# 中華民國第61屆中小學科學展覽會作品說明書

國中組 數學科

030424

#### 角落生霧

學校名稱:臺中市立清水國民中學

作者: 指導老師:

國二 白舒羽 林逸英

國二 李若暟 王永賢

國二 白晴羽

關鍵詞:正多邊形、外切

#### 摘要

我們由市售的角落生物椅凳,產生好奇心。原本想知道:若將正三角形內部沿著邊長有n個半徑為r的等圓與邊長相切時,邊長與面積與r的關係。後來進而探討正m多邊形每邊內側與n個半徑為r的等圓相切時,此時正多邊形周長S(m,n)及面積A(m,n)的通式。

接著我們將正 m 邊形的角落削切成為圓弧,形成圓角多邊形,其周長 S' (m, n)與面積 A' (m, n)的之通式。以數學歸納法證明以上通式,也推導證明 S 與 S' 的關係,A 與 A' 的關係。 我們發現相對於變數 n 而言,S(m, n)與 S' (m, n)為兩平行直線;A(m, n)與 A' (m, n)為兩拋

物線。

藉由給定m及n進行數值分析,針對以正三角形或正四邊形來製作不同半徑之圓角三角形,圓角四角形時,角落削切損失的面積為定值  $2.05r^2$ 與  $0.86r^2$ 等。對於圓角多邊形的削切給予建議。

#### 壹、研究動機

家政課時,老師要我們利用環保素材製作出有用的東西,發揮廢物再利用的精神;這時,我突然想到之前在網路社團看到有人利用回收牛奶罐製作出小凳子,有的是用兩個牛奶罐、有的人用三個、甚至四個,而不同數量牛奶罐有不同之形狀及邊長,於是我好奇的想:不同個數的牛奶罐所圍成的多邊形,其長度及面積是否有是否有特定之公式呢?所以便深入探討這個問題。







照片來源:https://www.facebook.com/groups/our.storage.diary

#### 貳、 研究目的

- 一、比較外切之圓角與尖角 m 邊形周長及面積之差異。
- 二、若改變邊長圓的個數,則其差值之改變如何。
- 三、觀察並比較正三角形、正四邊形、正五邊形、···至正 m 邊形之間外切之圓角與尖角周長及面積之差異。

四、觀察上述之情況是否有規律。

#### **参、研究設備及器材**

電腦、圓規、直尺、微軟 WORD、微軟 EXCEL、VISIO 繪圖軟體、。

#### 肆、研究過程

#### 一、 名詞定義

為方便推論研究,我們先將切於正 m 多邊形內部的所有圓的半徑都相等,並將半徑以 r 來表示。我們將正 m 邊形每邊內側外切 n 個圓時,此時正 m 邊形的**周長**定義為 S(m,n),**面積**定義為 A(m,n)。

若將「正 m 邊形」每個角削去,以同時與兩夾邊相切的圓弧取代該角,此時我們暫且定 義此形狀為「圓角 m 邊形」,內側外切 n 個圓時,「圓角 m 邊形」的周長定義為 S'(m,n),「圓角 m 邊形」的面積定義為 A'(m,n)。

#### 二、 探討正多邊形周長 S(m,n)及面積 A(m,n)與 r 的關係

首先我們要探討尖角正 m 邊形之周長及面積,試著找出其通式。

#### (一)正三角形(m=3 時)

#### 1.每邊內部切 2 個圓(n=2)

如圖(-),分別過圓心 J、K、L 作  $\overline{DJ} \perp \overline{JK}$ 、 $\overline{EK} \perp \overline{JK}$ 、 $\overline{FK} \perp \overline{KL}$ 、 $\overline{GL} \perp \overline{KL}$ 、 $\overline{HL} \perp \overline{JL}$ 、

$$\overline{IJ} \perp \overline{JL}$$
。連接 $\overline{AJ}$ ,則 $\angle JAD = 30^{\circ}$ , 又 $\angle JDA = 90^{\circ}$ ,則 $\angle AJD = 60^{\circ} \Rightarrow \frac{\overline{AD}}{\overline{JD}} = \tan 60^{\circ}$ ,

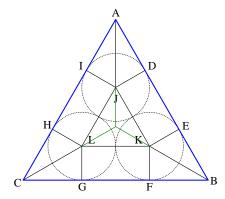
$$\therefore \overline{JD} = r \implies \overline{AD} = \overline{JD} \times \tan 60^{\circ} = \sqrt{3}r$$

同理, 
$$\overline{EB} = \overline{BF} = \overline{GC} = \overline{CH} = \overline{IA} = \sqrt{3}r$$

$$\overline{AB} = \overline{(AD + \overline{DE} + \overline{BE})} = \sqrt{3}r + 2r + \sqrt{3}r = (2 + 2\sqrt{3}) r$$

所以,邊長 $\overline{AB}$ =(2+2tan60°)·r

S(3,2)=正  $\triangle ABC$  之周 長=3 AB =3(2 + 2 $tan60^{\circ}$ )·r



圖(一) A(3,2)=正 ΔABC 面積=正ΔJLK+3 個矩形 DEKJ+3 個箏形 ADJI

$$=3 \cdot \frac{1}{2} \cdot 2r \cdot r \cot 60^{\circ} + 3 \times 2r^{2} + 3r^{2} \tan 60^{\circ} = 3(\cot 60^{\circ} + 2 + \tan 60^{\circ}) r^{2}$$

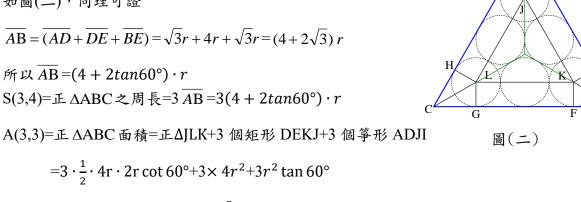
#### 2.每邊內部切3個圓(n=3)

如圖(二),同理可證

$$\overline{AB} = \overline{(AD + \overline{DE} + \overline{BE})} = \sqrt{3}r + 4r + \sqrt{3}r = (4 + 2\sqrt{3}) r$$

所以 $\overline{AB} = (4 + 2tan60^\circ) \cdot r$ 

$$S(3,4)$$
=正  $\triangle ABC$  之周 長= $3\overline{AB}$ = $3(4 + 2tan60^{\circ}) \cdot r$ 



$$=3 \cdot \frac{1}{2} \cdot 4r \cdot 2r \cot 60^{\circ} + 3 \times 4r^{2} + 3r^{2} \tan 60^{\circ}$$

$$=3(4 \cot 60^{\circ} + 4 + \tan 60^{\circ}) r^2$$

#### 3. 每邊內部切 n 個圓時

依圖(一)及圖(二),當 k 值增加為 k+1 時,會讓 3 個矩形的較長邊增加 2r,正ΔJLK邊長也 是增加 2r, 正AJLK面積則增加 $3\cdot(2k-1)r^2\cot 60^\circ$ 

因此我們推得  $S(3,4) = 3(6 + 2tan60^\circ) \cdot r$ 

$$A(3,4) = 3(9 \cot 60^{\circ} + 6 + \tan 60^{\circ}) r^2$$

我們猜想  $S(3,n) = 3(2(n-1) + 2 \tan 60^\circ) \cdot r$ 

$$A(3,n) = 3((n-1)^2 \cot 60^\circ + 2(n-1) + \tan 60^\circ) \cdot r^2$$

利用數學歸納法證明,假設 n=k 時,

$$S(3,k) = 3(2(k-1) + 2 \tan 60^{\circ}) \cdot r$$

$$A(3,k) = 3((k-1)^2 \cot 60^\circ + 2(k-1) + \tan 60^\circ) \cdot r^2$$
 皆成立

當 n=k+1 時,因為 3 個矩形的較長邊會增加 2r, S(3,k+1)相較於 S(3,k)增加 6r

$$S(3,k+1) = S(3,k)+6r = 3(2(k-1)+2 \tan 60^\circ) \cdot r + 6r$$
  
=  $3(2k+2 \tan 60^\circ) \cdot r$  成立

因此證得  $S(3,n) = 3(2(n-1) + 2 \tan 60^\circ) \cdot r$ 

同理,A(3,k+1)相較於A(3,k),矩形面積增加 $3\cdot 2r^2$ ,

正ΔJLK邊長由(2k-2) r 增加 2r 為 2kr,

正ΔJLK面積增加
$$3 \cdot \frac{1}{2} \cdot 2 \text{kr} \cdot \text{kr} \cot 60^{\circ} - 3 \cdot \frac{1}{2} \cdot (2 \text{k} - 2) \text{r} \cdot (\text{k} - 1) \text{r} \cot 60^{\circ}$$
$$= 3 \cdot (2 \text{k} - 1) r^2 \cot 60^{\circ}$$

所以,
$$A(3,k+1) = A(3,k) + 3 \cdot 2r^2 + 3 \cdot (2k-1)r^2 \cot 60^\circ$$
  
= $3((k-1)^2 \cot 60^\circ + 2(k-1) + tan60^\circ) \cdot r^2 + 3 \cdot 2r^2 + 3 \cdot (2k-1)r^2 \cot 60^\circ$   
= $3(k^2 \cot 60^\circ + 2k + tan60^\circ) \cdot r^2$ 

因此 
$$A(3,n) = 3((n-1)^2 \cot 60^\circ + 2(n-1) + \tan 60^\circ) \cdot r^2$$
 得證

#### (二)正方形(m=4 時)

#### 1.每邊內部切 2 個圓(n=2)

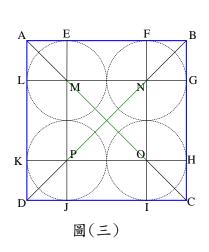
如圖(三),分別過圓心 M、N、O、P

作  $\overline{EM \perp MN}$  、  $\overline{FN \perp NM}$  、  $\overline{GN \perp NO}$  、

 $\overline{HO \perp ON}$   $\overline{IO \perp OP}$   $\overline{IP \perp PO}$   $\overline{KP \perp PM}$   $\overline{LM \perp MP}$   $\circ$ 

連接AM,則∠MAE=45°,

又 
$$\angle$$
MEA = 90° ,則  $\angle$ AME = 45°  $\Rightarrow \frac{\overline{AE}}{\overline{EM}}$  = tan 45° ,



 $\therefore \overline{ME} = r \implies \overline{AE} = \overline{ME} \times \tan 45^\circ = r \circ$ 

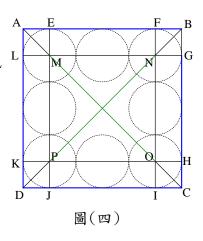
$$\overline{EF} = \overline{MN} = 2r$$
,

正方形邊長
$$\overline{AB} = (\overline{AE} + \overline{EF} + \overline{BF}) = r + 2r + r = 4r = (2 + 2tan45^{\circ}) \cdot r$$

S(4,2)=正方形 ABCD 周長= $4\overline{AB}$ = $4(2+2tan45^\circ)\cdot r$ 正方形 MNOP 面積以切割成 4 個等腰直角三角形計算之, A(4,2)=正方形 MNOP+4 個長方形 EFNM +4 個正方形 AEML

$$=4 \cdot \frac{1}{2} \cdot 2r \cdot r \cot 45^{\circ} + 4 \times 2r^{2} + 4r^{2} \tan 45^{\circ}$$

$$=4(\cot 45^{\circ} + 2 + \tan 45^{\circ}) \cdot r^{2}$$



#### 2.每邊內部切3個圓(n=3)

如圖(四),同理可證,

四邊形ABCD 之邊長
$$\overline{AB} = \overline{(AE + EF + BF)} = r + 4r + r = 4r = (4 + 2tan45^{\circ}) \cdot r$$

S(4,2)=正方形 ABCD 周長= $4\overline{AB}$ = $4(4+2tan45^{\circ})\cdot r$ 正方形 MNOP 面積以切割成 4 個等腰直角三角形計算之,

A(4,2)=正方形 MNOP+4 個長方形 EFNM +4 個正方形 AEML

$$=4 \cdot \frac{1}{2} \cdot 4r \cdot 2r \cot 45^{\circ} + 4 \times 4r^{2} + 4r^{2} \tan 45^{\circ}$$

$$=4(4 \cot 45^{\circ} + 4 + 4 \tan 45^{\circ}) \cdot r^{2}$$

#### 3.每邊內部切 n 個圓

依圖(三)及圖(四),當 k 值增加為 k+1 時,會讓 4 個矩形的較長邊增加 2r,內部正方形 MNOP

邊長也是增加 2r,正方形 MNOP 面積則增加  $4\cdot(2k-1)r^2\cot 45^\circ$ 

因此我們推得  $S(4,4) = 4(6 + 2tan45^{\circ}) \cdot r$ 

$$A(4,4) = 4(9 \cot 45 \circ + 6 + \tan 45 \circ) r^2$$

根據數學歸納法,應可證得  $S(4,n) = 4(2(n-1) + 2tan45^{\circ}) \cdot r$ 

$$A(4,n) = 4((n-1)^2 \cot 45^\circ + 2(n-1) + \tan 45^\circ) \cdot r^2$$

#### (三)正五邊形(m=5 時)

#### 1.每邊內部切 2 個圓(n=2)

如圖(五),分別過圓心 $P \cdot Q \cdot S \cdot T \cdot U f \stackrel{\overline{PP}}{FP} \perp \overline{PQ}$ 、

$$\overline{GQ} \perp \overline{QP} \cdot \overline{HQ} \perp \overline{QS} \cdot \overline{IS} \perp \overline{SQ} \cdot \overline{JS} \perp \overline{ST} \cdot \overline{KT} \perp \overline{TS} \cdot$$

 $\overline{LT} \perp \overline{TU} \cdot \overline{MU} \perp \overline{UT} \cdot \overline{NU} \perp \overline{UP} \cdot \overline{OP} \perp \overline{PU} \circ$ 

連接
$$\overline{AP}$$
,則 $\angle PAF = \frac{1}{2} \times \frac{(5-2) \times 180^{\circ}}{5} = 54^{\circ}$ ,

又
$$\angle AFP = 90^{\circ}$$
,則 $\frac{\overline{AF}}{\overline{EP}} = \tan 36^{\circ}$ ,

$$\therefore \overline{FP} = r \implies \overline{AF} = \overline{FP} \times \tan 36^{\circ} = r \tan 36^{\circ}$$

同理,
$$\overline{GB} = \overline{BH} = \overline{IC} = \overline{CJ} = \overline{KD} = \overline{DL} = \overline{ME} = \overline{EN} = \overline{OA} = r \tan 36^{\circ}$$
,

故五邊形 ABCDE 邊長  $\overline{AB} = \overline{(AF + FG + BG)} = \operatorname{rtan36}^{\circ} + 2r + \operatorname{rtan36}^{\circ} = (2 + 2\operatorname{tan36}^{\circ}) \cdot r$ 

$$S(5,2)$$
=正五邊形 ABCDE 周長= $5\overline{AB}$ = $5(2 + 2tan36^{\circ}) \cdot r$ 

正五邊形 PQSTU 面積以切割成 5 個頂角為 36 度的等腰三角形計算之,

A(5,2)=正五邊形 PQSTU+5 個長方形 FGQP+5 個箏形 AFPO

$$=5 \cdot \frac{1}{2} \cdot 2r \cdot r \cot 36^{\circ} + 5 \times 2r^{2} + 5r^{2} \tan 36^{\circ}$$

$$=5(\cot 36^{\circ} + 2 + \tan 36^{\circ}) \cdot r^2$$

#### 2.每邊內部切3個圓(n=3)

如圖(六),同理可證

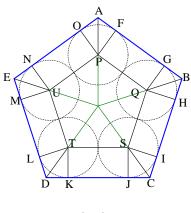
正五邊形 ABCDE 邊長  $\overline{AB} = (4 + 2tan 36^{\circ}) \cdot r$ 

S(5,3)=正五邊形 ABCDE 周長= $5\overline{AB}$ = $5(4 + 2tan36^{\circ}) \cdot r$ 

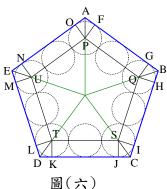
正五邊形 PQSTU 面積以切割成 5 個頂角為 36 度的等腰三角形計算之,

A(5,3)= 正五邊形 PQSTU+5 個長方形 FGQP+5 個箏形 AFPO

$$=5 \cdot \frac{1}{2} \cdot 4r \cdot 2r \cot 36^{\circ} + 5 \times 4r^{2} + 5r^{2} \tan 36^{\circ}$$



圖(五)



$$=5(4 \cot 36^{\circ} + 4 + \tan 36^{\circ}) \cdot r^2$$

#### 3.每邊內部切 n 個圓

依圖(五)及圖(六),當 k 值增加為 k+1 時,會讓 5 個矩形的較長邊增加 2r,內部正五邊形 PQSTU 邊長也是增加 2r,則正五邊形 PQSTU 面積則增加  $5\cdot(2k-1)r^2\cot 36^\circ$  因此我們推得  $S(5,4)=5(6+2\tan 36^\circ)\cdot r$ 

$$A(5,4) = 5(9 \cot 36^{\circ} + 6 + \tan 36^{\circ}) \cdot r^2$$

根據數量規則推論  $S(5,n) = 5(2(n-1) + 2tan36^{\circ}) \cdot r$ 

$$A(5,n) = 5((n-1)^2 \cot 36^\circ + 2(n-1) + \tan 36^\circ) \cdot r^2$$

我們可以以數學歸納法證明結果是正確的。

#### (三)正 m 邊形

對於任意大於或等於3的正整數m,在正m 邊形中,我們觀察上述方法所得結果,依相同方法來求S(m,n)及A(m,n)的通式。

#### 1.每邊內部切 2 個圓(n=2)

由前面之推論及證明,發現:

$$S(3,2)=3(2+2\tan 60^\circ) \cdot r \cdot A(3,2)=3(\cot 60^\circ + 2 + \tan 60^\circ) r^2$$

$$S(4,2) = 4(2 + 2tan45^{\circ}) \cdot r \cdot A(4,2) = 4(\cot 45^{\circ} + 2 + \tan 45^{\circ}) \cdot r^{2}$$

$$S(5,2) = 5(2 + 2\tan 36^\circ) \cdot r \cdot A(5,2) = 5(\cot 36^\circ + 2 + \tan 36^\circ) \cdot r^2$$

由此可推得 
$$S(m,2) = m\left(2 + 2\tan\frac{180^{\circ}}{m}\right) \cdot r$$
,

$$A(m,2) = m\left(\cot\frac{180^{\circ}}{m} + \frac{2}{2} + \tan\frac{180^{\circ}}{m}\right) \cdot r^2$$

#### 2.每邊內部切3個圓(n=3)

$$S(3,3) = 3(4 + 2tan60^{\circ}) \cdot r$$
,  $A(3,3) = 3(4\cot 60^{\circ} + 4 + \tan 60^{\circ}) r^2$ 

$$S(4,3) = 4(4 + 2tan45^\circ) \cdot r$$
, $A(4,3) = 4(4\cot 45^\circ + 4 + \tan 45^\circ) \cdot r^2$   
 $S(5,3) = 5(4 + 2tan36^\circ) \cdot r$ , $A(5,3) = 5(4\cot 36^\circ + 4 + \tan 36^\circ) \cdot r^2$   
由此可推得

$$S(m,3) = m\left(4 + 2\tan\frac{180^{\circ}}{m}\right) \cdot r$$
,  $A(m,3) = m\left(4\cot\frac{180^{\circ}}{m} + 4 + \tan\frac{180^{\circ}}{m}\right) \cdot r^2$ 

#### 3.每邊內部切 n 個圓

$$S(3,n)=3(2(n-1)+2tan60^\circ)\cdot r$$
, $A(3,n)=3((n-1)^2\cot 60^\circ+2(n-1)+\tan 60^\circ)\, r^2$   $S(4,n)=4(2(n-1)+2tan45^\circ)\cdot r$ , $A(4,n)=4((n-1)^2\cot 45^\circ+2(n-1)+\tan 45^\circ)r^2$   $S(5,n)=5(2(n-1)+2tan36^\circ)\cdot r$ , $A(5,n)=5((n-1)^2\cot 36^\circ+2(n-1)+\tan 36^\circ)r^2$  我們一樣可以運用數學歸納法證,得到以下通式: 
$$S(m,n)=m\left(2(n-1)+2\tan\frac{180^\circ}{m}\right)r$$
, $A(m,n)=m\left((n-1)^2\cot\frac{180^\circ}{m}+2(n-1)+\tan\frac{180^\circ}{m}\right)r^2$ 

#### 將結果表列如下:

(表一) 正 m 邊形邊長

|               | 正m邊形邊長 |                                     |                                     |                                     |                                                                 |  |
|---------------|--------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------------------------------|--|
| m=3 m=4 m=5 m |        |                                     |                                     |                                     |                                                                 |  |
| 每             | n=2    | $(2 + 2tan60^{\circ}) \cdot r$      | $(2 + 2tan45^{\circ}) \cdot r$      | (2 + tan36°) ⋅ r                    | $\left(2 + 2\tan\frac{180^{\circ}}{m}\right) \cdot r$           |  |
| 邊回            | n=3    | $(4 + 2tan60^{\circ}) \cdot r$      | $(4 + 2tan45^{\circ}) \cdot r$      | $(4 + tan 36^{\circ}) \cdot r$      | $\left(\frac{4+2\tan\frac{180^{\circ}}{m}\right)\cdot r$        |  |
| 圓之畑           | n=4    | ( <b>6</b> + 2tan60°) ⋅ r           | (6 + 2tan45°) ⋅ r                   | ( <b>6</b> + tan36°) ⋅ r            | $\left(\frac{6}{6} + 2\tan\frac{180^{\circ}}{m}\right) \cdot r$ |  |
| 個數            | n      | $(2(n-1) + 2tan60^{\circ}) \cdot r$ | $(2(n-1) + 2tan45^{\circ}) \cdot r$ | $(2(n-1) + 2tan36^{\circ}) \cdot r$ | $\left(\frac{2(n-1) + 2\tan\frac{180^{\circ}}{m}}\right)r$      |  |

#### (表二)正m邊形周長 S(m,n)

|       | 正 m 邊形周長 S(m,n) |                                 |                                 |                                 |                                                           |  |
|-------|-----------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------------------------------|--|
| ;     | 邊數              | m=3                             | m=4                             | m=5                             | m                                                         |  |
| 每     | n=2             | $3(2 + 2tan60^{\circ}) \cdot r$ | $4(2 + 2tan45^{\circ}) \cdot r$ | $5(2 + tan36^{\circ}) \cdot r$  | $m\left(2 + 2\tan\frac{180^{\circ}}{m}\right) \cdot r$    |  |
| 一邊回   | n=3             | $3(4 + 2tan60^{\circ}) \cdot r$ | $4(4 + 2tan45^{\circ}) \cdot r$ | $5(4 + tan36^{\circ}) \cdot r$  | $m\left(\frac{4+2\tan\frac{180^{\circ}}{m}\right)\cdot r$ |  |
| 圓 之 個 | n=4             | $3(6 + 2tan60^{\circ}) \cdot r$ | $4(6 + 2tan45^{\circ}) \cdot r$ | $5(6 + tan 36^{\circ}) \cdot r$ | $m\left(\frac{6+2\tan\frac{180^{\circ}}{m}\right)\cdot r$ |  |
| 數     | n               | 3(2(n-1))                       | 4(2(n-1)                        | 5(2(n-1)                        | $m\left(2(n-1)+2\tan\frac{180^{\circ}}{m}\right)r$        |  |
|       |                 | + 2tan60°) · r                  | $+ 2tan45^{\circ}) \cdot r$     | + 2tan36°) · r                  | m                                                         |  |

#### (表三) 正 m 邊形面積 A(m,n)

| 正 m 邊形面積 A(m,n) |     |                                                                   |                                                                   |                                                               |                                                                                                    |
|-----------------|-----|-------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                 |     | m=3                                                               | m=4                                                               | m=5                                                           | m                                                                                                  |
|                 | n=2 | $3(1\cot 60^{\circ} + \frac{2}{2} + \tan 60^{\circ}) r^{2}$       | $4(1\cot 45^{\circ} + \frac{2}{2} + \tan 45^{\circ}) \cdot r^{2}$ | $5(1\cot 36^{\circ} + 2 + \tan 36^{\circ}) \cdot r^{2}$       | $m\left(1\cot\frac{180^{\circ}}{m} + 2 + \tan\frac{180^{\circ}}{m}\right) \cdot r^2$               |
| 每一              | n=3 | $3(4\cot 60^{\circ} + 4 + \tan 60^{\circ}) r^{2}$                 | $4(4\cot 45^{\circ} + 4 + \tan 45^{\circ}) \cdot r^{2}$           | $5(4\cot 36^{\circ} + 4 + \tan 36^{\circ}) \cdot r^{2}$       | $m\left(4\cot\frac{180^{\circ}}{m} + 4 + \tan\frac{180^{\circ}}{m}\right) \cdot r^2$               |
| 邊圓之個數           | n=4 | $3(9\cot 60^{\circ} + 6 + \tan 60^{\circ}) r^{2}$                 | $4(9\cot 45^{\circ} + 6 + \tan 45^{\circ}) \cdot r^{2}$           | $5(9\cot 36^{\circ} + 6 + \tan 36^{\circ}) \cdot r^{2}$       | $m\left(\frac{9\cot\frac{180^{\circ}}{m} + 6 + \tan\frac{180^{\circ}}{m}\right) \cdot r^2$         |
|                 |     | $3((n-1)^2 \cot 60^{\circ} + 2(n-1) + \tan 60^{\circ}) \cdot r^2$ | $4((n - 1)^2 \cot 45^\circ + 2(n - 1) + \tan 45^\circ) \cdot r^2$ | $5((n-1)^2 \cot 36^\circ + 2(n-1) + \tan 36^\circ) \cdot r^2$ | $m\left(\frac{(n-1)^2\cot\frac{180^\circ}{m} + 2(n-1)}{+\tan\frac{180^\circ}{m}}\right) \cdot r^2$ |

#### (四)討論:

- 1. 以正三角形為例,每邊內側相切的圓之個數增加1個,則周長增加6r。若為正m角形,每一邊內側相切的圓之個數增加1個,則周長增加2mr。
- 2. 當 n 固定時,則正三角形周長 S(3,n)通式中的角度為 360 度的 6 分之 1,即為 60 度。

也就是說,正 m 邊形周長通式中之角度為 180 度的 m 分之一。

#### 三、 探討「圓角 m 邊形」的周長 S'(m,n)及面積 A'(m,n)與 r 的關係

將「尖角正 m 邊形」的每一個內角兩邊與圓弧所圍區域截去不要,得到這些圓的外公切線段及圓弧所圍內部區域,我們定義為「圓角 m 邊形」,接著,我們探討圓角 m 邊形之周長 S'(m,n)及面積 A'(m,n),並試著找出其通式。

#### (一)正三角形(m=3 時)

#### 1. 每邊內部切 2 個圓(n=2)

如圖(七),AB、CD、EF分別為圓G與圓H、圓H與圓I、圓I與圓G的外公切線段。故四邊形ABHG、CDIH、EFGI皆為長、寬分別為2r及r的長方形

$$\Rightarrow \overline{AB} = \overline{CD} = \overline{EF} = 2r$$
,  $\angle AGH = \angle FGI = 90^{\circ}$ 

 $\Delta$ GHI 為邊長 2r 的正三角形 ⇒ ∠HGI = 60°,

$$\therefore \angle AGF = 360^{\circ} - \angle AGH - \angle FGI - \angle HGI$$
$$= 360^{\circ} - 90^{\circ} - 90^{\circ} - 60^{\circ} = 120^{\circ}$$

∴ 弧 長 AF=
$$\frac{120^{\circ}}{360^{\circ}} \times 2\pi r = \frac{2}{3}\pi r$$

同理,弧長 BC=弧長 DE=
$$\frac{2}{3}\pi r$$

A G F E C D B (七)

則圓弧部分的長度和= 3×弧長 AF=2πr

故其圓角三角形周長 S'(3,2)= $3\overline{AB}$ +3 弧長 AF =  $3 \times 2r + 2\pi r$ 

面積部分,我們發現:扇形 AGF=扇形 BCH=扇形 DEI,面積和為 $\pi r^2$ 

所以,面積 A'(3,2)=ΔGHI+3 個長方形 ABHG+扇形 AGF+扇形 BCH+扇形 DEI

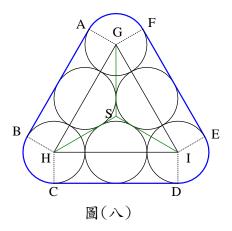
$$=3 \cdot \frac{1}{2} \cdot 2r \cdot r \cot 60^{\circ} + 3 \cdot 2r^{2} + 3 \times \frac{\pi r^{2}}{3} = 3 \times r^{2} \cot 60^{\circ} + 6r^{2} + \pi r^{2}$$

#### 2. 每邊內部切 3 個圓(n=3)

如圖(八),同理可得,若每邊內側外切3個圓時,

邊長的直線部分會增加 2r, 圓弧部分則不會改變,

故 S'(3,3)=
$$3\overline{AB}$$
+3 弧長 AF = $3 \times 4r + 2\pi r$ 



所圍內部區域面積 A'(3,3)=正 $\Delta$ GHI+3 個長方形 ABHG+ $\pi r^2$ 

$$=3 \cdot \frac{1}{2} \cdot 4r \cdot 2r \cot 60^{\circ} + 3 \cdot 4r^{2} + \pi r^{2} = 3 \times 4r^{2} \cot 60^{\circ} + 12r^{2} + \pi r^{2}$$

且 A'(3,3)=A'(3,2)+ 
$$(6r^2 + 3 \times 3r^2 \cot 60^\circ)$$

#### 3. 每邊內部切 n 個圓

依圖(七)及圖(八),當 k 值增加為 k+1 時,會讓 3 個矩形的較長邊增加 2r,所以正 $\Delta$ GHI 邊長也是增加 2r,則正 $\Delta$ JLK面積則增加 $3\cdot(2k-1)r^2\cot 60^\circ$ 

因此我們推得 S'(3,4) =  $3 \times 6r + 2\pi r$ 

A'(3.4) = 
$$3 \times 9r^2 \cot 60^\circ + 18r^2 + \pi r^2$$

我們觀察數量規則,猜想 S'(3,n)=3 × 2(n-1)r + 2πr

A'(3,n) = 
$$3 \times (n-1)^2 r^2 \cot 60^\circ + 6(n-1)r^2 + \pi r^2$$

利用「數學歸納法」證明,假設 n=k 時,

$$S'(3,k) = 3 \times 2(k-1)r + 2\pi r =$$

$$A'(3,k) = 3 \times (k-1)^2 r^2 \cot 60^\circ + 6(k-1)r^2 + \pi r^2$$
 皆成立

當 n=k+1 時,因為 3 個矩形的較長邊會增加 2r, S'(3,k+1)相較於 S'(3,k)增加 6r

$$S'(3,k+1) = S'(3,k)+6r = 3 \times 2(k-1)r + 2\pi r + 6r$$

$$=3 \times 2k r + 2\pi r$$
 得證

因此證得 S'(3,n) =  $3 \times 2(n-1)r + 2\pi r$ 

同理,A'(3,k+1)相較於 A'(3,k), 矩形面積增加
$$3 \cdot 2r^2$$
,

正ΔJLK面積增加
$$3 \cdot \frac{1}{2} \cdot 2 \text{kr} \cdot \text{kr} \cot 60^{\circ} - 3 \cdot \frac{1}{2} \cdot (2 \text{k} - 2) \text{r} \cdot (\text{k} - 1) \text{r} \cot 60^{\circ}$$
$$= 3 \cdot (2 \text{k} - 1) r^{2} \cot 60^{\circ}$$

所以,A'(3,k+1) =A'(3,k)+3·2
$$r^2$$
 + 3·(2k-1) $r^2$  cot 60°

$$= 3 \times (k-1)^2 r^2 \cot 60^\circ + 6(k-1)r^2 + \pi r^2 + 3 \cdot 2r^2 + 3 \cdot (2k-1)r^2 \cot 60^\circ$$

$$=3 \times k^2 r^2 \cot 60^\circ + 6kr^2 + \pi r^2$$

因此 A'(3,n) = 
$$3 \times (n-1)^2 r^2 \cot 60^\circ + 6(n-1)r^2 + \pi r^2$$
 得證

#### (二) 正方形(m=4 時)

#### 1. 每邊內部切 2 個圓(n=2)

如圖(九),AH、BC、DE、FG分別為圓 M 與圓 O、圓 M 與圓 N、圓 N 與圓 P、圓 P 與圓 O之外公切線,四邊形 MNPO 為一邊長為 2r 之正方形

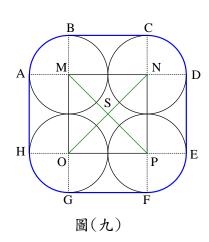
$$\therefore \angle AMB = \angle CND = \angle EPF = \angle GOH = 90^{\circ}$$

$$\Rightarrow$$
 3  $\&$  AB =  $\frac{90^{\circ}}{360^{\circ}} \times 2\pi r = \frac{1}{2}\pi r$ 

同理,弧長 CD=弧長 EF=弧長 GH=
$$\frac{1}{2}\pi r$$

4 個弧長的長度和=4 弧長 AB=2πr

故周長 S'(4,2)=
$$3\overline{AB}$$
+3 弧長 AF= $4 \times 2r + 2\pi r$ 



面積 A'(4,2)=正方形 MOPN+長方形 AHOM+長方形 BCNM+長方形 DEPN+長方形 FGOP + 扇形 AMB+扇形 CND+扇形 EPF+扇形 GOH

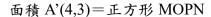
$$=4 \cdot \frac{1}{2} \cdot 2r \cdot r \cot 45^{\circ} + 4 \cdot 2r^{2} + 4 \times \frac{\pi r^{2}}{4} = 4 \times 1r^{2} \cot 45^{\circ} + 8r^{2} + \pi r^{2}$$

#### 2. 每邊內部切 3 個圓(n=3)

如圖(十),同理可證,若每邊內側外切3個圓時,圓角四邊形之周長

$$S'(4,3) = \overline{AH} + \overline{BC} + \overline{DE} + \overline{FG} + \overline{M} \in AB + \overline{M} \in CD + \overline{M} \in EF + \overline{M} \in GH^{A}$$

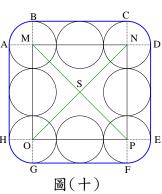
$$=4\times4r+4\times\frac{1}{2}\pi r=4\times4r+2\pi r$$



+長方形 AHOM+長方形 BCNM+長方形 DEPN+長方形 FGOP

+扇形 AMB+扇形 CND+扇形 EPF+扇形 GOH

$$=4 \cdot \frac{1}{2} \cdot 4r \cdot 2r \cot 45^{\circ} + 4 \cdot 4r^{2} + 4 \times \frac{\pi r^{2}}{4} = 4 \times \frac{4}{4}r^{2} \cot 45^{\circ} + \frac{16}{16}r^{2} + \pi r^{2}$$



#### 3. 每邊內部切 n 個圓

同理可求出,每邊內側外切 n 個圓時,則圓角四邊形之

周長 S'(4,n)=4 × 2(n-1)r +  $2\pi$ r

面積 A'(4,n)=
$$4 \times (n-1)^2 r^2 \cot 45^\circ + 4 \times \frac{2(n-1)r^2 + \pi r^2}{2(n-1)r^2 + \pi r^2}$$

#### (三)正五邊形(m=5 時)

#### 1. 每邊內部切 2 個圓(n=2)

如圖(十一),ĀJ、ĀC、ĀC、ĀC、ĀC、ĀG、ĀH分別為圓 Q 與圓 M、圓 M 與圓 N、圓 N 與圓 O、 圓 O 與圓 P、圓 P 與圓 Q 的公切線,故四邊形 AMJQ、BCNM、DEON、FGPO、HIQP 皆

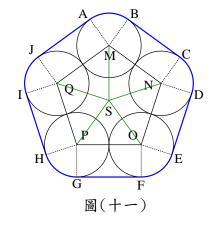
為長寬分別為 2r 與 r 的長方形,

∵MNOPQ 為正五邊形 故內角∠QMN=108°,

$$\chi$$
  $\angle$ AMQ =  $\angle$ BMN = 90°

$$\therefore \angle AMB = 360^{\circ} - 108^{\circ} - 90^{\circ} - 90^{\circ} = 72^{\circ}$$

同理, 孤長 CD= 孤長 EF= 孤長 GH= 孤長 
$$IJ = \frac{2}{5}\pi r$$



圓角五邊形周長 S'(5,2) =5 $\overline{BC}$ +5 弧長 AB =5×2r+2 $\pi$ r

面積 A'(5,2)=正五邊形 MNOPQ+5 個長方形 AJQM +5 個扇形 AMB

$$=5 \cdot \frac{1}{2} \cdot 2r \cdot r \cot 36^{\circ} + 5 \cdot 2r^{2} + 5 \times \frac{\pi r^{2}}{5} = 5 \times r^{2} \cot 36^{\circ} + 10r^{2} + \pi r^{2}$$

#### 2. 每邊內部切 3 個圓(n=3)

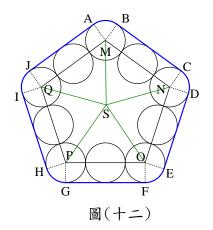
如圖(+ - 1),同理可證,圓角五邊形周長  $S'(5,3) = 5\overline{BC} + 5$  弧長 AB

$$=5 \times 4r + 2\pi r$$

面積 A'(5,2)=正五邊形 MNOPQ+5 個長方形 AJQM

+5 個扇形 AMB

$$=5 \cdot \frac{1}{2} \cdot 4r \cdot 2r \cot 36^{\circ} + 5 \cdot 4r^{2} + 5 \times \frac{\pi r^{2}}{5}$$
$$=5 \times 4r^{2} \cot 36^{\circ} + 5 \times 4r^{2} + \pi r^{2}$$



#### 3. 每邊內部切 n 個圓

以數學歸納法可以推論得,若每邊n個圓時

面積 A'(5,2)=正五邊形 MNOPQ+5 個長方形 AJQM+5 個扇形 AMB

$$=5 \cdot \frac{1}{2} \cdot 2(n-1)r \cdot (n-1)r \cot 36^{\circ} + 5 \cdot 2(n-1)r^{2} + 5 \times \frac{\pi r^{2}}{5}$$

$$=5 \times (n-1)^2 r^2 \cot 36^\circ + 5 \times 2(n-1)r^2 + \pi r^2$$

#### (四)正 m 邊形

#### 1. 每邊內部切 2 個圓(n=2)

由前面之證明可看出外切圓角之周長及面積

$$S'(3,2) = \frac{3}{3} \times 2r + 2\pi r$$
,  $A'(3,2) = \frac{3}{3} \times 1r^2 \cot \frac{60}{9} + \frac{6r^2}{7} + \pi r^2$ 

$$S'(4,2) = 4 \times 2r + 2\pi r$$
,  $A'(4,2) = 4 \times 1r^2 \cot 45^\circ + 8r^2 + \pi r^2$ 

$$S'(5,2) = \frac{5}{5} \times 2r + 2\pi r$$
,  $A'(5,2) = \frac{5}{5} \times 1r^2 \cot \frac{36}{5} + \frac{10r^2}{5} + \pi r^2$ 

同理可以證明

S'(m,2)=
$$m \times 2r + 2\pi r$$
 , A'(m,2) =  $m \times 1r^2 \cot \frac{180^\circ}{m} + 2mr^2 + \pi r^2$ 

#### 2. 每邊內部切 3 個圓(n=3)

由前面之證明可看出外切圓角之周長及面積

$$S'(3,3) = \frac{3}{3} \times 4r + 2\pi r$$
,  $A'(3,3) = \frac{3}{3} \times 4r^2 \cot \frac{60}{9} + \frac{3}{3} \times 4r^2 + \pi r^2$ 

$$S'(4,3) = 4 \times 4r + 2\pi r$$
,  $A'(4,3) = 4 \times 4r^2 \cot 45^\circ + 4 \times 4r^2 + \pi r^2$ 

$$S'(5,3) = \frac{5}{4} \times 4r + 2\pi r$$
,  $A'(5,3) = \frac{5}{4} \times 4r^2 \cot \frac{36}{6} + \frac{5}{4} \times 4r^2 + \pi r^2$ 

同理可以證明

S'(m,3)=
$$\frac{m}{m} \times 4r + 2\pi r$$
, A'(m,3) =  $\frac{m}{m} \times 4r^2 \cot \frac{180^{\circ}}{m} + m \times 4r^2 + \pi r^2$ 

#### 3. 每邊內部切 n 個圓

由前面之證明可看出外切圓角之周長及面積

$$S'(3,n) = \frac{3}{3} \times 2(n-1)r + 2\pi r$$
,  $A'(3,n) = \frac{3}{3} \times (n-1)^2 r^2 \cot \frac{60}{9} + \frac{3}{3} \times 2(n-1)r^2 + \pi r^2$ 

$$S'(4,n) = \frac{4}{4} \times 2(n-1)r + 2\pi r$$
,  $A'(4,n) = \frac{4}{4} \times (n-1)^2 r^2 \cot \frac{45}{9} + \frac{4}{4} \times 2(n-1)r^2 + \pi r^2$ 

$$S'(5,n) = \frac{5}{5} \times 2(n-1)r + 2\pi r$$
,  $A'(5,n) = \frac{5}{5} \times (n-1)^2 r^2 \cot \frac{36}{5} + \frac{5}{5} \times 2(n-1)r^2 + \pi r^2$ 

同理可以證明

$$S'(m,n) = \frac{m}{m} \times 2(n-1)r + 2\pi r$$

A'(m,n)=
$$m \times (n-1)^2 r^2 \cot \frac{180^{\circ}}{m} + m \times 2(n-1)r^2 + \pi r^2$$

#### (五)、討論:

將上述所得到之結果,彙整表列如(表四)及(表五):

- 1.以正三角形為例,圓角三角形之周長,隨著 n 增加 1, S'(3,n)會增加 6r。 推廣至圓角 m 邊形周長 S'(m,n)隨著 n 增加而等差的增加,其公差為 2mr。
- 2.以每一邊圓之個數2個為例,圓角三角形之周長,隨著 m 增加 1, S'(m,2)會增加 2r。 推廣至圓角 m 邊形周長 S'(m,n)隨著 m 增加而等差的增加,其公差為 2(n-1)r。
- 3.圓角 m 邊形,其轉角之圓弧長總和必為 2πr,即為一個圓之周長2πr。

#### (表四)圓角 m 邊形周長 S'(m,n)

| ì  | 邊數  | m=3                                                     | m=4                                                     | m=5                                                     | m                                                                |       |
|----|-----|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|-------|
| 每一 | n=2 | $3 \times 2$ r + $2\pi$ r                               | $4 \times 2$ r + $2\pi$ r                               | $5 \times 2$ r + $2\pi$ r                               | $m \times 2$ r + $2\pi$ r                                        | 2mr   |
| 邊回 | n=3 | $3 \times 4$ r + $2\pi$ r                               | $4 \times 4$ r + $2\pi$ r                               | $5 \times 4$ r + $2\pi$ r                               | $m \times 4$ r + $2\pi$ r                                        | 21111 |
| 圓之 | n=4 | $3 \times 6$ r + $2\pi$ r                               | $4 \times 6$ r + $2\pi$ r                               | $5 \times 6$ r + $2\pi$ r                               | $\mathbf{m} \times 6\mathbf{r} + 2\pi\mathbf{r}$                 | 2mr   |
| 個數 | n   | $3 \times 2(\mathbf{n} - 1)\mathbf{r} + 2\pi\mathbf{r}$ | $4 \times 2(\mathbf{n} - 1)\mathbf{r} + 2\pi\mathbf{r}$ | $5 \times 2(\mathbf{n} - 1)\mathbf{r} + 2\pi\mathbf{r}$ | $\mathbf{m} \times 2(\mathbf{n} - 1)\mathbf{r} + 2\pi\mathbf{r}$ |       |
|    |     |                                                         | ^                                                       |                                                         |                                                                  | •     |





#### (表五) 圓角 m 邊形面積 A'(m,n)

|      | 邊數  | m=3                                                                           | m=4                                                                           | m=5                                                                           | m                                                                                |
|------|-----|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|      | n=2 | $3 \times 1r^2 \cot 60^\circ$ $+ 3 \times 2r^2 + \pi r^2$                     | $4 \times 1r^2 \cot 45^\circ$ $+ 4 \times 2r^2 + \pi r^2$                     | $5 \times 1r^2 \cot 36^\circ$ $+ 5 \times 2r^2 + \pi r^2$                     | $m \times 1r^2 \cot \frac{180^{\circ}}{m} + m \times 2r^2 + \pi r^2$             |
| 每一邊  | n=3 | $3 \times 4r^2 \cot 60^\circ$ $+ 3 \times 4r^2 + \pi r^2$                     | $4 \times 4r^2 \cot 45^\circ$ $+ 4 \times 4r^2 + \pi r^2$                     | $5 \times 4r^2 \cot 36^\circ$ $+ 5 \times 4r^2 + \pi r^2$                     | $m \times 4r^2 \cot \frac{180^{\circ}}{m} + $ $m \times 4r^2 + \pi r^2$          |
| 圓之個以 | n=4 | $3 \times 9r^2 \cot 60^\circ$ $+ 3 \times 6r^2 + \pi r^2$                     | $4 \times 9r^2 \cot 45^\circ$ $+ 4 \times 6r^2 + \pi r^2$                     | $5 \times 9r^2 \cot 36^\circ$ $+ 5 \times 6r^2 + \pi r^2$                     | $m \times 9r^2 \cot \frac{180^{\circ}}{m} + $ $m \times 6r^2 + \pi r^2$          |
| 數    | n   | $3 \times (n-1)^{2} r^{2} \cot 60^{\circ} + 3 \times 2(n-1)r^{2} + \pi r^{2}$ | $4 \times (n-1)^{2} r^{2} \cot 45^{\circ} + 4 \times 2(n-1)r^{2} + \pi r^{2}$ | $5 \times (n-1)^{2} r^{2} \cot 36^{\circ} + 5 \times 2(n-1)r^{2} + \pi r^{2}$ | $m \times (n-1)^2 r^2 \cot \frac{180^{\circ}}{m} + m \times 2(n-1)r^2 + \pi r^2$ |

4. 圓角 m 邊形,其轉角之 m 個扇形面積總和必為定值πr²,即為一個圓之面積。 因此當 m 值與 n 值變大時,圓角部分的面積,占 A'(m,n)的比例就會相對變得比較小。

#### 伍、綜合討論

前兩節中我們已經成功找出正 m 邊形的 S(m,n)及 A(m,n),及圓角 m 邊形 S'(m,n)及 A'(m,n)。在本節中我們要比較 S(m,n)與 S'(m,n)的關係,A(m,n)與 A'(m,n)的關係。

#### 一、 比較 S(m,n)與 S'(m,n) , 並進行數值分析:

#### (一) 先比較 S(m,2) 與 S'(m,2):

(表六) S(m,2)與 S'(m,2)比較表

| 邊數      | 正三角形(m=3)                     | 正四邊形(m=4)                       | 正五邊形(m=5)                     | 正m邊形                                                   |
|---------|-------------------------------|---------------------------------|-------------------------------|--------------------------------------------------------|
| S(m,2)  | $3(2 + 2tan60^\circ) \cdot r$ | $4(2 + 2tan45^{\circ}) \cdot r$ | $5(2 + 2tan36^\circ) \cdot r$ | $m\left(2 + 2\tan\frac{180^{\circ}}{m}\right) \cdot r$ |
| S'(m,2) | $3 \times 2$ r + $2\pi$ r     | $4 \times 2$ r + $2\pi$ r       | $5 \times 2$ r + $2\pi$ r     | $m \times 2$ r + 2 $\pi$ r                             |

由表(六)中可看出:

#### (二)比較 S(m,3)與 S'(m,3):

表(七) S(m,3)與 S'(m,3)比較表

| 邊數      | 正三角形(m=3)                       | 正四邊形(m=4)                       | 正五邊形(m=5)                      | 正m 邊形                                                     |
|---------|---------------------------------|---------------------------------|--------------------------------|-----------------------------------------------------------|
| S(m,3)  | $3(4 + 2tan60^{\circ}) \cdot r$ | $4(4 + 2tan45^{\circ}) \cdot r$ | $5(4 + tan36^{\circ}) \cdot r$ | $m\left(\frac{4+2\tan\frac{180^{\circ}}{m}\right)\cdot r$ |
| S'(m,3) | $3 \times 4$ r + $2\pi$ r       | $4 \times 4$ r + $2\pi$ r       | $5 \times 4$ r + $2\pi$ r      | $m \times 4$ r + 2 $\pi$ r                                |

經比較表(六)與表(七)後可發現,不論是外切圓角或是外切尖角,其周長皆多了2mr。 由此可知每邊多一個圓,則每邊之邊長就增加2r,而邊長就增加了2mr。

#### (三)比較 S(m,n)與 S'(m,n):

S(m,n)與 S'(m,n)分別由  $m \times 2(n-1)r$ 加上尖角部分 $m \times \left(2\tan\frac{180^{\circ}}{m}\right)r$ 及圓角部分 $2\pi r \circ$ 

- 1. 正m 多邊形不管 m 為多少,圓角部分皆固定為2πr。
- 2. 因為多邊形邊數 m 越大,正多邊形的內角越越大,則尖角部分長度 $\mathbf{m} \times \left(2\tan\frac{180^{\circ}}{m}\right)r$  會隨著 m 變大而變小。當 m 趨近於無窮大時, $\mathbf{m} \times \left(2\tan\frac{180^{\circ}}{m}\right)r$  會趨近於 $2\pi r$ ,如 表(八)及表(九)。
- 3. 不管是尖角部分或是圓角部分其值都與 n 無關。

|         | 100 / 100-3-3/00 /2000                                                |
|---------|-----------------------------------------------------------------------|
| 邊數 m    | 正 m 邊形                                                                |
| S(m,n)  | $\mathbf{m} \times \left(2(n-1) + 2\tan\frac{180^{\circ}}{m}\right)r$ |
| S'(m,n) | $\mathbf{m} \times 2(\mathbf{n} - 1)\mathbf{r} + 2\pi\mathbf{r}$      |

表(八) S(m,n)與 S'(m,n)比較表一

(表九) S(m,n)與 S'(m,n)比較表二

| m 值 | 尖角部分 $m \times \left(2 \tan \frac{180^{\circ}}{m}\right) r$ | 圓角部分<br>2πr |
|-----|-------------------------------------------------------------|-------------|
| 3   | 10.392 r                                                    | 6.283 r     |
| 4   | 8.000r                                                      | 6.283  r    |
| 5   | 7.265 r                                                     | 6.283  r    |
| 6   | 6.928  r                                                    | 6.283  r    |
| 10  | 6.498 r                                                     | 6.283 r     |
| 20  | 6.335  r                                                    | 6.283 r     |
| 30  | 6.306  r                                                    | 6.283  r    |
| 60  | 6.289  r                                                    | 6.283 r     |
| 100 | 6.285  r                                                    | 6.283 r     |
| 200 | 6.284r                                                      | 6.283r      |

#### (四) S(m,n)與 S'(m,n)進行數值分析:

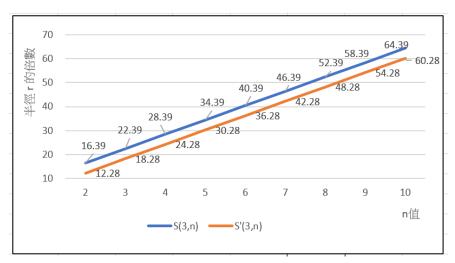
有了上述通式後,我們可以輕鬆的求出正m邊形每邊n個圓之周長。

接著我們以正三角形及正方形為例,將每邊 2~10 個圓的情況下將周長製成表(十)及表(十一),並繪成圖(十九)及圖(廿),可發現所繪成折線圖其實為**直線**。

隨著 m 增加, S(m,n)與 S'(m,n)的差值會越來越趨近於 0, 如表(十二)。

表(十) S(3,n)與 S'(3,n)比較表三

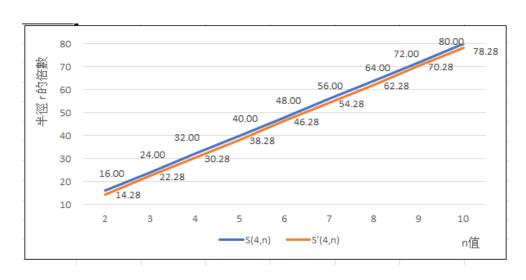
| m值 | n值 | S(3,n)  | S'(3,n) | S(3,n)- S'(3,n)<br>差值 |
|----|----|---------|---------|-----------------------|
| 3  | 2  | 16.39 r | 12.28 r | 4.11 r                |
| 3  | 3  | 22.39 r | 18.28 r | 4.11 r                |
| 3  | 4  | 28.39 r | 24.28 r | 4.11 r                |
| 3  | 5  | 34.39 r | 30.28 r | 4.11 r                |
| 3  | 6  | 40.39 r | 36.28 r | 4.11 r                |
| 3  | 7  | 46.39 r | 42.28 r | 4.11 r                |
| 3  | 8  | 52.39 r | 48.28 r | 4.11 r                |
| 3  | 9  | 58.39 r | 54.28 r | 4.11 r                |
| 3  | 10 | 64.39 r | 60.28 r | 4.11 r                |



圖(十九) 不同 n 值之 S(3,n)與 S'(3,n)圖

表(十一) S(4,n)與 S'(4,n)比較表三

| m值 | n值 | S(4,n)   | S'(4,n) | S(4,n)- S'(4,n)<br>差值 |
|----|----|----------|---------|-----------------------|
| 4  | 2  | 16.00 r  | 14.28 r | 1.72 r                |
| 4  | 3  | 24.00 r  | 22.28 r | 1.72 r                |
| 4  | 4  | 32.00  r | 30.28 r | 1.72 r                |
| 4  | 5  | 40.00  r | 38.28 r | 1.72 r                |
| 4  | 6  | 48.00 r  | 46.28 r | 1.72 r                |
| 4  | 7  | 56.00 r  | 54.28 r | 1.72 r                |
| 4  | 8  | 64.00 r  | 62.28 r | 1.72 r                |
| 4  | 9  | 72.00  r | 70.28 r | 1.72 r                |
| 4  | 10 | 80.00 r  | 78.28 r | 1.72 r                |



圖(廿) 不同n值之S(4,n)與S'(4,n)圖

表(十二) S(m,n)與 S'(m,n)的差值比較

| m 值 | S(m,n)- S'(m,n)<br>差值 |
|-----|-----------------------|
| 3   | 4.11 r                |
| 4   | 1.72 r                |
| 5   | 0.98  r               |
| 6   | 0.65  r               |
| 7   | 0.46 r                |
| 8   | 0.34  r               |
| 9   | 0.27  r               |
| 10  | 0.22  r               |

#### 二、 比較 A(m,n)與 A'(m,n), 並進行數值分析:

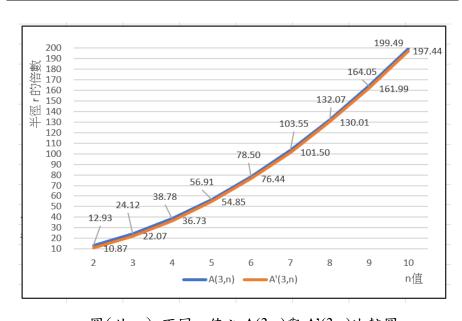
- (一) 將 A(m,n)與 A'(m,n)整理如表(十三),發現 A(m,n)及 A'(m,n)的差別在於尖角部分的面積  $m \times \tan \frac{180^{\circ}}{m} \cdot r^2$  及圓角部分的面積 $\pi r^2$  。
- (二) 尖角部分的面積會隨著m的變大,其值逐漸逼近於 $\pi r^2$ ,與n無關。
- (三) 圓角部分的面積 $\pi r^2$ ,不管 $m \cdot n$  值多少,都是固定值。
- (四) 不管是尖角部分或是圓角部分其值都與 n 無關。
- (五) m=3 為例,不管 n 值為多少,A(3,n)與 A'(3,n)的差約為  $2.05r^2$ ,如表(十四) 及圖(廿一)。 m=4 為例,不管 n 值為多少,A(4,n)與 A'(4,n)的差約為  $0.86r^2$ ,如表(十五) 及圖(廿二)。 隨著 m 增加,A(m,n)與 A'(m,n)的差值會趨近於 0,如表(十六)及圖(廿三)。

表(十三) A(m,n)與 A'(m,n)比較表

| 邊數m     | 正 m 邊形                                                                                     |
|---------|--------------------------------------------------------------------------------------------|
| A(m,n)  | $m\left((n-1)^2\cot\frac{180^\circ}{m}+2(n-1)+\tan\frac{180^\circ}{m}\right)\cdot r^2$     |
| A'(m,n) | $\frac{m \times (n-1)^2 r^2 \cot \frac{180^{\circ}}{m} + m \times 2(n-1)r^2 + \pi r^2}{m}$ |

表(十四) A(3,n)與 A'(3,n)比較表一

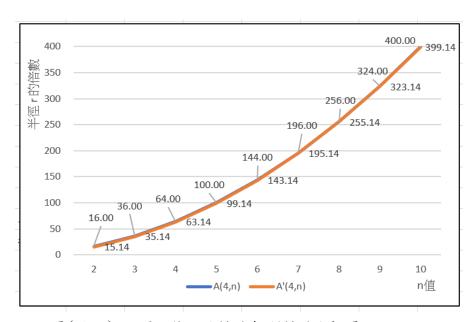
| m 值 | n值 | A(3,n)                 | A'(3,n)            | A(3,n)-<br>A'(3,n)<br>差值 | A(3,n)/A'(3,n)<br>比值 |
|-----|----|------------------------|--------------------|--------------------------|----------------------|
| 3   | 2  | $12.93 \cdot r^2$      | $10.87 \cdot r^2$  | $2.05 \cdot r^2$         | 1.19                 |
| 3   | 3  | $24.12 \cdot r^2$      | $22.07 \cdot r^2$  | $2.05 \cdot r^2$         | 1.09                 |
| 3   | 4  | $38.78 \cdot r^2$      | $36.73 \cdot r^2$  | $2.05 \cdot r^2$         | 1.06                 |
| 3   | 5  | $56.91 \cdot r^2$      | $54.85 \cdot r^2$  | $2.05 \cdot r^2$         | 1.04                 |
| 3   | 6  | $78.50 \cdot r^2$      | $76.44 \cdot r^2$  | $2.05 \cdot r^2$         | 1.03                 |
| 3   | 7  | $103.55 \cdot r^2$     | $101.50 \cdot r^2$ | $2.05 \cdot r^2$         | 1.02                 |
| 3   | 8  | $132.07 \cdot r^2$     | $130.01 \cdot r^2$ | $2.05 \cdot r^2$         | 1.02                 |
| 3   | 9  | $164.05 \cdot r^2$     | $161.99 \cdot r^2$ | $2.05 \cdot r^2$         | 1.01                 |
| 3   | 10 | 199.49· r <sup>2</sup> | $197.44 \cdot r^2$ | $2.05 \cdot r^2$         | 1.01                 |



圖(廿一) 不同 n 值之 A(3,n)與 A'(3,n)比較圖

(表十五) A(4,n)與 A'(4,n)比較表二

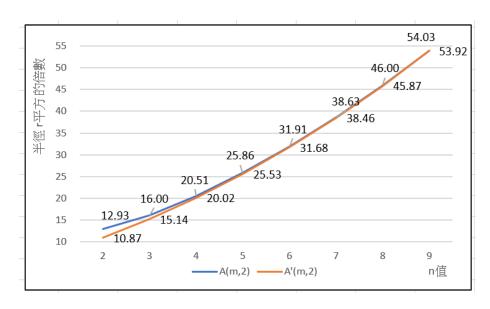
| m 值 | n值 | A(4,n)             | A'(4,n)            | A(4,n)-<br>A'(4,n)<br>差值 | A(4,n)/A'(4,n)<br>比值 |
|-----|----|--------------------|--------------------|--------------------------|----------------------|
| 4   | 2  | $16.00 \cdot r^2$  | $15.14 \cdot r^2$  | $0.86 \cdot r^2$         | 1.06                 |
| 4   | 3  | $36.00 \cdot r^2$  | $35.14 \cdot r^2$  | $0.86 \cdot r^2$         | 1.02                 |
| 4   | 4  | $64.00 \cdot r^2$  | $63.14 \cdot r^2$  | $0.86 \cdot r^2$         | 1.01                 |
| 4   | 5  | $100.00 \cdot r^2$ | 99.14· $r^2$       | $0.86 \cdot r^2$         | 1.01                 |
| 4   | 6  | $144.00 \cdot r^2$ | $143.14 \cdot r^2$ | $0.86 \cdot r^2$         | 1.01                 |
| 4   | 7  | $196.00 \cdot r^2$ | $195.14 \cdot r^2$ | $0.86 \cdot r^2$         | 1.00                 |
| 4   | 8  | $256.00 \cdot r^2$ | $255.14 \cdot r^2$ | $0.86 \cdot r^2$         | 1.00                 |
| 4   | 9  | $324.00 \cdot r^2$ | $323.14 \cdot r^2$ | $0.86 \cdot r^2$         | 1.00                 |
| 4   | 10 | $400.00 \cdot r^2$ | $399.14 \cdot r^2$ | $0.86 \cdot r^2$         | 1.00                 |



圖(廿二) 不同 n 值之 A(4,n)與 A'(4,n)比較圖

表(十六) A(m,n)與 A'(m,n)比較表

| m值 | n 值 | A(m,2)            | A'(m,2)           | A(m,2)-<br>A'(m,2)<br>差值 | A(m,2)/<br>A'(m,2)比值 |
|----|-----|-------------------|-------------------|--------------------------|----------------------|
| 3  | n   | $12.93 \cdot r^2$ | $10.87 \cdot r^2$ | $2.05 \cdot r^2$         | 1.19                 |
| 4  | n   | $16.00 \cdot r^2$ | $15.14 \cdot r^2$ | $0.86 \cdot r^2$         | 1.06                 |
| 5  | n   | $20.51 \cdot r^2$ | $20.02 \cdot r^2$ | $0.49 \cdot r^2$         | 1.02                 |
| 6  | n   | $25.86 \cdot r^2$ | $25.53 \cdot r^2$ | $0.32 \cdot r^2$         | 1.01                 |
| 7  | n   | $31.91 \cdot r^2$ | $31.68 \cdot r^2$ | $0.23 \cdot r^2$         | 1.01                 |
| 8  | n   | $38.63 \cdot r^2$ | $38.46 \cdot r^2$ | $0.17 \cdot r^2$         | 1.00                 |
| 9  | n   | $46.00 \cdot r^2$ | $45.87 \cdot r^2$ | $0.13 \cdot r^2$         | 1.00                 |
| 10 | n   | $54.03 \cdot r^2$ | $53.92 \cdot r^2$ | $0.11 \cdot r^2$         | 1.00                 |



圖(廿三) 不同 m 值之 A(m,n)與 A'(m,n)比較圖

#### 三、 證明 S(m,n)、S'(m,n)的線性關係:

- (一) 從表(八), $S(m,n) = m \times \left(2(n-1) + 2\tan\frac{180^{\circ}}{m}\right)r$ ,若將先將 m 視為定值,重新整理函數 關係式  $S(m,n) = 2mr \cdot n + (2mrtan\frac{180^{\circ}}{m} 2mr)$ ,則發現 S(m,n)為 n 的一次函數,斜率為 2mr,常數項為 $(2mrtan\frac{180^{\circ}}{m} 2mr)$ 。
- (二) 同理從表(八), $S'(m,n) = m \times 2(n-1)r + 2\pi r$ ,若先將 m 視為定值,重新整理函數關係式  $S'(m,n) = 2mr \cdot n + (2\pi r 2mr)$ ,則發現 S'(m,n)也是 n 的一次函數,斜率 2mr,常數項部分為 $(2\pi r 2mr)$ 。
- (三) 由上面關係式,我們證得 S(m,n)及 S'(m,n)是兩條斜率皆為 2mr 的平行直線。

(四) 
$$S(m,n)-S'(m,n)= [2mr \cdot n + (2mrtan \frac{180^{\circ}}{m} - 2mr)] - [2mr \cdot n + (2\pi r - 2mr)]$$

 $=2m \tan \frac{180^{\circ}}{m} \cdot r - 2\pi r$  為一個常數,不過隨著m越大, $2m \tan \frac{180^{\circ}}{m} \cdot r$ 

會逐漸逼近 2πr。

例如:當 m=3 代入時,
$$S(3,n)-S'(3,n)=6 \tan 60^{\circ} \cdot r - 2\pi r = (6\sqrt{3} - 2\pi)r$$
 
$$= (6 \times 1.732 - 2 \times 3.14)r = 4.11 \cdot r$$
 當 m=4 代入時, $S(4,n)-S'(4,n)=8 \tan 45^{\circ} \cdot r - 2\pi r = (8-2\pi)r$  
$$= (8-2\times 3.14)r = 1.72 \cdot r$$

此處計算結果均與表(十)與表(十一)的數值分析結果一致。

#### 四、 A(m,n)與 A'(m,n)的二次函數關係比較:

(一) 從表(十三),
$$A(m,n) = m\left((n-1)^2\cot\frac{180^\circ}{m} + 2(n-1) + \tan\frac{180^\circ}{m}\right) \cdot r^2$$
,重新整理關係式 
$$A(m,n) = mr^2\cot\frac{180^\circ}{m}(n^2 - 2n + 1) + 2mr^2(n-1) + mr^2\tan\frac{180^\circ}{m}$$
$$= mr^2\cot\frac{180^\circ}{m} \cdot n^2 + 2mr^2\left(1 - \cot\frac{180^\circ}{m}\right) \cdot n + mr^2\left(\tan\frac{180^\circ}{m} + \cot\frac{180^\circ}{m} - 2\right)$$
發現  $A(m,n)$ 與  $n$  的呈現二次函數關係。

(二) 同理從表(十三),A'(m,n)=
$$m \times (n-1)^2 r^2 \cot \frac{180^\circ}{m} + m \times 2(n-1)r^2 + \pi r^2$$

$$= mr^2 \cot \frac{180^\circ}{m} (n^2 - 2n + 1) + 2mr^2 (n-1) + \pi r^2$$

$$= mr^2 \cot \frac{180^\circ}{m} \cdot n^2 + 2mr^2 \left(1 - \cot \frac{180^\circ}{m}\right) \cdot n + mr^2 \left(\cot \frac{180^\circ}{m} - 2\right) + \pi r^2$$
發現 A'(m,n)與 n 的也是二次函數關係。

(三) 相較於 n 而言,A(m,n)-A'(m,n)= 
$$mr^2 \tan \frac{180^\circ}{m} - \pi r^2$$
為常數。 例如: 當 m=3,A(m,n)-A'(m,n)=  $3r^2 \tan 60^\circ - \pi r^2 = 3\sqrt{3}r^2 - \pi r^2$  
$$= \left(3\sqrt{3} - \pi\right)r^2 = 2.05r^2$$

此計算結果與數值分析表(十六)的結果相同

(四) 由上述證明,即 A(m,n)及 A'(m,n)是兩個開口向上、開口大小相同的拋物線,A'(m,n)為 A(m,n)向上平移  $mr^2 tan \frac{180^\circ}{m} - \pi r^2$  單位而得。

#### 陸、結論

一、正 m 多邊形,無論尖角及圓角,每邊內側外切 n 個圓,皆求得其周長及面積計算公式,如表(十七)。

分類 失角 圓角

周長  $S(m,n)=m \times \left(2(n-1)+\right)$   $S'(m,n)=m\left((n-1)^2\cot\frac{180^\circ}{m}+2(n-1)\right)$   $S'(m,n)=m\left((n-1)^2\cot\frac{180^\circ}{m}+2(n-1)\right)$  面積  $A'(m,n)=m \times (n-1)^2r^2\cot\frac{180^\circ}{m}+\frac{1}{m}\times 2(n-1)r^2+\pi r^2$ 

表(十七)正m多邊形尖角、圓角之周長與面積計算通式

二、正 m 邊形尖角周長 S(m,n)隨著圓的個數 n 增加, 其 S(m,1)、S(m,2)、…、S(m,n)為等差數列,公差為 2mr。

圓角 m 邊形周長 S'(m,n) 隨著圓的個數 n 增加,其  $S'(m,1) \times S'(m,2) \times \cdots \times S'(m,n)$  為等差數列,公差為 2mr。因此 S(m,n)及 S'(m,n)的圖形必為平行的直線。

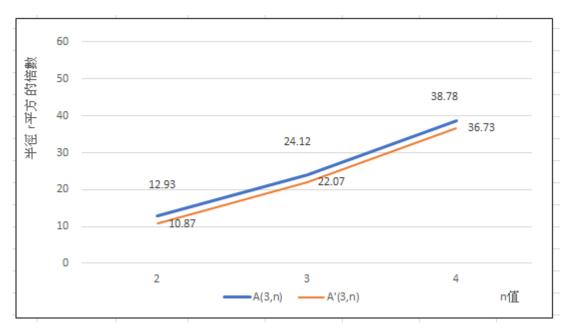
- 三、正 m 邊形尖角周長 S(m,n)與圓角 m 邊形圓角周長 S'(m,n),邊數 m 增加,則尖角周長 S(m,n) 與圓角周長 S'(m,n)的差值趨近於 0,比值會越來越接近 1。
- 四、正 m 邊形尖角面積 A(m,n)及圓角 m 邊形圓角面積 A'(m,n),隨著圓個數 n 增加, A(m,n) 與 A'(m,n)為 n 的二次函數。n 值越大, 兩者的差值趨近於 0, 比值會越來越接近 1。

五、當 n 值固定,尖角面積及圓角面積的差值為定值。

例如:正三角形尖角面積為 $12.93r^2$ ,每邊內側外切 n 個圓時,則圓角面積為 $12.93r^2$ - $2.05r^2=10.87r^2$ ,如圖( + 四) 。

同理,若任意正方形面積為 10r2, 每邊內側外切 n 個圓時,則其圓角面積為

$$10r^2 - 0.86r^2 = 9.14r^2$$
,參考表(十五)。



圖(廿四) 利用 A(m,n)可推算 A'(m,n)

- 六、一般而言, 市售的圓角四邊形、圓角六邊形、圓角八邊形的凳子, 可由正方形、正六邊形正八邊形, 加工截角為圓弧而成, 依據本研究, 就很清楚了解製作過程中損耗多少材料。例如: 正方形木板裁切圓角時, 所裁切圓角半徑若為 r, 則損失面積為 A(4,n)—A'(4,n)=0.86·  $r^2$ 。
  - (一)當我們決定的半徑 r, 損失的材料面積可以很快可以計算出來。
  - (二)如果 r 越大,其角落就會越圓,當然損失的面積也就越多。

#### 七、未來研究方向:

- (一)本研究的外切圓位置是在正多邊形內側邊緣上與多邊形的邊相切,若將圓心改為在正多邊形邊上,且正多邊形每個頂點上都放置一個圓,應可得到不同的結果。
- (二) 若將正多邊形改為任意多邊形,給定多邊形的每個內角皆外切一個半徑為r的圓時,削去尖角改為圓角,稱之為圓角多邊形,改成探討圓角多邊形周長 S'與面積 A'與多邊形周長 S 及面積 A 的關係。我們有嘗試探討任意梯形,並將初步結果寫在研究日誌中。

#### 柒、 參考資料

- 一、網路社群 Facebook「收納狂的日常」社團 https://www.facebook.com/groups/our.storage.diary
- 二、上垣涉·山本裕子,古古洛斯島圓形之謎,初版,國際村,2002。
- 三、羅浩源,生活的數學,一版,九章出版社,1997。

#### 【評語】030424

由生活中實際看到的現象所衍生而出的一個有趣的問題。作 者們把問題轉化為如下的數學問題:在正 m 邊形(或作者們所定 義的『圓角正 m 邊形』)內部沿著邊放置 n 個與邊相切且前後兩 圓兩兩相切的半徑相等的圓,所有這些圓的周長與面積的和與原 本正多邊形(或『圓角正多邊形』)的周長與面積的比值會是多 少?作者們針對一般化的問題給出了答案。能夠將數學概念活用 於生活中,針對實際的問題作分析、討論並給出一般化的解答, 十分難得,值得嘉許。比較美中不足的是,有部分的論述稍嫌繁 複了些。如果作者們有注意到連接相鄰的圓的圓心所得出的圖形 其實會與原正多邊形相似這個圖形的特性,很多的說明應該可以 更為精簡。此外,在討論圓角正多邊形時,如果可以利用所有相 對於原本頂點的這些扇形合併後會是一個圓這樣的特性,應該也 可以讓某些論述變的更簡單。後半部關於正多邊形與對應的圓角 正多邊形的關連性的討論其實不需要佔太多的篇幅(兩者的關連 性其實由給出的表示式就可以明顯的看出了),可以將討論的重點 放在一些延伸的問題上(例如:考慮每個內角都大於60度的菱形 或鳶形)。如果能對更一般化的問題給出一些好的結論,會是一個 更好的作品。沒有針對這個部分在多做發揮,有點可惜了。

作品簡報

## 中華民國第61屆中小學科學展覽會

角落生霧

otiono

科 別:數學科

組 別:國中組

## 研究動機

因圆柱形罐子做成的不同形狀椅凳,引發我們的好奇。

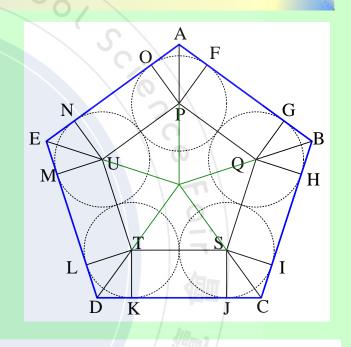
## 名詞定義

- 正m邊形每邊內側外切n個圓時: **周長**定義為S(m, n) **面積**定義為A(m, n)
- 正m邊形每個角削去,以同時與兩夾邊相切的圓弧 取代該角,定義此圖形為「圓角m邊形」
- 「圓角m邊形」每邊內側外切n個圓時: 周長定義為S'(m,n) 面積定義為A'(m,n)

## 以正五邊形為例 求S(5,2)及A(5,2)

$$=5\overline{AB}$$

$$=5(2 + 2tan36^{\circ}) \cdot r_{\downarrow}$$



A(5,2)=正五邊形 PQSTU+5 個長方形 FGQP+5 個箏形 AFPO

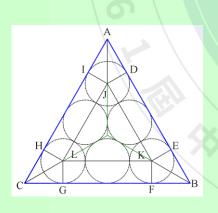
$$=5 \cdot \frac{1}{2} \cdot 2r \cdot r \cot 36^{\circ} + 5 \times 2r^{2} + 5r^{2} \tan 36^{\circ}$$

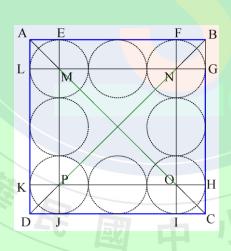
$$=5(\cot 36^{\circ} + 2 + \tan 36^{\circ}) \cdot r^{2}$$

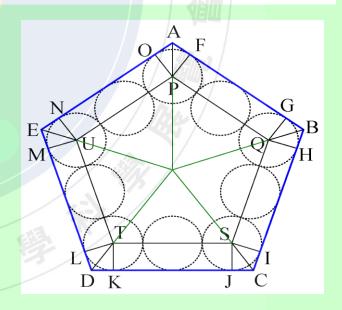
## 正m邊形周長S(m,n)及面積A(m,n)

$$S(m,n) = m\left(2(n-1) + 2\tan\frac{180^{\circ}}{m}\right)r$$

$$A(m,n) = m\left((n-1)^2 \cot \frac{180^{\circ}}{m} + 2(n-1) + \tan \frac{180^{\circ}}{m}\right) r^2$$



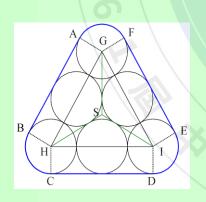


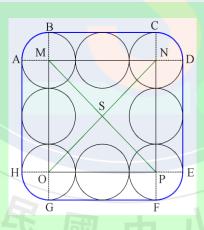


## 圆角m邊形S'(m,n)及A'(m,n)

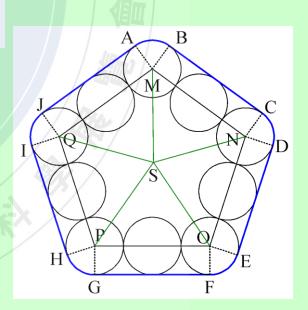
$$S'(m,n) = m \times 2(n-1)r + 2\pi r$$

A'(m,n)=
$$m \times (n-1)^2 r^2 \cot \frac{180^\circ}{m}$$
  
+ $m \times 2(n-1)r^2$   
+ $\pi r^2$ 



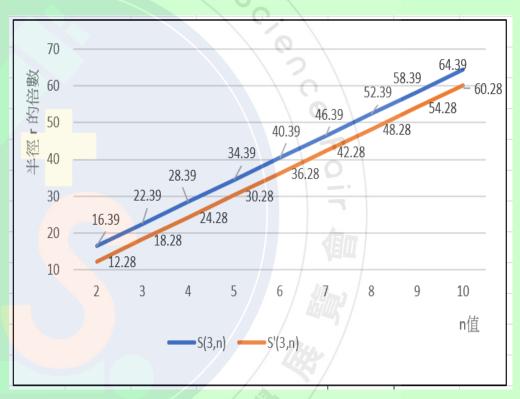


並以數學歸納法證明我們推論的公式



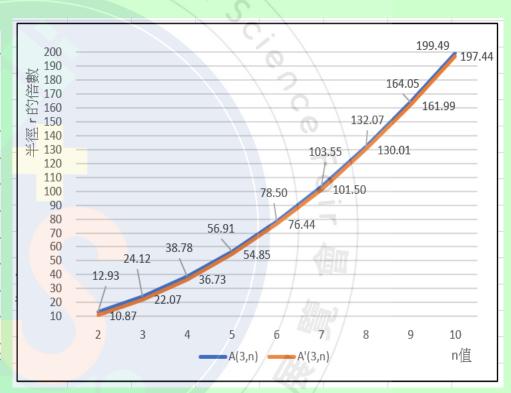
# 數值分析一S(3,n)與S′(3,n)比較

|            |     | /                | /                |                         |
|------------|-----|------------------|------------------|-------------------------|
| m值₽        | n值₽ | S(3,n)           | S'(3,n)          | S(3,n)- S'(3,n)-<br>差值₽ |
| 3₽         | 2₽  | 16.39 r₽         | 12.28 <i>r</i> ₽ | 4.11 <i>r</i> ₽         |
| 3₽         | 3₽  | 22.39 r₽         | 18.28 <i>r</i> ₽ | 4.11 <i>r</i> ₽         |
| <b>3</b> ₽ | 4₽  | 28.39 r          | 24.28 <i>r</i> ₽ | 4.11 <i>r</i> ₽         |
| 3₽         | 5₽  | 34.39 <i>r</i> ₽ | 30.28 <i>r</i> ₽ | 4.11 <i>r</i> ₽         |
| 3₽         | 6₽  | 40.39 r₽         | 36.28 <i>r</i> ₽ | 4.11 <i>r</i> ₽         |
| 3₽         | 7₽  | 46.39 <i>r</i> ₽ | 42.28 <i>r</i> ₽ | 4.11 <i>r</i> ₽         |
| 3₽         | 8₽  | 52.39 r₽         | 48.28 <i>r</i> ₽ | 4.11 <i>r</i> ₽         |
| 3₽         | 9₽  | 58.39 r₽         | 54.28 <i>r</i> ₽ | 4.11 <i>r</i> ₽         |
| 3₽         | 10₽ | 64.39 <i>r</i> ₽ | 60.28 <i>r</i> ₽ | 4.11 <i>r</i> ₽         |



# 數值分析一A(3,n)與A′(3,n)比較

| m 值÷ | n值↔ | A(3,n)                          | A'(3,n)\varphi             | A(3,n)-<br>A'(3,n)-<br>差值。 | A(3,n)/A'(3,n)+<br>比值+ |
|------|-----|---------------------------------|----------------------------|----------------------------|------------------------|
| 3₽   | 2₽  | $12.93 \cdot r^2 \varphi$       | $10.87 \cdot r^2 \varphi$  | $2.05 \cdot r^2 \varphi$   | 1.19₽                  |
| 3₽   | 3₽  | $24.12 \cdot r^2 \varphi$       | $22.07 \cdot r^2 \varphi$  | $2.05 \cdot r^2$           | 1.09₽                  |
| 3₽   | 4₽  | 38.78· r <sup>2</sup> ₽         | $36.73 \cdot r^2 \varphi$  | $2.05 \cdot r^2$           | 1.06₽                  |
| 3₽   | 5₽  | 56.91· r <sup>2</sup> ₽         |                            | $2.05 \cdot r^2$           | 1.04₽                  |
| 3₽   | 6₽  | 78.50 r <sup>2</sup> ₽          |                            | $2.05 \cdot r^2$           | 1.03₽                  |
| 3₽   | 7₽  | 103.55 r <sup>2</sup> ↔         | $101.50 \cdot r^2 \varphi$ | $2.05 \cdot r^2$           | 1.02₽                  |
| 3₽   | 8₽  | 132.07· r <sup>2</sup> ↔        | 130.01· r <sup>2</sup> ₽   |                            | 1.02₽                  |
| 3₽   | 9₽  | 164.05· r² €                    | $161.99 \cdot r^2 =$       |                            | 1.01₽                  |
| 3₽   | 10₽ | 199.49∙ <i>r</i> <sup>2</sup> ↔ | 197.44 r <sup>2</sup> ₽    | $2.05 \cdot r^2 $          | 1.01₽                  |



# 數值分析一S(m,n)與S′(m,n)比較

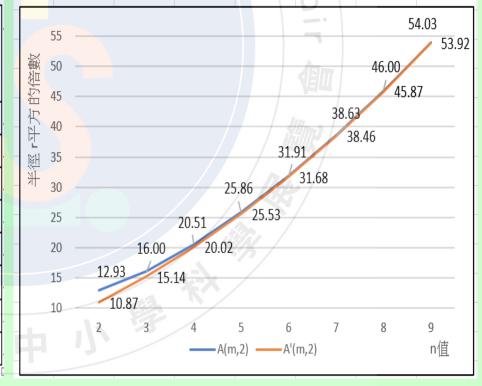
| 邊數m。      | 正 m 邊形。                                                                          |   |
|-----------|----------------------------------------------------------------------------------|---|
| S(m,n) -  | $\mathbf{m} \times \left( \frac{2(n-1) + 2 \tan \frac{180^{\circ}}{m} \right) r$ |   |
| S'(m,n) - | $\mathbf{m} \times 2(\mathbf{n} - 1)\mathbf{r} + 2\pi \mathbf{r}$                | * |

| m值。   | 尖角部分。 $m \times \left(2 \tan \frac{180^{\circ}}{m}\right) r$ | 圓角部分。<br>2πr。 |
|-------|--------------------------------------------------------------|---------------|
| 3 ₽   | 10.392 r                                                     | 6.283 r       |
| 4 .   | 8.000 r =                                                    | 6.283 r       |
| 5 ₽   | 7.265 r.                                                     | 6.283 r       |
| 6.    | 6.928 r.                                                     | 6.283 r       |
| 10 0  | 6.498 r =                                                    | 6.283 r       |
| 20 🕫  | 6.335 r +                                                    | 6.283 r       |
| 30 -  | 6.306 r.                                                     | 6.283 r.      |
| 60 ₽  | 6.289 r                                                      | 6.283 r       |
| 100 - | 6.285 r                                                      | 6.283 r       |
| 200 - | 6.284r                                                       | 6.283r        |

# 數值分析一A(m,n)與A'(m,n)比較

| 邊數m。      | 正m邊形。                                                                                      |
|-----------|--------------------------------------------------------------------------------------------|
| A(m,n) .  | $m\left((n-1)^2\cot\frac{180^{\circ}}{m}+2(n-1)+\tan\frac{180^{\circ}}{m}\right)\cdot r^2$ |
| A'(m,n) - | $\frac{m \times (n-1)^2 r^2 \cot \frac{180^\circ}{m} + m \times 2(n-1)r^2 + \pi r^2}{m}$   |

| m 值+ | n值↔ | A(m,2).                   | A'(m,2)&                  | A(m,2)-<br>A'(m,2)-<br>差值。 | A(m,2)/<br>A'(m,2)比值。 |
|------|-----|---------------------------|---------------------------|----------------------------|-----------------------|
| 3₽   | n₽  | 12.93· r <sup>2</sup> ↔   | $10.87 \cdot r^2$         | $2.05 \cdot r^2 \varphi$   | 1.19₽                 |
| 4₽   | n₽  | $16.00 \cdot r^2$         | $15.14 \cdot r^2 =$       | $0.86 \cdot r^2 \varphi$   | 1.06₽                 |
| 5₽   | nø  | $20.51 \cdot r^2$         | 20.02· r <sup>2</sup> ₽   | $0.49 \cdot r^2 \varphi$   | 1.02₽                 |
| 6₽   | n₽  | $25.86 \cdot r^2 \varphi$ | 25.53· r <sup>2</sup> ₽   | $0.32 \cdot r^2 \varphi$   | 1.01₽                 |
| 7₽   | n₽  | $31.91 \cdot r^2 \varphi$ | $31.68 \cdot r^2 \varphi$ | $0.23 \cdot r^2$           | 1.01₽                 |
| 8₽   | n₽  | $38.63 \cdot r^2 \varphi$ | $38.46 \cdot r^2$         | $0.17 \cdot r^2$           | 1.00₽                 |
| 9₽   | n₽  | 46.00∙ <i>r</i> ² ₽       | 45.87· r <sup>2</sup> ₽   | $0.13 \cdot r^2 \varphi$   | 1.00₽                 |
| 10₽  | n₽  | 54.03· r <sup>2</sup> ₽   | 53.92· r <sup>2</sup> ₽   | $0.11 \cdot r^2$           | 1.00₽                 |



# S(m, n)、S'(m, n)為n的一次函數

• S(m, n)與 S'(m, n)皆為n的一次函數  $S(m, n) = 2mr \cdot n + \left(2mrtan \frac{180^{\circ}}{m} - 2mr\right)$   $S'(m, n) = 2mr \cdot n + \left(2\pi r - 2mr\right)$ 

- ·  $S(m, n) S'(m, n) = 2m \tan \frac{180°}{m} \cdot r 2\pi r$ 為常數
- ・隨著m越大, $2m \tan \frac{180^{\circ}}{m}$ ・r會逐漸逼近 $2\pi r$

# A(m,n)與A'(m,n)為n的二次函數

- $A(m, n) = mr^2 cot \frac{180^{\circ}}{m} \cdot n^2 + 2mr^2 \left(1 cot \frac{180^{\circ}}{m}\right) \cdot n + mr^2 \left(tan \frac{180^{\circ}}{m} + cot \frac{180^{\circ}}{m} 2\right)$
- A'  $(m, n) = mr^2 \cot \frac{180^{\circ}}{m} \cdot n^2 + 2mr^2 \left(1 \cot \frac{180^{\circ}}{m}\right) \cdot n + mr^2 \left(\cot \frac{180^{\circ}}{m} 2\right) + \pi r^2$
- ・ 相較於n而言,  $A(m,n)-A'(m,n)=mr^2\tan\frac{180^{\circ}}{m}-\pi r^2 為常數$
- · A(m, n)及A'(m, n)是兩個開口方向大小相同的拋物線
- A' (m, n)為A(m, n)向上平移  $mr^2 tan \frac{180^\circ}{m} \pi r^2$  而得

### 結論

- S(m,1)、S(m,2)、…、S(m,n)為等差數列,公差為2mr。
   S'(m,1)、S'(m,2)、…、S'(m,n)為等差數列,公差為2mr。
   S(m,n)及S'(m,n)的圖形為平行的直線。
- m增加, S(m, n)與S' (m, n)的差值趨近於0,比值接近1。
- A(m,n)及A'(m,n)為n的二次函數,開口方向及大小一樣。 n值越大,兩者的差值趨近於0,比值會越來越接近1。
- 當n值固定,尖角面積及圓角面積的差值為定值。例如:正三角形尖角面積為 $12.93r^2$ ,每邊內側外切n個圓時,則圓角面積為 $12.93r^2-2.05r^2=10.87r^2$ 。同理,若任意正方形面積為 $10r^2$ ,每邊內側外切n個圓時,則其圓角面積為 $10r^2-0.86r^2=9.14r^2$ 。

#### • 未來研究建議:

將正多邊形改為任意多邊形,給定多邊形的每個內角皆外切一個半徑為r的圓時,削去尖角改為圓角,稱之為圓角多邊形,改成探討圓角多邊形問長S'與面積A'與多邊形問長S及面積A的關係。我們有嘗試探討長方形及等腰梯形,並將初步結果寫在研究日誌中。