,其落地機率是否會發生改 變?這次研究由幾何比例的改變延伸到其他可能影響機率的變因,如:高度、角速度等...,進而探討這些物理量之間 的關係。

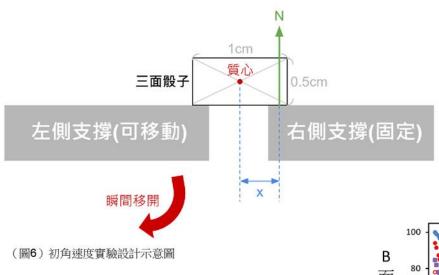
我們使用透明壓克力板切割出不同直徑厚度比(圖一的R/d值)的圓柱,圓柱即三面骰子。「三面」分別為圓柱 之兩個圓形底面(圖一的A和C面)與側環面(圖一的B面)。異於其他骰子,三面骰為「奇數」,我們好奇,「三面 機率皆33.33%時,三面面積是否相同」? 本研究透過改變三面骰的R/d值,觀察幾何特徵如何影響落於各面的機率 ,進而推廣到其他物理參數對側面落地機率的影響。

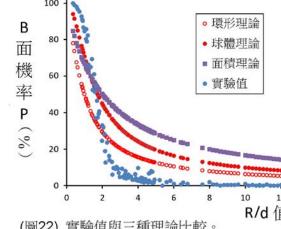
二、研究目的

- (一)B面機率P(%)與R/d值的關係
- (二)B面機率P(%)與R/d值的理論建模
- (三)建立三面骰最終面的動力理論
- (四)探究B面機率出現的原因並定義骰子對微擾的「解析度」
- (五)探究不同R/d值三面骰對投擲高度之解析位移

貳、研究設備及器材


二、研究設備與器材


參、研究過程或方法


四、實驗裝置示意圖

(圖8) 環形理論示意圖。

(圖5) R/d值、高度、初速度、恢復係數實驗設計示意圖

(圖9) 球形理論示意圖

R/d 值

(圖22) 實驗值與三種理論比較。

四、研究架構 探討B面機率對R/d值的關係與建模 研究目的 探究B面出現的原因與定義解析度 文獻探討 實驗設計 研究方法 數據分析 界定P(%)為0%、33.34%和100% 實驗結果及 三面骰 理論預測 側面機率P(%)與R/d值的理論建模 R/d值的穩定區與敏感區 討論 建立動力模型理論 比較實驗數據與理論建模 分析骰子對微擾的「解析度」 結論 (圖2)研究架構

表2 直徑不同,厚度皆為0.5公分 的壓克力骰子,直徑最小值 為0.18公分,最大值為6.00 公分。(以一元硬幣為比例尺)

肆、研究結果

二、B面機率P(%)與R/d值的理論建模

(一)面積理論

- 1. 推測側面(B)之面積與落地機率成正比。
- 2. R 為直徑,另設r 為半徑。則圓形底面(A 面或 C 面) 面積 = πr^2 ,側環面(B 面)面積=Rπd。理論機率為側 環面面積/(側環面面積+兩圓形底面面積和)。

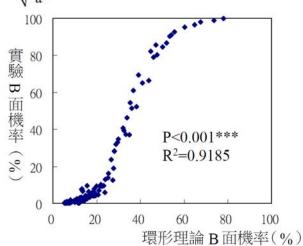
$$P(\%) = R\pi d / (R\pi d + 2 \cdot \pi r^2)$$

(二)環形理論

- 1. 將圓柱骰子置於一環形中,推測圓周周長與落地機 率成正比(Stand-up Maths,2018)。
- 2. 兩段弧長所對應夾角

$$\theta = \tan^{-1}(\frac{d}{R})$$
,兩段弧長所對應夾角= $4\theta = 4\tan^{-1}(\frac{d}{R})$
故P(%) = $\frac{4\theta}{2\pi} = \frac{2\tan^{-1}(\frac{d}{R})}{\pi} \times 100\% = \frac{2}{\pi}\tan^{-1}\frac{1}{(\frac{R}{d})} \times 100\%$

(三) 球體理論


- 1. 將圓柱骰子包覆於一圓球體中,推測帶狀面積與落地 機率成正比(Stand-up Maths, 2018)。
- 2. 帶狀面積

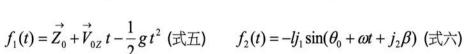
$$= 2 \int_0^{2\pi} \int_{\theta}^{\frac{\pi}{2}} r \times d\theta \times r \sin \theta \times d\emptyset$$

$$= 2r^2 \int_0^{2\pi} \cos \theta \times d\emptyset = 2r^2 \times 2\pi \times \cos \theta = 4\pi r^2 \cos \theta$$

$$\text{故P(\%)} = \frac{4\pi r^2 \cos \theta}{4\pi r^2} \times 100\% = \cos \theta \times 100\%$$

$$= \frac{d}{\sqrt{d^2 + R^2}} \times 100\% = \frac{1}{\sqrt{(\frac{R}{d})^2 + 1}} \times 100\%$$

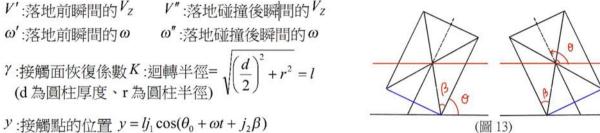
(圖23)實驗與環形理論在相同 R/d 值時, 出現B面機率的關係。


三、建立三面骰最終面的動力理論

(一) 建模:

- 1.以「轉動、碰撞與能量」動力理論建模,找出三面骰子的落地面。
- 2.骰子幾何繪於如(圖 11):將骰子轉換為以質心座標為原點的平面座標系,與地面的距離為 Zo, 若觸地,觸地點為四角其一,每個角的 Z 座標為 Zil,i2,可由位移公式推得觸地點座標 (Murray & Teare,1993), 見式三。

 $\vec{Z}_{j1,j2} = \vec{Z}_0 + \vec{V}_{0Z} t - \frac{1}{2} g t^2 + l j_1 \sin(\theta_0 + \omega t + j_2 \beta)$ (武三)


為了判斷哪個頂點落地,取 $\mathbf{Z}_{j1,j2}$ =0及取函數 $\mathbf{f}_1(t)$ 及 $\mathbf{f}_2(t)$ (式五及式六),以繪圖軟體 \mathbf{desmos} 繪製函數 圖形,在t>0的情況下,找出f1(t)與4個相對質心的頂點座標之f2(t)的4個交點,再由4個交點中取t 為最小的值。

3.分析骰子落地前後瞬間的能量、速度、角速度。

- (1)能量理論:分析骰子具有的所有能量,包含了動能、位能和轉動動能(余健治等,2013)。 如果總能量小於骰子往上彈跳所須位能,則骰子能量穩定,不再進行翻轉。(式七)
- (2)碰撞後速度:依照碰撞後的速度公式(Murray & Teare, 1993)可得骰子著地後的速度。(式八)

(3)碰撞後角速度:依照碰撞後的角速度公式(Murray & Teare, 1993)可以得出骰子著地後的角速度。(式九)

 $\omega'' = \omega' - (1 + \gamma)y \left(\frac{V' + y\omega'}{K^2 + v^2} \right) \quad (\text{F.1})$

ACIID

 $\theta = \theta_0 + \omega$

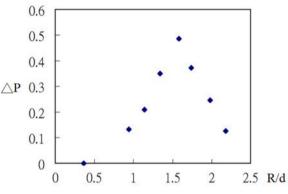
1 3

C(-1,1)

(圖 11)

 $E = \frac{1}{2}mV_Z^2 + \frac{1}{2}I\omega^2 + mgZ$ (武七)

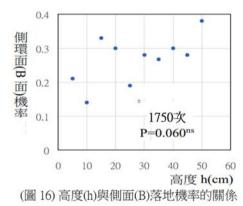
 $V'' = V' - (1+\gamma)K^2 \left(\frac{V' + y\omega'}{K^2 + v^2}\right) \quad (\text{EV})$


 $n\pi + \frac{\pi}{2} - \beta < \theta < n\pi + \frac{\pi}{2} + \beta$ ($\pm \pm \pm$)

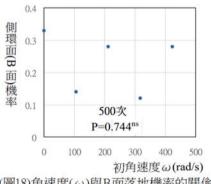
y:接觸點的位置 $y = l_j \cos(\theta_0 + \omega t + j_2 \beta)$

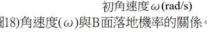
反覆將求出之碰撞後數據帶入式七,計算直到E < mgl 為止。

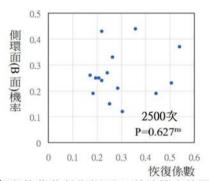
- 4.骰子最終顯現側面滿足的角度條件。角度條件:以觸地點為支點所產生的重力 力矩可推論出,若骰子軸心與地面夾角滿足式十,則三面骰子會落於B面。
- 5.圖15可觀察到動力模型理論與實驗結果比較之「機率變化量與R/d 值的關係」呈現 「對稱分布」,在 R/d 值為 1.58 時,機率變化量最大,其值為 0.486667。
- 6.而 R/d 值越大及越小的骰子,機率變化量遞減, R/d 值最小(0.36)三面骰的機率變化量為 0 即 300 次都落於B面。


(二)實驗數據與動力模型理論的比較

(圖 15) 動力模型理論與實驗結果比較之機率變化量


四、探究B面機率出現的原因並定義骰子對微擾的「解析度」

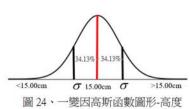

- (一) 高度、初速度、初角速度及恢復係數對B面落地機率的影響
- 1.我們以三面機率皆33.33%的三面骰進行實驗,即直徑1cm、厚度0.5cm, R/d值=2的圓柱體。
- 2.圖16至圖19顯示,高度、初速度、初角速度及恢復係數與B面出現機率關係皆不顯著(P=0.060ns、0.270ns、0.744ns、0.627ns)。我們推論 在「R/d值與B面落地機率的關係」實驗中,已經確定R/d=2的骰子位於敏感區,一點點的微擾即會影響骰子B面機率。而操縱變因為高度、 初速度、初角速度及恢復係數的實驗,對三面骰為「巨擾」,導致落地情形十分不規則,因此4個參數與B面落地機率的關係皆不顯著。

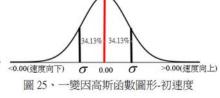


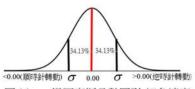
(二) 微擾造成了三面骰的機率

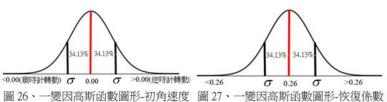
側環面(B 面)機率 0.3 500次 P=0.270n (圖 17) 初速(V)與 初速度 v(m/s) 側面(B)落地機率的關係。

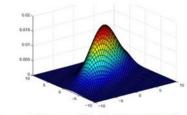
(圖18)角速度(ω)與B面落地機率的關係。(圖 19)恢復係數與側面(B)落地機率的關係

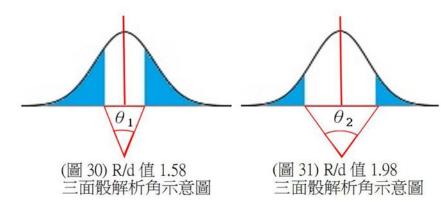

- 1.經由「動力模型理論」的計算,理論上,所有參數均固定的情況下,只會有一種結果,落於正反圓形面(A面和C面)或側環面(B面)。 然而實際操作實驗時,在所有參數固定的情況下,300次的投擲中B面卻會以機率呈現。
- 2.針對此現象,我們推想理論與實驗的差距,即ΔP之所以會產生,是因為每次投擲在看似固定的條件下,都無可避免地含有微小的擾動。 例如:設定投擲高度為15公分,但每一次實驗的確切高度都仍會有微小的差異。
- 3.Boas(2006)指出,當測量值是隨機變數時,應使用機率密度概念,描述所累積的機率。而自然界中的機率密度函數,多數的物理量呈現 高斯分布。因此我們推論,在不同參數都有微小擾動的交互作用下,導致了機率的產生。高斯函數之機率密度及累積機率的公式如式十一和


$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma)^2} \quad (\overline{x}) + \cdots)$$


$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma)^2} \qquad (\overrightarrow{x}+-) \qquad \qquad F(x) = \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^x e^{-(t-\mu)^2/(2\sigma)^2}dt \ (\overrightarrow{x}+-)$$


$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \sum^{-1} (x-\mu)\right) (\mp + \pm)$$

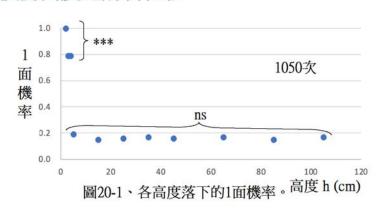

4.當四個高斯分佈圖形(圖24高度(h)、圖25初速度(V_0)、圖26初角速度(ω_0)、圖27恢復係數(r))被統整為一,可得一「四變因高斯分佈圖形」 (圖28為「二變因高斯分佈圖形」)。Chuong (2019)指出,多維度的高斯函數公式如式十三。

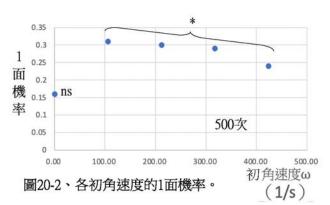


(圖 28) 二變因高斯函數圖形

(三)骰子對微擾的「解析度」

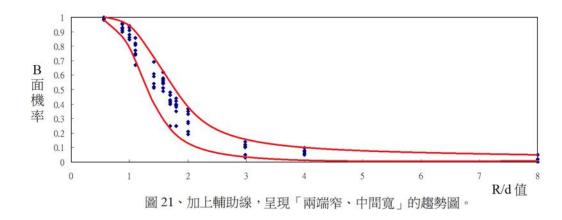
- 1.將高斯函數兩側骰子可承受最大之擾動界線的夾角定義為 「解析角」;骰子對微擾的敏感程度則定義為「解析度」, 解析度定義為:「1/解析角」,為對微擾的偵測性。
- 2.解析角與骰子公正性:當骰子解析角越小、解析度越高, 代表其越容易被微小的擾動干擾,產生機率的改變, 也因為此種骰子只需要一點點的干擾結果就會有所改變, 因此更容易被人為操控而不被發現,故公正性較低。

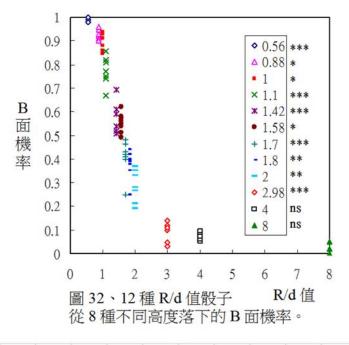



3.圖30以R/d值1.58的骰子為例,其 Δ P為0.486667,解析角為 θ_1 ;圖31為R/d值1.98的骰子,其 Δ P為0.2466666667,解析角為 θ_2 。解析角 θ_2 》,以圖 30R/d 值 1.58 的骰子為例,得此種三面骰的解析度一高度=15.000±0.036(cm),初速度 =0.000±0.019(m/s),初角速度=0.00±1.29(rad/s),恢復係數=0.260±0.034。

五、探究不同R/d值三面骰對投擲高度之解析位移

(一) 六面骰子實驗


- 1.圖20-1顯示「小於4cm高度 落下」,卡方檢定1面機率 與1/6有顯著差異***。
- 2.圖20-2顯示「15cm高度以不 同角速度落下」,除了0(1/s) ,1面機率與1/6有顯著差異*。



(二)探究不同高度落下,三面骰 B 面的機率

- 1.敏感區(R/d= $1.1 \times 1.42 \times 1.58 \times 1.7 \times 1.8 \times 2 \times 2.98$)的骰子對高度改變較敏感,在圖21或圖32中的點分布寬;兩端穩定區R/d 值大(R/d= 4×8)或小(R/d= $0.56 \times 0.88 \times 1$)的骰子,在圖21或32中的點分布窄。導致圖 21「中間寬,兩端窄」的圖形產生。
- 2.卡方檢定「最高或最低高度落下」 與「 15cm落下」的B面落地機率(圖32) , R/d=0.56~2.98有顯著差異*, R/d=4~8差異不顯著ns。但是最高與最低落下的B面機率,R/d=8仍有顯著差異*(圖32未標示)。再再顯示,不同高度落下,B面機率顯著不同。
- 3.解析位移之概念:投擲高度變化(巨擾)時,敏感區骰子的解析度亦有變化,我們稱此現象為「解析位移」。
- 4.結合「研究目的一、四、五的結果」,我們合理推測, 不同 R/d 值三面骰對於「初速度、初角速度及接觸面 恢復係數」之解析度,也會呈現與「高度」相似的結果; 而在「巨擾」的情況下,也應存在「解析位移」。

陸、結論

一、B面機率P(%)與R/d值的關係

本研究擲 111 種骰子 33300 次,彙整為圖33。 估算 B 面機率 100%的 R/d 值界線為 0.52; 0%的 R/d界線為8.15;33.33%的 R/d 範圍 1.86~2.10。 編號 28 號三面骰最接近三面機率皆33.33%,其 R/d=2。

二、B面機率P(%)與R/d值的理論建模

三、建立三面骰出現面的動力理論

我們共建構了「面積理論」「環形理論」「球體理論」 三種理論。實驗數據曲線較接近環形理論曲線。 (圖23,P<0.001***,R²=0.9185)。

B 面 0.9 B面 100%界線, R/d=0.52 機 0.8 率 0.7 0.6 B 面 33.33%範圍, R/d=1.86~2.10 0.5 R/d=2 時,三面面積為 1:2:1 0.4 0.3 0.2 B面 0%界線, 0.1 R/d=8.15 0 5 2 直徑厚度比(R/d)

(圖 33)。33300 次數據轉為 111 點, 三面骰子 R/d 值與 B 面機率的關係。

由(圖15)可得知當R/d值越接近1.58,其 ΔP 越大,越容易因爲微小的擾動產生機率的跳動。

四、探究B面機率出現的原因並定義骰子對微擾的「解析度」

- (一)「高度、初速、初角速度、恢復係數」與「B面機率」的關係皆不顯著(P=0.060ns、0.270ns、0.744ns、0.627ns), 推測原因為R/d=2的骰子屬於敏感區,受巨擾影響大,因此落地結果十分不規則。
- (二)定義骰子對微擾的解析度:將「解析度」定義為「骰子對微擾的敏感度」,可表示為「1/解析角」, 即解析角越大,解析度越小,微擾對骰子機率造成的影響越小。

五、探究不同 R/d 值三面骰對投擲高度之解析位移

- (一)六面骰「小於4cm高度落下」及「15cm高度以不同角速度落下」,卡方檢定1面機率與1/6有顯著差異。
- (二)12 種三面骰從 8 種不同高度落下,「R/d 與 B 面機率關係圖」為「兩端窄,中間寬 的反 S 形趨勢圖形」。 投擲高度變化(巨擾)時,敏感區骰子的解析度亦有變化,我們稱此現象為「解析位移」。
- (三)結合「研究目的一、四、五的結果」,我們合理推測,不同 R/d 值三面骰對於「初速度、初角速度及接觸面恢復 係數」之解析度,也會呈現與「高度」相似的結果。

六、總結

賭博時若採隨機丟擲,「高度、初速度、初角速度、恢復係數 4 個物理參數所形成 之微擾」看似都很大,落地情形十分不規則。然而,正是因為有這些三面骰可以偵測到的擾動,才會導致落地面在莊家意料之外,對賭客其實才公平。反之,若丟擲過程全部標準化,或選擇了不易偵測到微擾(解析度差)的骰子,則落地情形幾乎全在莊家的掌控之中。由此,我們歸結:看似愈公正的丟擲過程,似乎對賭客公平;其實,莊家愈容易掌控骰子機率(三面骰的 B 面機率),反而對賭客愈不利。

柒、未來展望

本研究藉由改變三面骰幾何特徵(R/d值)與物理特徵(高度、初速度、初角速度、恢復係數),觀察其機率變化。 然而,日常生活極少使用三面骰,較廣泛使用的是六面骰。因此,我們好奇三面骰的研究結果是否可推廣到六面骰, 甚至更多面的骰子?三面骰的公正性,會因為解析角的大小有所不同;而本研究初探六面骰,已顯示其公正性似有疑慮? 將三面骰的建模推廣,建立多面骰子亦適用的理論模型,是未來可拓展之方向。