中華民國第62屆中小學科學展覽會

作品說明書

高級中等學校組 環境學科

佳作

052602

眾金汞閱-奈米金結合核酸探測汞離子之研究

學校名稱:桃園市立桃園高級中等學校

作者:	指導老師:
高二 范惟婷	吕玨璇
高二 吳相儒	鄒語騏
高二 韋凱真	

關鍵詞: 奈米金、汞離子 Hg2+、水質檢測

摘要

汞離子為影響健康的十大化學物質之一,因此具污染潛勢事業放流水之汞濃度都需列管並檢測。然而,偵測方法通常較為繁瑣,成本也較高,所以發展快速且簡便的方法是環境檢測重要的課題。本研究開發出以維生素 C 將四氯金酸還原成奈米金的方式,再透過核酸適體修飾奈米金偵測汞離子。利用奈米金表面電漿共振效應呈現顏色變化,進而可測量吸收峰波長變化。接著改變核酸適體濃度及長度、四氯金酸和維生素 C 濃度得到最佳化條件。另外,因核酸適體的胸腺嘧啶(T)與汞離子的高親和性使得此檢測方法具有專一性。最後結合行動載具建立濃度轉換方程式,並應用於環境水質檢測。結果顯示核酸適體修飾經維生素 C 還原奈米金可作為簡便且快速檢測汞的策略之一。

壹、前言

一、研究動機

台灣屬於四面環海的島國,不論是在漁業產業抑或是水資源方面,皆有豐富的基底 能使我們做為開發。然而,在人為的不當利用下,水汙染的現象日趨嚴重,其中,又以 「汞」重金屬汙染最具代表。水質內的重金屬離子藉環環相扣的生物鏈傳遞,從遠洋魚 種至近海魚類,最終遞增累積於人體,進而影響人體健康,輕則影響身體代謝反應,重 則導致基因發生突變,因此,重金屬也被許多國家列為環境賀爾蒙,亦稱「內分泌干擾 物」。桃園觀音鄉及蘆竹鄉的化工廠鎘污染就是最著名的的例子,隨後對於此工業廢水 汙染也調查出食米中汞含量亦超標。所以除了透過環境保育團體的口頭呼籲之外,我們 希望研究出一種簡便並且快速檢測水質、甚至人體血液中是否有汞重金屬含量過高情形 的方法,從校園周遭南崁溪上至下游進行檢測,藉以達到及早了解自身環境及健康,並 透過實作融人課綱精神進而理解永續發展指標(SDGs)及追求資源永續的重要性。

二、研究目的

- (一) 探討奈米金粒子 (AuNPs) 的吸收光譜及聚合反應
- (二) 探討檢測汞離子(Hg²⁺)的最佳條件
- (三) 探討核酸適體(poly T)對 Hg²⁺的專一性
- (四) 探討修飾後 AuNPs 對 Hg²⁺的偵測範圍
- (五) Hg²⁺濃度轉換 RGB 三維座標
- (六) 桃園地區水質檢測

三、文獻回顧

日常生活中,舉凡我們處在的環境、所食用的食物或藥品,皆有重金屬的存在。美國環 境保護署(U.S. EPA)已限制「飲用水中的汞不得超過2ppb(0.01µM)」。而美國食品藥 物管理局(Food and Drug Administration, U.S. FDA)則是已訂定「海鮮中甲基汞所允許的最 大濃度上限為1ppm(5µM)」。在工作環境中,美國職業安全及健康管理局(Occupational Safety and Health Administration, OSHA)已訂定「每八小時輪班和每週四十小時的工作職場, 其空氣中有機汞的含量為不超過0.1 mg/m³(0.0005µM),而金屬汞蒸汽不超過0.05 mg/m³ (0.00025µM)」。而台灣勞工作業環境空氣中有害物容許濃度標準規定,「汞蒸氣及其化 合物的工作場所中八小時日時量平均容許濃度(PEL-TWA)為0.05 mg/m³; 汞及有機化合 物則為0.01 mg/m³(0.00005µM)。」目前環保署所利用之偵測汞離子方法則有冷蒸氣原子 吸收光譜法、冷蒸氣原子螢光光譜法、感應耦合電漿質譜。以上的方法除利用較為昂貴、精 密的儀器,且過程較為繁複,而如果我們能發展一個簡易、價格低廉的偵測儀器,並能針對 特定重金屬離子專一化,則能快速、精準地進行測量,也能普及於生活中。

先前許多研究報導,奈米金可應用於檢測重金屬。奈米顆粒表面原子數目相對於總原子 數目的比例大幅增加,導致奈米粒子之光學、物理及化學性質與塊材的表現有明顯差異。奈 米金粒子因局部表面電漿共振(Localized Surface Plasmon Resonance, LSPR)的緣故,對於

2

500 nm 波長左右的光作用強,因吸收此波長的光,故呈現紅色,奈米粒徑越小,所吸收的可 見光波長越短(何宜蓉,2010),反之亦然,因此可以利用顏色變化判斷金粒子聚集程度, 以奈米金粒子為材料具無毒、光學性質、偵測容易等優點,而為本篇所使用之檢測媒介。除 了未經修飾的奈米金粒子,也可使用不同小分子作為螯合配體,利用與特定金屬離子高親和 力顯現高專一性。(Margarita et al., 2014)例如,先前研究指出金奈米可結合硫醇基作為汞離 子探測,而藉由胸腺嘧啶結合偵測對汞離子亦有優良的選擇性(Ling Chen et al., 2011)。在 奈米金製備中,許多文獻是利用檸檬酸鈉合成奈米金粒子(AuNPs)(李品鋐,2018)(林 育申,2007),在本研究中,我們直接利用維生素 C (*L*-ascorbic acid)合成 AuNPs,並利 用胸腺嘧啶修飾奈米金粒子,以達到縮短檢測時間,增加檢測效率。我們想透過此簡易方法, 在短時間之內偵測重金屬含量,快速取得檢查結果。

貳、研究設備及器材

一、設備:

ELISA reader、微量天平、試管振盪器、打光機、JEOL JEM-2100 PLUS 穿透式電子顯微鏡(長庚大學顯微鏡中心提供)。

二、器材

微量吸管(pipette)、微量吸管尖(tip) (1000/200/10/2.5µl)、微量多孔盤(96孔)、 微量離心管(透明、黑色)、300mesh FCF300-CU 50/pk 鍍碳銅網。

三、 藥品

維生素 C(*L*-ascorbic acid)、氯化汞(HgCl₂)、核酸適體(poly T)、四氯金酸(HAuCl₄)、 蒸餾水、氯化鋰(LiCl)、氯化鈣(CaCl₂)、氯化亞鈷(CoCl₂)、氯化亞銅(CuCl₂)、 硫酸鎳(NiSO₄)

參、研究過程及方法

一、 研究方法

(一) 文獻分析法。透過蒐集或比較文獻後,分析資料並進行整合。

(二) 實證研究法。運用科學理論分析探討其成效。

二、研究架構

圖一:研究架構圖(研究者繪製)

圖二:原理示意圖(研究者繪製)

以汞離子(Hg²⁺)與核酸適體(poly T aptamer)的 T-T 錯配結合「腺嘌呤對 AuNPs 具 有最高的結合親和力,通過環外氨基和氦原子與 AuNPs 表面結合。」(He, Z., et.al, 2020), 設計一段單鏈核酸適體(ss-DNA)與汞離子結合,並利用維生素 C 將四氯金酸還原成奈米 金粒子「維生素 C 可還原溶液中許多金屬離子並形成穩定性常數相對較低的絡合物。(Birgul, Z.K. et al, 2009) 再將奈米金利用設計出的核酸適體修飾,增強奈米金的穩定性。「當存在 Hg²⁺時,核酸適配體與 Hg²⁺結合,使得金粒子去保護而聚集,產生了顏色的變化,從而通過 比色法定量分析 Hg²⁺的濃度。」(宇佳, 2014)而反應過程中,過多的汞離子會與奈米金結 合形成汞齊。

當奈米金粒子偵測到金屬離子、小分子,會因其表面電漿共振效應產生聚集或分散反應 且有顏色變化。「**奈米金表面電漿共振效應而產生光子(photon)所致,周圍的環境,配體** (ligand)、溶劑及溫度等因子也會影響,奈米金會因為聚集反應由紅變藍,稱為紅移效應

6

red-shift)」(何宜蓉,2010)因此,我們利用奈米金與金屬離子結合產生的顏色變化進行 比色及探討聚集反應與否,作為對金屬離子之檢測工具。

四、 實驗步驟

- (一) 奈米金粒子的聚合反應與吸收光譜
 - 分別將實驗組(含汞)及對照組(不含汞)溶液均匀少量的滴在測試銅網上, 等待約3天至自然風乾。
 - 2. 將銅網放入 TEM 穿透式電子顯微鏡,設置電子顯微鏡及調整焦距。
 - 3. 先以 TEM 穿透式電子顯微鏡拍攝奈米金粒子及其聚集方式。
 - 再由 TEM 穿透式電子顯微鏡,透過使用高能量電子束,選擇測試元素(金、 磷、汞),並比較各元素含量再對照吸收光譜波形圖(圖十二)分析。
 - 5. 取吸收光譜 A580/A520 當作吸光比值,再將汞離子的吸光比值除以空白值,計算出訊雜比(Signal-to-noise ratio; SNR),作為判斷最佳檢測結果的依據。

(二) 最佳化條件(圖三、圖四)

- 参考文獻後訂定假設條件(H₂O 82µl /1µM 10nt poly T aptamer 5µl /10mM Hg²⁺ 3µl / 反應時間 / 50mM HAuCl₄ 5µl /10mM *L*-Ascorbic acid 5µl)。
- 以微量吸管吸取 H₂O、核酸適體(poly T)和 Hg²⁺加入至 96 孔盤中,順時針以 tips 緩慢攪拌 10 圈使溶液混和均匀。
- 3. 等待核酸適體(poly T)和 Hg²⁺錯配的反應時間。
- 以微量吸管吸取 HAuCl4加入至 96 孔盤中,順時針以 tips 快速攪拌 10 圈,使 HAuCl4和溶液均匀混和。
- 以微量吸管吸取 L-Ascorbic acid 加入至 96 孔盤中 由 L-Ascorbic acid 反應快速, 且有時效性,改順時針以 tip 快速攪拌 5 圈,使 L-Ascorbic acid 和溶液均匀混和, 即完成反應。

- 將 96 孔盤放進 ELISA reader 設定模式為全波段吸收光譜,檢測範圍設定波長為 400~800nm 後,開始檢測。
- 7. 檢測後的結果轉成 Excel 進行數據處理。
- 先將數據以xy散布圖繪成光譜波形圖選出3個最相近的數據取平均及母體標準差。
- 將實驗組及對照組的 A580/A520 吸光比值繪製成長條圖組合訊雜比
 (Signal-to-noise ratio; SNR)折線圖,比對訊雜比折線,尋找最佳條件,作為 下個實驗條件的控制變因。
- 逐步更改各項變因(反應時間、poly T 長度、poly T 濃度、AuNPs 濃度、維生素 C 濃度)尋找最佳化條件,步驟皆與上方步驟 2~10 相同。

圖四:條件優化測試流程圖(研究者繪製)

(三) 專一性

- 偵測汞離子的最佳條件(水 82µL/250nM 20nt 核酸適體 poly T aptamer 5µL/金 屬離子檢測物3µL/反應時間20min/四氯金酸HAuCl₄5µL/維生素CL-Ascorbic acid 5µL)替換偵測非汞的金屬離子。
- 依照前述尋找最佳化條件的實驗方式,檢測金屬離子及其混合物(鋰離子 Li⁺、 鈣離子 Ca²⁺、鈷離子 Co²⁺、銅離子 Cu²⁺、汞離子 Hg²⁺、鎳離子 Ni²⁺)
- 以 ELISA reader 全波段吸收光譜、波長範圍 400~800nm,檢測上述各種金屬離子 及其混合物的吸收光譜。
- 在 Excel 將各檢測物數據處理成吸光比值 A580/A520,並統整繪製成長條圖,以 便觀察此檢測方式對汞離子的專一性。
- (四) 汞離子偵測範圍
 - 依照前述所得最佳化條件的實驗方式,改變不同汞離子濃度(0.4/0.6/0.855/1.2 /3/4μM)。
 - 以 ELISA reader 全波段吸收光譜、波長範圍 400~800nm,畫出對不同濃度汞離子 濃度的光譜圖。
 - 在 Excel 將各濃度數據處理成吸光比值 A580/A520,並統整繪製成 xy 散布圖,以 便觀察汞離子的偵測範圍。
 - 4. 改以自來水稀釋汞離子作為檢體,重複上述步驟 1~3。
- (五) RGB 色號方程式
 - 1. 將九十六孔盤上的汞離子(Hg²⁺)偵測範圍反應結果置於打光機拍攝。
 - 2. 將照片透過手機辨色程式 color grab 測量 RGB 三維座標。
 - 3. 將獲取的 R、G、B 座標值利用歐幾里得距離公式√R²+G²+B²,計算距離。

- (六) 桃園地區水質檢測
 - 從上游至下游調查南崁溪的工廠分布,選擇六個採樣點,分別為大埔橋、裕元橋、 中正公園、成功橋、南崁溪橋、長興橋。
 - 2. 以童軍繩綁住水桶在採樣點的橋上垂釣取水,並以採樣瓶取部分溪水作為檢體。
 - 3. 以上述最佳化條件的實驗步驟,分別測試六個檢體的顯色差異。
 - 在檢體中加入汞離子,使檢體的標準提高至 3μM 至最佳顯色範圍,以便測試準確 的檢測物汞濃度。

圖五:南崁溪六處採樣點(大埔橋、裕元橋、中正公園、成功橋、南崁溪橋、長興橋)

肆、研究結果

一、 探討奈米金粒子的聚集反應及吸收光譜

(一) 聚集反應

在電子顯微鏡 200kX 下可清楚觀察到奈米金粒子,如圖六所示,黑色部分為直徑約 30nm 的奈米金,而在奈米金外圍淺一層包覆物質推論為 poly T。30kX 可觀察 奈米金粒子的聚集方式如圖七,無加入汞的對照組分布較零散。

圖六:奈米金電顯圖(200kX) 圖七:奈米金電顯圖(30kX) 由元素分析可得知此物質為奈米金粒子,且汞及磷雖有分布但含量為零,如下圖 八,推估是含量極少接近背景值。

圖八:無添加汞離子元素金、磷、汞含量分析

電子顯微鏡放大倍率250kX下(圖九),原奈米金粒子(30nm)聚合成約100nm, 可知添加汞離子會使奈米金粒子聚合。且電子顯微鏡40kX中(圖十),實驗組奈 米金粒子較對照組未加汞(圖七)排列緊密,粒子較大。

圖九:奈米金電顯圖(250kX)

圖十: 奈米金電顯圖(40kX)

由元素分析可發現實驗組汞的含量略有增加,如下圖十一,但不確定度高於比例值, 仍屬不可信的數值範圍,因而推論主要成分仍為奈米金,故汞和磷的含量趨近於背 景值。

圖十一:含汞離子的元素金、磷、汞含量分析

(二) 吸收光譜

有汞離子時,肉眼看到會呈現藍色(如圖十二上方左孔盤),光譜波形圖中波峰 值為580nm(藍色線段),而無汞離子時,肉眼看到會呈現紅色(如圖十二上方 右孔盤圖),波峰值為520nm(橘色線段),因此我們取A580/A520當作吸光比 值,並將汞離子的吸光比值除以空白組的吸光比值作為訊雜比(Signal-to-noise ratio; SNR),作為後續判斷最佳檢測結果的依據。

圖十二:汞離子(Hg²⁺)對修飾後奈米金粒子(AuNPs)之吸收波長影響

- 二、 檢測汞離子最佳條件
 - (一) 汞離子與核酸試體結合之反應前置時間
 實驗發現反應時間對訊雜比的影響較不顯著(如圖十三),而45分鐘的訊雜比最
 大,20分鐘次之,由於此實驗目的為縮短檢測時間,因此我們設定20分鐘為最佳
 時間條件。

圖十三:前置時間對吸光比值(A580/A520)與訊雜比(SNR)的關係圖

(二) 核酸適體長度

Nt 意即核苷酸,可用以表示聚合之核苷酸内含有多少核苷酸數目,當nt 越大,表示此聚合之核苷酸數目越多,鏈長越長。如圖十四,隨著核酸適體(poly T)的長度上升訊雜比變高,核酸適體(poly T)數目為 20nt 的訊雜比最高,當 poly T 數目超過 20nt 後,隨著核酸適體(poly T)的 nt 上升,訊雜比值下降,因此取 20nt為最佳核酸適體(poly T)數目。

圖十四:核酸適體長度對吸光比值(A580/A520)與訊雜比(SNR)的關係圖

(三) 核酸適體濃度

隨著核酸適體濃度上升,空白組的吸光比值沒有顯著的差異,但在有加汞離子的 實驗組有明顯的趨勢性,訊雜比也隨之上升(如下圖十五),而核酸適體(poly T) 濃度在 250nM 的訊雜比最高,因此取 250nM 為最佳核酸適體濃度。

圖十五:核酸適體濃度對吸光比值(A580/A520)與訊雜比(SNR)的關係圖

(四) 四氯金酸濃度

當四氯金酸濃度為 5μM時,不論在實驗組或對照組都有較明顯的顯色效果,因此 最佳四氯金酸濃度為 5μM 的訊雜比最高(如下圖十六),但當濃度再提高時,由 於奈米金與汞離子與核酸適體之化合物反應已達飽和,因此我們取 5μM 為最佳四 氯金酸濃度。

圖十六:四氯金酸對吸光比值(A580/A520)與訊雜比(SNR)的關係圖

(五) 維生素 C 濃度

維生素 C 濃度為 500µM 的訊雜比最高(圖十七),因此取 500µM 為最佳維生素 C 濃度。

圖十七:維生素 C 濃度對吸光比值(A580/A520)與訊雜比(SNR)的關係圖

三、 核酸適體 (poly T) 對 Hg²⁺的專一性

藉由多種金屬離子(表一)與核酸試體的反應變化,若吸光比值大於1代表呈現藍 色,以探討核酸試體對於汞離子是否具專一性。而由圖十八可以得知,有加入汞離子(5.9.) 條件的吸光比值皆大於1,呈現波段明顯位移的現象,故推論核酸適體對於汞離子是具 專一性。

μM\编號	1	2	3	4	5	6	7	8	9
Li ⁺	3	-	-	-	-	-	1	0.6	0.5
Ca^{2+}	-	3	-	-	-	-	1	0.6	0.5
Co^{2^+}	-	-	3	-	-	-	-	0.6	0.5
Cu^{2+}	-	-	-	3	-	-	1	0.6	0.5
Hg^{2+}	-	-	-	-	3	-	-	-	0.5
Ni ²⁺	-	-	-	-	-	3	-	0.6	0.5

表一:偵測的金屬離子及金屬離子的組合

圖十八:偵測金屬離子及金屬離子組合之奈米金粒子(AuNPs)聚集程度

為探討奈米金粒子偵測汞離子的靈敏度。首先利用不同標準濃度的汞離子,以觀察 不同汞離子濃度與吸光度比值的反應變化情形,其中此方法可以量測(A580/A520大於 1)且靈敏度較高的線性範圍為汞離子濃度 0.6 至 1.2μM(圖十九)。

圖十九:汞離子(Hg²⁺)於純水中可檢測濃度範圍及線性趨勢圖

接著改以檢測自來水中的汞離子作為實際樣本測試。由圖二十可以得知,雖然自來水的反應不如純水明顯,但兩者之間仍存在一定相關性,因此,我們推論此方法亦能做為檢測自來水中汞離子之標準。

圖二十:汞離子(Hg²⁺)於自來水和純水中可檢測濃度範圍及線性趨勢

五、 Hg²⁺濃度與 RGB 三維座標

我們將汞離子的濃度對應到 RGB 三維直角坐標中,再將其轉換成距離。由圖二十 一可推知,當汞離子濃度越高時,在 RGB 三維直角座標中的距離也會隨之縮減。此後 當獲得一未知濃度之溶液的 RGB 距離時,亦可將其換算出汞離子濃度。

圖二十一:汞離子濃度 對應三色系數圖(距離: √(R²+B²+G²))

六、 桃園地區水質檢測

六個採樣檢體分別與純水檢體繪製成線性比較圖,六處採樣檢體的決定係數(R²)皆 呈高度相關(圖二十二、二十三),顯示此檢測方法可應用於放流水測試。其中檢體 5 (南崁溪橋)之顏色變化最為明顯,顏色為紫紅色(表二),推估與此採樣地點接近南 崁工業區有關,其餘四個檢體與純水(檢體 8)顏色無明顯差異,推測汞濃度較低。

19

地點	1.大埔橋	2.裕元橋	3.中正公園	4.成功橋	5.南崁溪橋	6.長興橋	純水
呈色							
R ²	0.9249	0.9993	0.9795	0.9299	0.9195	0.9395	1

表二:南崁溪水質檢測六個採樣點檢驗後顯色變化

為了證實 RGB 結合汞離子濃度可實際用於河川,我們沿南崁溪取點使用最佳試劑進行檢測, 由純水與檢體的 RGB 距離表格中可以觀察到檢體 3、5、6的決定係數較於其他檢體低,而檢 體 1、2、4的決定係數皆大於 0.9,而純水的決定係數趨近於 1。

圖二十四:檢體2與純水 RGB 距離線性趨勢 圖二十五:檢體6與純水 RGB 距離線性趨勢

距離	1.大埔橋	2.裕元橋	3.中正公園	4.成功橋	5.南崁溪橋	6.長興橋	純水
0μΜ	276.73	281.34	287.61	296.74	295.67	297.12	303.56
0.6μΜ	273.24	284.22	290.90	289.07	288.40	298.18	287.80
0.85µM	263.94	275.07	277.66	277.30	280.57	282.39	279.89
3μΜ	261.19	271.75	279.03	279.09	280.87	282.11	276.08
R ²	0.9663	0.9793	0.7714	0.9663	0.8201	0.8561	0.9936

伍、 討論

一、 最佳化條件

根據實驗結果可知,反應時間對訊雜比的影響較不顯著,在45分鐘的訊雜比最大, 20分鐘次之,因此進一步討論動力學分析,波型往短波長位移(藍移),反之亦然。由 圖二十六可得,實驗組(加汞離子)的波長比值在反應初期明顯較高(紅移),但隨時 間變化,A580/A520之吸光比值逐漸降低,表示奈米金粒子聚集程度下降,波型向短波 長位移(藍移)。而由圖二十七可得知,訊雜比隨時間下降,效果變差,因此可得反應 完成後須立即檢測,放置越久效果越差。因此,我們推論此反應中核酸適體僅是延緩維 生素C還原四氯金酸之作用。

圖二十六: 反應時間對吸光 比值(A580/A520)的關係圖

圖二十七:反應時間對訊雜比 (SNR)的關係圖 DNA-AuNPs 與重金屬離子結合方式有三,交聯、靜電相互作用和鹼基對堆積。而核酸適體可藉由靜電以及疏水作用吸附於奈米金粒子,或是藉由經硫醇基修飾核酸適體

(Thiol-tagged DNA)與奈米金粒子共價結合(Au-S)(圖二十八)「DNA-AuNPs 在膠體 溶液中的分散通常依賴於它們之間的靜電排斥。DNA 的電荷分佈是影響 DNA-AuNPs 膠體 穩定性的重要因素。」(Chang, C. C., Chen, C. P. et al., 2019)。

圖二十八:核酸適體-奈米金粒子與重金屬離子之表面工程示意圖

(He & Yin et al., 2020)

以訊雜比的程度來看,核酸適體最適當的長度大約在15~20nt 左右,其中又以 20nt 結果 最佳,但單就 A580 之吸收值而言,效果最佳的為 10nt,並隨著適體長度越長,吸收值 越低,表示聚集程度越低,此原因我們推測是當長度為 10nt 時,最適合包覆 Hg²⁺,且剛 好能使奈米金粒子產生聚集,而長度越長使得 DNA-AuNPs 半徑增加進而降低奈米金粒 子彼此間靜電吸引力不利於聚集(圖二十九)。

圖二十九:DNA-AuNPs 偵測重金屬離之靜電作用方式示意圖(He & Yin et al., 2020)

在核酸適體濃度實驗可知,當濃度越高,聚集程度越佳,適體濃度在 250nM 達到極 大值,而濃度再提高後,聚集程度降低,我們推測當濃度過高時,溶液週遭因過多的核 酸適體,因胸腺嘧啶(T)結構上的官能基彼此產生靜電作用,「雙鍵 DNA 由於骨架中 帶負電的磷酸根(PO4-3)暴露在外,與表面帶負電荷的奈米金顆粒之間存在靜電斥力, 使雙鍵不能被吸附到奈米金顆粒表面」(劉斯佳,朱靜,譚鍾揚,2009)反而阻礙奈米 金粒子聚集,因此程度降低。

四氯金酸濃度實驗顯示一最適濃度,其中推測濃度較低時,因週遭被其他物質如核酸適體、Hg²⁺等給阻隔,造成彼此不易聚集,濃度提高至 5μM 效果最佳,而當濃度再提高至 10μM 時,核酸適體已全與奈米金粒子結合反應,並產生聚集,但還有部分奈米金粒子尚未反應,因此在 A520 尚有一定之吸收值,導致訊雜比下降。

二、 汞離子專一性

胸腺嘧啶(T)已被顯示為對 Hg²⁺是最具專一性的配位基,其藉由兩著之間強親和力 及高選擇性形成 T-Hg-T 錯合物)(圖三十)。而在 Cu²⁺、Pb²⁺、Co²⁺、Ni²⁺、 Zn²⁺、 Mn²⁺、Cd²⁺、Ca²⁺及 Mg²⁺ 這些重金屬離子中並未有明顯作用。

T-Hg-T

圖三十: T-Hg-T 錯合物(Liu et al., 2009)

三、 汞離子偵測範圍

由實驗四(圖十九)可知偵測範圍在 Hg²⁺濃度 0.6 至 1.2μM 間,而當濃度再提高時, 因溶液中的奈米金粒子已完全反應,無多餘的奈米金粒子可與之聚集,因此 A580/A520 之吸光比值趨於平緩。

四、 南崁溪水質檢測

南崁溪的支流眾多,工業區沿線林立,歷年不肖工廠利用颱風天或私接暗管排放 廢水的例子不勝枚舉。而檢體5(南崁溪橋)之採樣點位於桃園的南崁工業區,純檢 體經測試後顏色變化為紫紅色,推估此地為南崁溪汞含量較高處。其餘5個檢體實驗 後的顏色變化不明顯,故採放大偵測,加入汞濃度分別為0.60µM/0.85µM/3.00µM, 如下圖三十一。經過檢體與純水的線性趨勢分析可發現放大偵測的決定係數 R²趨近於 1,因此,我們推測此檢體加入汞濃度之放大偵測效果可實際應用於溪水中。

將檢體套用於 RGB 三維直角座標系統轉換汞離子濃度後,可以得知檢體 3(中正 公園)、5(南崁溪橋)、6(長興橋)之決定係數相較其他檢體低,我們推測可能是 檢體中干擾物質較多,如微生物、水中雜質......等可能阻礙奈米金聚集,造成 RGB 轉 換汞濃度時的誤差因子。另外,依決定係數相比可發現 RGB 距離轉換汞濃度之決定係 數大多低於放大偵測的效果,認為檢體背景顏色仍須作為修正因素。

圖三十一:桃園地區水質檢測六個採樣點放大偵測檢驗後顯色變化

陸、結論

一、 實驗內容

當奈米金粒子與 poly T 結合後,遇汞離子會產生表面電漿共振,使奈米金粒子聚集。以 訊雜比判斷最佳條件,並得出最佳試劑,接著測試核酸適體對汞的專一性及探討汞離子 的偵測範圍,再以 RGB 距離轉換汞濃度,最後實際運用於南崁溪檢測,結果如下:

- (一) 奈米金粒子遇汞會從 30nm 聚合成約 100nm, 波峰值由 520nm 紅移至 580nm。
- (二) 經實驗後偵測的最佳條件為核酸適體長度 20nt/濃度 250nM→反應時間 20 分鐘
 → 5µM 四氯金酸→ 500µM 維生素 C。
- (三) 胸腺嘧啶(T)與汞離子之間強親和力及高選擇性形成錯合物,使得核酸適體修 飾後奈米金粒子檢測對汞離子具專一性。
- (四) 進行偵測不同檢體間的比較實驗的數據分析後,得知不論於純水或自來水檢體, 奈米金粒子偵測之實驗結果皆呈正相關。其偵測汞離子範圍約為 0.6 至 1.2μM。
- (五) 偵測範圍 0.6 至 1.2μM 轉換之距離曲線為一對一函數關係,此即當獲得一未知濃度之溶液的 RGB 距離時,亦可將其換算出汞離子濃度。
- (六)決定係數顯示本研究方法可應用於河川檢測,但仍須對檢體本身因素(背景顏色、水中雜質等)進一步探討及修正。

二、未來展望

我們期望將上述的最佳檢測條件運用於不同檢體,而不局限於水質檢測,例如:人體代 謝之尿液、加工食品的檢測...等,藉由參數再優化或將此技術和實際 SGS 檢驗成分比較,以 提高檢測靈敏度及檢測範圍,並能準確將色號對應汞離子濃度,達到透過手機辨色程式即可 對應出汞離子濃度的快篩效果,使這項技術融入日常生活中。

柒、參考文獻資料

- Agency for Toxic Substances and Disease Registry (ATSDR). (1999) Toxicological Profile for Mercury. Atlanta, GA: U.S. Department of Health and Human Services, *Public Health Service*.
- Birgul, Z.K. (2009) A rationale on the role of intermediate Au (III) –vitamin C complexation in the production of gold nanoparticles. *Journal of Nanoparticle Research*, 11, 2-8.
- Chang, C. C., Chen, C. P., Wu, T. H., Yang, C. H., Lin, C. W., & Chen, C. Y. (2019).
 Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. *Nanomaterials 2019, 9, 861*, 2~16
- Chen, Y.& Xianyu, Y., & Jiang, X. (2017). Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis. *Acc. Chem. Res, 50*, 310–319.
- Environmental Protection Agency. (2001) .Water Quality Criteria : Notice of Availability of Water Quality Criterion for the Protection of Human Health : Methylmercury.*Federal Register (FRL-6924-8)*,1344-1359.
- 6. He, Z., Yin, H., Chang, C. C., Wang, G., & Liang, X. (2020) Interfacing DNA with gold nanoparticles for heavy metal detection. *Biosensors*, *10* (*11*), 167.
- Hu, Y., Huang, Z., Liu, B., & Liu, J. (2021). Hg (II) Adsorption on Gold Nanoparticles Dominates DNA-Based Label-Free Colorimetric Sensing. ACS Applied Nano Materials, 4, 1-8.
- Kim, D., Kim, S., Ha, H. T., & Kim, S. (2020). Smartphone-based image analysis coupled to paper-based colorimetric devices. *Current Applied Physics*, 20,1014~1017.
- Liu, X., Qi, C., Bing, T., Cheng, X., & Shangguan, D. (2009) Analytical Chemistry, 81 (9), 3699-3704.

- Ling Chen, Tingting Lou, Chunwei Yu, Qi Kangb and Lingxin Chen. (2011). N-1-(2-Mercaptoethyl) thymine modification of gold nanoparticles : a highly selective and sensitive colorimetric chemosensor for Hg2+. Analyst, 136, 4770–4773.
- Retout, M., Valkenier, H., Triffaux, E., Doneux, T., Bartik, K., & Bruylants, G. (2016).
 Rapid and Selective Detection of Proteins by Dual Trapping Using Gold Nanoparticles Functionalized with Peptide Aptamers. *ACS Sens*, 1, 929–933.
- Rick, J.& Tsai, M.C., & Hwang, B. J. (2016). Biosensors Incorporating Bimetallic Nanoparticles. *Nanomaterials 2016*, 6, 5
- U.S. Environmental Protection Agency.EPA-FDA Advice about Eating Fish and Shellfish.For Those Who Might Become Pregnant, Are Pregnant, Are Breastfeeding, and for Children.https : //reurl.cc/2DkvYn
- 14. World Health Organization. (2017 March 31). Mercury and health.https:
 //reurl.cc/Zr5M0W
- 15. 李品鋐(2018)。奈米金之性質以及其製備方法探討。全國高級中等學校小論文投稿作品。
- 16. 宇佳,孫璐,遲德富(2014)基於核酸適配體與金奈米粒子檢測水中 Hg²⁺的研究.
- 17. 何宜蓉(2010)奈米科技:奈米金之臨床應用與發展,藥學雜誌 第105冊,26(4), 34-40
- 林育申(2007)。金奈米粒子之合成與吸收光譜鑑定。國立臺灣大學化學系,大學 普通化學實驗,第十二版。國立臺灣大學出版中心。
- 19. 黃志清(2014)。環境重金屬汙染救星。海洋中心電子報,第八期。http://www.ceo.ntou.edu.tw/ezfiles/48/1048/img/445/20140301.pdf
- 20. 劉斯佳,朱靜,譚鍾揚,(2009)。基於胸腺嘧啶-汞離子(II)配位作用的汞離子(II)檢測技術的研究進展。中國農業科技導報,2009,11(SI),13-16。

捌、附錄

一. 汞離子 Hg²⁺濃度對於不同核酸適體數目之反應

汞離子 Hg²⁺濃度高低是影響與 poly T 結合反應的其中因子,若汞離子 Hg²⁺濃度過高,則 多於游離汞離子 Hg²⁺會與維生素 C 結合,進而使維生素 C 無法還原金粒子,亦無法進行 偵測汞離子 Hg²⁺反應,使溶液呈現紫紅色。因此,我們以 20 分鐘做為時間條件、以 20nt 稀釋 100 倍(0.05μM)、5mM Au³⁺、10Mm 維生素 C 做為控制變因,實驗加入不同種濃 度的汞離子 Hg²⁺使偵測反應有差異。

(三) 1000XHg

二. 波形圖

(一)核苷酸濃度

(三)核甘酸數目

(四)反應時間

【評語】052602

本作品以維生素 C 將四氯金酸還原成奈米金,再透過核酸適體 修飾奈米金來偵測汞離子。研究內容與過去文獻之差異,並未交待 清楚,建議以文獻回顧方式,整理過去科展或論文中與本研究相似 的資料,比較說明此研究的創新性。圖 17 的維生素 C 濃度 500 uM 呈現吸光度的最高峰,2000 uM 時吸光度顯著下降,是否可能 1000 uM 才是吸光度的最高峰?要如何證明此疑慮?圖 19 之五種不同 標準濃度的汞離子,吸光度與汞離子濃度之關係為非線性,採用三 點濃度製作檢量線,有違常理。對檢體本身原本具有顏色的情況, 並未說明應如何校正之。在研究限制與干擾方面,應再強化說明, 且應說明桃園地區水質作為分析樣本,採樣點的篩選依據,作為研 究設計的基本說明。 作品簡報

眾金汞閱一 奈米金結合核酸探測 汞離子之研究

高中組

環境學科

前言

汞離子為影響健康的十大化學物質之一,然而,偵測方法通常較為繁瑣,成本也 較高,所以發展快速且簡便的方法是環境檢測重要的課題。 研究目的

- 奈米金粒子的聚合反應及吸收光譜
- 2. 檢測汞離子的最佳條件
- 3. 核酸適體對汞離子之專一性
- 修飾後奈米金粒子對汞離子的偵測範圍 4.
- 5. 汞離子濃度轉換
- 桃園地區水質檢測 6.

EDS Layered Image 5					_
1 Jam		Map	Sum Spec	trum	
Mag Subi S			Wt%	σ	
		Au	98.3	2.0	
			1.7	2.0	
			0.0	0.0	
					_
120000					
W Rg P Electron					
S00nm					
262A. 100 10					
	AU AU	Auj			
lig j	Hg Hg	Hg			
	1	11111		INT I I	2.10
5	10	15			keV

汞離子與核酸適體結合之反應時間

時間對訊雜比 (SNR) 影響不顯著, 20分鐘為最佳時間條件,此檢測方式 可以大幅縮減檢測汞離子的時間。

0.4

SC

四氯金酸濃度低時,週遭被其他物質阻 隔不易聚集,濃度提高至5µM效果最佳 當濃度再提高時,有部分奈米金尚未反 應,導致 SNR 下降。

500µM為最佳維生素C濃度。市面上檢測 方式中的奈米金都須以檸檬酸還原後才可 反應,但我們改以維生素C在反應中同時 還原,減少製備奈米金的時間。

圖十六:T-Hg-T錯合物(Liu et al., 2009)

胸腺嘧啶 (T) 被顯示為**對Hg²⁺最 具專一性的配位基**,其藉兩著間 強親和力及高選擇性形成T-Hg-T 供合物。

汞濃度與RGB三維座標

	nM	3000	1200	855	600
	R	90	88	94	99
	В	96	100	99	95
	G	115	115	113	118
	距離	174.76	175.98	177.22	180.97
	TO				
1500	2000	- 1	2500		⊤[Hg² 3000

可量測且靈敏度高線性範圍為汞濃度0.6至 1.2μM,以含汞純水、自來水檢體測試有 高相關性(R²=0.82)。

以手機拍攝呈色反應,並以辨色系統對應 RGB三維座標,即時對應相對汞濃度。

地點	1.大埔橋	2.裕元橋	3.中正公園	4.成功橋	5.南崁溪橋	6.長興橋	純水
呈色	6	S.	S.				
R ²	0.9249	0.9993	0.9795	0.9299	0.9195	0.9395	1
距離	1.大埔橋	2.裕元橋	3.中正公園	4.成功橋	5.南崁溪橋	6.長興橋	純水
0µM	276.73	281.34	287.61	296.74	295.67	297.12	303.56
0.6µM	273.24	284.22	290.90	289.07	288.40	298.18	287.80
0.85µM	263.94	275.07	277.66	277.30	280.57	282.39	279.89
3μΜ	261.19	271.75	279.03	279.09	280.87	282.11	276.08
R ²	0.9663	0.9793	0.7714	0.9663	0.8201	0.8561	0.9936

• 六處採樣檢體決定係數R² (黃色)呈高度相 關,表此檢測可應用於河川測試。 • 純水與檢體之 RGB 距離表格(綠色) 可 觀察檢體 3,6決定係數較低,檢體1,2,4 則皆大於 0.9,純水的決定係數趨近於 1

0

討論-南崁溪水	質檢測	大埔橋	裕元橋
SGS檢驗		3µM檢體	2 Co
SGS 台灣檢驗科: 水質水量:	技股份有限公司 樣品檢測報告	0.85µM檢體	
委託單位: 業別: * 樣品特性:水樣 樣品編號: NPW22600313001~003	檢測目的: 採樣時間: 111年06月06日	0.6µM檢體	
採樣 中位 · 採樣 方法 : 採樣 地點 : 南崁溪(振興路229巷、成功橋、長 (委託單位提供)	收樣時間: 111年06月06日 報告日期: 111年06月15日 報告編號: NPW22600313 聯絡人:	1: 純檢體	
様品編號及位置 NPW22600313001 (振興路#1) NPW22600313002 (古功棒#2)		放大偵測	
NPW22600313003 (長興橋#3) 以下空白	ND<0.00015 (mg/L)	_ 經檢體與純2	水的線
由SGS檢測報告發	現,3個樣品	係數R ² 趨近1	,推測
汞含量都 低於0.74	87nM,遠低於	實際應用於法	奚水中
我們最低檢測濃度	E0.6µM及海鮮	RGB距離轉	身換
中汞的濃度上限5	uM,故無法直	RGB距離轉打	與汞濃,
接以檢體檢驗。		的效果,因」	比檢體

中正公園 成功橋 南崁溪橋 長興橋 純水 10

性趨勢分析可發現放大偵測決定 引此檢體加入汞濃度之放大偵測可 。

度之決定係數大多低於放大偵測 背景顏色須作為修正因素。

(一) 奈米金遇汞離子會產生聚合, 波峰值紅移。 (二) 250nM適體(長度20nt)/不同濃度的汞離子(反應20分鐘)→5µM四氯金酸/ 500µM 維生素C(反應1分鐘立即檢測)。

(三)胸腺嘧啶(T)與汞離子形成錯合物, 奈米金檢測對汞離子具專一性。 (四)不同檢體分析後,於純水或自來水檢體,其偵測結果皆呈正相關。 (五) 汞偵測範圍轉換距離曲線為一對一函數關係; 藉手機程式獲得溶液RGB距離時, 可換算汞離子濃度。

(六)本研究方法可應用於河川現場即時檢測,但仍須對檢體本身因素(背景顏色、水 中雜質等)進一步探討修正;後續研究可延伸至人體重金屬中毒之醫學檢測。

- Chang, C. C., Chen, C. P., Wu, T. H., Yang, C. H., Lin, C. W., & Chen, C. Y. (2019). Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. Nanomaterials 2019, 9, 861, 2~16
- 1.He, Z., Yin, H., Chang, C. C., Wang, G., & Liang, X. (2020) Interfacing DNA with gold nanoparticles for heavy metal detection. Biosensors, 10 (11), 167.
- 1.Hu, Y., Huang, Z., Liu, B., & Liu, J. (2021). Hg (II) Adsorption on Gold Nanoparticles Dominates DNA-Based Label-Free Colorimetric Sensing. ACS Applied Nano Materials,4,1-8.

11