中華民國第60屆中小學科學展覽會作品說明書

國小組 數學科

探究精神獎

080404

星際任務

學校名稱:新北市樹林區文林國民小學

作者:

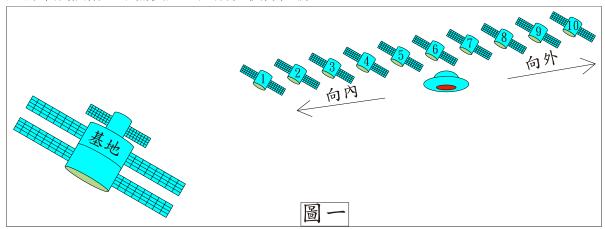
小六 周柏亨

小五 陳青宏

小四 廖翊淇

指導老師:

林忠正


王郁惠

關鍵詞:節能、最小值

摘要

在一座太空基地外,有 10 個等距離的衛星站排成一列(如圖一)。現有 10 個太空人分別 前往相異的衛星站執行任務,他們從基地搭乘飛行船一同前往,但飛行船只能降落一次,所 以有些太空人還要再利用推進器才能抵達要到的衛星站。當太空人向外太空方向(向外)移動 一個站距,推進器要耗能 5 根燃料棒;向基地方向(向內)移動一個站距,推進器要耗能 2 根 燃料棒,那麼飛行船要降落在哪一個衛星站,才能使這 10 個太空人的總耗能最小?

我們將上述推進器向外、向內的耗能及衛星站<u>一般化</u>,並改變情境,亦即並非每個太空人都要搭飛行船抵達衛星站,也可以只靠推進器抵達;或者並非每個衛星站都有任務要執行,可以只有某幾個衛星站需要太空人前往執行任務。

壹、研究動機

本研究是在大家腦力激盪下,將建中通訊解題中的一道題目修改而來,修改後的題目如下:在一個遙遠的星際,有一座太空基地。基地外有 n 個等距離的衛星站排成一列(如圖一),現在要派太空人前往執行任務。但基地的飛行船都去執行其他任務,只剩下一艘老舊的飛行船可以使用,而它的電池故障了,備用電池只能讓它啟動一次,因此飛行船只能選擇其中一個衛星站降落。現有 n 個太空人搭乘此飛行船從基地出發,他們分別到相異的衛星站執行任務,在飛行船降落後,太空人要依靠推進器才能抵達衛星站。因為引力的關係,太空人往基地方向(向內)移動一個衛星站距,要耗能 d 根燃料棒,往外太空方向(向外)移動一個衛星站距,要耗能 u 根燃料棒,此時飛行船要降落在哪一個衛星站,才可使得這 n 個太空人的總耗能最小?

究竟要降落在哪一個衛星站呢?這引起我們的興趣,於是開啟我們一連串的探討。

貳、研究目的

- 一、有 n 個衛星站、n 個太空人,且這 n 個太空人<u>都要搭飛行船</u>到相異的衛星站執行任務。 此時,太空人使用推進器向外移動一個站距要耗能 u 根燃料棒,向內移動一個站距要耗 能 d 根燃料棒,若飛行船只能降落一次,那麼要降落在哪一個衛星站,才能使這 n 個太 空人移動的總耗能最小?並找出其總耗能。
- 二、承一,但這n個太空人<u>並非都要搭飛行船</u>到相異的衛星站執行任務。那麼要降落在哪一個衛星站,才能使這n個太空人移動的總耗能最小?並找出其總耗能。
- 三、承一,但只有m個太空人(m<n),這m個太空人<u>都要搭飛行船</u>到相異的衛星站執行任務。那麼要降落在哪一個衛星站,才能使這m個太空人移動的總耗能最小?並找出其總耗能。

參、研究器材及設備

紙、筆、電腦、計算機。

肆、研究過程

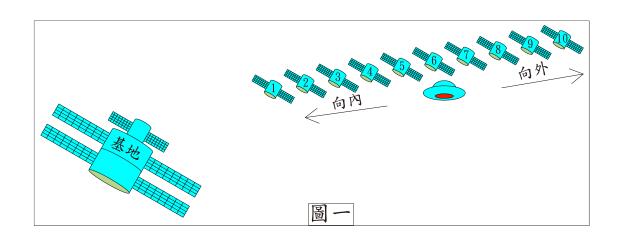
一、文獻探討

- (一)以下是建中第149期通訊解題中的一道題目,我們根據此題目改編成我們探討的主題。
- (二)題目:一棟 33 層的舊倉儲大樓僅有一部貨梯停在第一層,受到功能限制它最多能容納 32 個貨物,而且每次只能在第 2 層至第 33 層選擇某一層停留一次,其餘每個貨物則需要往上或往下搬動,若往下搬動一層樓梯會需要用到 1 個人力,而往上走一層則需運用到 3 個人力。現有 32 個貨物在第一層,若要把這些貨物運送到第 2 層至第 33 層每層各一個,試問電梯停留在哪一層會使得整體人力運用到最少?又最少的人力需求為多少人次?(注意有些貨物可以不搭貨梯直接運用人力搬移)
 - (三)此道通訊解題公布的解法是使用二元二次的配方法,而我們將情境改變並一般化後,以 觀察、歸納、驗證的方式得到結果。

二、定義

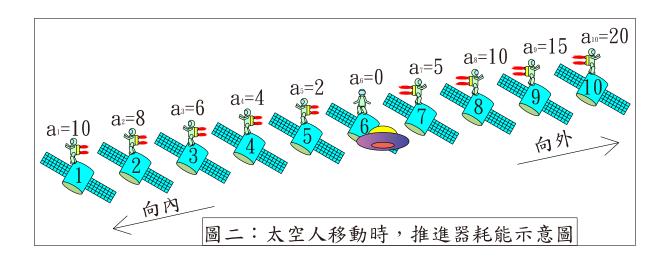
(一)名詞解釋

- 1. 向外耗能 u:太空人<u>向外太空方向</u>移動一個站距,推進器要消耗的燃料棒數,以 u 表示。
- 2. 向內耗能 d:太空人向基地方向移動一個站距,推進器要消耗的燃料棒數,以 d表示。
- 3. 站距:相鄰兩衛星站之間的距離為一個站距,連續三個衛星站之間有兩個站距。


(二)符號

1. s: 衛星站, s=1 表示第 1 個衛星站, s∈N。

- 2. a_n :太空人要抵達第 n 個衛星站的耗能, $a_n \in \mathbb{N}$ 。
- 3. A_s : 總耗能,飛行船降落在第 s 個衛星站時,所有太空人移動的耗能總和, $A_s \in N$ 。 $A_s = a_1 + a_2 + a_3 + a_4 + \dots + a_n$
- (三) u>d:虛擬因引力關係,使用推進器向外太空方向移動較耗能,所以規定 u>d。


三、研究方法

研究一: 給定 n 個衛星站、n 個太空人, 這 n 個太空人<u>都搭飛行船</u>, 太空人下船後, 向外移動一個站距, 推進器要耗能 u 根燃料棒; 向內移動一個站距, 推進器要耗能 d 根燃料棒, 探討飛行船降落在第 s 個衛星站時, 這 n 個太空人移動的總耗能(A_s), 並找出這 n 個太空人移動所需總耗能最小的衛星站。

A. 求飛行船降落在各衛星站時的總耗能 A。

例一:給定 10 個衛星站、10 個太空人,且這 10 個太空人<u>都搭飛行船</u>,若向外耗能 5、向内 耗能 2,飛行船降落在第 6 個衛星站時,A₆是多少?

【解】: 1.將飛行船降落在各衛星站,太空人移動的耗能情況整理成下表一。

2.飛行船降落在第6個衛星站,這10個太空人移動的總耗能

 $A_6=10+8+6+4+2+0+5+10+15+20=80$ °

				K	$\Pi = \Pi$	J · u–5	· u=z				
	aı	a 2	аз	a 4	a 5	a 6	a ₇	a ₈	a ₉	a 10	As
s=1	0	5	10	15	20	25	30	35	40	45	225
s=2	2	0	5	10	15	20	25	30	35	40	182
s=3	4	2	0	5	10	15	20	25	30	35	146
s=4	6	4	2	0	5	10	15	20	25	30	117
s=5	8	6	4	2	0	5	10	15	20	25	95
s=6	10	8	6	4	2	0	5	10	15	20	80
s=7	12	10	8	6	4	2	0	5	10	15	72
s=8	14	12	10	8	6	4	2	0	5	10	71
s=9	16	14	12	10	8	6	4	2	0	5	77
s=10	18	16	14	12	10	8	6	4	2	0	90

表一 n=10、u=5、d=2

引理一:給定 n 個衛星站、n 個太空人,且這 n 個太空人<u>都搭飛行船</u>,若向外耗能 5、向內耗能 2,則飛行船降落在第 s 個衛星站時,這 n 個太空人移動的總耗能

$$A_s = 5 \sum_{t=s+1}^{n} (t-s) + 2 \sum_{t=1}^{s-1} (s-t)$$

- 【說明】: 1.在第 s 個衛星站下船後,分別要抵達第(s+1)個衛星站、第(s+2)個衛星站、……第 n 個衛星站的太空人,他們要往外太空方向移動。現在考慮其中一太空人要到第 t 個衛星站,則他身上的推進器要耗能 5(t-s) 根燃料棒,故所有向外移動的太空人的 總耗能 $=5\sum_{t=s+1}^{n}(t-s)$ 。
 - 2.在第 s 個衛星站下船後,分別要抵達第 1 個衛星站、第 2 個衛星站、……第(s-1)個衛星站的太空人,他們要往基地方向移動。現在考慮其中一太空人要到第 t 個衛星站,則他身上的推進器要耗能 2(s-t) 根燃料棒,故所有向內移動的太空人的總耗能 $=2\sum_{t=1}^{s-1} (s-t)$ 。
 - 3.由上述 1、2 知,飛行船降落在第 s 個衛星站時,

太空人移動的總耗能=太空人向外移動的總耗能+太空人向內移動的總耗能,即

$$A_s = 5 \sum_{t=s+1}^{n} (t-s) + 2 \sum_{t=1}^{s-1} (s-t)$$

定理一:給定 n 個衛星站、n 個太空人,且這 n 個太空人<u>都搭飛行船</u>,若向外耗能 u、向內耗能 d,則飛行船降落在第 g 個衛星站時,這 g 個太空人移動的總耗能

$$A_s = u \sum_{t=s+1}^{n} (t-s) + d \sum_{t=1}^{s-1} (s-t)$$

【說明】: 由引理一的說明知, 若向外耗能 5 換成 u, 向內耗能 2 換成 d, 同樣可推得飛行船降落在第 s 個衛星站時, 這 n 個太空人移動的總耗能

$$A_s = u \sum_{t=s+1}^{n} (t-s) + d \sum_{t=1}^{s-1} (s-t)$$

B. <u>比較</u>相鄰兩衛星站,太空人移動的總耗能關係,求總耗能最小的衛星站

將衛星站的個數與太空人的人數**一般化**,整理成表二。

	aı	a 2	a 3	a 4	as	a 6	a ₇	a 8	a ₉	•••	an	As
s=1	0	5	10	15	20	25	30	35	40		5(n-1)	Aı
s=2	2	0	5	10	15	20	25	30	35		5(n-2)	A_2
s=3	4	2	0	5	10	15	20	25	30	•••	5(n-3)	A 3
s=4	6	4	2	0	5	10	15	20	25	•••	5(n-4)	A_4
s=5	8	6	4	2	0	5	10	15	20	•••	5(n-5)	A 5
s=6	10	8	6	4	2	0	5	10	15		5(n-6)	A6
s=7	12	10	8	6	4	2	0	5	10		5(n-7)	A7
s=8	14	12	10	8	6	4	2	0	5	•••	5(n-8)	A_8
s=9	16	14	12	10	8	6	4	2	0	•••	5(n-9)	A9
:	:		:					:	:			÷
s=n	2(n-1)	2(n-2)	2(n-3)	2(n-4)	2(n-5)	2(n-6)	2(n-7)	2(n-8)	2(n-9)		0	An

【說明】: 1.觀察表二發現: $A_2 = A_1 - \frac{5x(n-1)}{2} + \frac{2x(2-1)}{2}$

$$A_3 = A_2 - 5x(n-2) + 2x(3-1)$$

$$A_4 = A_3 - \frac{5x(n-3)}{2} + \frac{2x(4-1)}{3}$$

$$A_5 = A_4 - \frac{5x(n-4)}{2} + 2x(5-1)$$

$$A_6 = A_5 - \frac{5x(n-5)}{2} + \frac{2x(6-1)}{3}$$

$$A_7 = A_6 - \frac{5x(n-6)}{2} + \frac{2x(7-1)}{3}$$

$$A_8 = A_7 - \frac{5x(n-7)}{2} + 2x(8-1)$$

÷

$$A_s = A_{s-1} - 5 (n-(s-1)) + 2(s-1)$$

的總耗能關係為 $A_s = A_{s-1} - 5[n-(s-1)] + 2(s-1)$

承表二,將向外耗能、向內耗能一般化,整理成表三。

表二	向外耗能 u	`	向内耗能 d
1\			

	aı	a 2	a 3	a 4	as	a 6	a ₇	a ₈	a9		an	A_s
s=1	0	u	2u	3u	4u	5u	6u	7u	8u		u(n-1)	Aı
s=2	d	0	u	2u	3u	4u	5u	6u	7u		u(n-2)	A2
s=3	2d	d	0	u	2u	3u	4u	5u	6u		u(n-3)	A ₃
s=4	3d	2d	d	0	u	2u	3u	4u	5u		u(n-4)	A4
s=5	4d	3d	2d	d	0	u	2u	3u	4u	•••	u(n-5)	A 5
s=6	5d	4d	3d	2d	d	0	u	2u	3u		u(n-6)	A_6
s=7	6d	5d	4d	3d	2d	d	0	u	2u	:	u(n-7)	A7
s=8	7d	6d	5d	4d	3d	2d	d	0	u	•••	u(n-8)	A_8
s=9	8d	7d	6d	5d	4d	3d	2d	d	0		u(n-9)	A9
:								:				::
s=n	d(n-1)	d(n-2)	d(n-3)	d(n-4)	d(n-5)	d(n-6)	d(n-7)	d(n-8)	d(n-9)		0	An

【說明】: 1.觀察表三發現: $A_2 = A_1 - ux(n-1) + dx(2-1)$

$$A_3 = A_2 - ux(n-2) + dx(3-1)$$

$$A_4 = A_3 - ux(n-3) + dx(4-1)$$

$$A_5 = A_4 - ux(n-4) + dx(5-1)$$

$$A_6 = A_5 - ux(n-5) + dx(6-1)$$

$$A_7 = A_6 - ux(n-6) + dx(7-1)$$

$$A_8 = A_7 - ux(n-7) + dx(8-1)$$

:

$$A_s = A_{s-1} - u (n-(s-1)) + d(s-1)$$

2. <a href="

太空人移動的總耗能關係為 $A_s = A_{s-1} - u \left(n - (s-1) \right) + d(s-1)$

- 3.我們將上述2的結論稱作引理二。
- 4.分析許多表格,和推敲上述 2 的結論,找到 "**减掉的耗能**"與 "**增加的耗能**", 兩者間的關係由<u>減多加少</u>變成<u>減少加多(或減與加相等)</u>時,會有太空人移動所需 總耗能最小的衛星站,如下表四的 s=8,將這關係寫成引理三。

引理二:給定 n 個衛星站、n 個太空人,且這 n 個太空人<u>都搭飛行船</u>,若向外耗能 u、向内耗能 d,則 $A_s = A_{s-1} - u$ [n-(s-1)] + d (s-1)。

- 引理三:給定 n 個衛星站、n 個太空人,且這 n 個太空人<u>都搭飛行船</u>,當向外耗能 u、向內耗能 d 時,若 u [n-(s-1)]>d (s-1) ,且 u $(n-s)\leq ds$,會有這 n 個太空人移動所需總耗能最小的衛星站。
- 【說明】: 1.由引理二知, $A_s = A_{s-1} u [n (s-1)] + d(s-1)$
 - 2.由表三知,從第 1 個衛星站到第 n 個衛星站,飛行船越往外太空降落,減掉 "u[n-(s-1)]" 的值越來越 $\underline{\Lambda}$,而增加 "d(s-1)" 的值越來越 $\underline{\Lambda}$ 。
 - 3.當"**減掉的耗能**"與"**增加的耗能**",兩者之間的關係由**減多加少**變成①<mark>減少加多或②減與加相等</mark>("減掉的耗能"與"增加的耗能"相等)時,會有最小總耗能的衛星站(如下表四的第8個衛星站)。
 - 4.由引理二的 $A_s = A_{s-1} u [n-(s-1)] + d(s-1)$,可推得 $A_{s+1} = A_s u(n-s) + ds$
 - 5.由上述 $3 \cdot 4$ 知,當: $\mathfrak{u} [n-(s-1)] > d(s-1)$,且 $\mathfrak{u}(n-s) \le ds$ 時,第 \mathfrak{s} 個衛星站 為太空人移動所需總耗能最小的衛星站。

例二:給定 11 個衛星站、11 個太空人,且這 11 個太空人<u>都搭飛行船</u>,若 u=5、d=2,則這 11 個太空人移動所需總耗能最小的衛星站為何?

【解】:1.由引理三知,5[11-(s-1)] > 2(s-1),且 $5(11-s) \le 2s$,可得 $7\frac{6}{7} \le s < 8\frac{6}{7}$,

又 s∈N,故 s=8,所以第8個衛星站為太空人移動所需總耗能最小的衛星站,如下表四所示。

				1		=11 ` u	.=J ` u=	-2				
	a_1	a_2	аз	a 4	a 5	a 6	a ₇	a ₈	a9	a 10	a 11	A_s
s=1	0	5	10	15	20	25	30	35	40	45	50	275
s=2	2	0	5	10	15	20	25	30	35	40	45	227
s=3	4	2	0	5	10	15	20	25	30	35	40	186
s=4	6	4	2	0	5	10	15	20	25	30	35	152
s=5	8	6	4	2	0	5	10	15	20	25	30	125
s=6	10	8	6	4	2	0	5	10	15	20	25	105
s=7	12	10	8	6	4	2	0	5	10	15	20	92
s=8	14	12	10	8	6	4	2	0	5	10	15	86
s=9	16	14	12	10	8	6	4	2	0	5	10	87
s = 10	18	16	14	12	10	8	6	4	2	0	5	95
s=11	20	18	16	14	12	10	8	6	4	2	0	110

表四 n=11、u=5、d=2

我們解引理三中的兩個不等式,得到 s 的範圍是 $\frac{un}{u+d} \le s < \frac{un}{u+d} + 1$,將此結果稱作定理二。

定理二:給定 n 個衛星站、n 個太空人,且這 n 個太空人<u>都搭飛行船</u>,若向外耗能 u、向內耗 能 d,則這 n 個太空人移動所需總耗能最小的衛星站 s,會介於 $\frac{un}{u+d}$ 和 $\frac{un}{u+d}$ +1 之間,亦即 $\frac{un}{u+d}$ \leq s $< \frac{un}{u+d}$ +1。

【說明一】: 1. 由引理二知:

$$A_s = A_{s-1} - u (n-(s-1)) + d (s-1)$$

 $A_{s+1} = A_s - u(n-s) + ds$

2.由引理三知,當太空人移動總耗能的變化由<u>減多加少</u>變成<u>①減少加多,或②減</u> <u>與加相等(</u>"減掉的耗能"與"增加的耗能"相等)時,會有太空人移動所需總 耗能最小的衛星站,即

$$u$$
 $[n-(s-1)] > d(s-1)$,且 $u(n-s) \le ds$ 。

3.猜想第 s 個衛星站為太空人移動所需總耗能最小的衛星站,則由上述 1、2 可推

知,①u〔
$$n-(s-1)$$
〕 $>d(s-1)$ ⇒ $\frac{un}{u+d}+1>s$

$$2u(n-s) \le ds \Rightarrow \frac{un}{u+d} \le s$$

- ③由上述①、②得 $\frac{un}{u+d} \le s < \frac{un}{u+d} + 1$
- ④等號成立時,A_s=A_{s+1},第 s 個衛星站和第 s+1 個衛星站,同時為太空人 移動所需總耗能最小的衛星站。
- 【說明二】:猜想飛行船降落在第 s 個衛星站,會有太空人移動所需最小總耗能,那麼飛行船降落在第 (s-1)個、第 (s+1)個衛星站時,太空人移動所需的總耗能,顯然會大於或等於降落在第 s 個衛星站時,太空人移動所需的總耗能,所以 $A_{s+1}-A_s\geq 0$ 。

 $(1) A_{s-1} - A_s$

$$\begin{split} &=u\sum_{t=s}^{n}[t-(s-1)]+d\sum_{t=1}^{s-2}[(s-1)-t]-u\sum_{t=s+1}^{n}(t-s)-d\sum_{t=1}^{s-1}(s-t)\\ &=\frac{(n-s+2)(n-s+1)}{2}\times u+\frac{(s-1)(s-2)}{2}\times d-\frac{(n-s+1)(n-s)}{2}\times u-\frac{s(s-1)}{2}\times d\\ &=u(n-s+1)-d(s-1)=un-us+u-ds+d \end{split}$$

 \(\Bar{\text{\in}} A_{s-1}-A_s>0\), \(\text{Figure}(un-us+u-ds+d)>0\) \(\text{\text{\in}} un+u+d>us+ds\),

可得
$$s < \frac{un}{u+d} + 1$$
。

(2) $A_{s+1} - A_s$

$$= u \sum_{t=s+2}^{n} [t - (s+1)] + d \sum_{t=1}^{s} [(s+1) - t] - u \sum_{t=s+1}^{n} (t-s) - d \sum_{t=1}^{s-1} (s-t)$$

$$= \frac{(n-s-1)(n-s)}{2} \times u + \frac{s(s+1)}{2} \times d - \frac{(n-s+1)(n-s)}{2} \times u - \frac{s(s-1)}{2} \times d = us - un + ds$$
因為 $A_{s+1} - A_s \ge 0$,所以 $(us - un + ds) \ge 0 \Rightarrow us + ds \ge un$,可得 $s \ge \frac{un}{u+d}$

$$(3)由(1) \cdot (2)知 \frac{un}{u+d} \le s < \frac{un}{u+d} + 1 \circ$$

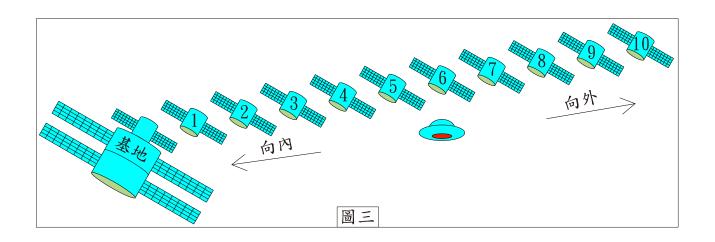
C.舉例說明定理一、定理二的應用

例三:給定9個衛星站、9個太空人,且這9個太空人<u>都搭飛行船</u>,若 u=4、d=3,則飛行船 降落在哪一個衛星站,會使這9個太空人移動的總耗能最小?又此時的總耗能為何?

【解】:1.由定理二知,
$$\frac{un}{u+d} \le s < \frac{un}{u+d} + 1 \Rightarrow \frac{4\times9}{4+3} \le s < \frac{4\times9}{4+3} + 1 \Rightarrow 5\frac{1}{7} \le s < 6\frac{1}{7}$$
,又 $s \in \mathbb{N}$, $\therefore s = 6$ 。

2.由定理一知,

$$A_s = u \sum_{t=s+1}^{n} (t-s) + d \sum_{t=1}^{s-1} (s-t)$$


將 s=6 帶入 A。 ⇒

$$A_6 = 4 \sum_{t=6+1}^{9} (t-6) + 3 \sum_{t=1}^{6-1} (6-t)$$

= 4x(1+2+3) + 3x(5+4+3+2+1)=69

3.下表五是 9 個衛星站、9 個太空人, u=4、d=3, 飛行船降落在每個衛星站, 太空人移動的耗能情形。

			表五	n=9) · u=	=4 ∙ d	=3			
	aı	a_2	аз	a 4	a 5	a 6	a7	a 8	a ₉	A_s
s=1	0	4	8	12	16	20	24	28	32	144
s=2	3	0	4	8	12	16	20	24	28	115
s=3	6	3	0	4	8	12	16	20	24	93
s=4	9	6	3	0	4	8	12	16	20	78
s=5	12	9	6	3	0	4	8	12	16	70
s=6	15	12	9	6	3	0	4	8	12	69
s=7	18	15	12	9	6	3	0	4	8	75
s=8	21	18	15	12	9	6	3	0	4	88
s=9	24	21	18	15	12	9	6	3	0	108

研究二: 給定 n 個衛星站、n 個太空人,但這 n 個太空人<u>並非都要搭飛行船(</u>有些太空人可不搭飛行船,直接向外移動抵達衛星站),若太空人向外耗能 u、向內耗能 d,探討飛行船降落在第 s 個衛星站時,這 n 個太空人移動的總耗能(As),並找出這 n 個太空人移動所需總耗能最小的衛星站。

- 1.第一個衛星站和太空基地間的距離恰好等於相鄰兩衛星站間的距離,所以有些太空人可不 搭飛行船,直接靠推進器就可抵達衛星站執行任務。
- 2.哪些太空人不搭飛行船?
 - (1)若太空人不搭飛行船的耗能<u>小於</u>搭飛行船後的耗能,則太空人<u>不搭</u>飛行船。
 - (2)對於要去第 s 個衛星站之前的太空人,假設他要去第 k 個衛星站(其中 $1 \le k \le s-1$),他不搭飛行船的耗能為 uk,搭飛行船的耗能 d(s-k),因此當 $uk \le d(s-k)$ 時,他不搭飛行船。

例四:給定 10 個衛星站、10 個太空人,但這 10 個太空人<u>並非都要搭飛行船</u>,若 u=3、d=2,當飛行船降落在第 8 個衛星站時,要到第 3 個衛星站和第 4 個衛星站的太空人是否要搭飛行船?

- 【解】:1.太空人由基地直接到第3個衛星站的耗能為9;若搭飛行船到第8個衛星站後,再 到第3個衛星站的耗能為10,所以要到第3個衛星站的太空人不搭飛行船。
 - 2.太空人由基地直接到第 4 個衛星站的耗能為 12;若搭飛行船到第 8 個衛星站後,再 到第 4 個衛星站的耗能為 8,所以要到第 4 個衛星站的太空人要搭飛行船。如下表 六。

表六	n=10	11 = 3	d=2
11/ /	11 10	u	u Z

А	aı	a 2	аз	a ₄	a 5	a 6	a ₇	a 8	a ₉	a 10	A_s
s=1	0	3	6	9	12	15	18	21	24	27	135
s=2	3/2	0	3	6	9	12	15	18	21	24	110
s=3	3/4	2	0	3	6	9	12	15	18	21	89
s=4	3/6	6/4	2	0	3	6	9	12	15	18	72
s=5	3/8	6/6	4	2	0	3	6	9	12	15	60
s=6	3/10	6/8	9/6	4	2	0	3	6	9	12	51
s=7	3/12	6/10	9/8	12/6	4	2	0	3	6	9	47
s=8	3/14	6/12	9/10	12/8	6	4	2	0	3	6	47
s=9	3/16	6/14	9/12	12/10	8	6	4	2	0	3	51
s = 10	3/18	6/16	9/14	12/12	15/10	8	6	4	2	0	60

【註】:表六中的 x/y, x表示不搭飛行船,直接到衛星站的耗能; y表示搭飛行船到第 s 個衛星站後,再到欲抵達的衛星站的耗能。

D. 找出 k(要抵達第 k 個衛星站之前的太空人不搭飛行船)

引理四:給定n個衛星站、n個太空人,但這n個太空人<u>並非都要搭飛行船</u>,若太空人向外耗能 u、向內耗能 d,當飛行船降落在第s個衛星站時,要抵達第 k($1 \le k \le s-1$)個衛星站之前的太空人選擇不搭飛行船,那麼 $k = \left[\frac{ds}{u+d}\right]$,其中 $\left[\frac{ds}{u+d}\right]$ 為 $\frac{ds}{u+d}$ 取高斯。

【說明】: 1.要到第 k 個衛星站的太空人不搭飛行船的耗能為 uk, 搭飛行船的耗能為 d(s-k), 當 uk≤d(s-k)時, 他們不搭飛行船。

2.由 $uk \le d(s-k)$,可得 $k \le \frac{ds}{u+d}$,但 k 為整數,故 $k = \left[\frac{ds}{u+d}\right]$,所以要到第 $1 \cdot 2 \cdot \cdots k$ 個衛星站的太空人選擇不搭飛行船,則 $k = \left[\frac{ds}{u+d}\right]$ 。

E. 有些太空人不搭飛行船,找出飛行船降落在各衛星站時,這n個太空人移動的總耗能(A。)

例五:給定 10 個衛星站、10 個太空人,但這 10 個太空人<u>並非都要搭飛行船</u>,若 u=6、d=3, 則飛行船降落在第 7 個衛星站時,這 10 個太空人移動的總耗能為何?

【解】:1.若 10 個太空人都搭飛行船, $A_7 = 6x(1+2+3)+3x(6+5+4+3+2+1)=99$ 。

- 2.第 k 個衛星站之前(含第 k 站)的人不搭飛行船,則由引理三知 $k = \left[\frac{ds}{u+d}\right] = \left[\frac{3\times7}{6+3}\right] = 2$,所以要抵達第 1、2 個衛星站的人選擇不搭飛行船。
- 3.上述 1.中的 A₇要減掉不搭飛行船的太空人向內的總耗能 3x(6+5),再加不搭飛行船直

接抵達衛星站的總耗能 6x(1+2)。

4.由上述 1.2.3.知,A₇=全部的太空人都搭飛行船的總耗能-不搭飛行船的太空人向內 的總耗能+不搭飛行船直接抵達衛星站的總耗能,亦即

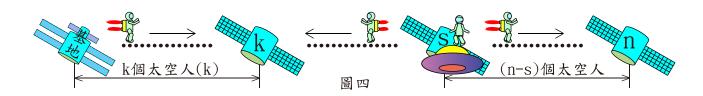
$$A_7 = 6x(1+2+3)+3x(6+5+4+3+2+1)-3x(6+5)+6x(1+2)=84$$

5.將上述4的關係,寫成定理三。

定理三:給定 n 個衛星站、n 個太空人,但這 n 個太空人並非都要搭飛行船,若太空人向外耗能 u、向內耗能 d,則飛行船降落在第 s 個衛星站時,這 n 個太空人移動的總耗能

$$A_{s} = u \sum_{t=s+1}^{n} (t-s) + d \sum_{t=1}^{s-1} (s-t) - d \sum_{t=1}^{\left[\frac{ds}{u+d}\right]} (s-t) + u \sum_{t=1}^{\left[\frac{ds}{u+d}\right]} t$$

【說明】:1.由引理四知,若第 k 個衛星站之前的太空人不搭飛行船,則 $k = \left[\frac{ds}{n+d}\right]$ 。


2. A_s=全部的太空人都搭飛行船的總耗能—不搭飛行船的太空人向內的總耗能 +不搭飛行船的太空人向外的總耗能

$$A_{s} = u \sum_{t=s+1}^{n} (t-s) + d \sum_{t=1}^{s-1} (s-t) - d \sum_{t=1}^{\left[\frac{ds}{u+d}\right]} (s-t) + u \sum_{t=1}^{\left[\frac{ds}{u+d}\right]} t$$

3.若 $\left[\frac{ds}{u+d}\right]=0$,表示全部的太空人都搭飛行船。

F.找出太空人移動所需總耗能最小的衛星站

我們觀察很多表格(如例六中的表七)發現:當「**不搭飛行船,只靠推進器向外移動抵達** 各衛星站的太空人數」(k)和「搭飛行船到第 s 個衛星站後,再向外移動抵達各衛星站的太空人數」(n-s)相等,即 k=n-s 時,第 s 個衛星站是太空人移動所需總耗能最小的衛星站(如圖四)。

例六:給定 15 個衛星站、15 個太空人,但這 15 個太空人<u>並非都要搭飛行船</u>,若向外耗能 4、 向內耗能 3,則這 15 個太空人移動所需總耗能最小的衛星站為何?

- 【解】:1.依題意將飛行船降落在各衛星站時,太空人要抵達各衛星站的耗能填入表七中。
 - 2.觀察表七發現:第11個衛星站為太空人移動所需總耗能最小的衛星站,即 s=11。
 - 3.有 4 個太空人不搭飛行船 ⇒k=4; n-s=15-11=4 ⇒k=n-s。
 - 4.觀察表七知, $A_{11} < A_{10}$, $A_{11} < A_{12}$,故我們猜想,若 k=n-s 時,則(1) $A_s < A_{s-1}$,將此關係寫引理五;(2) $A_s < A_{s+1}$,將此關係寫引理六。


表十	n=15	ч и=	=4 \	d=3
1X L	11 13	u		u J

	a ₁	a 2	аз	a 4	a 5	a 6	a7	a ₈	a ₉	a 10	a 11	a 12	a 13	a 14	a 15	As
s=1	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	420
s=2	3	0	4	8	12	16	20	24	28	32	36	40	44	48	52	367
s=3	4	3	0	4	8	12	16	20	24	28	32	36	40	44	48	319
s=4	4	6	3	0	4	8	12	16	20	24	28	32	36	40	44	277
s=5	4	8	6	3	0	4	8	12	16	20	24	28	32	36	40	241
s=6	4	8	9	6	3	0	4	8	12	16	20	24	28	32	36	210
s=7	4	8	12	9	6	3	0	4	8	12	16	20	24	28	32	186
s=8	4	8	12	12	9	6	3	0	4	8	12	16	20	24	28	166
s=9	4	8	12	15	12	9	6	3	0	4	8	12	16	20	24	153
s = 10	4	8	12	16	15	12	9	6	3	0	4	8	12	16	20	145
s=11	4	8	12	16	18	15	12	9	6	3	0	4	8	12	16	143
s = 12	4	8	12	16	20	18	15	12	9	6	3	0	4	8	12	147
s = 13	4	8	12	16	20	21	18	15	12	9	6	3	0	4	8	156
s = 14	4	8	12	16	20	24	21	18	15	12	9	6	3	0	4	172
s=15	4	8	12	16	20	24	24	21	18	15	12	9	6	3	0	192

引理五:給定 n 個衛星站、n 個太空人,但這 n 個太空人並非都要搭飛行船,若太空人向外耗能 u、向內耗能 d,當 k=n-s 時, $A_{s-1}>A_{s}$ 。

【說明】:(1)當 k=n-s,太空人向內、向外移動的情形如圖六,飛行船降落在第 s 個衛星站時,太空人移動的總耗能

 $A_{s} = a_{1} + a_{2} + \dots + a_{(k+1)} + a_{(k+2)} + \dots + a_{(s-1)} + a_{s} + a_{(s+1)} + a_{(s+2)} + \dots + a_{n}$ $= \underbrace{u + 2u + \dots + ku}_{} + \underbrace{s - (k+1)}_{} d + \underbrace{s - (k+2)}_{} d + \dots + d + 0 + \underbrace{u + 2u + \dots + ku}_{} + \underbrace{u +$

(2)飛行船降落在第(s-1) 個衛星站的總耗能為

$$\begin{split} A_{s\text{-}1} = & \ a_1 + a_2 + \cdots + \ a_k + a_{(k+1)} + a_{(k+2)} + \cdots + a_{(s\text{-}2)} + a_{(s\text{-}1)} + a_s + a_{(s\text{+}1)} + \cdots + a_{(n\text{-}1)} + a_n \\ = & \ u + 2u + \cdots + ku + ((s\text{-}1)\text{-}(k+1))d + ((s\text{-}1)\text{-}(k+2))d + \cdots + d + 0 + u + 2u + \cdots + ku + (k+1)u \end{split}$$

(3)比較飛行船降落在第 s 個衛星站和第(s-1) 個衛星站的總耗能

 $A_{s-1} = u + 2u + \dots + ku + ((s-1)-(k+1)) d + ((s-1)-(k+2)) d + \dots + d + 0 + u + 2u + \dots + ku + (k+1)u$

 $A_s = u+2u+\cdots+ku+ \frac{s-(k+1)}{d} + \frac{s-(k+2)}{d} + \cdots + d+0+u+2u+\cdots+ku$

發現: ①A_{s-1}比 A_s多一項(k+1)u。②A_s比 A_{s-1}多一項〔s-(k+1)〕d。

推論:(k+1)u>〔s-(k+1)〕d,因為若(k+1)u≦〔s-(k+1)〕d,那麼要抵達第(k+1)

個衛星站的人不搭飛行船,這和猜想矛盾,所以(k+1)u > [s-(k+1)]d。

結論:As-1>As 。

引理六:給定 n 個衛星站、n 個太空人,但這 n 個太空人並非都要搭飛行船,若太空人向外耗能 u、向內耗能 d,當 k=n-s 時, $A_{s+1} \ge A_s$ 。

【說明】:(1)當 k=n-s 時,飛行船降落在第(s+1)個衛星站的總耗能為

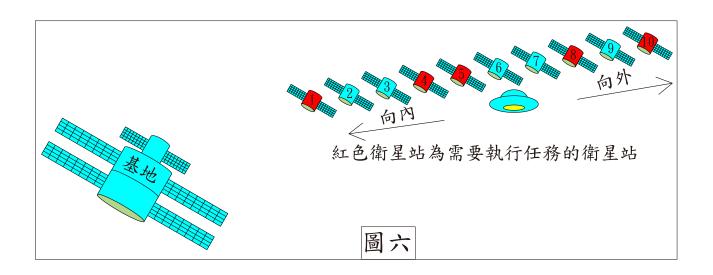
 $A_{s+1} = a_1 + a_2 + \dots + a_k + a_{(k+1)} + a_{(k+2)} + \dots + a_s + a_{(s+1)} + a_{(s+2)} + \dots + a_n$ $= u + 2u + \dots + ku + \left[(s+1) - (k+1) \right] d + \left[(s+1) - (k+2) \right] d + \dots + d + 0 + u + \dots + (k-1)u$ (2)比較飛行船降落在第 s 個衛星站與第(s+1)個衛星站的耗能

 $A_s = u+2u+\cdots+ku+ [s-(k+1)]d+[s-(k+2)]d+\cdots+d+0+u+2u+\cdots+(k-1)u+\frac{ku}{2}$

 $A_{s+1} = u + 2u + \cdots + ku + \frac{((s+1)-(k+1))d}{((s+1)-(k+2))d} + ((s+1)-(k+2))d + \cdots + d + 0 + u + 2u + \cdots + (k-1)u$

推論: [(s+1)-(k+1)] d=(s-k)d, (s-k)d≥ku, 因為若(s-k)d<ku, 那麼要抵達第 k 個衛星站的人要搭飛行船, 這和猜想矛盾,所以 [(s+1)-(k+1)] d≥ku。

結論: A₅₁≧A₅, 當等號成立時, 第 s 個衛星站和第(s+1) 個衛星站同為太空人 移動所需總耗能最小的衛星站。


由引理五、引理六知:當 k=n-s 時,第 s 個衛星站為太空人移動所需總耗能最小的衛星站,現在將引理四的 $k=\left[\frac{ds}{u+d}\right]$ 代入 k=n-s 中,求出 s ,推得定理四。

定理四:給定 n 個衛星站、n 個太空人,但這 n 個太空人<u>並非都要搭飛行船</u>,若太空人向外 耗能 u、向內耗能 d,當 k=n-s,則這 n 個太空人移動所需總耗能最小的衛星站 s, 會介於 $\frac{u+d}{u+2d}$ n和 $\frac{u+d}{u+2d}$ (n+1)之間,即 $\frac{u+d}{u+2d}$ n $\leq s < \frac{u+d}{u+2d}$ (n+1)。(註:若 k=0 則 s=n)

【說明】:1.當 k=n-s 時,若 k=0,則 n=s。

2.若 k≥1 時,由引理四知:
$$k = \left[\frac{ds}{u+d}\right]$$
,將 $k = \left[\frac{ds}{u+d}\right]$ 代入 $k = n-s$,得 $n-s+1 > \frac{ds}{u+d} \ge n-s$
 $(1)n-s+1 > \frac{ds}{u+d} \Rightarrow \frac{u+d}{u+2d}(n+1) > s$
 $(2)\frac{ds}{u+d} \ge n-s \Rightarrow \frac{u+d}{u+2d}n \le s$
 $(3)由 1 \cdot 2 得 \frac{u+d}{u+2d} n \le s < \frac{u+d}{u+2d}(n+1)$

3.等號成立時, A_s=A_{s+1}, 第 s 個衛星站和第 s+1 個衛星站, 同時為太空人移動所需 總耗能最小的衛星站。 研究三:給定n 個衛星站、m 個太空人(m < n),這m 個太空人都搭飛行船,若太空人向外耗能u、向內耗能d,探討飛行船降落在第s 個衛星站時,這m 個太空人移動的總耗能 (A_{Ps}) ,並找出這m 個太空人移動所需總耗能最小的衛星站。

- 1.當只有部分衛星站需要太空人前往執行任務時,就相當於衛星站之間不等距,此時觀察不 出規律。
- 2.我們將這 m 個太空人要抵達的衛星站,按其先後順序重新編號為第 P_1 站、第 P_2 站、…、第 P_m 站,在新的編號下,找出飛行船降落在第 P_s 站時,這 m 個太空人移動的總耗能 (A_{P_S}) 。

定理五:給定 n 個衛星站,m 個太空人<u>要搭飛行船</u>,且分別要到第 P_1 站~第 P_m 站,若太空人 向外耗能 u、向內耗能 d,飛行船降落第 P_s 個衛星站時,這 m 個太空人移動的總耗能

$$A_{P_s} = u \sum_{t=s+1}^{m} (P_t - P_s) + d \sum_{t=1}^{s-1} (P_s - P_t)$$

【說明】:1.太空人移動的總耗能=所有向外移動的總耗能+所有向內移動的總耗能,即

$$A_{P_s} = u \sum_{t=s+1}^{m} (P_t - P_s) + d \sum_{t=1}^{s-1} (P_s - P_t)$$

2. (Pt-Ps)、(Ps-Pt)要轉換成原來相對的序號,再計算。

例七:給定 10 個衛星站,只有 4 個太空人<u>要搭飛行船</u>,且分別要到第 2、第 5、第 7、第 10 個衛星站執行任務,若 u=5、d=2,則飛行船降落在第 5 個衛星站時,這 4 個太空人移動的總耗能為何?

【解】:
$$A_{P_2} = 5 \sum_{t=2+1}^{4} (P_t - P_2) + 2 \sum_{t=1}^{2-1} (P_2 - P_t)$$

= $5(P_3 - P_2) + 5(P_4 - P_2) + 2(P_2 - P_1)$
= $(7-5) + 5(10-5) + 2(5-2) = 6 + 10 + 25 = 41$ (如表八所示)
表八 $n = 10 \cdot m = 4 \cdot u = 5 \cdot d = 2$

	aı	a 2	аз	a 4	a 5	a 6	a ₇	a ₈	a ₉	a 10	A_s
s=1	0	5			20		30			45	100
$s = 2(P_1)$		0			15		25			40	80
s=3		2	0		10		20			35	67
s=4		4		0	5		15			30	54
$s=5(P_2)$		6			0		10			25	41
s=6		8			2	0	5			20	35
$s = 7(P_3)$		10			4		0			15	29
s=8		12			6		2	0		10	30
s=9		14			8		4		0	5	31
$s = 10(P_4)$		16			10		6			0	32

G. 發現最小總耗能會落在第 P. 站和第 P. 站之間(包含第 P. 和第 P. 站)

我們觀察很多如表九的例子,發現:當飛行船降落在第 P_1 站之前的總耗能,都會比降落在第 P_1 站的總耗能大,且飛行船降落在第 P_m 站之後的總耗能都會比降落在第 P_m 站的總耗能大,我們將此關係寫成引理六。

	表九 n=10、m=4、u=4、d=3													
	a ₁	a ₂	a_3	a ₄	a ₅	a ₆	a ₇	a ₈	a ₉	a ₁₀	A_s			
s=1	0		8	12	16		24				60			
s=2		0	4	8	12		20				44			
$s = 3(P_1)$			0	4	8		16				28			
$s = 4(P_2)$			3	0	4		12				19			
$s=5(P_3)$			6	3	0		8				17			
s=6			9	6	3	0	4				22			
$s = 7(P_4)$			12	9	6		0				27			
s=8			15	12	9		3	0			39			
s=9			18	15	12		6		0		51			
s = 10			21	18	15		9			0	63			

- 引理七:給定 n 個衛星站、m 個太空人,這 m 個太空人<u>都搭飛行船</u>,且分別要到第 P_1 ~第 P_m 站,若太空人向外耗能 u、向内耗能 d,則這 m 個太空人移動所需總耗能最小的衛星站,會在第 P_1 到第 P_m 站之間。(含第 P_1 站及第 P_m 站)
- 【說明】:1.將這 m 個太空人要抵達的衛星站,按其先後順序重新編號為第 P_1 站、第 P_2 站、……第 P_m 站(沒有人要抵達的衛星站不編號)。
 - 2.假設第 P_i 站到第 P_i 站(i < j),兩衛星站之間的站距為 $\Delta P_{(i,j)}$,則
 - ①第 P_1 站到其他各站的總站距為($\Delta P_{(1,2)} + \Delta P_{(1,3)} + \cdots + \Delta P_{(1,m)}$);
 - ②第 P_m 站到其他各站的總站距為 $(\Delta P_{(m-1,m)} + \Delta P_{(m-2,m)} + \cdots + \Delta P_{(1,m)})$ 。
 - 3.飛行船降落在
 - ①第 P_1 站的總耗能=ux($\Delta P_{(1,2)} + \Delta P_{(1,3)} + \cdots + \Delta P_{(1,m)}$);
 - ②第 P_{1} -1 站的總耗能= $ux [(\Delta P_{(1,2)} + \Delta P_{(1,3)} + \cdots + \Delta P_{(1,m)}) + m]$
 - ③第 P_1 -2 站的總耗能=ux $[(\Delta P_{(1,2)} + \Delta P_{(1,3)} + \cdots + \Delta P_{(1,m)}) + 2m]$

:

- 4.觀察上述 3 知,飛行船降落在第 P_1 站之前的總耗能,都會比降落在第 P_1 站的總耗能大。
- 5.飛行船降落在
 - ①第 P_m 站的總耗能= $dx(\Delta P_{(m-1,m)} + \Delta P_{(m-2,m)} + \cdots + \Delta P_{(1,m)});$
 - ②第 $P_m + 1$ 站的總耗能= $dx [(\Delta P_{(m-1,m)} + \Delta P_{(m-2,m)} + \cdots + \Delta P_{(1,m)} + m]$
 - ③第 $P_m + 2$ 站的總耗能= $dx \left(\Delta P_{(m-1,m)} + \Delta P_{(m-2,m)} + \dots + \Delta P_{(1,m)} \right) + 2m$

:

- 6.觀察上述 5 知,飛行船降落在第 P_m 站之後的總耗能都會比降落在第 P_m 站的總耗能大。
- 7.由上述 4×6 知,太空人移動所需總耗能最小的衛星站,會在第 P_1 站到第 P_m 站之間(含第 P_1 站及第 P_m 站)。

H.找出太空人移動所需總耗能最小的衛星站

- 定理六:給定 n 個衛星站、m 個太空人,這 m 個太空人<u>都搭飛行船</u>且分別要到第 P_1 個~第 P_m 個衛星站,若太空人向外耗能 u、向內耗能 d,則這 m 個太空人移動所需總耗能最小的衛星站為第 $P_{m-\left[\frac{md}{1+d}\right]}$ 個衛星站。
- 【說明】:1.由引理七知,太空人移動所需總耗能最小的衛星站會在第 P_1 站到第 P_m 站之間(含第 P_1 站及第 P_m 站)。
 - 2.猜想飛行船降落在第 P_m 站,此時若改為向前一個(數字較小)衛星站降落(第 P_m-1 站),總耗能會增加 u,減少(m-1)d,而在第 P_m 站到第 P_{m-1} 站之間,相鄰兩衛星站都有這種情形。如果(m-1)d>u,表示改為向前一個衛星站降落,可使總耗能降低,並可透過不斷改為向前一個衛星站降落,使得第 P_{m-1} 站,成為第 P_m 站到第 P_{m-1} 站之間,太空人移動所需總耗能最小的衛星站。
 - 3.同上述 2,猜想飛行船降落在第 P_{m-1} 站,此時若改為向前一個衛星站降落,總耗能會增加 2u,減少(m-2)d,而在第 P_{m-1} 站到第 P_{m-2} 站之間,相鄰兩衛星站都有這種情形。如果(m-2)d>2u,表示改為向前一個衛星站降落可使總耗能降低,並可透過不斷改為向前一個衛星站降落,使得第 P_{m-2} 個衛星站,成為第 P_{m-1} 站到第 P_{m-2} 站之間,太空人移動所需總耗能最小的衛星站。
 - 4.從上述 2、3 中,不斷向前(數字較小)更改降落站的過程,不難推得以下三點結論:
 - (1)若(m-t)d>tu,則可由第 P_{m-t+1} 站往第 P_{m-t} 站移動更改降落站,找到第 P_{m-t} 站為第 P_{m-t+1} 站到第 P_{m-t} 站之間,太空人移動所需總耗能最小的衛星站。
 - (2)若(m-t)d=tu,則第 P_{m-t+1} 站到第 P_{m-t} 站之間的各站,皆為太空人移動所需總耗能最小的衛星站(包含第 P_{m-t+1} 站與第 P_{m-t} 站)。
 - (3)若(m-t)d<tu,則第 P_{m-t+1} 站是第 P_{m-t+1} 站到第 P_{m-t} 站之間,太空人移動所需 總耗能最小的衛星站。
 - 5.由上述 4 知,當(m-t)d≥tu,會有太空人移動所需總耗能最小的衛星站。
 - 6.由(m−t)d≥tu,可得 t≤ $\frac{md}{u+d}$,又 t∈N,所以 t_{max}= $\left[\frac{md}{u+d}\right]$ 。
 - 7.太空人移動所需總耗能最小的衛星站是第 $P_{m-\left[\frac{md}{u+d}\right]}$ 個衛星站。

例八:給定 10 個衛星站、4 個太空人,這 4 個太空人<u>都搭飛行船</u>,且分別要到第 3、第 4、第 5、第 7 個衛星站,此時 u=4、d=3,則這 4 個太空人移動所需總耗能最小的衛星站為何?

【解】: $P_1=3 \cdot P_2=4 \cdot P_3=5 \cdot P_4=7$,將 $u=4 \cdot d=3 \cdot m=4$ 帶入 $P_{m-\left[\frac{md}{u+d}\right]}$ 中,

得 $P_{4-\left[\frac{4\times3}{4+3}\right]}=P_{4\cdot 1}=P_3$ 為太空人移動所需總耗能最小的衛星站,如表十。

表十	n-10	m-4	· 11-4	,	d-3
15	11-10	111—4	u-4	-	u)

				. 1 10 111								
	aı	a_2	аз	a 4	a 5	a 6	a7	a 8	a9	a 10	As	
s=1	0		8	12	16		24				60	
s=2		0	4	8	12		20				44	
$s = 3(P_1)$			0	4	8		16				28	
$s = 4(P_2)$			3	0	4		12				19	
$s=5(P_3)$			6	3	0		8				17	
s=6			9	6	3	0	4				22	
$s = 7(P_4)$			12	9	6		0				27	
s=8			15	12	9		3	0			39	
s=9			18	15	12		6		0		51	
s = 10			21	18	15		9			0	63	

伍、研究結果

我們列出幾個重要的研究結果,如下:

研究一

一、給定 n 個衛星站、n 個太空人,且這 n 個太空人<u>都搭飛行船</u>,若太空人向外耗能 u、向内 耗能 d,則飛行船降落在第 s 個衛星站時,這 n 個太空人移動的總耗能

$$A_s = u \sum_{t=s+1}^{n} (t-s) + d \sum_{t=1}^{s-1} (s-t)$$

二、給定 n 個衛星站、n 個太空人,且這 n 個太空人<u>都搭飛行船</u>,若太空人向外耗能 u、向内 耗能 d,則太空人移動所需總耗能最小的衛星站 s,會介於 $\frac{un}{u+d}$ 和 $\frac{un}{u+d}$ +1 之間,

$$\exists \exists \frac{un}{u+d} \le s \le \frac{un}{u+d} + 1$$

研究二

三、給定 n 個衛星站、n 個太空人,但這 n 個太空人<u>並非都要搭飛行船</u>,若太空人向外耗能 u、 向內耗能 d,則飛行船降落在第 s 個衛星站時,這 n 個太空人移動的總耗能

$$A_{s} = u \sum_{t=s+1}^{n} (t-s) + d \sum_{t=1}^{s-1} (s-t) - d \sum_{t=1}^{\left[\frac{ds}{u+d}\right]} (s-t) + u \sum_{t=1}^{\left[\frac{ds}{u+d}\right]} t$$

四、給定 n 個衛星站、n 個太空人,但這 n 個太空人<u>並非都要搭飛行船</u>,若太空人向外耗能 u、向內耗能 d,當 k=n-s,則太空人移動所需總耗能最小的衛星站 s,會介於 $\frac{u+d}{u+2d}$ n和 $\frac{u+d}{u+2d}$ (n+1)之間,即 $\frac{u+d}{u+2d}$ n \leq s \leq $\frac{u+d}{u+2d}$ (n+1)。

研究三

五、給定 n 個衛星站、m 個太空人,這 m 個太空人<u>都搭飛行船</u>,且分別抵達第 P 個~第 P 個個星站,若太空人向外耗能 u、向內耗能 d,則飛行船降落在第 P 個衛星站時,這 m 個太空人移動的總耗能

$$A_{P_s} = u \sum_{t=s+1}^{m} (P_t - P_s) + d \sum_{t=1}^{s-1} (P_s - P_t)$$

六、給定 n 個衛星站、m 個太空人,這 m 個太空人<u>都搭飛行船</u>,且分別抵達第 P_1 個~第 P_m 個衛星站,若太空人向外耗能 u、向內耗能 d,則太空人移動所需總耗能最小的衛星站為 第 $P_{m-\left[\frac{md}{u+d}\right]}$ 站。

陸、討論

一、在研究一,我們嘗試用配方法求極值來找最小值,如下

例九:給定 n 個衛星站、n 個太空人,且這 n 個太空人<u>都搭飛行船</u>,若 u=3、d=1,則太空 人移動所需總耗能最小的衛星站 $S=\begin{bmatrix}\frac{3n+2}{4}\end{bmatrix}$ 或 $\begin{bmatrix}\frac{3n+2}{4}\end{bmatrix}$ 。

【說明】: 由定理一知,

$$\begin{split} A_s &= 3 \sum_{t=s+1}^n (t-s) + \sum_{t=1}^{s-1} (s-t) \\ &= 3 \times \frac{(n-s)(n-s+1)}{2} + \frac{s(s-1)}{2} = \frac{1}{2} [3(n^2-2ns+s^2) + 3n - 3s + s^2 - s] \\ &= \frac{3}{2} n^2 - 3ns + 2s^2 + \frac{3}{2} n - 2s = 2(s^2 - \frac{3}{2}ns - s) + \frac{3}{2}(n^2 + n) \\ &= 2(s - \frac{3n+2}{4})^2 + \frac{3n^2-4}{8},$$
 因為 $s \in \mathbb{N}$,所以修正 $s = \left[\frac{3n+2}{4}\right]$ 或 $\left[\frac{3n+2}{4}\right]$ 。

例十:給定 n 個衛星站、n 個太空人,且這 n 個太空人<u>都搭飛行船</u>,若太空人向外耗能 u、向 内耗能 d,則太空人移動所需總耗能最小的衛星站 $S=\left[\frac{u+d+2un}{2(u+d)}\right]$ 或 $\left[\frac{u+d+2un}{2(u+d)}\right]$ 。

【說明】: 由定理三知,

二、研究一中,太空人移動所需總耗能最小的衛星站 s,會在 $\frac{un}{u+d}$ 和 $\frac{un}{u+d}$ +1之間,因為 $\frac{un}{u+d}$ 和 $\frac{un}{u+d}$ +1之間剛好相差 1,會有一個且只有一個整數解,而當 $\frac{un}{u+d}$ 是整數時, $\frac{un}{u+d}$ +1 也是整數,此時第 s 個衛星站與第 s+1 個衛星站皆為太空人移動所需總耗能最小的衛星站。

三、在研究二中,尋找太空人移動所需總耗能最小的衛星站時,我們發現了兩種情形,而這 兩種情形包含三種解答:

(一)當 k=n-s 時:

- 1.太空人移動所需總耗能最小的衛星站 s,會在 $\frac{u+d}{u+2d}$ n $\leq s \leq \frac{u+d}{u+2d}$ (n + 1)之間,找到第 s 站 為太空人移動所需總耗能最小的衛星站。
- 2.當 $(u+2d)\mid n$,上述不等式中的 $\frac{u+d}{u+2d}$ n為整數,此時第 s 站與第 s+1 站,同為太空人移動 所需總耗能最小的衛星站。

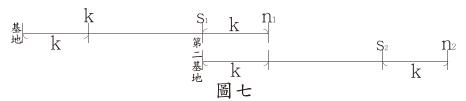
(二) 當 k=n-(s+1)時:

3.太空人移動所需總耗能最小的衛星站 s,會在 $\frac{u+d}{u+2d}$ (n-1) ≤ $s < \frac{u+d}{u+2d}$ n之間,此時第 s 站 與第 s+1 站,同為太空人移動所需總耗能最小的衛星站。

(三)上述(一)、(二)兩等式的使用時機

由給定的條件無法立即判別要使用(一)或(二)的等式,需要經過繁瑣的過程才能判別 (詳見筆記), 而(一)與(二)的等式運算結果相連,因此,我們直接用 k=n-s,運算後修正, 找出太空人移動所需總耗能最小的衛星站s。

- (四) k=n-s,s 會在 $\frac{u+d}{u+2d}$ $n \le s \le \frac{u+d}{u+2d}$ (n+1)之間,若 $\frac{u+d}{u+2d}$ $n \le s \le \frac{u+d}{u+2d}$ (n+1)之間找不到整 數 $_{S}$, 則最接近 $\frac{u+d}{u+2d}$ n及 $\frac{u+d}{u+2d}$ (n+1)的兩整數即為所求。
- (五)例如:給定 13 個衛星站、13 個太空人,這 13 個太空人並非全部都搭飛行船,若太空人 向外耗能 4、向內耗能 3,則太空人移動所需總耗能最小的衛星站為何?將第一站、第二 站、…、到第13站的耗能列表如表十一:


				表	[十一	n=	13 · t	$\iota = 4 \cdot$	d=3					
	a_1	a_2	аз	a 4	a 5	a 6	a7	a 8	a ₉	a 10	a 11	a 12	a 13	A_s
s=1	0	4	8	12	16	20	24	28	32	36	40	44	48	312
s=2	3	0	4	8	12	16	20	24	28	32	36	40	44	267
s=3	4	3	0	4	8	12	16	20	24	28	32	36	40	227
s=4	4	6	3	0	4	8	12	16	20	24	28	32	36	193
s=5	4	8	6	3	0	4	8	12	16	20	24	28	32	165
s=6	4	8	9	6	3	0	4	8	12	16	20	24	28	142
s=7	4	8	12	9	6	3	0	4	8	12	16	20	24	126
s=8	4	8	12	12	9	6	3	0	4	8	12	16	20	114
s=9	4	8	12	15	12	9	6	3	0	4	8	12	16	109
s = 10	4	8	12	16	15	12	9	6	3	0	4	8	12	109
s = 11	4	8	12	16	18	15	12	9	6	3	0	4	8	115
s = 12	4	8	12	16	20	18	15	12	9	6	3	0	4	127
s = 13	4	8	12	16	20	21	18	15	12	9	6	3	0	144

- (六)觀察表十一不難發現 k=n-(s+1),將 $k=\left[\frac{ds}{u+d}\right]$ 代入 k=n-(s+1),得 $n-(s+1)+1>\frac{ds}{u+d} \ge n-(s+1)$, 計算得 $\frac{u+d}{u+2d}$ $(n-1) \le s < \frac{u+d}{u+2d}$ n,第 s 站與第 s+1 站同為太空人移動所需總耗能最小的 衛星站。
- (七)將表十一的數據代入不等式
 - 1.用 k=n-(s+1) ⇒ $\frac{u+d}{u+2d}(n-1) \le s < \frac{u+d}{u+2d}n$ 代入數據得 $8.4 \le s < 9.1$,s=9,第 9 站與第 10 站同為太空人移動所需總耗能最小的衛星站。
 - 2.用 $k=n-s \Rightarrow \frac{u+d}{u+2d} n \le s \le \frac{u+d}{u+2d} (n+1)$ 代入數據得 $9.1 \le s < 9.8$,雖然找不到整數解,但最靠近的兩個整數即為所求,即第 9 站與第 10 站同為太空人移動所需總耗能最小的衛星站。詳細論述請參閱筆記。

柒、未來展望

本研究探討都以飛行船只能降落一次的情況,找出太空人移動所需總耗能最小的衛星站, 並求其總耗能,往後希望能找出飛行船降落二次、三次、…時的情形。

我們有一個想法,就是將定理四推廣。當 $k=n_1-s_1$ 時,會有太空人移動所需總耗能最小的衛星站 (s_1) ,將此第 s_1 站當成第二個基地,而當 $k=n_2-s_2$ 時,會有太空人移動所需總耗能最小的衛星站 (s_2) ,第 s_1 站與第 s_2 站即為所求,如圖七。

捌、參考資料文獻

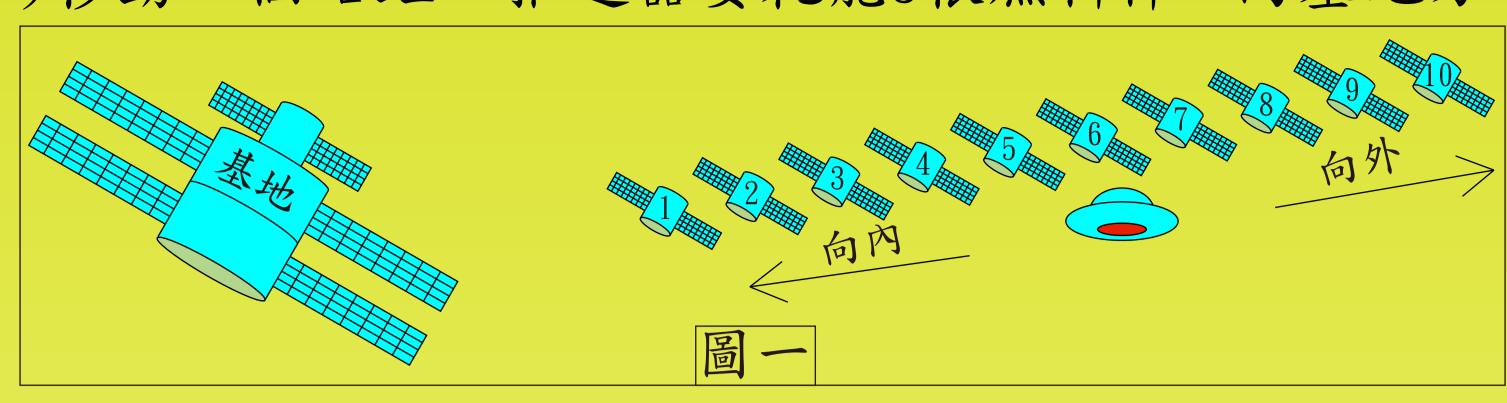
- 1.國小數學課本第十冊第4單元 "符號代表數",翰林出版社
- 2.國小數學課本第十二冊第5單元 "怎樣解題",翰林出版社
- 3.國中數學課本第二冊"一元一次不等式",翰林出版社
- 4.國中數學課本第四冊 "用配方法解一元二次方程式",翰林出版社
- 5.國中數學課本第四冊 "等差數列與等差級數",翰林出版社
- 6.國中數學基本學習內容補救教材(第二冊)

https://priori.moe.gov.tw/download/textbook/math/grade7/book2/math-7-2-8-4.pdf

7.國中數學基本學習內容補救教材(第三冊)

https://priori.moe.gov.tw/download/textbook/math/grade8/book3/math-8-3-10.pdf

8.臺北市立建國高級中學第 149 期通訊解題


【評語】080404

本作品改編自一個貨梯停靠的耗能問題,從一個虛擬的太空 任務出發,探討最小耗能的相關問題,並進而將推進器向外、向 內的耗能及衛星站「一般化」,同時改變情境,對相關問題做更進 一步的討論。數學內容的深度雖不高,但是研究過程中,循序漸 進的解析問題,符合科學探究的精神。是一個有趣的作品!

摘要

在一座太空基地外,有10個等距離的衛星站排成一列(如圖一)。現有10個太空人分別前往相異的衛星站執行任務,他們從基地搭乘飛行船一同前往,但飛行船只能降落一次,所以有些太空人還要再利用推進器才能抵達要到的衛星站。當太空人向外太空方向(向外)移動一個站距,推進器要耗能5根燃料棒;向基地方

向(向內)移動一個站距, 推進器要耗能2根燃料棒 ,那麼飛行船要降落在哪 一個衛星站,才能使這10 個太空人的總耗能最小?

研究一:給定n個衛星站、n個太空人,他們都搭飛行船

定理一:給定n個衛星站、n個太空人,且這n個太空人都搭飛行船,若向外耗能u 、向內耗能d,則飛行船降落在第S個衛星站時,這n個太空人移動的總 耗能As=u∑(t-s)+d∑(s-t)

- 【說明】: 1.在第S個衛星站下船後,分別要抵達第(s+1)個衛星站、第(s+2)個衛星站、……第n個衛星站的太空人,他們要往外太空方向移動。現在考慮其中一太空人要到第t個衛星站,則他身上的推進器要耗能 u(t-s)根燃料棒,故所有向外移動的太空人的總耗能=u∑(t-s)。
 - 2. 在第S個衛星站下船後,分別要抵達第1個衛星站、第2個衛星站、第(s-1)個衛星站的太空人,他們要往基地方向移動。現在考慮其中一太空人要到第t個衛星站,則他身上的推進器要耗能d(s-t)根燃料棒,故所有向內移動的太空人的總耗能=d∑(s-t)。
 - 3. 由上述 $1 \cdot 2$ 知,飛行船降落在第S個衛星站時,太空人移動的總耗能 = 太空人向外移動的總耗能+太空人向內移動的總耗能,即 $A_s=u \stackrel{\circ}{\Sigma}(t-s)+d \stackrel{\circ}{\Sigma}(s-t)$ 。

引理二:給定n個衛星站、n個太空人,且這n個太空人都搭飛行船,若向外耗能u、向內耗能d,則 $A_s=A_{s-1}-u\left[n-(s-1)\right]+d\left(s-1\right)$ 。

1. 觀察表三發現:

 $A_2 = A_1 - u(n-1) + d(2-1)$

 $A_3 = A_2 - u(n-2) + d(3-1)$

 $A_4 = A_3 - u(n-3) + d(4-1)$

•				
•				
•				
$A_S = A_{S-}$	_1 — 11	n-(s-	_1)]	+d(

As	$=A_{S-}$	-1 —	U	n-	(s-	1)]	+a(s-	- I)
110	113-	⁻ 1	u		(5	1//	lu(S	1

	aı	a 2	\mathbf{a}_3	a 4	\mathbf{a}_{5}	a 6	a ₇	•••	a n	As
s=1	0	u	2u	3u	4u	5u	6u	:	u(n-1)	\mathbf{A}_1
s=2	d	0	u	2u	3u	4u	5u	:	u(n-2)	A_2
S=3	2d	d	0	u	2u	3u	4u	•••	u(n-3)	A 3
s=4	3d	2d	d	0	u	2u	3u	•••	u(n-4)	A_4
s=5	4d	3d	2d	d	0	u	2u	•••	u(n-5)	A_5
s=6	5d	4d	3d	2d	d	0	u	•••	u(n-6)	A_6
s=7	6d	5d	4d	3d	2d	d	0	•••	u(n-7)	\mathbf{A}_{7}
	:	::	:	:	:	:	:		i	:
s=n	d(n-1)	d(n-2)	d(n-3)	d(n-4)	d(n-5)	d(n-6)	d(n-7)	•••	0	An
	, ,		•				`			

表三 向外耗能 u、向內耗能 d

- 2. 結論:n個衛星站、n個太空人,向外耗能u、向內耗能d時,比較相鄰兩衛星站,太空人移動的總耗能關係為 $A_s = A_{s-1} u \left[n (s-1) \right] + d(s-1)$
- - 【說明】: 1. 由引理二知, $A_s = A_{s-1} u [n-(s-1)] + d(s-1)$
 - 2. 當"減掉的耗能"與"增加的耗能",兩者之間的關係由減多加少變成減少加多時,會有最小總耗能的衛星站。
 - 3. 由引理二的 $A_s = A_{s-1} u(n-(s-1)) + d(s-1)$,推得 $A_{s+1} = A_s u(n-s) + ds$
 - 4. 由上述2、3知,當:u[n-(s-1)]>d(s-1),且u(n-s)≦ds時,第s個衛星站為太空人移動所需總耗能最小的衛星站。

定理二:給定n個衛星站、n個太空人,且這n個太空人都搭飛行船,若向外耗能u、向內耗能d,則這n個太空人移動所需總耗能最小的衛星站S,會介於 $\frac{un}{u+d}$ 和 $\frac{un}{u+d}+1$ 之間,亦即 $\frac{un}{u+d} \le S < \frac{un}{u+d}+1$ 。

說明]:1.由引理二知:

				表	是四 n	=11 \ u	$=5 \cdot d=$	=2					
	aı	a ₂	a ₃	a 4	a ₅	a ₆	a ₇	a ₈	a ₉	a 10	a 11	A_s	
s=1	0	5	10	15	20	25	30	35	40	45	50	275	
s=2	2	0	5	10	15	20	25	30	35	40	45	227	
s=3	4	2	0	5	10	15	20	25	30	35	40	186	9
s=4	6	4	2	0	5	10	15	20	25	30	35	152	
s=5	8	6	4	2	0	5	10	15	20	25	30	125	
s=6	10	8	6	4	2	0	5	10	15	20	25	105	
s=7	12	10	8	6	4	2	0	5	10	15	20	92	
s=8	14	12	10	8	6	4	2	0	5	10	15	86	
s=9	16	14	12	10	8	6	4	2	0	5	10	87	
s = 10	18	16	14	12	10	8	6	4	2	0	5	95	
s=11	20	18	16	14	12	10	8	6	4	2	0	110	

 $A_s = A_{s-1} - u [n-(s-1)] + d(s-1)$ $A_{s+1} = A_s - u (n-s) + ds$ 2. 由引理三知,當"減掉的耗能"與

- . 由引理三知,當"減掉的耗能"與 "增加的耗能",兩者之間的關係由 減多加少變成減少加多時,會有太空人 移動所需總耗能最小的衛星站,即 $u[n-(s-1)]>d(s-1),且u(n-s)\leq ds$ 。
- 3. 由上述1、2可推得 $\frac{un}{n+d} \leq s < \frac{un}{n+d} + 1$ 。

研究二:給定n個衛星站、n個太空人,並非都要搭飛行船

引理四:給定n個衛星站、n個太空人,但這n個太空人並非都要搭飛行船,若太空人向外耗能u、向內耗能d,當飛行船降落在第s個衛星站時,要抵達第 $k(1 \le k \le s-1)$ 個衛星站之前的太空人選擇不搭飛行船,那麼 $k=\left[\frac{ds}{u+d}\right]$,其中 $\left[\frac{ds}{u+d}\right]$ 為 $\frac{ds}{u+d}$ 取高斯。

- 【說明】:1.要到第k個衛星站的太空人不搭飛行船的 耗能為uk,搭飛行船的耗能為d(s-k), 當uk≤d(s-k)時,他們不搭飛行船。
 - 2. 由 $uk \le d(s-k)$,可得 $k \le \frac{ds}{u+d}$,但k 為整數,故 $k = \left[\frac{ds}{u+d}\right]$,所以要到第 $1 \cdot 2 \cdot \cdots k$ 個衛星站的太空人選擇不搭飛行船,則 $k = \left[\frac{ds}{u+d}\right]$ 。

定理三:給定n個衛星站、n個太空人,但這n個太空人並非都要搭飛行船,若太空人向外耗能u、向內耗能d,則飛行船降落在第s個衛星站時,這n個太空人移動的總耗能 $A_s=u\sum_{s=0}^{n}(t-s)+d\sum_{s=0}^{n}(s-t)-d\sum_{s=0}^{n}(s-t)+u\sum_{s=0}^{n}t$

- 【說明】:1. 由引理四知,若第k個衛星站之前的太空人不搭飛行船,則 $k=\left[\begin{array}{c} \frac{ds}{u+d} \end{array}\right]$ 。
 - 2. A_s=全部的太空人都搭飛行船的總耗能—不搭飛行船的太空人向內移動的總耗能 +不搭飛行船的太空人向外移動的總耗能,即

 $A_{s} = u \sum_{t=s+1}^{n} (t-s) + d \sum_{t=1}^{s-1} (s-t) - d \sum_{t=1}^{\left[\frac{ds}{u+d}\right]} (s-t) + u \sum_{t=1}^{\left[\frac{ds}{u+d}\right]} t$

當「不搭飛行船,只靠推進器向外移動抵達各衛星站的太空人數」(k)和「搭飛行船到第S個衛星站後,再向外移動抵達各衛星站的太空人數」(n-S)相等,即k=n-S時,第S個衛星站是太空人移動所需總耗能最小的衛星站。

引理五:給定n個衛星站、n個太空人,但這n個太空人並非都要搭飛行船,若太空人向外耗能u、向內耗能d,當k=n-s時, $A_{s-1}>A_{s}$ 。

【說明】:1.當k=n-s,飛行船降落在第s個衛星站時,太空人移動的總耗能

2. 飛行船降落在第(s-1) 個衛星站的總耗能為

3. 比較飛行船降落在第S個衛星站和第(S-1) 個衛星站的總耗能

 $A_{s-1} = u + 2u + \dots + ku + ((s-1) - (k+1)) d + ((s-1) - (k+2)) d + \dots + d + 0 + u + 2u + \dots + ku + (k+1)u$

 $A_s = u + 2u + \cdots + ku + (s - (k+1)) d + (s - (k+2)) d + \cdots + d + 0 + u + 2u + \cdots + ku$

發現: ①A_{s-1}比A_s多一項(k+1)u。②A_s比A_{s-1}多一項〔s-(k+1)〕d。

推論: (k+1)u > [s-(k+1)]d,因為若 $(k+1)u \le [s-(k+1)]d$,那麼要抵達第 $(k+1)u \ne (k+1)u$

(k+1)個衛星站的人不搭飛行船,這和猜想矛盾,所以(k+1)u>[s-(k+1)]。

結論: A_{s-1} > A_s 。

引理六:給定n個衛星站、n個太空人,但這n個太空人並非都要搭飛行船,若太空人向外耗能u、向內耗能d,當k=n-s時, $A_{s+1} \ge A_s$ 。

(說明) :同引理五

發現: ①As比As+1多一項ku。②As+1比As多一項〔(S+1)-(k+1)〕d。

推論: [(s+1)-(k+1)] d=(s-k)d, (s-k)d≥ku, 因為若(s-k)d<ku, 那麼要抵達

第k個衛星站的人要搭飛行船,這和猜想矛盾,所以〔(s+1)-(k+1)〕d≥ku。

結論: As+1≥As ∘

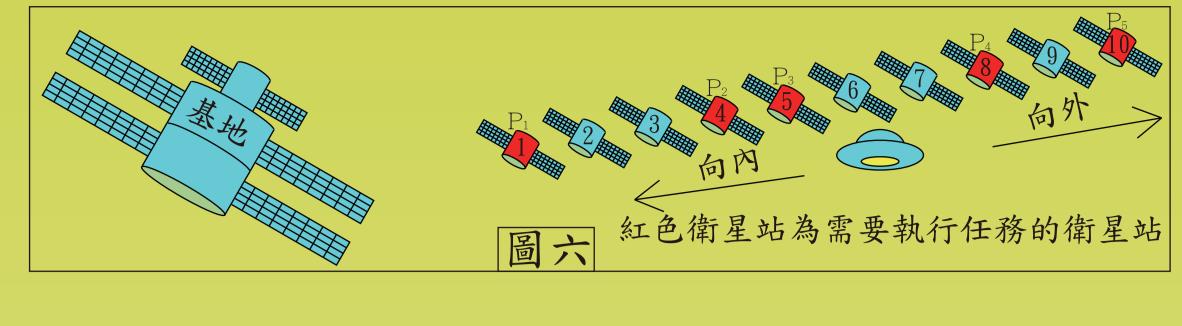
定理四:給定n個衛星站、n個太空人,但這n個太空人並非都要搭飛行船,若太空人向外耗能u、向內耗能d,當k=n-s,則這n個太空人移動所需總耗能最小的衛星站s,會介於 $\frac{u+d}{u+2d^n} \text{ 和 } \frac{u+d}{u+2d} \text{ (n+1)} 之間,即 \quad \frac{u+d}{u+2d^n} \leq s < \frac{u+d}{u+2d} \text{ (n+1)} \circ \text{ (註:若k=0則s=n)}$

- 【說明】: 1. 當k=n-s時, 若k=0, 則n=s。
 - 2. 若k \geq 1時,由引理四知:k = $\left[\frac{ds}{u+d}\right]$,將k = $\left[\frac{ds}{u+d}\right]$ 代入k=n-s,

得 $n-s+1 > \frac{ds}{n+d} \ge n-s$

- $(1)n-s+1>\frac{ds}{u+d} \to \frac{u+d}{u+2d}(n+1)>s$
- $(2) \xrightarrow{ds} \ge n-s \rightarrow \frac{u+d}{u+2d}n \le s$
- (3)由(1)、(2)得 $\frac{u+d}{u+2d}$ n $\leq s < \frac{u+d}{u+2d}$ (n+1)

	aı	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_{4}	\mathbf{a}_{5}	\mathbf{a}_{6}	\mathbf{a}_{7}	\mathbf{a}_{8}	\mathbf{a}_{9}	a 10	an	a 12	a 13	a 14	a 15	As
s=1	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	420
s=2	3	0	4	8	12	16	20	24	28	32	36	40	44	48	52	367
s=3	4	3	0	4	8	12	16	20	24	28	32	36	40	44	48	319
s=4	4	6	3	0	4	8	12	16	20	24	28	32	36	40	44	277
s=5	4	8	6	3	0	4	8	12	16	20	24	28	32	36	40	241
s=6	4	8	9	6	3	0	4	8	12	16	20	24	28	32	36	210
s=7	4	8	12	9	6	3	0	4	8	12	16	20	24	28	32	186
s=8	4	8	12	12	9	6	3	0	4	8	12	16	20	24	28	166
s=9	4	8	12	15	12	9	6	3	0	4	8	12	16	20	24	153
s=10	4	8	12	16	15	12	9	6	3	0	4	8	12	16	20	145
s=11	4	8	12	16	18	15	12	9	6	3	0	4	8	12	16	143
s=12	4	8	12	16	20	18	15	12	9	6	3	0	4	8	12	147
s = 13	4	8	12	16	20	21	18	15	12	9	6	3	0	4	8	156
s=14	4	8	12	16	20	24	21	18	15	12	9	6	3	0	4	172
s = 15	4	8	12	16	20	24	24	21	18	15	12	9	6	3	0	192


表七 n=15、u=4、d=3

研究三:給定n個衛星站、m個太空人,他們都搭飛行船

定理五:給定n個衛星站,m個太空人要搭飛行船,且分別要到第 P_1 站~第 P_m 站,若太空人向外耗能u、向內耗能d,飛行船降落第 P_s 個衛星站時,這m個太空人移動的總耗能 $A_{P_s}=u\sum_{s=1}^{n}(P_t-P_s)+d\sum_{s=1}^{s}(P_s-P_t)$ (註:m< n)

【說明】:1. 太空人移動的總耗能

一所有向外移動的總耗能 十所有向內移動的總耗能, 即APs=u∑(Pt-Ps)+d∑(Ps-Pt)

2. (Pt-Ps)、(Ps-Pt)要轉換成原來相對的序號,再計算。

引理七:給定n個衛星站、m個太空人,這m個太空人都搭飛行船,且分別要到第Pi~ 第Pm站,若太空人向外耗能u、向內耗能d,則這m個太空人移動所需總耗能 最小的衛星站,會在第Pi到第Pm站之間。(含第Pi站及第Pm站)

- 【說明】:1. 將這m個太空人要抵達的衛星站,按其先後順序重新編號為第Pi站、第Pi站、第Pi站、·····第Pin站(沒有太空人要抵達的衛星站不編號)。
 - 2. 假設第 P_i 站到第 P_j 站(i < j),兩衛星站之間的站距為 $\Delta P_{(i,j)}$,則
 - ①第 P_1 站到其他各站的總站距為($\Delta P_{(1,2)} + \Delta P_{(1,3)} + \cdots + \Delta P_{(1,m)}$);
 - ②第Pm站到其他各站的總站距為 $(\Delta P_{(m-1,m)} + \Delta P_{(m-2,m)} + \cdots + \Delta P_{(1,m)})$ 。
 - 3. 飛行船降落在
 - ①第P₁站的總耗能=ux($\Delta P_{(1,2)} + \Delta P_{(1,3)} + \cdots + \Delta P_{(1,m)}$);
 - ②第 P_1 -1站的總耗能=ux [($\Delta P_{(1,2)} + \Delta P_{(1,3)} + \cdots + \Delta P_{(1,m)}$) +m]
 - ③第 P_{1} -2站的總耗能=ux〔($\Delta P_{(1,2)} + \Delta P_{(1,3)} + \cdots + \Delta P_{(1,m)}$) +2m〕:
 - 4. 觀察上述3知,飛行船降落在第Pi站之前的總耗能,都會比降落在第Pi站大
 - 5. 同理, 飛行船降落在第Pm站之後的總耗能都會比降落在第Pm站大。
 - 6. 由上述4、5知,太空人移動所需總耗能最小的衛星站,會在第Pi站到第Pm站之間(含第Pi站及第Pm站)。

定理六:給定n個衛星站、m個太空人,這m個太空人都搭飛行船且分別要到第Pi個~第Pm個衛星站,若太空人向外耗能u、向內耗能d,則這m個太空人移動所需總耗能最小的衛星站為第Pm-Imal個衛星站。

- 【說明】:1.由引理七知,太空人移動所需總耗能最小的衛星站會在第Pi站到第Pm站之間(含第Pi站及第Pm站)。
 - 2. 猜想飛行船降落在第Pm站,此時若改為向前一個(數字較小)衛星站降落(第Pm-1站),總耗能會增加u,減少(m-1)d,而在第Pm站到第Pm-1站之間,相鄰兩衛星站都有這種情形。如果(m-1)d>u,表示改為向前一個衛星站降落,可使總耗能降低,並可透過不斷改為向前一個衛星站降落,使得第Pm-1站,成為第Pm站到第Pm-1站之間,太空人移動所需總耗能最小的衛星站。
 - 3. 同上述2,猜想飛行船降落在第Pm-1站,此時若改為向前一個衛星站降落,總耗能會增加2u,減少(m-2)d,而在第Pm-1站到第Pm-2站之間,相鄰兩衛星站都有這種情形。如果(m-2)d>2u,表示改為向前一個衛星站降落可使總耗能降低,並可透過不斷改為向前一個衛星站降落,使得第Pm-2個衛星站,成為第Pm-1站到第Pm-2站之間,太空人移動所需總耗能最小的衛星站。
 - 4. 從上述2、3知,當(m-t)d≥tu,會有太空人移動所需總耗能最小的衛星站
 - 5. 由(m-t)d≥tu,可得t≤ $\frac{md}{u+d}$,又t∈N,所以tmax=[$\frac{md}{u+d}$]。
 - 6. 太空人移動所需總耗能最小的衛星站是第Pm-[m] 個衛星站。

未來展望

本研究探討都以飛行船只能降落一次的情況,找出太空人移動所需總耗能最小的衛星站,並求其總耗能,往後希望能找出飛行船降落二次、三次、…時的情形。我們有一個想法,就是將定理四推廣。 k Sincon