中華民國第59屆中小學科學展覽會作品說明書

國小組 數學科

佳作

080407

曲摺離奇的多邊形

學校名稱:臺北市私立靜心國民中小學(小學部)

作者:

小六 李家締

小六 劉怡婷

小六 呂學恆

小六 鄭宥璿

指導老師:

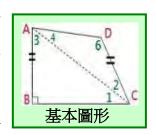
陳慧娟

石光源

關鍵詞:基本圖形、正多邊形、摺疊

摘 要

我們想研究三宅一生服裝設計是怎麼做出來的,一開始我們先摺奇 美博物館提供的摺紙範例做研究,發現此服裝設計是由數個相似圖形拼 組、層疊做出來的,我們將此圖形稱為「基本圖形」,我們改變基本圖 形的角度與邊長,繪製成平面圖,再將圖形剪下按照摺痕摺疊,結果發



現當 $\angle 2+\angle 3=\frac{360^\circ}{n}$ 時,可以摺出美麗的正 n 邊形,控制 $\angle 1$ 與 $\angle 2\cdot\angle 3$ 與 $\angle 4\cdot\overline{AD}$ 與 \overline{BC} 之間的關係,可以變化摺出飛鏢型、靠邊型、內部型、全等型四種不同的正 n 邊形,當 $\angle 2+\angle 3\neq\frac{360^\circ}{n}$ 時,若設定 $\angle B=\angle 1=\angle 2=36^\circ$ 時,可以摺出等分圓周的正五角星,而只要圖形摺疊後中間有洞或剛好沒洞,基本圖形都可以往上層疊,摺出螺旋狀的美麗圖形。

壹、研究動機

老師在課堂上分享她參觀奇美博物館「紙上奇蹟」特展的事,特別介紹有一件衣服,是利用拼組幾何圖形摺疊出來的,老師放此影片給我們看,我們都驚呼太神奇了!一個壓平的幾何圖形,拉起來居然可以形成一件衣服,這個服裝設計引起我們強烈的興趣,想知道這些壓平的幾何圖形是怎麼設計、做出來的,每個拼組出來的幾何圖形都能這樣壓平呈現完美圖案,且能立體的被拉起來嗎?於是我們利用所學(南一版四上「角度」、四下「四邊形」、五上「多邊形」、六下「縮圖和比例尺」),探討這個服裝設計背後所藏的數學奧秘是什麼。

貳、研究目的

研究一、探討三宅一生服裝設計的性質。

研究二、在 $\angle B$ =正 n 邊形內角的基本圖形中,探討裙底(一層)摺疊後的樣貌。

研究三、正n邊形裙底摺疊後,探討在何種狀況下中間會形成空洞。

基本圖形

研究五、在基本圖形中,若改變∠B≠正n邊形內角時,探討裙底摺疊後的樣貌。

研究六、在基本圖形中,若 $\angle 1 \neq \angle 2$, $\angle B$ 不一定是正 n 邊形內角,探討裙底摺疊後的樣貌。

參、文獻探討

本研究從三宅一生的服裝設計為出發點,想探討其中的數學原理,並分析整理出各種不同的類型與結構,從文獻中找到兩篇有關三宅一生的研究,整理如下:

	表一:數學傳播 69~73 頁(常文武、王儷娟、呂安雲, 2017)					
文章名稱	研究摘要	與本研究的差異				
三宅一生的	將基本圖形設定成∠B=90°、∠1=	想從改變角度入手,探討當∠B、				
服裝設計與	$\angle 2 \cdot \overline{AB} = \overline{DC} \cdot \overline{AB} : \overline{BC} = 1 : \sqrt{2}$, 改	∠1、∠2改變時,摺出的圖形有何不				
扭棱摺疊	變直角邊的兩股比,裙子因旋轉角度	同,以此去擴展研究內容。				
	不同,造成裙子長度不同。					

	表二:第58屆全國科展國小組數學和	斗(王晨諺等 4 人,2018)				
作品名稱	研究摘要	與本研究的差異				
正多邊形的圓舞曲	探討正多邊形繞著外面一點旋轉,產 生頂點相接的圖形,圖形內部結合三 宅一生的服裝設計,讓此服裝多一層 不同樣貌的底部。	1.本研究將焦點放在探討三宅一生服 裝設計中,多層裙子摺疊後,每層 的旋轉角度,並設定層數與旋轉角 度,讓最中間與最外面的正 n 邊形				
	圖 2:正三角形繞外面 1 點轉90°中間結合三宅一生服裝設計	呈現0°或180°反轉的樣示。 2.該研究中圖形內部摺疊後,從內到外所有正 n 邊形彼此為內接關係,本研究想探討是否有其它的結構關係,並將其歸類做整理。				

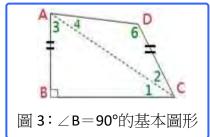
肆、研究設備及器材

筆、直尺、量角器、紙、綠黏土、電腦、相機、列表機。

伍、研究過程與方法

一、名詞解釋及定義

(一)基本圖形:四邊形 ABCD 中,滿足 \angle B=正 n 邊形內角、 $\angle 1 = \angle 2 \cdot \overline{AB} = \overline{DC} \cdot$ 則此四邊形稱為基本圖形。 (如圖 3)



(二)**單位圖形**:四邊形 ABCD 中,若不滿足基本圖形三條件之一,則此四邊形稱為單位圖形。

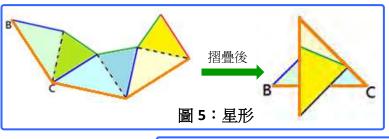
(三)**裙子**:由數個基本圖形或單位圖形橫向、縱向拼組而成,如圖 4 是由 16 個基本圖形拼組而成(橫向拼組 4 個、縱向拼組 4 個),左右兩邊黏貼摺疊後,就形成裙子,

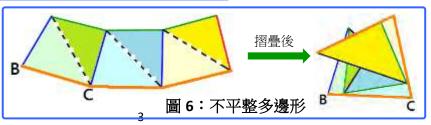


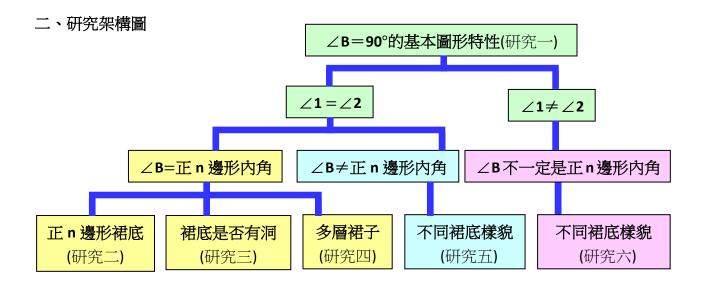
(四)裙底:設計圖中(圖 4)塗綠色部分在裙子最底層,稱為裙底。

(五)**星形**:觀察 3 個單位圖形拼摺後的樣子,若第一個單位圖形的 \overline{BC} 與第三個單位圖形的 \overline{BC} 相交,且兩條 \overline{BC} 的夾角不是正 n 邊形內角度數,則摺出來的圖形為星形。(圖 5)

(六)**不平整多邊形**:觀察 3 個單位圖形拼摺後的樣子,若第一個單位圖形的 \overline{BC} 與第三個單位圖形的 \overline{BC} 不相交,且兩條 \overline{BC} 的夾角不是正 n 邊形內角度數,則摺出來的圖形為不平整多邊形。(圖 6)







陸、研究結果

研究一、探討三宅一生服裝設計的性質。

(一)製作過程

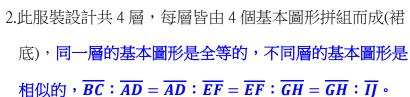
- 1.將三宅一生服裝設計(圖7)外圍剪下。
- 2.實線為山線,虛線為谷線,按照摺痕摺好。
- 3.將左右兩側邊黏起來,按照摺痕摺疊。

(二)製作成果 如圖 8

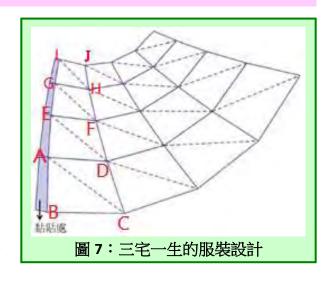
(三)發現與歸納

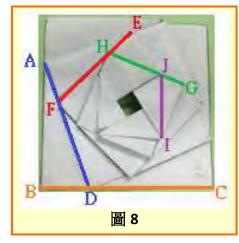
1.四邊形 ABCD 為基本圖形(如圖 7,∠B=90°、

 $\angle 1 = \angle 2 \cdot \overline{AB} = \overline{DC}) \circ$



- 3.摺疊後呈現5個內接正方形(最內部的空心正方形除外)。
- 4.由外往內第 1 個最大的正方形邊長由 \overline{BC} 構成,第 2 個正方形邊長由 \overline{AD} 構成,第 3 個正方形邊長由 \overline{EF} 構成,依此類推。





研究二、在 ZB=正 n 邊形內角的基本圖形中,探討裙底(一層)摺疊後的樣貌。

(一)猜想

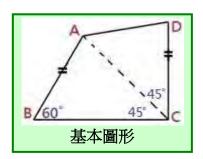
觀察研究一服裝設計的裙底(一層),發現基本圖形 $\angle B=90^\circ$ 、對角線 \overline{AC} 將 $\angle C$ 平分、 $\overline{AB}=\overline{DC}$ 、拼接 4 個基本圖形,摺疊後呈現正方形的裙底,所以猜想若將 $\angle B$ 改成正 n 邊形內角,拼接 n 個基本圖形,就能摺出正 n 邊形的裙底。

(二)製作過程

- 1.用直尺畫一線段 \overline{BC} (自訂 \overline{BC} =5公分)。
- 2.用量角器畫出∠B=60°
- 3.用量角器畫 $\angle C = 90^{\circ}$,並平分 $\angle C \circ (\angle 1 = 45^{\circ})$
- $4. \angle C$ 的平分線與 $\angle B$ 的延長線交於 A 點。
- 5.用直尺畫 $\overline{AB} = \overline{DC}$,最後連接 \overline{AD} ,畫出 1 個基本圖形。
- 6.拼接3個基本圖形,完成裙底繪製圖,外圍剪下後,按照摺痕摺疊。
- 7.重複步驟 1.~5.,將 ∠B 分別改成90°、108°、120°,拼接 4 個、5 個、6 個基本圖形,外圍 剪下後,按照摺痕摺疊。
- 8.重複步驟 1.~7.,將∠C 改成70°。(∠1 =35°)

(三)製作成果

∠1	繪 製 圖	摺疊後照片	發現	繪 製 圖	摺疊後照片	發現
	編號:2-1 ∠B=60°	/ AN	摺出 正三角形	編號:2-2 ∠B =90 °	10	摺出 正方形
45°	編號: 2-3 ∠B=108°		摺出 正五邊形	編號:2-4 ∠B= 120 °		摺出 正六邊形



∠1	繪 製 圖	摺疊後照片	發現	繪 製 圖	摺疊後照片	發現
	編號: 2-5 ∠B=60°		摺出 正三角形	編號:2-6 ∠ B=90°		摺出 正方形
35°	編號:2-7 ∠ B=108°		摺出 正五邊形	編號:2-8 ∠ B=120°		摺出 正六邊形

(四)發現與歸納

 $1.在 \angle B = \mathbb{E} n$ 邊形內角、 $\angle 1 = \angle 2 \cdot \overline{AB} = \overline{DC}$ 的基本圖形中,若拼接 n 個基本圖形形成裙底,則 摺疊後的裙底會形成正 n 邊形,圖形中間也是正 n 邊形。

理由:(以 n=4 做說明)

(先以兩個基本圖形拼摺後來說明角度均為90°)

(1)在四邊形 ABCD 與 DCEF 中:

$$\angle BAC = \angle CDE \cdot \angle CAD = \angle EDF$$

$$=> \angle \alpha = \angle \alpha'$$

$$\mathbb{Z} \angle ADC = \angle \alpha + \angle ABC$$

$$\angle ADC = \angle \alpha' + \angle ADF$$

$$=>$$
 \angle ABC $=$ \angle ADF

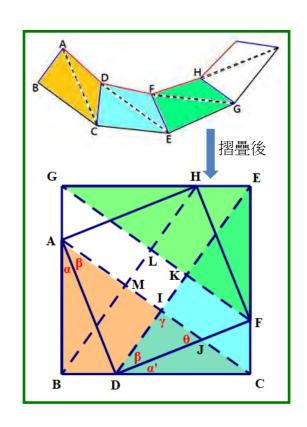
 $\angle \gamma = \angle MIK$ (對頂角相等)

$$\Delta DIJ + \angle \beta + \angle \gamma + \angle \theta = 180^{\circ}$$

$$\triangle ADJ + \angle \beta + \angle ADJ + \angle \theta = 180^{\circ}$$

$$\Rightarrow \angle \gamma = \angle ADF$$

 $\mathbb{H}^2 \angle ABC = \angle ADF = \angle MIK = 90^\circ$

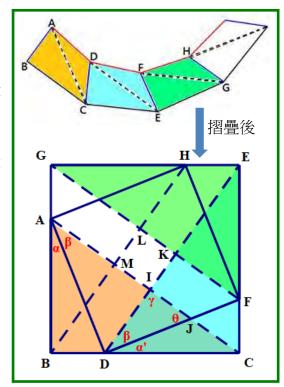


(再以三個基本圖形拼摺後來說明 $\overline{IK} > 0$)

(2)在四邊形 ABCD、DCEF 與 FEGH 中:

第一個基本圖形 ABCD 沿 \overline{AC} 對摺後,D 點落 在 \overline{BC} 之間,第二個基本圖形 DCEF 沿 \overline{DE} 對摺後,F 點也必落在 \overline{CE} 之間,F 點不落在 \overline{AC} 上,而是落 在 \overline{AC} 的上方,可見 F 點到 \overline{AC} 之間存在一段距離, \overline{FG} 是第三個基本圖形的對角線,即兩對角線 \overline{AC} 、 \overline{FG} 之間存在一段距離,即 $\overline{IK} > 0$ 。

(3)因旋轉的對稱性,所以 \angle ABC= \angle BCE= \angle CEG= \angle EGB= $\mathbf{90}^{\circ}$, \angle ADF= \angle DFH= \angle FHA= \angle HAD= $\mathbf{90}^{\circ}$, \angle MIK= \angle IKL= \angle KLM= \angle LMI= $\mathbf{90}^{\circ}$, \overline{BC} = \overline{CE} =



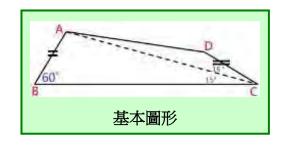
 $\overline{EG} = \overline{GB}$, $\overline{AD} = \overline{DF} = \overline{FH} = \overline{HA}$, $\overline{MI} = \overline{IK} = \overline{KL} = \overline{LM}$,即四邊形 GBCE、ADFH、MIKL 都是正方形,同理當 n≥3 情况相同。

2.由研究一發現摺出的正方形中間有洞,**洞的邊是由每個基本圖形的摺痕(ĀC)形成**,在研究二的製作成果中發現編號 2-1 圖形中間沒洞,編號 2-2、2-5 圖形中間**剛好沒洞(即兩條ĀC交於一點)**,所以我們想在研究三中,繼續探討在何種狀況下正 n 邊形中間會有空洞。

研究三、正n邊形裙底摺疊後,探討在何種狀況下中間會形成空洞。

(一)製作過程

- 1.用直尺畫一線段 \overline{BC} (自訂 \overline{BC} = 5 公分)。
- 2.用量角器畫出∠**B=60°**,∠1=∠2**=15°**。
- 3.延長 $\angle B$ 與 $\angle 1$ 的邊,交點為 A。
- 4.用直尺畫 $\overline{AB} = \overline{DC}$,最後連接 \overline{AD} ,完成1個基本圖形。
- 5.拼接3個基本圖形,完成裙底繪製圖,外圍剪下後,按照摺痕摺疊。
- 6.重複步驟 1.~5.,分別更改 ∠1= ∠2 的度數為30°、45°、60°、75°。
- 7.重複步驟 1.~6.,將**∠B** 分別改成 **90°、108°、120°**,分別拼接 4 個、5 個、6 個基本圖形, 外圍剪下後,按照摺痕摺疊。



(二)製作成果

		正三角形裙底		正方形裙底			
∠1	繪製圖	摺疊後照片	發 現	∠1	繪製圖	摺疊後照片	發 現
15°			中間有洞	15°			1.中間有洞
30°		A	中間 剛好沒洞	30°	J	4	2.∠1 愈大 空洞愈小
45°	B	1		45 °		1	中間 剛好沒洞
60°			中間沒洞	60°		1	中間沒洞
75°	A			75°		V	

	∠1	繪 製 圖	摺疊後照片	發 現
	15°			
五	30°			1.中間有洞2.BC 是最外面正五邊形的邊3.∠1 愈大空洞愈小
邊 形 裙	45°		D	3. ~ 1 /6k/ (////.
底	54 °			1.中間剛好沒洞 2.BC 是最外面正五邊形的邊
	60°	90		1.中間沒洞 2. BC 是最裡面正五邊形的邊 3. AD 是最外面正五邊形的邊
	75°	畫不出來	AB與AC無法相交於一點	做不出來

	∠1	繪 製 圖	摺疊後照片	發 現
-	15°			
正六邊形式	30° //////			1.中間有空洞 2. BC 是最外圍六邊形的邊
裙底	45°			3.∠1 愈大,空洞愈小。
	60°	畫不出來	AB與AC平行無法相交於一點	做不出來
	75 °	畫不出來	AB與AC無法相交於一點	做不出來

(三)發現與歸納

我們的條件是 $\angle B$ =正 n 邊形內角, $\angle 1$ = $\angle 2$, \overline{AB} = \overline{DC} ,拼接 n 個基本圖形,從製作成果中發現:

1.當 \angle B= 108°、 \angle 1=75°時,基本圖形畫不出來; \angle B= 120°、 \angle 1=60°或75°時,基本圖形也 畫不出來。

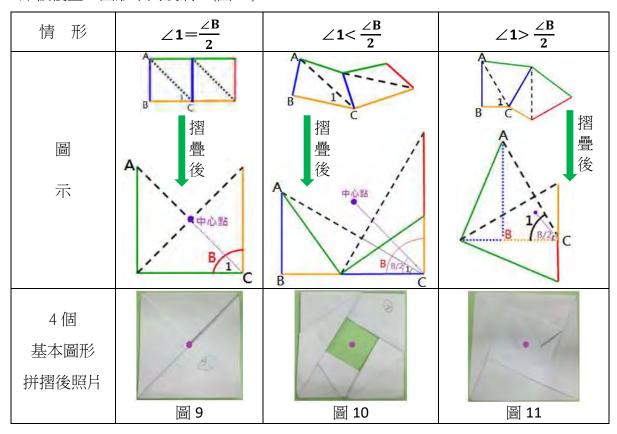
理由:因∠B 與∠1 在同一個 Δ ABC中,若∠1+∠B ≥ 180°時, Δ ABC無法構成,所以基本圖形畫不出來。

- 2.(1)若 $\angle \mathbf{1} = \frac{\angle \mathbf{B}}{2}$ 時,摺疊後**中間剛好沒洞**,且 \overline{BC} 是最外圍正 n 邊形的邊。
 - (2)若 $\angle 1 < \frac{\angle B}{2}$ 時,摺疊後中間有洞, $\angle 1$ 愈大,洞愈小, \overline{BC} 是最外圍正 n 邊形的邊。
 - (3)若 \angle **1**> $\frac{\angle B}{2}$ 時,摺疊後中間沒洞, \overline{BC} 變成最裡面正 n 邊形的邊, \overline{AD} 變成最外面正 n 邊形的邊。

理由:(以 n=4、拼接 2 個基本圖形來做說明,同理 $n \ge 3$ 情况相同。)

摺疊後的圖形是否有洞,主要是各基本圖形的 \overline{AC} (即虛線)所圍出來的,又摺疊後圖形的中心點與正 n 邊形各內角連線會平分正 n 邊形各內角,因此

- (1)當 $\angle 1 = \frac{\angle B}{2}$ 時,因 \overline{AC} 也平分 $\angle C$,所以中心點在 \overline{AC} 上,經圖形旋轉對稱,中心點落在各基本圖形的 \overline{AC} 上,圖形中間剛好沒洞。(圖 9)
- (2)當 $\angle 1 < \frac{\angle B}{2}$ 時,因中心點落在 $\triangle ABC$ (摺疊後的基本圖形)之外,經圖形旋轉對稱後,圖形中間形成有洞。(圖 10)
- (3)當 $\angle 1 > \frac{\angle B}{2}$ 時,因中心點落在 $\triangle ABC$ (摺疊後的基本圖形)之內,經圖形旋轉對稱後,中心點被覆蓋,圖形中間沒洞。(圖 11)



研究四、正 n 邊形裙底層疊後(多層)形成裙子,探討在何種狀況下能沿著摺痕壓平摺疊。

(一)製作過程

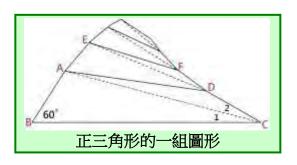
1. 畫基本圖形 ABCD, 使∠B=**60°**、∠1=∠2=**15°**。

2.將 1.的基本圖形等比例縮小畫出 EADF,使 \overline{BC} :

 $\overline{AD} = \overline{AD} : \overline{EF}$,拼疊成 2 層基本圖形。

3.同 2.作法,縱向拼疊 4 個基本圖形,此為一組圖形。

4.横向拼接3組圖形,完成正三角形裙底層疊成裙子的繪製圖。



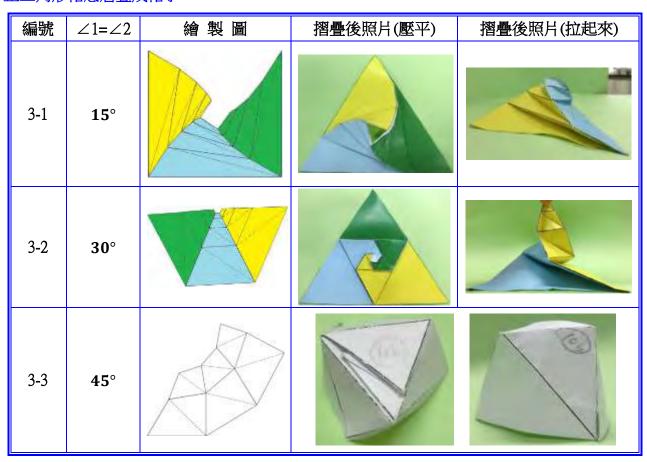
- 5.同 1.~3.,將 \angle B 改成**90°**, \angle 1= \angle 2 分別改成**30°、45°、60°**,橫向拼接 4 組圖形,完成正四邊形裙底層疊成裙子的繪製圖。
- 6.同 1.~3.,將 \angle B 改成**108**°, \angle 1= \angle 2 分別改成**36**°、**45**°、**54**°、**60**°,横向拼接 5 組圖形,完成正五邊形裙底層疊成裙子的繪製圖。

正三角形基本圖形

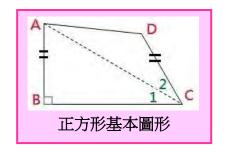
7.將全部繪製圖外框剪下,按照摺痕摺疊。

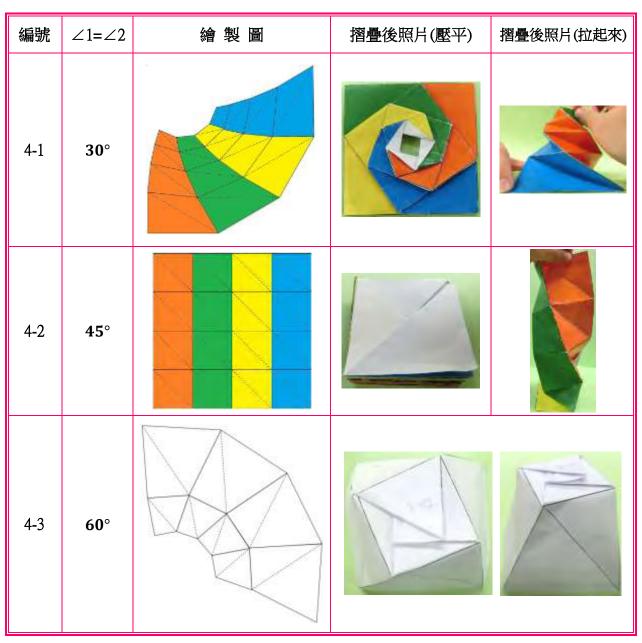
(二)製作成果

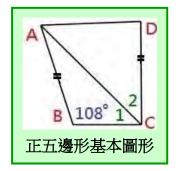
正三角形裙底層疊成裙子



正方形裙底層疊成裙子



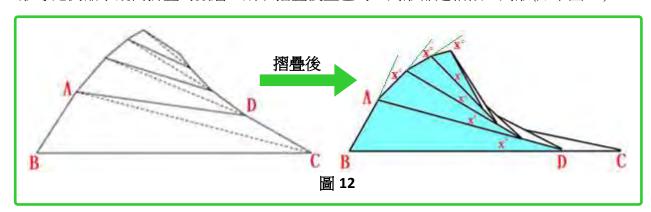




編號	∠1=∠2	繪 製 圖	摺疊後照片(壓平)	摺疊後照片(拉起來)
5-1	36°			
5-2	45 °			
5-3	54 °			
5-4	60 °			

(三)發現與歸納

- 1.在是否能沿摺痕壓平摺疊中:
- (1)**當** $\angle 1$ = $\angle 2$ > $\frac{\angle B}{2}$ 時,不能全部沿摺痕摺疊壓平,只能摺疊某一層,如編號 3-3、4-3、5-4。
- (2)當∠1=∠2≤ ∠B 且繪製圖不是平行四邊形時,能全部沿著摺痕摺疊壓平,呈現每一層螺旋的轉動變化,拉起來類似金字塔狀的角錐形體,如編號 3-1、3-2、4-1、5-2、5-3。
- (3)當 $\angle 1 = \angle 2 = \frac{\angle B}{2}$ (即 $\overline{AB}/|\overline{CD}$),繪製圖呈現平行四邊形,如編號 4-2、5-1,**能全部沿著摺痕 摺疊壓平**,但不會呈現每一層轉動的變化,拉起來像直筒狀的角柱形體。
- 2.在摺疊為數層的旋轉角度中:
- (1)當 $\angle 1 = \angle 2 \le \angle B/2$ 且 $\overline{BC} > \overline{AD}$ 時, \overline{AB} 每次往中心旋轉的角度均為 \mathbf{x} °,因繪製圖是將基本圖形等比例縮小縱向拼疊為數層,所以摺疊後藍色的三角形都是相似三角形(如下圖 12)。



若要讓最中間與最外面的圖形關係為旋轉0°或180°,則 x 最小的旋轉角為:

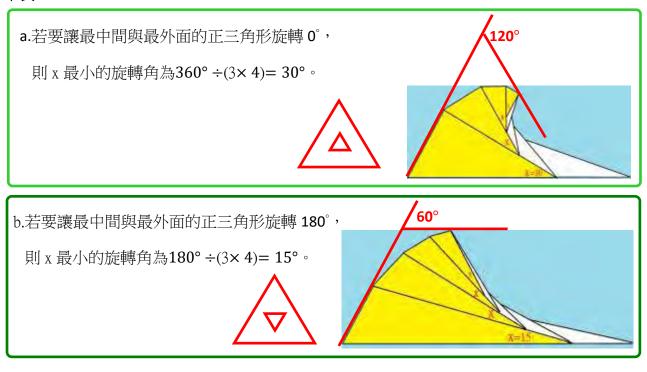
- (n 是正 n 邊形、k 是摺疊後的層數)
- ①當 n=奇數,最中間與最外面的圖形旋轉 0° , $x = \frac{360^{\circ}}{nk}$ 。
- ②當 n=奇數,最中間與最外面的圖形旋轉 180° , $x = \frac{180^{\circ}}{nk}$ 。
- ③當 n=偶數,不管最中間與最外面的圖形旋轉 0° 或 180° , $x = \frac{360^{\circ}}{nk}$ 。

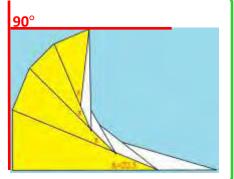
理由:

形狀	正三角形	正五邊形	正七邊形	邊旋轉的
(內角度數)	(60°)	(108°)	(≒128.6°)	最小角度
最中間與最外面的圖形為旋轉0°關係	120°	72°	51.4°	$180^{\circ} - \angle B$ $= 180^{\circ} - \frac{(n-2) \times 180^{\circ}}{n}$ $= \frac{360^{\circ}}{n}$
最中間與最外面 的圖形為旋轉 180°關係	60°	36°	25.7	$(180^{\circ} - \angle B) \div 2$ $= \frac{180^{\circ}}{n}$

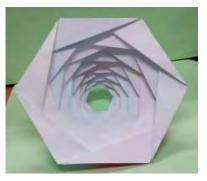
形狀	正方形	正六邊形	正八邊形	邊旋轉的
(內角度數)	(90°)	(120°)	(135°)	最小角度
最中間與最外面的 圖形為旋轉0°或 180°關係	90°	60°	45°	$180^{\circ} - \angle B$ $= 180^{\circ} - \frac{(n-2) \times 180^{\circ}}{n}$ $= \frac{360^{\circ}}{n}$

舉例:





d.若增加層數,x最小的旋轉角會變小,螺旋線會更接近圓弧線,圖形會更美麗。



壓平的俯視圖

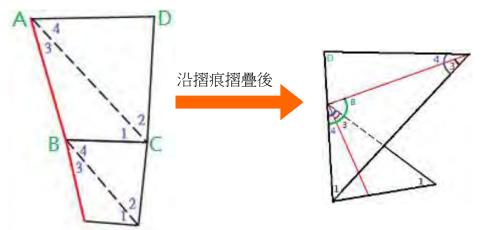
拉起的側視圖

內部圖

圖 13:正六邊形裙底,共 10 層。

(2)當 $\angle 1 = \angle 2 \leq \angle B/2$ 且 $\overline{BC} = \overline{AD}$ 時, \overline{AB} 旋轉的角度為正 n 邊形任一外角(即 $\frac{360^{\circ}}{n}$)。

(3)當 $\angle 1 = \angle 2 \le \angle B/2$ 且 $\overline{BC} < \overline{AD}$ 時, \overline{AB} 往外旋轉的角度= 180°—($\angle B - \angle 4 + \angle 3$)。



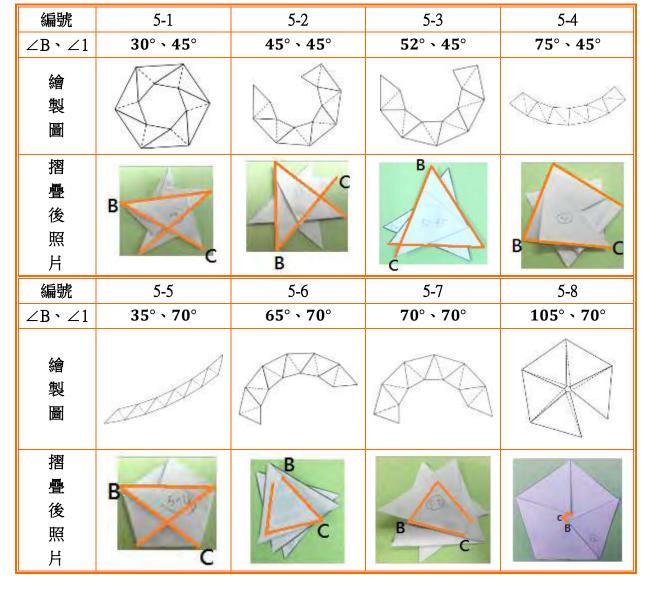
研究至此,我們已探討當 $\angle B=$ 正 n 邊形內角、 $\angle 1=\angle 2$ 、 $\overline{AB}=\overline{DC}$ 、拼接 n 個基本圖形,裙底摺疊後的樣貌,接下來我們將進一步探討當 $\angle B\neq$ 正 n 邊形內角與 $\angle 1\neq \angle 2$ 時,拼接數個單位圖形後,裙底摺疊後的樣貌。

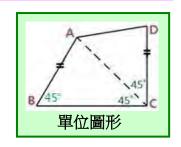
研究五、在基本圖形中,若改變∠B≠正n邊形內角時,探討裙底摺疊後的樣貌。

(一)製作過程

- 1.用直尺畫一線段 \overline{BC} (自訂 \overline{BC} =5公分)。
- 2.用量角器畫∠1=∠2 = **45°**。
- 3.畫∠B= **45°**,並延長∠B 與∠1 的邊,交點為 A。
- 4.用直尺畫 $\overline{AB} = \overline{DC}$,最後連接 \overline{AD} ,完成1個單位圖形。
- 5.拼接6個單位圖形,按照摺痕摺疊。
- 6.重複步驟 1.~5.,分別更改∠B= 30°、52°、75°。
- 7.重複步驟 1.~5.,定 $\angle 1$ = $\angle 2$ = **70°**,分別更改 $\angle B$ = **35°、65°、70°、105°**。

(二)製作成果





(三)發現與歸納

1.若∠B≠正 n 邊形內角、∠1=∠2、 $\overline{AB} = \overline{DC}$ 為一個單位圖形,則拼接 n 個單位圖形,摺不出 正n邊形。

理由:當 $\angle 1=\angle 2$ 時,1 個單位圖形沿 \overline{AC} 對摺後,呈現下列三種情形,不論是哪一種情形, 2 個單位圖形拼摺後,兩條 \overline{BC} (橘線)夾角都是∠B,若∠B≠正 n 邊形內角,則不會摺 出下 n 邊形。

情形	(1) D 點在 <i>BC</i> 之間	(2) D 點與 B 點重疊	(3) D 點在 <i>BC</i> 外面
1個單位圖形	A	A	Â.
沿 AC 對摺	B D C	B 1'C	D B C
2個單位圖形拼摺	B	B	

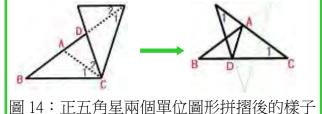
- 2.觀察拼摺 3 個單位圖形的 \overline{BC} (橋線):
 - (1)當∠B≠正 n 邊形內角且∠B< **60°時,摺疊後會呈現星形**(編號 5-1、5-2、5-3、5-5)。
 - (2)當∠B≠正 n 邊形內角目∠B> 60°時,摺疊後呈現不平整多邊形(編號 5-4、5-6、5-7、5-8)。

理由:因兩條 \overline{BC} (橘線)夾角都是 $\angle B$,每個單位圖形的 \overline{BC} 皆相等,當 $\angle B = 60$ °時,三條 \overline{BC} 會 形成封閉的正三角形,所以若 \angle B< 60°時,其中兩條 \overline{BC} 一定會相交,故呈現星形; 若∠B≠正 n 邊形內角且∠B> 60° 時,三條 \overline{BC} 無法組成封閉圖形,故呈現不平整多邊 形。

(四)設計製作正 n 角星

思考

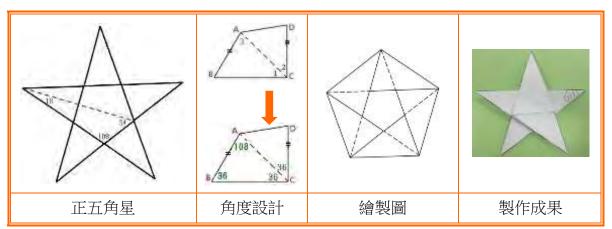
製作成果中的星形,因凸出的星角沒有



等分圓周, 咸覺不美, 我們想做出星角一樣大且等分圓周的正 n 角星形, 由摺紙過程中發現 凸出的星角是由∠B、∠1 構成,因∠1=∠2,所以 \overline{CD} 會摺到 \overline{BC} 上,形成一直線,又∠B=∠ 1,所以∠B、∠1、∠2 這三個角會重疊摺在一起,形成另一個凸出的星角,且與 \overline{AC} 、 \overline{BC} 重 疊,這樣星角與正 n 邊形的邊互相連成一直線,才能成功摺出正 n 角星。

設計與製作成果

以最常見的正五角星去設計,中間是正五邊形,正五邊形的每一邊都往外延伸,可畫出 五個等分圓周的星角,我們計算正五邊形內角與星角的角度,設計製作出正五角星如下:



計算星角角度

正 n 邊形的中心點與星角連線必垂直正 n 邊形的邊,

所以星角
$$\angle$$
B={90°-{180°-[$\frac{(n-2)\times180^{\circ}}{n}$]}} \times 2=180°- $\frac{720^{\circ}}{n}$ °

只能做出正五角星理由

單位圖形中, $\angle 1+\angle 2 < 180^{\circ}$,若 $\angle 1=\angle 2$,則 $\angle 1=\angle 2 < 90^{\circ}$,

因凸出的星角是由 $\angle B$ 、 $\angle 1$ 構成,若要做出正 n 角星,則 $\angle B = \angle 1 = \angle 2$,

所以 $\angle B=180^{\circ}-\frac{720^{\circ}}{n}<90^{\circ}$,得到 n<8,下表分別說明不能做出正 n 角星的理由,

故只有正五角星做得出來。

n 角星	正三角星	正四角星	正六角星	正七角星
做不出來 原因	延長邊 無法畫出星角	延長邊無法畫出星角	$∠B=180^{\circ}-\frac{720^{\circ}}{6}$ $=60^{\circ}$ 不符合∠ $B≠$ 正 n 邊 形內角	∠B=180° $-\frac{720°}{7}$ $=\frac{540}{7} = 77.1°$ 不符合∠B< 60°

研究六、在基本圖形中,若 $\angle 1 \neq \angle 2$, $\angle B$ 不一定是正 n 邊形內角,探討裙底摺疊後的樣貌。

(一)製作過程

1.用直尺畫一線段 \overline{BC} (自訂 \overline{BC} =5公分)。

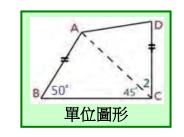
2.用量角器畫 $\angle 1 = 45^{\circ}$, $\angle B = 50^{\circ}$,延長線段交於 A 點。

3.畫 $\angle 2 = 15^{\circ}$, $\overline{AB} = \overline{DC}$,連接 \overline{AD} ,完成 1 個單位圖形。。

4.拼接6個單位圖形,按照摺痕摺疊。

5.重複步驟 1.~4.,分別更改∠2 = 30°、60°、75°。

6.重複步驟 1.~5.,分別更改∠B = 60°、75°、90°。



(二)製作成果

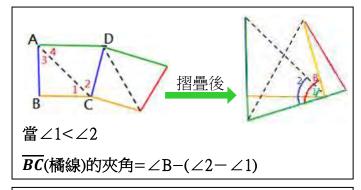
編號	6-1	6-2	6-3	6-4	
∠B、∠2	50° \ 15°	50° \ 30°	50° \ 60°	50° ∙ 75°	
繪製圖					
摺 疊 後 照 片	C	В	C	B C	
編號	6-5	6-6	6-7	6-8	
∠B · ∠2	60° \ 15°	60° \ 30°	60° \ 60°	60° ⋅ 75°	
繪 製 圖					
摺疊後照片	B	C B	C	В	

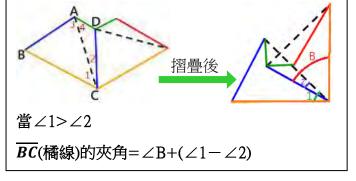
編號	6-9	6-10	6-11	6-12	
∠B \ ∠2	75° \ 15°	75° \ 30°	75° \ 60°	75° \ 75°	
繪 製 圖					
摺 疊 後 照 片	B	В	В	C	
編號	6-13	6-14	6-15	6-16	
∠B、∠2	90° \ 15°	90° \ 30°	90° \ 60°	90° \ 75°	
繪 製 圖					
摺 疊 後 照 片	BC	BC	BC	B	

(三)發現與歸納

由星形與不平整多邊形的定義,我們必須確認兩條 \overline{BC} (橘線)的關係:

- 1.觀察拼摺2個單位圖形 \overline{BC} (橘線)的夾角, 不論 $\angle 1 > \angle 2$ 或 $\angle 1 < \angle 2$,兩條 \overline{BC} (橘線) 的夾角皆為 $\angle B + \angle 1 - \angle 2$ 。
- 2.觀察拼摺 3 個單位圖形的BC(橘線),當
 ∠B+∠1-∠2< 60°時,摺疊後會呈現
 星形,如編號 6-3、6-4、6-7、6-8、6-12。





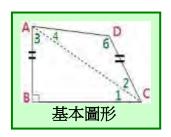
- 3.當∠B+∠1−∠2> **60**°且∠B+∠1−∠2≠正 n 邊形內角時,摺疊後會呈現不平整多邊形,如編號 6-1、6-2、6-6、6-9、6-14、6-15。
- 4.當∠B+∠1-∠2=正 n 邊形內角時, 摺疊後會呈現正 n 邊形, 如編號 6-5、6-10、6-11、6-13、6-16。

柒、討論

一、製作正 n 邊形裙底的條件是什麼?

觀察

由研究二發現製作正 n 邊形裙底的條件是 $\angle B$ =正 n 邊形內角, $\angle 1$ = $\angle 2$, \overline{AB} = \overline{DC} ,拼接 n 個基本圖形,但由研究六製作成果編號 6-10、6-11 發現當 $\angle B$ ≠正 n 邊形任一內角度數, $\angle 1$ ≠ $\angle 2$,也能摺



出正 n 邊形,我們整合研究二與研究六,希望能找出製作正 n 邊形裙底的條件。在繪製基本圖形(或單位圖形)時,我們給定 $\angle B$ 、 $\angle 1$ 、 $\angle 2$,可以算出 $\angle 3$ ($\angle 3$ = 180° - $\angle B$ - $\angle 1$),因 \overline{AB} = \overline{DC} ,最後再連接 \overline{AD} , $\angle 4$ 、 $\angle 6$ 被 $\angle B$ 、 $\angle 1$ 、 $\angle 2$ 、 \overline{AB} = \overline{DC} 條件限定住,所以我們去探討研究二、研究六中 $\angle 2$ 、 $\angle 3$ 與正 n 邊形裙底的關係,發現如下:

正三角形裙底: $\angle 2 + \angle 3 = 120^{\circ} = \frac{360^{\circ}}{3}$	正四邊形裙底: $\angle 2 + \angle 3 = 90^{\circ} = \frac{360^{\circ}}{4}$
正五邊形裙底: $\angle 2 + \angle 3 = 72^{\circ} = \frac{360^{\circ}}{5}$	正六邊形裙底: $\angle 2 + \angle 3 = 60^{\circ} = \frac{360^{\circ}}{6}$

猜想

我們猜想製作正 n 邊形裙底的條件是: $(1) \angle 2 + \angle 3 = \frac{360^{\circ}}{n}$ (2) $\overline{AB} = \overline{DC}$ (3)拼接 n 個基本圖形 (或單位圖形)。

實作

我們嘗試製作成果如下:

	∠2	∠3	繪製圖與摺疊後照片	∠2	∠3	繪製圖與摺疊後照片
正三邊形裙底	60°	60°		30°	90°	
正四邊形裙底	60°	30°		30°	60°	
正五邊形裙底	30°	42°		60°	12 °	

發現

發現只要設定這三個條件 $\angle 2+\angle 3=\frac{360^\circ}{n}$ 、 $\overline{AB}=\overline{DC}$ 、拼接 n 個基本圖形(或單位圖形),即可做出正 n 邊形裙底,因基本圖形(或單位圖形)要互相拼接,所以 $\overline{AB}=\overline{DC}$,要做出正 n 邊形,最少需拼接 n 個基本圖形(或單位圖形),多拼接的話,基本圖形(或單位圖形)會重疊在正 n 邊形上,所以我們只需說明 $\angle 2+\angle 3=\frac{360^\circ}{n}$ 此一條件即可。

理由

因兩條 \overline{BC} (橘線)夾角為 $\angle B+(\angle 1-\angle 2)$ (表三),所以由上述理由(*)中得知不管 $\angle 1$ 、 $\angle 2$ 的關係,兩條 \overline{BC} 夾角為正 n 邊形的一內角,故只要設定這三個條件 $\angle 2+\angle 3=\frac{360^\circ}{n}$ 、 $\overline{AB}=\overline{DC}$ 、拼接 n 個基本圖形(或單位圖形),即可做出正 n 邊形裙底。

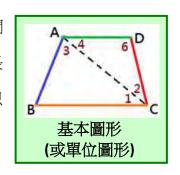
	表三:當 $\angle 1$ 、 $\angle 2$ 關係不同時,兩條 \overline{BC} 的夾角。							
	情 形	$(1) \angle 1 = \angle 2$	(2) ∠1>∠2	(3) ∠1<∠2				
	1 個基本圖形 (或單位圖形) 沿 Ā C對摺	A D D	A C	BD				
學例	2個基本圖形 (或單位圖形) 拼摺	D B	D B	D A 200 B				
₩.	所條 <i>BC</i> 的夾角	∠B	$\angle B + \angle 1 - \angle 2$	$\angle B + \angle 1 - \angle 2$				

二、改變基本圖形並拼接 n 個,可以摺疊成哪幾種不同型態的正 n 邊形裙底呢?

我們將所有正 n 邊形裙底的製作成果分成下列四型:

分類	1. 飛鏢型	2. 靠邊型	3. 內部型	4. 全等型	
圖示舉例			R		
說明	只有內部是正 n 邊 形,且凸出正 n 邊 形以外的三角形其 中一角靠著正 n 邊 形的一角。	全部皆由正 n 邊形 組成,除了空洞以 外,內部正 n 邊形 的頂點都靠著外面 正 n 邊形的邊。	全部皆由正 n 邊形組成,內部正 n 邊形的頂點都在最外面正 n 邊形裡面。	全部皆由正 n 邊形組成,上到下全部的正 n 邊形都一樣大。	

我們思考真的只有這四種型態嗎?會不會有哪一種型態是我們研究中沒摺出來的,我們列出基本圖形(或單位圖形)的角度與線段長度改變時的全部狀況,摺出來的樣子(如下表四、表五、表六)確實只有這四種型態,沒有其它。



	表四:當∠1=∠2時,2個基本圖形(或單位圖形)拼摺後的樣貌。							
 情形	$\overline{AD} = \overline{BC}$	以中心圖 D/M 指後可須承統。 $\overline{AD} \neq \overline{BC}$						
	$\Delta ABC \cong ADC (ASA)$	ΔABC ≅ ADC (ASA)						
∠3=∠4	2個拼摺後	$=> \overline{AD} = \overline{AB} \cdot \overline{DC} = \overline{BC}$ 但原定 $\overline{AB} = \overline{CD}$ $=> \overline{AD} = \overline{BC} \text{ (不合)}$						
	綠線與橘線等長,所以是 <mark>全等型</mark> 。	無此情形						
∠3>∠4	$\overline{AB} = \overline{DC} \cdot \overline{AC} = \overline{AC} \cdot \overline{AD} = \overline{BC}$ => $\Delta ABC \cong CDA \text{ (SSS)}$ => $\angle 2 = \angle 3 \cdot \angle 1 = \angle 4$ 但 $\angle 1 = \angle 2$ => $\angle 3 = \angle 4 \text{ (不合)}$ 無此情形	橘線是正 n 邊形 外面的邊,綠線 是正 n 邊形裡面 的邊,綠線靠著 橘線,所以是靠 邊型。						
∠3<∠4	與上面 ∠3> ∠4 情形相同 無此情形	格線是正 n 邊形 裡面的邊,綠線 是正 n 邊形外面 的邊,橘線都在 綠線裡面,所以 是內部型。						

表五:當∠1>∠2 時,2 個基本圖形(或單位圖形)拼摺後的樣貌。					
情形	$\overline{AD} = \overline{BC}$	$\overline{AD} \neq \overline{BC}$			
∠3=∠4	$\overline{AB} = \overline{DC} \cdot \overline{AC} = \overline{AC} \cdot \overline{AD} = \overline{BC}$ => $\triangle ABC \cong CDA \text{ (SSS)}$ => $\angle 2 = \angle 3 \cdot \angle 1 = \angle 4 \angle 3 = \angle 4$ => $\angle 1 = \angle 2 (\overline{A} + \overline{A})$ 無此情形	C 綠線是正 n 邊形 裡面的邊,橘線 是正 n 邊形外面 的邊,綠線都在 橘線裡面,所以 是內部型。			
∠3>∠4	$\overline{AB} = \overline{DC} \cdot \overline{AC} = \overline{AC} \cdot \overline{AD} = \overline{BC}$ => $\triangle ABC \cong CDA \text{ (SSS)}$ => $\angle 2 = \angle 3 \cdot \angle 1 = \angle 4 \angle 1 = \angle 3 > \angle 4$ => $\angle 2 > \angle 1 (\overline{AC})$ 無此情形	A			
∠3<∠4	B 2 C ■ 2 個 拼 摺 後 ※ 線與橘線等長,所以是 全等型 。	D' 3			

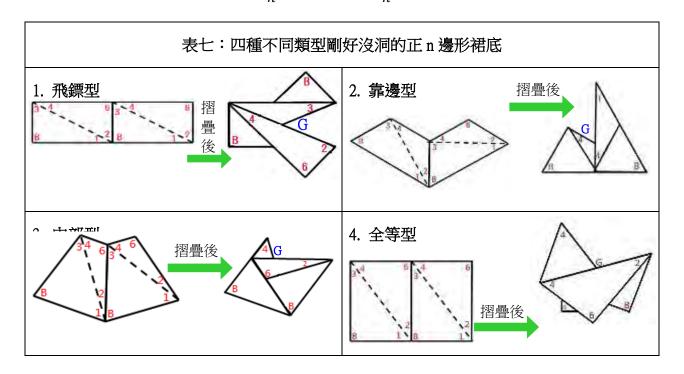
表六:當∠1<∠2時,2個基本圖形(或單位圖形)拼摺後的樣貌。						
情形	$\overline{AD} = \overline{BC}$	$\overline{AD} \neq \overline{BC}$				
∠3=∠4	$\overline{AB} = \overline{DC} \cdot \overline{AC} = \overline{AC} \cdot \overline{AD} = \overline{BC}$ => $\Delta ABC \cong CDA \text{ (SSS)}$ => $\angle 2 = \angle 3 \cdot \angle 1 = \angle 4 \Box \angle 3 = \angle 4$ => $\angle 2 = \angle 1 \text{ (不合)}$ 無此情形	A 2 個拼摺後 B C C D'				
∠3>∠4	橋線是正 n 邊形的邊,凸出正 n 邊形以外的三角形其中一角靠著正 n 邊形的一角,所以是 飛雲型。	M線是正 n 邊形的邊, 凸出正 n 邊形以外的三角形其中一角靠著正 n 邊形的一角,所以是飛鏢型。				
∠3<∠4	$\overline{AB} = \overline{DC} \cdot \overline{AC} = \overline{AC} \cdot \overline{AD} = \overline{BC}$ => $\Delta ABC \cong CDA \text{ (SSS)}$ => $\angle 2 = \angle 3 \cdot \angle 1 = \angle 4 \angle 1 = \angle 3 < \angle 4$ => $\angle 2 < \angle 1 \text{ (不合)}$ 無此情形	A 綠線是正 n 邊 形外面的邊,橘 線是正 n 邊形 線是正 n 邊形 裡面的邊,橘線 都 在 綠 線 裡 面,所以是內部 型。				

三、正 n 邊形裙底在什麼情況下中間會剛好沒洞?

表七是四種不同類型剛好沒洞的正 n 邊形裙底,不論是哪一型,若中間剛好沒洞,G 點就是正 n 邊形的中心點,中心點與正 n 邊形的頂點連線,會平分正 n 邊形內角,

所以
$$\angle 6 - \angle 3 = \angle 4$$
 又 $\angle 2 + \angle 3 = \frac{360^{\circ}}{n} = > \angle 3 = \frac{360^{\circ}}{n} - \angle 2$
$$= > \angle 6 - (\frac{360^{\circ}}{n} - \angle 2) = \angle 4 = > 180^{\circ} - \angle 4 - \frac{360^{\circ}}{n} = \angle 4 = > \angle 4 = 90^{\circ} - \frac{180^{\circ}}{n}$$

故製做正 n 邊形裙底,只要基本圖形中 $\angle 4$ 設定成 $90^\circ - \frac{180^\circ}{n}$ 度,裙底摺疊後,中間會剛好沒 洞,當 $\angle 4 < 90^\circ - \frac{180^\circ}{n}$ 時有洞,且 $\angle 4$ 愈小洞愈大, $\angle 4 > 90^\circ - \frac{180^\circ}{n}$ 時沒洞。由討論一我們 得知正 n 邊形內角度數為 $180^\circ - \frac{360^\circ}{n}$,若中間剛好沒洞,中心點與正 n 邊形的頂點連線,會 平分正 n 邊形內角,所以 $(180^\circ - \frac{360^\circ}{n})$ ÷ $2 = 90^\circ - \frac{180^\circ}{n}$,與之前的推測相符合。



四、將飛鏢型的正 n 邊形裙底層疊(多層), 摺疊後會呈現什麼樣子呢?

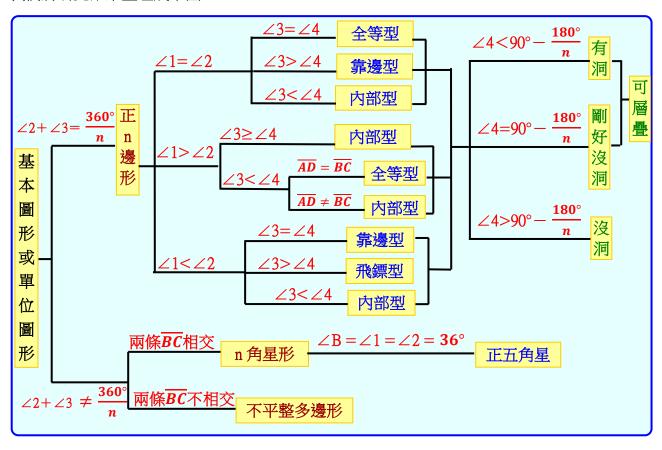
從研究四的製作成果中,我們做出靠邊型(編號 3-1、3-2、4-1)、內部型(編號 5-2、5-3)、全等型(編號 4-2、5-1)的正 n 邊形裙底層疊後的樣子,但沒有做出飛鏢型,所以我們想做做看,想知道結果是否與研究四相同,我們自定 $\angle 1=15^\circ$,基本圖形要符合 $\angle 2>\angle 1$ 、 $\angle 2+\angle 3=\frac{360^\circ}{n}$,製作成果如下:

我們發現

- 1.當繪製圖呈現平行四邊形時,壓平摺疊後,仍呈現每一層轉動的變化,與研究四全等型的 正 n 邊形每一層會互相重疊不同,但相同的是拉起來都像直筒狀的角柱形體。
- 2.當繪製圖不是平行四邊形時,壓平摺疊後,拉起來類似像金字塔狀的角錐形體,與研究四 結果相同。

捌、結論

我們將研究結果整理成下圖:



只要設定好基本圖形(或單位圖形)的角度與邊長,就可以設計出我們想要的服裝樣式了!

玖、未來展望

- 1.若基本圖形(或單位圖形)改成其它形狀(不是四邊形),摺出來會有什麼樣貌。
- 2.三宅一生以基本圖形做服裝設計,也可應用在其它物品上,如:燈籠、燈罩、傘套…等。

拾、參考資料

- 1.常文武、王儷娟、呂安雲(2017)。三宅一生的服裝設計與扭棱摺疊。**數學傳播,41**(4),69-73。
- 2.王晨諺、鄧价閔、簡碩君、張書晨(2018)。正多邊形的圓舞曲。中華民國第 58 屆中小學科學 展覽會作品說明書。

【評語】080407

本作品以研究三宅一生摺紙服裝為起點,先做了完整的文獻分析,為了區別與之前研究的不同,作者改變原來基本圖形中的諸多元素,做出了不一樣的服裝設計,也獲致更多豐富的成果,是一件相當有趣也很富數學底蘊的佳作。

壹、研究 動

奇美博物館「紙上奇蹟」特 展中,有一件衣服,是利用拼組 幾何圖形摺疊出來的,我們都驚 呼太神奇了! 我們**想知道這些** 壓平的幾何圖形是怎麼設計、做 出來的,每個拼組出來的幾何圖 形都能這樣壓平呈現完美圖案, **日能立體的被拉起來嗎**?於是

生的服裝設計

我們利用所學(南一版四上「角度」、四下「四邊形」、五上「多邊形」 六下「縮圖和比例尺」),探討這個服裝設計背後所藏的數學奧秘是什麼。

貳、研 究 目

研究一、探討三宅一生服裝設計的性質。

研究二、在∠B=正 n 邊形內角的基本圖形中,探討裙底(一層) 摺疊後的 樣貌。

研究三、正n邊形裙底摺疊後,探討在何種狀況下中間會形成空洞。

研究四、正 n 邊形裙底層疊後(多層)形成裙子,探討在何種狀況下能沿 著摺痕壓平摺疊。

研究五、在基本圖形中,若改變∠B≠正 n 邊形內角時,探討裙底摺疊後 的樣貌。

研究六、在基本圖形中,若∠1≠∠2,∠B不一定是正 n 邊形內角,探 討裙底摺疊後的樣貌。

参、研究過程與方

- 、名詞解釋及定義

(一) <mark>基本圖形</mark>:四邊形 ABCD 中,滿足∠B=正 n 邊形內角、∠1=∠2、 $\overline{AB}=\overline{DC}$,則此四邊形稱為基本圖形。(如圖 3)

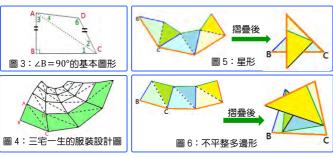
(二)單位圖形:四邊形 ABCD 中,若不滿足基本圖形三條件之一,則此 四邊形稱為單位圖形。

(三) **裙子**:由數個基本圖形或單位圖形橫向、縱向拼組而成,如圖 4 是 由 16 個基本圖形拼組而成(橫向拼組 4 個、縱向拼組 4 個), 左右兩邊黏貼摺疊後,就形成裙子

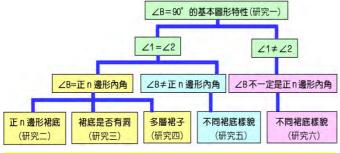
(四) 裙底:設計圖中(圖 4) 塗綠色部分在裙子最底層,稱為裙底

(五) 星形: 觀察 3 個單位圖形拼摺後的樣子, 若第一個單位圖形的 \overline{BC} 與 第三個單位圖形的 \overline{BC} 相交,且兩條 \overline{BC} 的夾角不是正 n 邊形 內角度數,則摺出來的圖形為星形。(圖5)

(六)**不平整多邊形**:觀察 3 個單位圖形拼摺後的樣子,若第一個單位圖 形的 \overline{BC} 與第三個單位圖形的 \overline{BC} 不相交,且兩條 \overline{BC} 的夾角不是正 n 邊形內角度數,則摺出來的圖形為 不平整多邊形。(圖 6)



二、研究架構圖



肆、研 究 結

研究一、探討三宅一生服裝設計的性質。

(一) 製作過程

1. 將三宅一生服裝設計(圖 7) 外圍剪下。

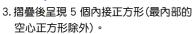
2. 實線為山線, 虛線為谷線, 按照摺痕摺 疊,將左右兩側邊黏起來。

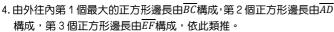
(二)製作成果 如圖 8

(三)發現與歸納

1. 四邊形 ABCD 為基本圖形(如圖 7,∠B= $90^{\circ} \cdot \angle 1 = \angle 2 \cdot \overline{AB} = \overline{DC}) \circ$

2. 此服裝設計共 4層,每層皆由 4個基本 圖形拼組而成(裙底),同一層的基本 形是全等的,不同層的基本圖形是相似 的, $\overline{BC}:\overline{AD}=\overline{AD}:\overline{EF}=\overline{EF}:\overline{GH}=$ $\overline{GH}: \overline{II} \circ$





研究二、在ZB=正 n 邊形內角的基本圖形中,探討裙底(一層)摺疊後的樣貌。 (一)製作過程

1. 畫一個基本圖形,使∠B=60°、∠1=∠2=45°。

2. 拼接 3 個基本圖形,完成裙底繪製圖,外圍剪下 後,按照摺痕摺疊。

3. 重複步驟 1.、2.,將∠B分別改成90°、108°、120°, 拼接 4 個、5 個、6 個基本圖形,外圍剪下後,按照摺痕摺疊。

4. 重複步驟 1.~3.,將∠1 改成35°。

(二)製作成果

	AA HUI (ES)	物量从	Ø4 TE	AA GUIDEN	物果火	94TP
∠1	繪製圖	摺疊後	發現	繪製圖	摺疊後	發現
45°	編號: 2-1 ∠B=60°		摺出正三角形	編號:2-2 ∠B=90°	12	摺出正方形
43	編號: 2-3 ∠B=108 °	D	摺出正五邊形	編號:2-4 ∠B=120°		摺出正六邊形
250	編號: 2-5 ∠B=60°		摺出正三角形	編號:2-6 ∠B=90 °	0	摺出正方形
35°	編號:2-7 ∠B=108 °		摺出正五邊形	編號:2-8 ∠B=120°		摺出正六邊形

(三)發現與歸納

在 \angle B=正 n 邊形內角、 \angle 1= \angle 2、 \overline{AB} = \overline{DC} 的基本圖形中,若拼接 n 個基本圖形形成裙底,則摺疊後的裙底會形成正 n 邊形,圖形中間也是 iFn 濃形。

理由:(以 n=4 做說明)

____ (先以兩個基本圖形拼摺後來說明角度均為90°)

(1)在四邊形 ABCD 與 DCEF 中:

∠BAC =∠CDE \ ∠CAD =∠EDF

=>∠a=∠a'

 $\nabla \angle ADC = \angle \alpha + \angle ABC$

∠ADC=∠a' +∠ADF

=> ∠ABC = ∠ADF

∠ γ =∠MIK (對頂角相等)

 $\Delta DIJ \oplus \angle \beta + \angle \gamma + \angle \theta = 180^{\circ}$ $\triangle ADJ \oplus \angle \beta + \angle ADJ + \angle \theta = 180^{\circ}$

=>∠ γ =∠ADF

RD∠ABC =∠ADF=∠MIK=90°

(再以三個基本圖形拼摺後來說明 $\overline{IK} > 0$)

(2) 在四邊形 ABCD、DCEF 與 FEGH 中:

第一個基本圖形 ABCD 沿 \overline{AC} 對摺後,D 點落在 \overline{BC} 之間,第二個基本圖形 DCEF 沿 \overline{DE} 對摺後,F 點也必落在 \overline{CE} 之間,F 點不落在 \overline{AC} 上,而是落在 \overline{AC} 的上方, 可見 F 點到 \overline{AC} 之間存在一段距離, \overline{FG} 是第三個基本圖形的對角線,即兩對角 線 $\overline{AC} \setminus \overline{FG}$ 之間存在一段距離,即 $\overline{IK} > 0$ 。

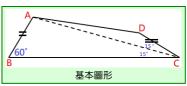
(3)因旋轉的對稱性,所以<ABC=<BCE=<CEG=<EGB=90°,<ADF=<DFH=<FHA= \angle HAD= 90° , \angle MIK= \angle IKL= \angle KLM= \angle LMI= 90° , $\overline{BC}=\overline{CE}=\overline{EG}=\overline{GB}$, $\overline{AD} = \overline{DF} = \overline{FH} = \overline{HA}$, $\overline{MI} = \overline{IK} = \overline{KL} = \overline{LM}$,即四邊形 GBCE、ADFH、MIKL 都 是正方形,同理常 n≥3 情况相同。

研究三、正n邊形裙底摺疊後,探討在何種狀況下中間會形成空洞。

(一) 製作過程

1. 畫一個基本圖形, 使 ∠B=60° \ ∠1=∠2=15°

2. 拼接 3 個基本圖形,完成裙 底繪製圖,外圍剪下後,按 照摺痕摺疊



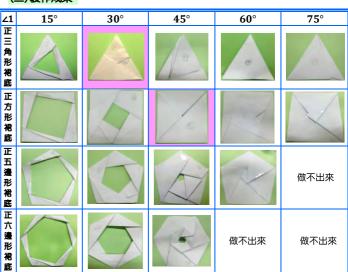
摺疊後

3. 重複步驟 $1. \times 2.$,分別更改**\angle 1=\angle 2** 的度數為 $30^{\circ} \times 45^{\circ} \times 60^{\circ} \times 75^{\circ}$ 。

4. 重複步驟 1.~3.,將∠B 分別改成 90°、108°、120°,分別拼接 4 個、 5個、6個基本圖形,外圍剪下後,按照摺痕摺疊。

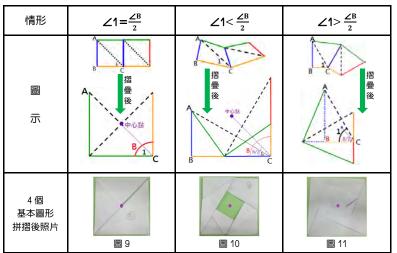
(二)製作成果

生的服裝設計



(三)發現與歸納

- 1. 當∠B= 108°、∠1=75°時,和∠B= 120°、∠1=60°或75°時,基本圖形畫不出來。
- 2. (1) 若 \angle 1= $\frac{\angle B}{a}$ 時,摺疊後中間剛好沒洞,且 \overline{BC} 是最外圍正 n 邊形的邊。
 - (2)若 $\angle 1 < \frac{\angle B}{2}$ 時,摺疊後中間有洞, $\angle 1$ 愈大,洞愈小, \overline{BC} 是最外圍正 n 邊形的邊。
 - (3)若 $\angle 1 > \frac{\angle B}{2}$ 時,摺疊後中間沒洞, \overline{BC} 是最裡面正 n 邊形的邊, \overline{AD} 是最外面正 n 邊形的邊。



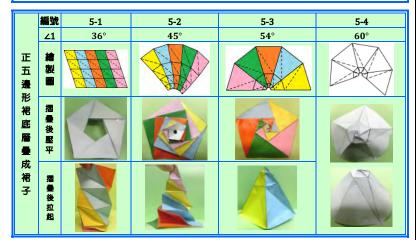
研究四、正 n 邊形裙底層疊後(多層)形成裙子,探討在何種狀況下能沿著摺痕壓平摺疊。

(一)製作過程

- 1. 畫基本圖形 ABCD,使∠B=60°、∠1=∠2=15°。
- 2. 將 1. 的基本圖形等比例縮小畫出 EADF,使 $\overline{BC}:\overline{AD}=\overline{AD}:\overline{EF}$,拼疊成 2 層基本圖形。
- 3. 同 2. 作法,縱向拼疊 4 個基本圖形,此為一組圖形。
- 4. 橫向拼接3組圖形,完成正三角形裙底層疊成裙子的繪製圖。
- 5. 同 1.~3.,將∠B 改成90°,∠1=∠2 分別改成30°、45°、60°,橫向拼接 4 組圖形, 完成正四邊形裙底層疊成裙子的繪製圖。
- 6. 同 1.~3.,將∠B 改成108°,∠1=∠2 分別改成36°、45°、54°、60°,橫向拼接 5 組 圖形,完成正五邊形裙底層疊成裙子的繪製圖。
- 7. 將全部繪製圖外框剪下,按照摺痕摺疊。

(二)製作成果

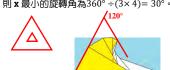
	正三角形裙底層疊成裙子				正方形裙底層疊成裙子				
編號	∠1	繪製圖	摺疊後 壓平	摺疊後拉 起來	編號	編號 ∠1 繪製圖		摺疊後 壓平	摺疊後 拉起來
3-1	15°			4	4-1	30°		0	
3-2	30°				4-2	45°			
3-3	45°	D	V	1	4-3	60°			

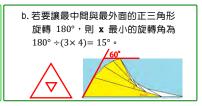


(三)發現與歸納

- 1. 在是否能沿摺痕壓平摺疊中:
- (1) * 2 $^{-}$ $^{$
- (2) $\mathbf{Z} \leq \frac{\Delta B}{2}$ 且繪製圖不是平行四邊形時,能全部沿著摺痕摺疊壓平,呈現每一 **層螺旋的轉動變化**,拉起來類似金字塔狀的角錐形體,如編號 3-1、4-1、5-2。
- **壓平**,**但不會呈現每一層轉動的變化**,拉起來像直筒狀的角柱形體。
- 2. 在摺疊為數層的旋轉角度中:
- (1) $\| \angle 1 \angle 2 \le \angle B/2 \ \underline{LBC} > \overline{AD}$ 時, \overline{AB} 每次往中心旋轉的角度均為 x° 。若要讓最中 間與最外面的圖形關係為旋轉0°或180°,則 x 最小的旋轉角為:(z 是正 n 邊形、k 是摺疊後的層數)
- ①當 n=奇數,最中間與最外面的圖形旋轉 0° ,x 最小的旋轉角為 $\frac{360^\circ}{110}$ 。
 - ②當 n=奇數,最中間與最外面的圖形旋轉 180° ,x 最小的旋轉角為 $\frac{180^\circ}{nk}$ 。
 - ③當 \mathbf{n} =偶數,不管最中間與最外面的圖形旋轉 $\mathbf{0}^\circ$ 或 $\mathbf{180}^\circ$, \mathbf{x} 最小的旋轉角為 $\frac{360^\circ}{-L}$ 。

a. 若要讓最中間與最外面的正三角形旋轉 0° 9 則 x 最小的旋轉角為360° ÷(3×4)= 30°。





單位圖形

(2) 當 \angle 1= \angle 2 \leq \angle B/2 且 $\overline{BC}=\overline{AD}$ 時, \overline{AB} 旋轉的角度為正 n 邊形任一外角 (即 $\frac{360^\circ}{100}$)。

(3) 當 \angle 1= \angle 2 \leq \angle B/2 且 \overline{BC} < \overline{AD} 時, \overline{AB} 往外旋轉的角度=180° $-(\angle$ B $-\angle$ 4 $+\angle$ 3)。

研究五、在基本圖形中,若改變∠B≠正 n 邊形內角時,探討裙底摺疊後的樣貌。

(一)製作過程

- 1. 書一個單位圖形, 使∠B=45°、∠1=∠2=45°。
- 2. 拼接 6 個單位圖形,完成裙底繪製圖,外圍剪下後,按照摺痕 摺疊。
- 3. 重複步驟 1.、2.,將∠B 分別改成30°、52°、75°。
- 4. 重複步驟 1.~3.,定∠1=∠2=70°,分別更改∠B= 35°、65°、70°、105°。

編號	5–1	5–2	5–3	5–4	5–5	5–6	5–7	5–8
∠B	30°	45°	52°	75°	35°	65°	70°	105°
∠1	45°	45°	45°	45°	70°	70°	70°	70°
摺 疊 後	В	B	B C	В	E C	\		

(三)發現與歸納

正三角形的一組圖形

- 1. 若∠B≠正 n 邊形內角、∠1=∠2、 $\overline{AB} = \overline{DC}$ 為一個單位圖形,則拼接 n 個單位圖形,摺不出正 n 邊形。
- 2. 觀察拼摺 3 個單位圖形的 \overline{BC} (橋線):
- (1) 當∠B≠正 n 邊形內角且∠B< 60°
 - 時,摺疊後會呈現星形。
- (2) 當∠B≠正 n 邊形內角且∠B> 60°
- 時,摺疊後呈現不平整多邊形。

的理由,故**只有正五角星做得出來**。

1個單位圖形 2個單位圖形 情形 沿AC對摺 拼摺 (1)D 點在*BC*之間 (2)D 點與B 點重疊 (3)D 點在BC外面

(四)設計製作正 n 角星

以最常見的正五角星去設計,中間是正五邊形,正 万邊形的每一邊都往外延伸,可畫出五個等分圓周的 星角,我們計算正五邊形內角與星角的角度,設計製 作出正五角星如右。

只能做出正五角星理由

單位圖形中,∠1+∠2<180°,若∠1=∠2,則∠1 = \angle 2 < 90° ,因凸出的星角是由 \angle B、 \angle 1 構成,若要 做出正 n 角星,則∠B=∠1=∠2,所以∠B=180°-720° <90°,得到 n<8,下表分別說明不能做出正 n 角星

n 角星	正三角星	正四角星	正六角星	正七角星
做	V			720°
不 出			$\angle B = 180^{\circ} - \frac{720^{\circ}}{} = 60^{\circ}$	$\angle B = 180^{\circ} - \frac{720^{\circ}}{7}$
來			6	=\frac{540}{-}=77.1°
原	延長邊	延長邊	不符合∠B≠正 n 邊形內角	7 不符合∠B< 60°
因	無法畫出星角	無法畫出星角		1110 - 22 1 00

研究六、在基本圖形中,若∠1≠∠2,∠B 不一定是正 n 邊形內角,探討裙底摺疊後 的樣貌。

(一)製作過程

- 1. 畫一個單位圖形,使∠B=50°、∠1=45°、∠2=15°。
- 2. 拼接 6 個單位圖形,完成裙底繪製圖,外圍剪下後,按 照摺痕摺疊
- 3. 重複步驟 1.、2.,分別更改∠2 = 30°、60°、75°。
- 4. 重複步驟 1.~3.,分別更改∠B = 60°、75°、90°。

45 單位圖形

(二)製作成果

黼	5克 6-1		6-2	6-3	6-4	6-5	6-6	6-/	6-8
_	1 B 50°		50°	50°	50°	60°	60°	60°	60°
	.2 15°		30°	60°	75°	15°	30°	60°	75°
担任	1 × /8	СВ		C	В	B	C B	C B	В
編	號 6-9		6-10	6–11	6-12	6-13	6-14	6-15	6–16
	號 6-9 (B 75°	_	6-10 75°	6-11 75°	6–12 75°	6-13 90°	6−14 90°	6−15 90°	6-16 90°
2									

(三)發現與歸納

由星形與不平整多邊形的定義,我們必須確認兩條 \overline{BC} (橋線)的關係:

- 1. 觀察拼摺 2 個單位圖形 \overline{BC} (橘線)的夾角,不論 $\angle 1 > \angle 2$ 或 $\angle 1 < \angle 2$,兩條 \overline{BC} (橘線) 的夾角皆為 ZB+ Z1- Z2。
- 形,如編號 6-3、6-4、6-7、6-8、6-12。
- 3. 當∠B+∠1-∠2> 60° 且∠B+∠1-∠2≠正 n 邊形內角時,摺疊後會呈現不平整 多邊形,如編號 6-1、6-2、6-6、6-9、6-14、6-15。
- 4. **當∠B+∠1-∠2=正 n 邊形內角時, 摺疊後會呈現正 n 邊形**, 如編號 6-5 、6-10、 6-11 \ 6-13 \ 6-16 \

伍、討論

一、製作正 n 邊形裙底的條件是什麼?

 $\angle 2 + \angle 3 = \frac{360^{\circ}}{\cdot AB} \cdot \overline{AB} = \overline{DC} \cdot$ 拼接 n 個基本圖形(或單位圖 形),只要設定這三個條件,即可做出正 n 邊形裙底。

理由

因兩條 \overline{BC} (橋線)夾角為 $\angle B+(\angle 1-\angle 2)$ (表三),所以由上述理由(*)中得 知不管 $\angle 1$ 、 $\angle 2$ 的關係,兩條 \overline{BC} 夾角為正 n 邊形的一內角。

	表三:當 $\angle 1$ 、 $\angle 2$ 關係不同時,兩條 \overline{BC} 的夾角。					
	情 形	(1) ∠1=∠2	(2) ∠1>∠2	(3) ∠1<∠2		
舉	1 個基本圖形 (或單位圖形) 沿 <i>AC</i> 對摺		A C	B		
例	2個基本圖形 (或單位圖形) 拼摺	D A B	A	C D B		
Ā	兩條 <i>BC</i> 的夾角	∠B	∠B+∠1-∠2	∠B+∠1-∠2		

二、可以摺疊出哪幾種不同型態的正 n 邊形裙底呢?

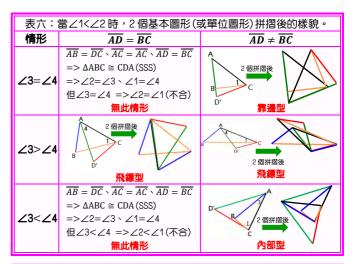
我們將所有正 n 邊形裙底的製作成果分成下列四型:

分類	1. 飛鏢型	2. 靠邊型	3. 內部型	4. 全等型
量示學例			R	
說明	只正出以所有。 不多。 不是, 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是	全部皆由正 n 邊形組成, 字內的 學形能 不 內的 學 不	全部皆由正 n 邊形組成,內 部正 n 邊形 的頂點都正 最外裡面。 邊形裡面。	全部皆由正 n 邊形組成,上 到下 全部的 正 n 邊形都 一樣大。

真的只有這四種型態嗎?我們列出基本圖形(或單位圖形)的角度與線段 長度改變時的全部狀況,摺出來的樣子(如下表四、表五、表六)確實只 有這四種型態,沒有其它。

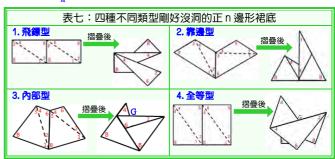
表四:	表四:當/1=/2 時,2 個基本圖形(或單位圖形)拼摺後的樣貌。					
情形	$\overline{AD} = \overline{BC}$	$\overline{AD} \neq \overline{BC}$				
∠3=∠4	△ABC ≅ ADC (ASA) 2 個拼褶後 全等型	$\Delta ABC \cong ADC (ASA)$ $=> \overline{AD} = \overline{AB} \setminus \overline{DC} = \overline{BC}$ 但原定 $\overline{AB} = \overline{CD}$ $=> \overline{AD} = \overline{BC} (不合)$ 無此情形				
∠3>∠4	$\overline{AB} = \overline{DC} \setminus \overline{AC} = \overline{AC} \setminus \overline{AD} = \overline{BC}$ => $\triangle ABC \cong CDA (SSS)$ => $\angle 2 = \angle 3 \setminus \angle 1 = \angle 4$ 但 $\angle 1 = \angle 2 = > \angle 3 = \angle 4 (不合)$ 無此情形	2 個拼摺後 より の の の の の の の の の の の の の				
∠3<∠4	與上面∠3>∠4 情形相同 無此情形	D' B 2個拼摺後				

表五:當∠1>∠2 時,2 個基本圖形(或單位圖形)拼摺後的樣貌。					
情形	$\overline{AD} = \overline{BC}$	$\overline{AD} \neq \overline{BC}$			
∠3=∠4	$\overline{AB} = \overline{DC} \setminus \overline{AC} = \overline{AC} \setminus \overline{AD} = \overline{BC}$ $\Rightarrow \triangle ABC \cong CDA (SSS)$ $\Rightarrow \angle 2 = \angle 3 \setminus \angle 1 = \angle 4$ 但 $\angle 3 = \angle 4 \Rightarrow \angle 1 = \angle 2 (不合)$ 無此情形	2 個拼閥後 C			
∠3>∠4	$\overline{AB} = \overline{DC} \setminus \overline{AC} = \overline{AC} \setminus \overline{AD} = \overline{BC}$ $=> \triangle ABC \cong CDA (SSS)$ $=> \angle 2 = \angle 3 \setminus \angle 1 = \angle 4$ $(\angle 3 > \angle 4 = > \angle 2 > \angle 1 ($ 不合 $)$ 無此情形	2 個拼褶後 C B			
∠3<∠4	D' A 2 個拼覆後 全等型	D 2 個拼播後 内部型			



三、正n邊形裙底在什麼情況下中間會剛好沒洞?

若中間剛好沒洞,中心點與正 n 邊形的頂點連線,會平分正 n 邊形 內角,所以 $\angle 6 - \angle 3 = \angle 4$,又 $\angle 2 + \angle 3 = \frac{360^{\circ}}{n} = > \angle 3 = \frac{360^{\circ}}{n} - \angle 2 = >$ 內角,所以 $\angle 6 - \angle 3 = \angle 4$,又 $\angle 2 + \angle 3 = \frac{1}{n}$ $- \angle 2 = \frac{1}{n}$ $- \angle 4 = \frac{1}{n}$ 故製做正 n 邊形裙底,只要基本圖形中∠4 設定成 90°-180°度,裙底摺 疊後,中間會剛好沒洞,當 $24 < 90^{\circ} - \frac{180^{\circ}}{n}$ 時有洞,且 $\angle 4$ 愈小洞愈大, ∠4>90° - ^{180°}時沒洞。



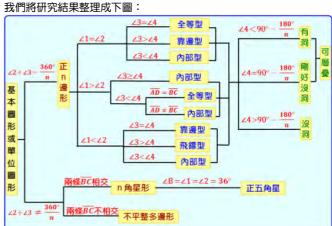
四、將飛鏢型的正 n 邊形裙底層疊(多層), 摺疊後會呈現什麼樣子呢?

我們自定 $\angle 1 = 15^{\circ}$,要符合 $\angle 2 > \angle 1 \setminus \angle 2 + \angle 3 = \frac{360^{\circ}}{12}$,製作成果如下:

∠1	∠2	∠3	繪製圖	摺疊後壓平	摺疊後拉起來
15°	45°	75°			
15°	45°	45°		0	
15°	45°	27°		0	

- 1. 當繪製圖呈現平行四邊形時,壓平摺疊後,仍呈現每一層轉動的變化, 與研究四全等型的正 n 邊形每一層會互相重量不同,但相同的是拉起 來都像直筒狀的角柱形體。
- 2. 當繪製圖不是平行四邊形時,壓平摺疊後,拉起來類似像金字塔狀的 **鱼維形體**,與研究四結果相同。

陸、結論



只要設定好圖形的角度與邊長,就可以設計出我們想要的樣式了!

柒 、 未 來 展 望

- 1. 若圖形改成其它形狀(不是四邊形),摺出來會有什麼樣貌。
- 2. 因摺疊後壓平具有節省空間的優點,也可應用在其它物品上,如:燈 籠、傘套、水桶、升降舞台、收納式太陽能板…等。

捌、參考資料

- 1. 常文武、王儷娟、呂安雲(2017)。三宅一生的服裝設計與扭棱摺疊。 數學傳播,41(4),69-73。
- 2. 王晨諺、鄧价閔、簡碩君、張書晨(2018)。正多邊形的圓舞曲。中華 民國第58屆中小學科學展覽會作品說明書。