中華民國第59屆中小學科學展覽會作品說明書

國中組 物理科

030110

玻光粼璃

學校名稱:新北市私立南山高級中學

作者:

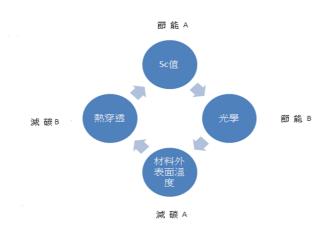
國二 華 耘

國二 劉律辰

國二 曹芷毓

指導老師:

許靜淑


關鍵詞:隔熱玻璃、 P_{cond} 、輻射熱

壹、摘要

為研究出可自製的隔熱光學玻璃,我們測量了不同表面覆蓋物的單片玻璃,改變正、反,單、雙面等變因,以各種測輻射儀器找出隔熱最佳的非金屬反面隔熱紙,用其製作雙片玻璃(單層介質)。接著根據普物的多層板公式製造三片玻璃(雙層介質)之 L_1 、 L_2 等間距與不等距模組,發現以熱輻射角度而言,空氣才是最佳介質。實驗後另外計算「單位時間通過的熱量」(P_{cond}),再將數據套回公式,得出實驗誤差值。接下來製作介質為空氣的四片玻璃(三層介質),實驗後另外計算Sc值(遮蔽係數),並和上述各模組作Sc值比較,發現隔熱效果最好的模組是等距四片氣/氣/氣玻璃」。以普物熱輻射公式($P_{rad} = \sigma \epsilon A T^4$)來看,我們的模組有如下之等式 $J_{in} = J_{out} = J_{cond} + \sigma \epsilon A T^4$ ($P_{cond} + \mathbf{n} \mathbf{n} \mathbf{n}$)。

貳、動機

有次搭飛機時,發現機艙窗玻璃共有三層,在高空中飛行時摸起來不冰冷,隔熱效果極佳。我們很好奇三片玻璃中間如果填入了不同材質,會不會對隔熱效果有影響?與此同時,聽理化老師敘述在第三冊自然與生活科技課本中的熱源的傳遞方式,我們便想,可不可以自製簡易的隔熱玻璃,於是以此為出發點,著手研究。在隔熱效能之外,我們也想增進玻璃的採光、節能、以及近年來成為討論焦點的Sc值(遮蔽係數)。

參、 研究流程圖

• 自製隔熱玻璃

單片

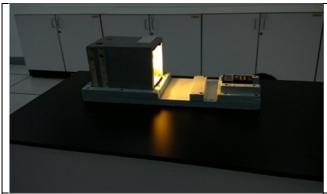
- 以太陽能光測量儀、熱穿透測量儀、太陽能膜測量儀、太陽能功率表實驗
- •測出最佳結果「非鏡面反面隔熱紙」

雙片

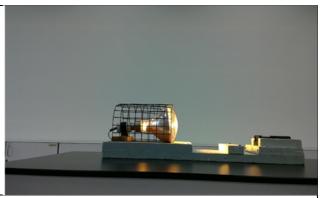
- 依單片實驗最佳的「非鏡面反面隔熱紙」製造雙片玻璃
- 以太陽能光測量儀、熱穿透測量儀、太陽能膜測量儀、太陽能功率表實驗

三片

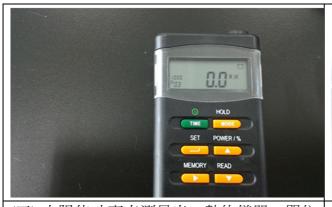
- 製作介質層固定寬度的三片玻璃
- 進行實驗後以數據推回公式,比較誤差值

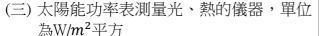

- •採取最佳的模組等距氣\氣\氣,實驗後測量Sc值(遮蔽係數)
- •Jin(流入的熱流量)=熱輻射的熱量+熱傳導的熱量=Jout(流出的熱量)

肆、研究目的


- 一、測量覆蓋物及介質對單、雙(單層介質)、三(雙層介質)、四片玻璃(三層介質)的影響
- 二、探討如何製造屬於自己的雙、三、四片隔熱玻璃
- 三、探討與公式理論值的誤差及其影響
- 四、玻璃Sc值之計算與應用

伍、實驗裝置


- 一、實驗器材:金屬隔熱紙、非金屬隔熱紙、隔熱漆、水、太白粉、玻璃片。
- 二、實驗裝置:太陽能光測量儀、熱穿透測量儀、太陽能功率表、太陽能膜測量儀。



(一) 太陽能光測量儀:此儀器可以模擬接近太 (二) 熱穿透測量儀:此儀器可以產生極高的熱 陽光的光源。

能,模擬受熱情況

(四) 太陽能膜測量儀:此儀器可以測量出紫 外線、紅外線、透光率、太陽能總透射 比(SHGC)。

陸、實驗設計與公式

一、實驗設計

(一) 單片玻璃實驗

- 1. 將覆蓋表面的單片玻璃垂直放上儀器測量。
- 2. 讀寫數據,再加以改進實驗。

(二)雙片玻璃(單層介質)實驗

- 1. 以最佳的單片玻璃製造雙片玻璃,並在其中填充不同介質,測量隔熱效果的優劣。
- 2. 讀寫數據並改進實驗。

(三)三片玻璃(雙層介質)實驗

- 1. 以最佳的單片玻璃製造三片玻璃,並在其中填充不同介質,測量隔熱效果的優劣。
- 2. 測量熱穿透測量儀使用後,玻璃面光面和背光面的溫度。
- 3. 讀寫數據並改進實驗,推導公式、計算誤差值。

(四)四片玻璃(三層介質)實驗

- 1. 以最佳的單片玻璃製造四片玻璃,並在其中填充三片玻璃中效果最佳的介質組合, 測量隔熱效果的優劣。
- 2. 測量熱穿透測量儀使用後,玻璃面光面和背光面的溫度。
- 3. 讀寫數據並改進實驗,推導公式、計算誤差值。

二、公式

(一) 熱傳導公式:
$$P_{cond} = \frac{k_2 A (T_H - T_X)}{L_2} = \frac{k_1 A (T_H - T_C)}{L_1}$$

- 1. $T_H(T_{HOT})$:以熱穿透測量儀照射20秒後,玻璃面光面的溫度
- 2. $T_c(T_{COLD})$:以熱穿透測量儀照射20秒後,玻璃背光面的溫度
- 3. L_1 :玻璃背光層間距
- 4. L_2 :玻璃面光層間距
- 5. K:熱導率, K_1 為 L_1 間距夾層的熱導率, K_2 為 L_2 間距夾層的熱導率
- 6. P_{cond}:單位時間傳遞的熱量

(二) 熱輻射公式:

- 1. $P_{rad} = \sigma \epsilon A T^4$:熱源輻射公式
- 2. $J_{in} = J_{cond} + \sigma ε A T^4 = J_{out}$:流入熱流量=熱傳導熱量+熱輻射熱量=流出熱流量

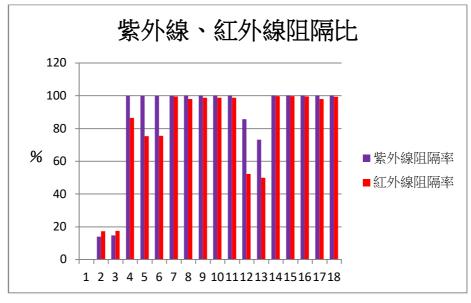
柒、實驗步驟與研究結果

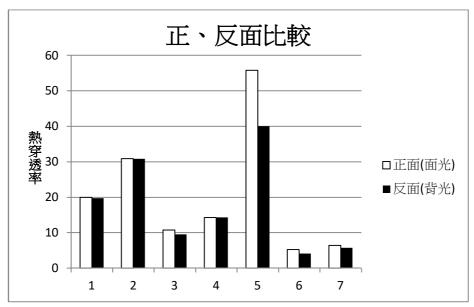
一、測量單片玻璃實驗數據

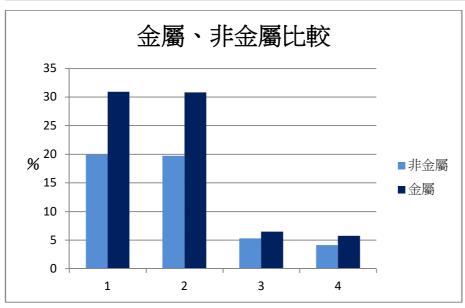
(一) 實驗步驟

- 1. 將實驗室玻璃(單片),分別覆上金屬/非金屬隔熱紙/隔熱漆,而實驗中所指的反面是將隔熱紙/漆背對熱源。
- 2. 將玻璃分別沿著儀器邊緣垂直擺放,將太陽能光測量儀、熱穿透測量儀、太陽能功率表及太陽能膜測量儀架設在固定位置後開始測量。
 - 3. 讀寫數據並改進實驗。

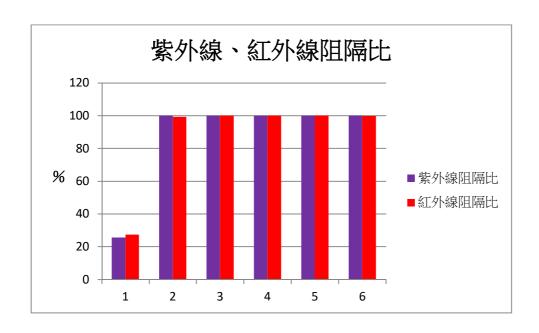
(二) 實驗結果


	1	2	3	4	5	6	7	8	9
	無	玻璃	膠帶	非金正	非金反	金正	金反	單片塗 料正	單片塗 料反
熱穿透(W/m²)	632.1	539.3	539.2	126	124.7	195.3	194.7	68	59.9
太陽光(W/m²)	215.2	1798	1792	524.3	519.7	823.1	803.9	259.8	240.5
紫外線阻隔比 (%)	0.0	13.9	14.7	99.8	99.8	99.8	99.8	100.0	100.0
紅外線阻隔比 (%)	0.0	17.2	17.4	86.3	75.2	75.5	99.4	97.9	98.6
透光率(%)	100.0	89.7	89.3	31.3	30.0	15.8	16.7	0.1	0.1
太陽能總透射比 (%)	1.000	0.869	0.857	0.234	0.227	0.186	0.193	0.007	0.007


	10	11	12	13	14	15	16	17	18
	塗料 2:1 正	塗料 2:1 反	塗料 5:1 正	塗料 5:1 反	雙面 塗料	黏貼非 金屬正	黏貼非 金屬反	黏貼金 屬正	黏貼金 屬反
熱穿透(W/m²)	90.6	90.2	352.8	252.7	19.5	33.5	2.6	4.1	3.6
太陽光(W/m²)	411.9	407.4	1275	1122	81.2	102.3	89.6	181.2	163.5
紫外線阻隔比 (%)	100.0	100.0	85.6	73.1	100.0	100.0	100.0	100.0	100.0
紅外線阻隔比 (%)	98.6	98.6	52.1	49.9	99.7	99.7	99.5	97.9	99.3
透光率(%)	0.1	0.2	9.1	18.8	0.0	0.0	0.0	0.1	0.0
太陽能總透射比 (%)	0.005	0.005	0.230	0.305	0.00	0.000	0.001	0.001	0.002


(三) 研究結果

- 1. 在此實驗中,熱穿透和太陽光穿透值越小,代表此玻璃隔熱越好。
- 2. 在隔熱紙的比較中,含金屬的金屬隔熱紙比不含金屬的非金屬隔熱效率差。
- 3. 隔熱紙不論貼在正面還是反面,在紫外線和紅外線阻隔比幾乎沒有影響,對透光率及太陽能總透射比的影響比較大,不論是哪種隔熱紙效果都是反>正。
- 4. 隔熱漆幾乎可以擋掉全部的熱能,但是因為它並不透明,就算稀釋過效果也不如 隔熱紙。若未來研發出透明的隔熱漆,可應用在生活上,否則在實驗中僅可採用 隔熱紙。
- 5. 隔熱漆外效果最佳的是第五項<mark>反面(背光)的非金屬隔熱紙</mark>,所以在雙片玻璃(單層介質)實驗中一律採用此玻璃。
- 6. 由實驗可得知,膠帶對數據的影響微小,可忽略不計。


二、測量雙片玻璃(單層介質)實驗數據

(一) 實驗步驟

- 1. 將玻璃片貼上隔熱紙(非金屬,反面)並以固定間距3.1575cm。將兩片玻璃間的空隙 以膠帶封起,製造出空氣層。
- 2. 將膠帶戳開一個小洞,灌入實驗物質後再封起,以太陽能光測量儀、熱穿透測量儀、 太陽能功率表及太陽能膜測量儀進行實驗。物質種類有:
 - (1) 空氣
 - (2) 水
 - (3) 太白粉50g+水100g之膠體(太白粉比水=1:2水溶液)
 - (4) 太白粉50g+水150g之膠體(太白粉比水=1:3水溶液)
 - (5) 太白粉50g+水200g之膠體(太白粉比水=1:4水溶液)
 - (6) 太白粉50g+水250g之膠體(太白粉比水=1:5水溶液) 其中,太白粉水溶液按比例調配完成後,以加熱盤用攝氏三百度加熱二十分鐘, 並時時攪拌,製成膠體。
- 3. 讀寫數據。

(二) 實驗結果

	1	2	3	4	5	6
	空氣	水	太白粉膠 1:2	太白粉膠 1:3	太白粉膠 1:4	太白粉膠 1:5
熱穿透(W/m²)	21.9	14.9	5.2	7.3	8.3	10.1
太陽光(W/m²)	151.8	126.4	5.69	28.9	34.2	41.3
紫外線阻隔比	25.6	100	100	100	100	100
紅外線阻隔比	27.3	99.2	100	100	100	99.9
透光率	81.7	0.0	0.0	0.0	0.0	0.1
太陽能總透射比	0.747	0.003	0.000	0.000	0.000	0.002

(三) 研究結果

- 1. 煮熟的太白粉成凝膠態,傳熱極慢,是生活中很好的隔熱材料。
- 2. 填充物的隔熱效果是太白粉膠體>水>空氣層。其中,太白粉膠體的填充,水的比例愈高,隔熱效果愈差。
- 3. 最佳結果為水分最少的1:2膠體,其次是1:3膠體
- 4. 根據實驗,凝膠態物質有極佳的阻熱效果 · 口 · 比如 · 的 例 越少,阻熱效果越好,可以 善 加應用。

三、測量三片玻璃(雙層介質)實驗數據

(一) 實驗步驟

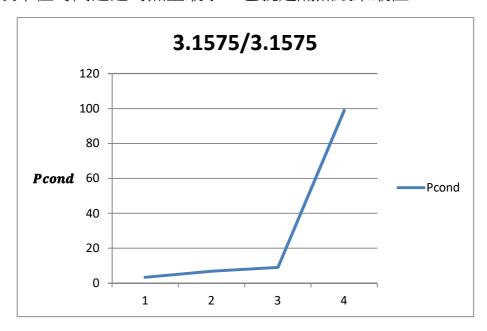
- 1. 將三片玻璃分別固定間距後組合
 - (1) $(L_2[\overline{\text{m光}}]/L_1[青光])$
 - (2) (3.1575cm/3.1575cm)
 - (3) (1.945cm/3.1575cm)
 - (4) (3.1575cm/1.945cm)
- 2. 填入不同介質
 - (1) 空氣
 - (2) 水
 - (3) 水比太白粉=3:1膠體
 - (4) 組合為:

原設定間距為4cm/2cm·經游標卡尺測量後,確定精準間距為3.1575cm/1.945cm

氣/氣	氣/水	水/氣	水/水	氣/膠	膠/氣	水/膠	膠/水	膠/膠
-----	-----	-----	-----	-----	-----	-----	-----	-----

- 3. 以太陽能光測量儀、熱穿透測量儀及太陽能功率表進行實驗。使用熱穿透測量儀後,測量玻璃面光面與背光面的溫度 $(T_H \cdot T_C)$ 。
- 4. 讀寫數據,並將其套入普物的公式,比較誤差值。

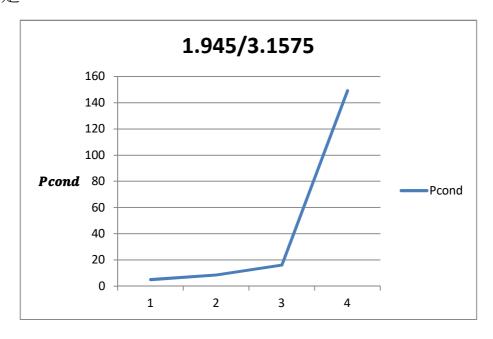
不等距的三片玻璃



(二) 實驗結果

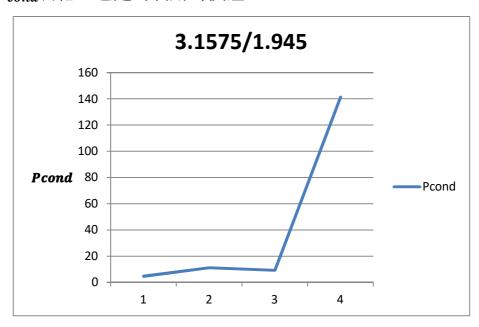
1. $3.1575 \text{cm}/3.1575 \text{cm}(L_2/L_1)$

前/後 項目	氣/氣	氣/水	水/氣	水/水	氣/膠	膠/氣	水/膠	膠/水	膠/膠
T _{COLD}	22.7	22.5	22.6	23.1	22.4	22.1	22.6	22.8	22.4
T_{HOT}	31.3	31.6	34.7	34.1	31.1	34.3	31.8	35.1	35.7
熱穿透	2.8	3.9	6.9	3.0	4.2	10.7	10.3	3.6	8.8
太陽光	4.8	7.8	8.1	6.3	8.7	8.7	7.0	6.6	8.7
P _{cond}	3.3519	6.7989	9.0403	98.9380					


在間距固定的情況下,氣/氣模組的熱穿透及太陽光實驗數據皆最小, P_{cond} 值最低,代表單位時間通過的熱量最小,也就是隔熱效果最佳。

2. $1.945 \text{cm}/3.1575 \text{cm}(L_2/L_1)$

前/後 項目	氣/氣	氣/水	水/氣	水/水	氣/膠	膠/氣	水/膠	膠/水	膠/膠
T _{COLD}	21.8	22.0	21.7	22.3	22.5	21.3	22.4	22.9	22.5
T _{HOT}	32.2	33.3	35.3	35.7	31.3	35.2	32.6	34.3	36.7
熱穿透	2.9	2.5	2.8	2.5	4.0	18.2	19.6	17.4	8.7
太陽光	6.1	6.6	8.0	9.5	15.5	18.3	17.9	20.2	12.7
P _{cond}	5.0167	8.5795	16.0791	149.1645					
誤差值	49.6674	26.1895	77.8602	50.7656					


在不等距且間距前短後長的情況下,氣/氣模組的熱穿透及太陽光實驗數據皆最小, P_{cond} 值最低,代表單位時間通過的熱量最小,也就是隔熱效果最佳;誤差值最大的是水/氣模組。在此實驗中,誤差值較小的是氣/水模組,系統受熱較均勻、穩定。

3. $3.1575 \text{cm}/1.945 \text{cm}(L_2/L_1)$

前/後 項目	氣/氣	氣/水	水/氣	水/水	氣/膠	膠/氣	水/膠	膠/水	膠/膠
T _{COLD}	22.6	21.8	22.3	22.5	22.3	21.9	21.5	22.6	22.5
T _{HOT}	32.3	31.0	34.4	35.2	33.9	35.1	34.3	39.1	34.0
熱穿透	3.0	8.7	6.2	7.8	1.4	3.6	2.4	4.1	1.2
太陽光	5.9	6.5	9.0	10.1	1.8	5.5	3.0	4.8	1.8
P _{cond}	4.6790	11.2317	9.1869	141.3723					
誤差值	39.5925	65.1988	1.6216	42.8898					

在不等距且間距前長後短的情況下,氣/氣模組的熱穿透及太陽光實驗數據皆最小, P_{cond} 值最低,代表單位時間通過的熱量最小,隔熱效果最佳。在此實驗中,誤差值最小的是水/氣模組,與其他有極顯著的差別,代表此系統極穩定、受熱非常均勻;誤差值最大的是氣/水模組;同時,此模組之熱穿透、太陽光實驗數據和 P_{cond} 皆低,也是可利用的模組。

(三) 雙層介質之Li與Lz長短之比較

由上述各模組實驗得知,氣/氣為最佳介質層,故以下為不同長度氣/氣之模組實驗數據;此外,我們多測光通量lux=在生活中,Pcond越低,lux越高,為最佳隔熱及高進光量模組。

1. 等距(氣/氣)

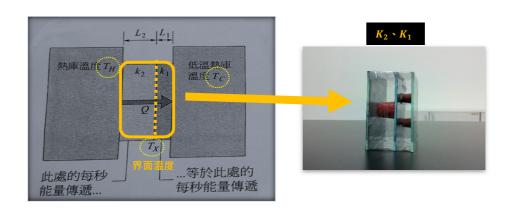
前/後	1.945/1.945	3.1575/3.1575	4.3/4.3	4.95/4.95
T_{cold}	27.7	26.2	27.1	28.9
T_{hot}	31.4	32.1	33.3	35.0
熱穿透	2.5	1.4	1.3	1.8
光通量	4	4	4	4
P_{cond}	2.7135	2.6654	2.0567	1.8916
誤差值	-19.0459	-20.4809	-38.6408	-43.5663
Sc 值	0.0046	0.0026	0.0024	0.0033

證實等距模組的誤差最小,是最優良的模組。

2. 前短後長(氣/氣)

前/後	1.945/3.1575	1.945/4.3	1.945/4.95	3.1575/4.3	3.1575/4.95	4.3/4.95
T_{cold}	21.8	26.2	26.4	26.7	25.8	28.9
T_{hot}	32.2	33.3	32.2	31.8	33.2	32.2
熱穿透	2.9	1.6	2.2	1.6	1.7	1.5
光通量	7	5	9	2	6	4
P_{cond}	5.0167	3.2435	2.5281	1.9510	2.7214	1.0578
誤差值	49.6674	-3.2340	-32.9992	-41.7942	-18.8102	-68.4418
Sc 值	0.0054	0.0030	0.0041	0.0030	0.0032	0.0033

前短後長模組明顯 P_{cond} 值最高,但光通量高,為高進光量模組。


3. 前長後短(氣/氣)

前/後	3.1575/1.945	4.3/1.945	4.3/3.1575	4.95/1.945	4.95/3.1575	4.95/4.3
T_{cold}	22.6	29.0	26.4	26.4	28.0	27.1
T_{hot}	32.3	33.3	31.3	32.6	31.1	31.2
熱穿透	3.0	1.4	1.5	2.5	1.5	1.3
光通量	7	5	2	9	6	4
P_{cond}	4.6790	1.9643	1.8745	2.7025	1.1400	1.3142
誤差值	39.5925	-41.3974	-44.0765	-19.3741	-65.9894	-60.7924
Sc 值	0.0056	0.0026	0.0028	0.0046	0.0028	0.0024

 P_{cond} 明顯比前短後長低,因為前長後短模組的 L_2 較長,熱能通過所需時間長,導致溫度偏低。

(四) 熱絕緣原理

兩面的溫度分別保持在 $T_H \cdot T_C$ 兩面的面積均為A。現在我們要導出在穩態過程中,雙層板的熱傳導率。所謂穩態,就是在任何時刻,板子裡面各點的溫度以及熱傳導率均不隨時間改變。在穩態之下,雙層板中個點的熱傳導率必相同。這相當於這麼說,在一段時間內傳過一物質之能量,必等於同一段時間內傳過另一物質之能量。否則,雙層板中的溫度即不可能保持穩定。令兩不同質料平板界面之溫度為 T_X ,則可得到公式。

(1)
$$P_{cond} = \frac{k_2 A(T_H - T_X)}{L_2} = \frac{k_1 A(T_H - T_C)}{L_1}$$

(2)
$$T_X = \frac{k_1 L_2 T_C + k_2 L_1 H}{k_1 L_2 + K_2 L_1}$$

(3)
$$P_{cond} = \frac{Q}{t} = KA \frac{T_H - T_C}{L}$$

物質	熱導係數K
空氣	0.026
水	0.6

(五) 研究結果

- 1. 由 P_{cond} ,熱穿透和太陽能實驗可得知,不論距離長短,氣/氣的隔熱效果皆最佳。
- 2. 三片玻璃和雙片玻璃實驗之最佳結果相反,前者在空氣的效果最好,後者則是 最差,我們推測原因是玻璃厚度影響,玻璃越厚,遮蔽係數越低,隔熱效果好
- 3. 由誤差值可得知,改變 L_1 、 L_2 有極大的影響,而等距(3.1575cm/3.1575cm),效果最好。
- 實驗中誤差值最小者,(1.945cm/3.1575cm)模組為氣/水,(3.1575cm/1.945cm)模組 為水/氣;誤差值最大者,(1.945cm/3.1575cm)模組為水/氣(3.1575cm/1.945cm)模組 為氣/水。誤差越大代表系統不穩定,隔熱效果不佳,。
- 5. 誤差值越大者,系統受熱越不均,較不適合製造隔熱玻璃。反之,誤差小代表系統穩定,較適合用於生活。

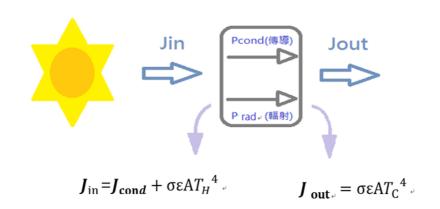
四、測量四片玻璃(三層介質)實驗數據

(一) 實驗步驟

- 1. 將四片玻璃分別固定間距後組合
- 2. 測量並讀寫數據。

(二) 實驗結果

前/中/後項目	氣/氣/氣
T _{COLD}	26.3
T_{HOT}	31.8
熱穿透	0.5
P _{cond}	1.6565
Sc 值	0.0009


(三) 研究結果

1. 在這個實驗中我們發現四片玻璃的效果比三片玻璃的效果還要好,因為四片玻璃厚度厚,Scfeta(www.em.)低,所測出來的數值及 P_{cond} 也低。並且比較雙片、三片、四片玻璃,玻璃厚度越厚Scfeta(www.em.)越低,故隔熱效果好,

可用於生活。

2. 此外,我們利用普物熱輻射公式應用在模組上,如下列等式:

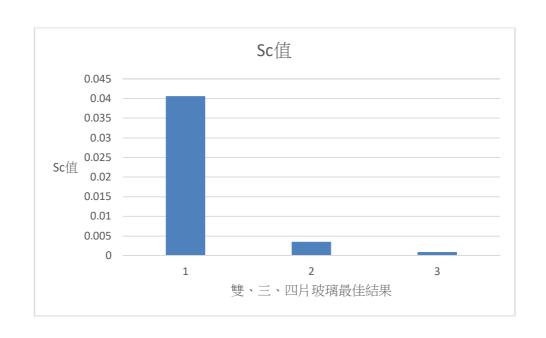
$$J_{in} = J_{cond} + \sigma \varepsilon A T^4 = J_{out}$$

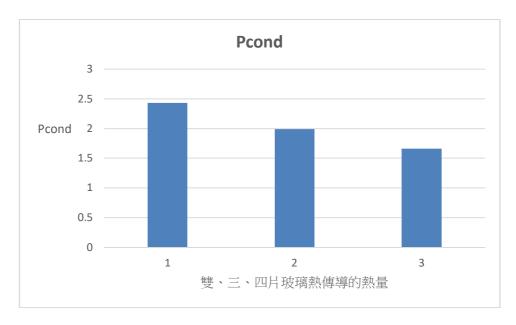
(四) Sc值(遮蔽係數)

- 1. Sc 值(遮蔽係數)的算法是將以熱穿透測量儀測得的數據除以原始熱度 $539.3W/m^2$ 。
- 2. 雙片玻璃

空氣	水	太白粉:水 =1:2	太白粉:水 =1:3	太白粉:水 =1:4	太白粉:水 =1:5
0.0406	0.0275	0.0096	0.0135	0.0154	0.0188

3. 三片玻璃

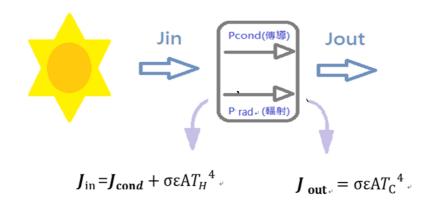

前/後	氣/氣	氣/水	水/氣	水/水
3.1575/3.1575	0.0035	0.0059	0.0094	0.0047
1.945/3.1575	0.0035	0.0035	0.0035	0.0035
3.1575/1.945	0.0082	0.0094	0.0129	0.0141


4. 四片玻璃

前/中/後	氣/氣/氣
項目	
3.1575/3.1575/3.1575	0.0009

5. 雙、三、四片空氣介質比較

	氣	氣/氣	氣/氣/氣
Sc 值	0.0406	0.0035	0.0009
Th-Tc	2.7	4.4	5.5
Pcond	2.4291	1.9877	1.6565



(五) Sc值(遮蔽係數)之分析

- 1. 在 P_{cond} 實驗和Sc值的三片玻璃實驗中,前者在等距模組最好,後者則是前短後長模組,推測原因是因 P_{cond} 是理論值,Sc值是測量實際值,可能有熱量散失,導致結果不一致。
- 2. 紅外光遮蔽率和熱穿透率呈反比,紅外光遮蔽率越高,熱穿透率越低。
- 3. 太陽輻射能量透過任意玻璃的量與空白能量實驗(539.3)之比值。訂定空白實驗 Sc 值為「1」
- 4. 遮蔽係數越小,太陽能源流入越少,可降低冷氣房負荷,節省能源。
- 5. 此外,我們利用普物熱輻射公式應用在模組上,如下列等式:

$$J_{in} = J_{cond} + \sigma \varepsilon A T^4 = J_{out}$$

捌、結論

- 一. 在隔熱紙的比較中,金屬隔熱紙明顯比不含金屬的隔熱效率差,且不論是哪種隔熱紙效果都是反>正。
- 二. 雙片玻璃(單層介質)的實驗中,隔熱效果是太白粉膠體>水>空氣層。其中,太白粉膠體的填充,水的比例愈高,隔熱效果愈差。最佳的結果為水比太白粉1:2膠體。
- 三. 三片玻璃實驗中,計算結果誤差值較大者,不適合製造隔熱玻璃。誤差小者系統較穩定,可多多利用。
- 四. 因為玻璃厚度是四片玻璃>三片玻璃>雙片玻璃,所以在 Sc 值的比較中,四片玻璃>三 片玻璃>雙片玻璃,因此,隔熱效果是四片玻璃>三片玻璃>雙片玻璃。
- 五. 三片玻璃(雙層介質)的實驗中,兩層皆空氣的模組是隔熱效果最佳的,跟雙片玻璃(單層介質)的實驗結果相反,我們推測原因是三片玻璃的玻璃厚度厚,遮蔽係數低,測出的輻射熱值低,也就是隔熱效果好。反之,雙片玻璃厚度薄,遮蔽係數較高,測出輻射熱值高,也就是隔熱比較不好。另外,我們也補測了其他等距、前長後短、前短後長模組,並進行比較。
- 六. Sc值(遮蔽係數)即測出之熱穿透÷原始數據(539.3)。雙片玻璃厚度薄,遮蔽係數高,效果較差;反之,四片玻璃厚度厚,Sc值低,效果較佳。另外,我們可以代入雙、三、四片的Sc值來計算。我們也找到了熱輻射公式 $P_{rad} = \sigma \epsilon A T^4$,若要考慮穿透輻射,需計算通過玻璃層的折射和反射,因為通過玻璃的折射、反射造成的能量穿透

效應,遠大於黑體輻射($P_{rad} = \sigma \epsilon A T^4$)。

- 七. 倘若未來能查到貼了隔熱紙(F20)的玻璃之 ε ,我們就可以精準計算 J_{in} 、 J_{out} ,進一步算出熱量的散失,以改善本實驗之誤差,並精準求出 J_{cond} 的大小。
- 八. 在與反射、折射穿透能量大小做比較, 以達到更精準的實驗模組。

玖、未來展望

- 一、希望未來可以更加精算 P_{cond} 值、並用Sc值做對照;此外,精算 J_{in} 、 J_{out} 值,求出 P_{rad} 的實際值,並和理論公式 $P_{rad} = \sigma \epsilon A T^4$ 比較,求出誤差大小,進一步了解如何改善散失熱量的大小。
- 二、未來若有機會將更準確改變L1和L2,算出誤差最小以及隔熱最佳的模組。另外若要考慮 穿透輻射,需計算先通過玻璃層介質的折射和反射造成的穿透能量,因為這對光輻射的 穿透效應,遠大於黑體輻射($P_{rad} = \sigma \epsilon A T^4$)。
- 三、因為輻射的反射、折射對於和角度有很大關係,我們也想往這個方向研究。

壹拾、 參考資料

一、隔熱玻璃

- 1. http://sa.ylib.com/MagArticle.aspx?Unit=easylearn&id=1636
- 2. https://www.courcasa.com/p/0QRm
- 3. https://www.businessweekly.com.tw/article.aspx?id=9210&type=Blog

二、隔熱紙、漆

- 4. https://carnews.com/article/info/da2361ea-4b09-11e8-8ee2-42010af00004/
- 5. http://sum168nt168.pixnet.net/blog/post/99784-
 wee6%B1%BB%8A%E8%BF%8E%E5%A4%8F-
 wee6%BB%E7%92%83%E9%9A%94%E7%86%B1%E6%8E%AA%E6%96%BD
 blog/post/99784-
 <a href="mailto:wee6%BB%8B8%B0%E5%AE%88%E5%89%87%E7%AC%AC%E4%B8%89%E7%AB%B0%E7%AB%B0%E7%888%E5%89%87%E7%AC%AC%E4%B8%89%E7%AB%B0%E7%AB%B0%E7%B0%BD%B0%E7%B6%BB%E7%92%83%E9%9A%94%E7%86%B1%E6%8E%AA%E6%96%BD
 wee6%BB%E7%92%83%E9%9A%94%E7%86%B1%E6%8E%AA%E6%96%BD
 wee6%BB
 <a href="mailto:wee6%BB%E7%BB%BB%E7%BB%
- 6. http://www.csc.kth.se/~cgjoh/ambsblack.pdf

【評語】030110

本作品以自製簡易的雙、三、四片隔熱玻璃,研究覆蓋物及介質對其隔熱效能及遮蔽係數的影響,是一件實用的科學研究,內容 貼近生活有趣,能讓容易取得的材料變為實用的物品,相當值得鼓勵。

本作品用了很多高端儀器做實驗,實驗的控制變因也做得相當好,尤其是精確的熱流量測是相當困難的,同學們願意挑戰,必須給予肯定。

但是實驗結果有些不合理之處,雙片玻璃(單層介質)的實驗中最佳介質為水:太白粉為的1:2 膠體,而非熱傳導係數小很多的空氣。我想這部分是作者把透光率和隔熱效能混淆了。

討論時若能區分出熱傳導,熱輻射,吸熱散熱等因素的主導性, 將會是更有意義的結論。另外,如果實驗在熱平衡的狀態下做會更 好。

作品海報

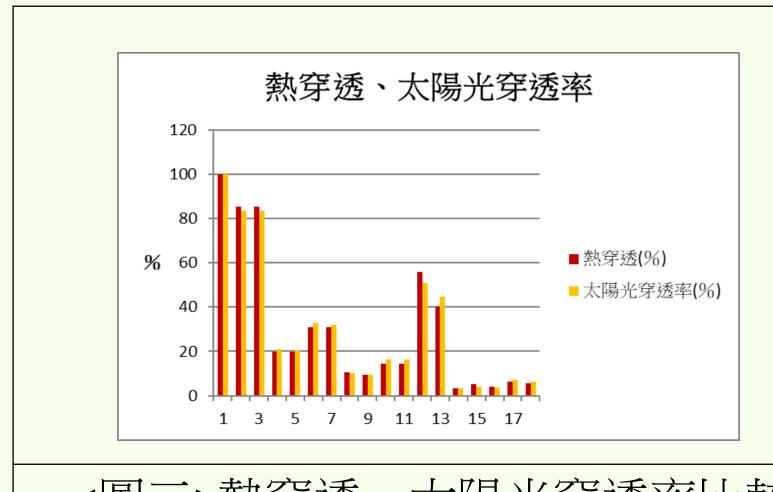
為研究出可自製的隔熱光學玻璃,我們測量了不同表面覆蓋物的單片玻璃,改變正、反,單、雙面等變因,以各種 測輻射儀器找出隔熱最佳的非金屬反面隔熱紙,用其製作雙片玻璃(單層介質)。接著根據普物的多層板公式製造三片 玻璃(雙層介質)之 $L_1 \setminus L_2$ 等間距與不等距模組,發現以熱輻射角度而言,空氣才是最佳介質。實驗後另外計算「單位 時間通過的熱量」 (P_{cond}) ,再將數據套回公式,得出實驗誤差值。接下來製作介質為空氣的四片玻璃(三層介質),實 驗後另外計算Sc值(遮蔽係數),並和上述各模組作Sc值比較,發現隔熱效果最好的模組是等距四片氣/氣/氣玻璃」。 以普物熱輻射公式 $(P_{rad} = \sigma \epsilon A T^4)$ 來看,我們的模組有如下之等式 $J_{in} = J_{out} = J_{cond} + \sigma \epsilon A T^4 (P_{cond} + 輻射)$ 。

搭飛機時,發現機艙窗玻璃共有三層,在高空中飛行時摸起來不冰冷,隔熱效果極佳。我們很好奇三片玻璃 中間如果填入了不同材質,會不會對隔熱效果有影響?同時,聽理化老師敘述在第三冊自然與生活科技課本中的 熱源的傳遞方式,我們便想,可不可以自製簡易的隔熱玻璃,於是以此為出發點,著手研究。在隔熱效能之外, 我們也想增進玻璃的採光、節能、以及近年來成為討論焦點的Sc值(遮蔽係數)。

四片

主要實驗器材

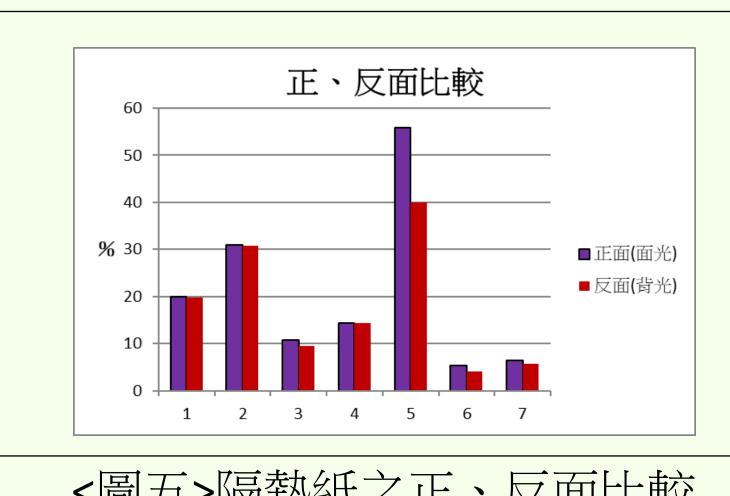
<圖一>太陽能功率表

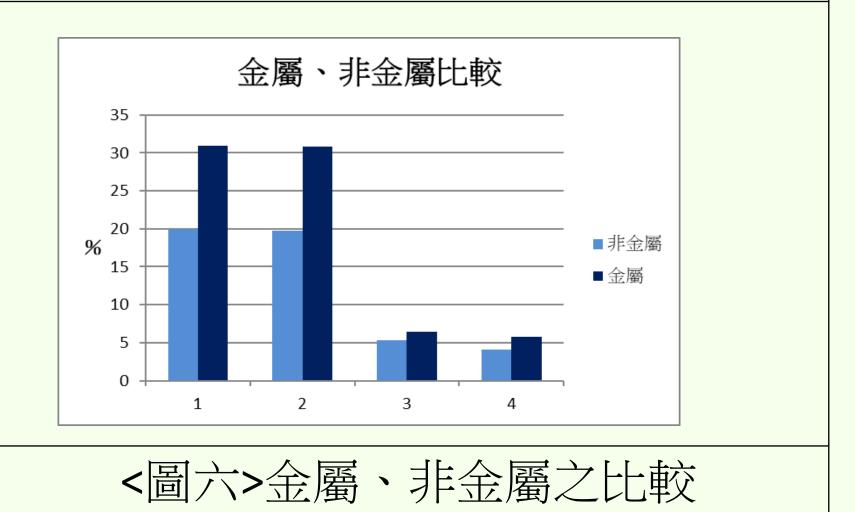

<圖二>熱穿透測量儀

• 自製隔熱玻璃

- 以太陽能光測量儀、熱穿透測量儀、太陽能膜測量儀、太陽能功率表實驗
- 測出最佳結果「非鏡面反面隔熱紙」
- 依單片實驗最佳的「非鏡面反面隔熱紙」製造雙片玻璃
- 以太陽能光測量儀、熱穿透測量儀、太陽能膜測量儀、太陽能功率表實驗
- 製作介質層固定寬度的三片玻璃
- 進行實驗後以數據推回公式,比較誤差值
- 採取最佳的模組等距氣\氣\氣,實驗後測量Sc值(遮蔽係數)
- Jin(流入的熱流量) = 熱輻射的熱量+熱傳導的熱量=Jout(流出的熱量)

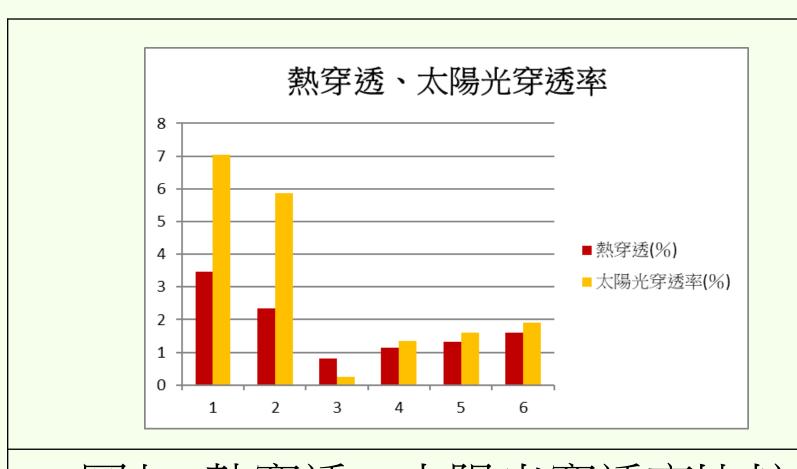
實驗步驟與研究結果


測量單片玻璃實驗數據

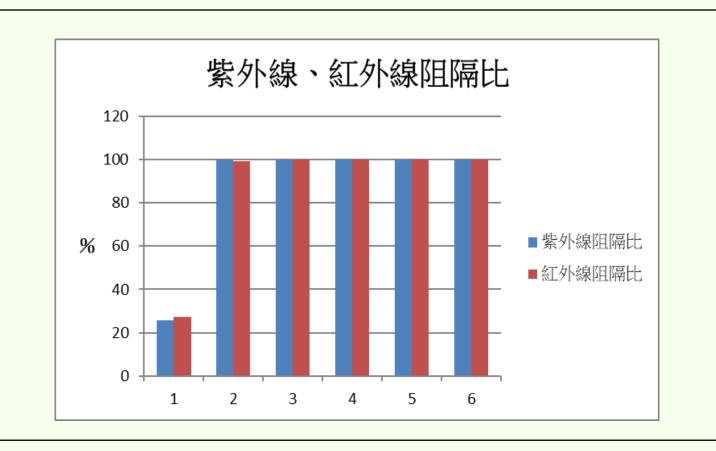

<圖三>熱穿透、太陽光穿透率比較

<圖四>紫外線、紅外線阻隔比之比較

<圖五>隔熱紙之正、反面比較


由實驗可得知,膠帶對數據的影響微小,可忽略不計。

在隔熱紙的比較中,金屬隔熱紙比不含金屬的隔熱紙效率差。


隔熱紙不論貼在正面還是反面,效果大 多是反>正。

隔熱漆幾乎可以擋掉全部的熱能,除隔熱漆外效果最好的是反面(背光)的非金屬隔熱紙,所以在雙片玻璃(單層 介質)實驗中一律採用此玻璃。

測量雙片玻璃(單層介質)實驗數據

<圖八>紫外線、紅外線阻隔比之比較

填充物的隔熱效果是太白粉膠體>水>空氣層。其中,太白粉膠體的填充,水的比例愈高,隔熱效果愈差。

三、測量三片玻璃(雙層介質)實驗數據

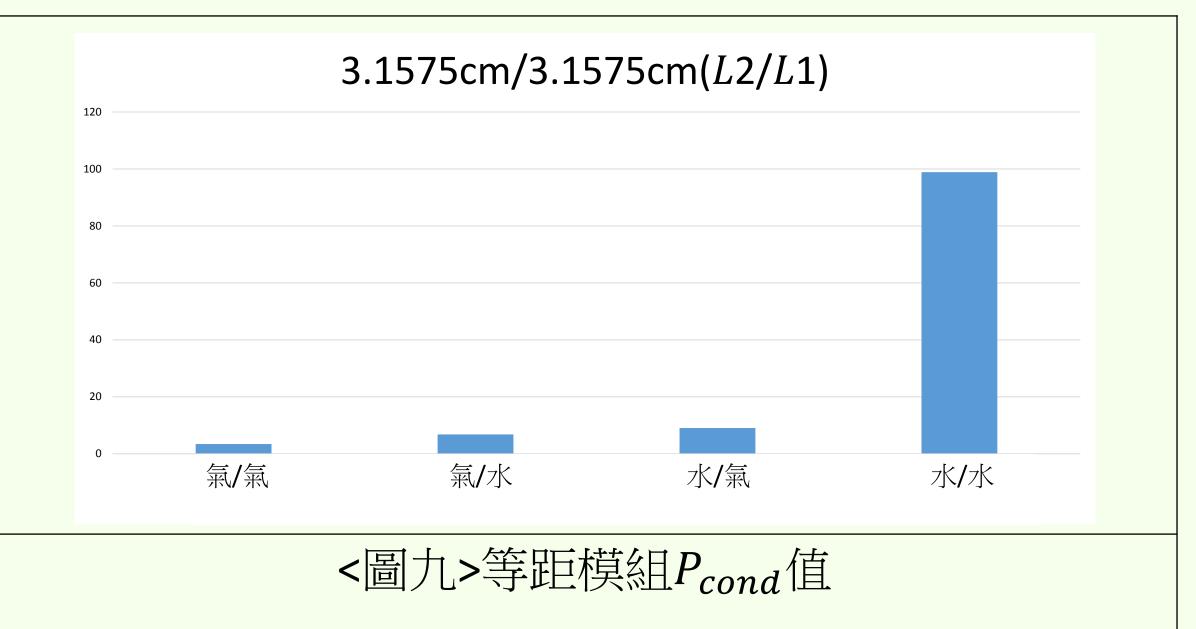
1. 介質層距離如下:

L ₂ [面光]	L ₁ [背光]
3.1575cm	3.1575cm
1.9450cm	3.1575cm
3.1575cm	1.9450cm

2.填入不同介質

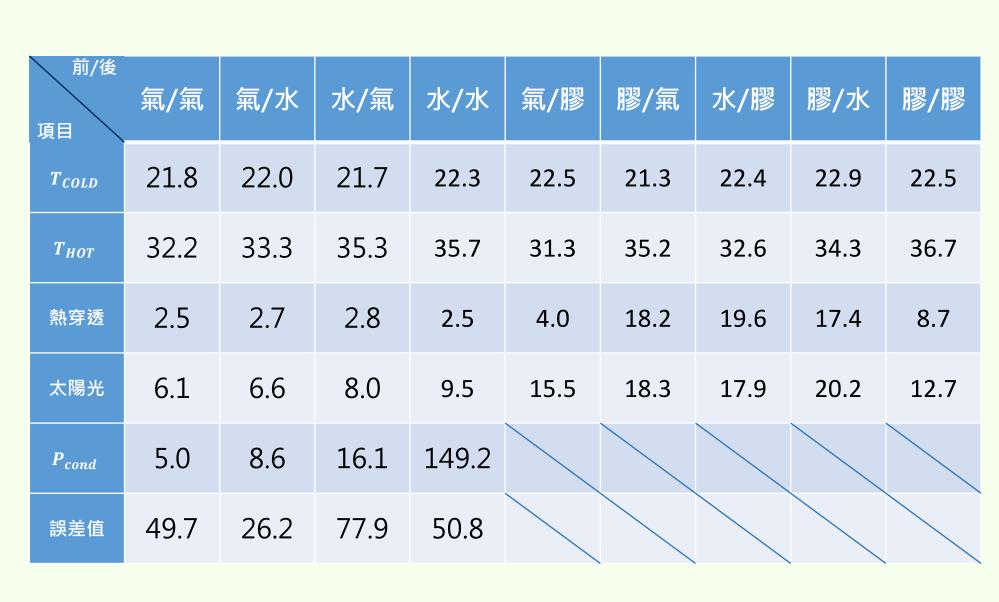
- ① 空氣
- ② 水
- ③ 水比太白粉=3:1膠體

氣/氣	氣/水	水/氣	水/水	氣/膠	廖/氣	水/膠	廖/水	廖/廖
//·W //·V	//·•·-3 ·			/\\\\	72.714	, , , , , , , , , , , , , , , , , , ,	72	192.192

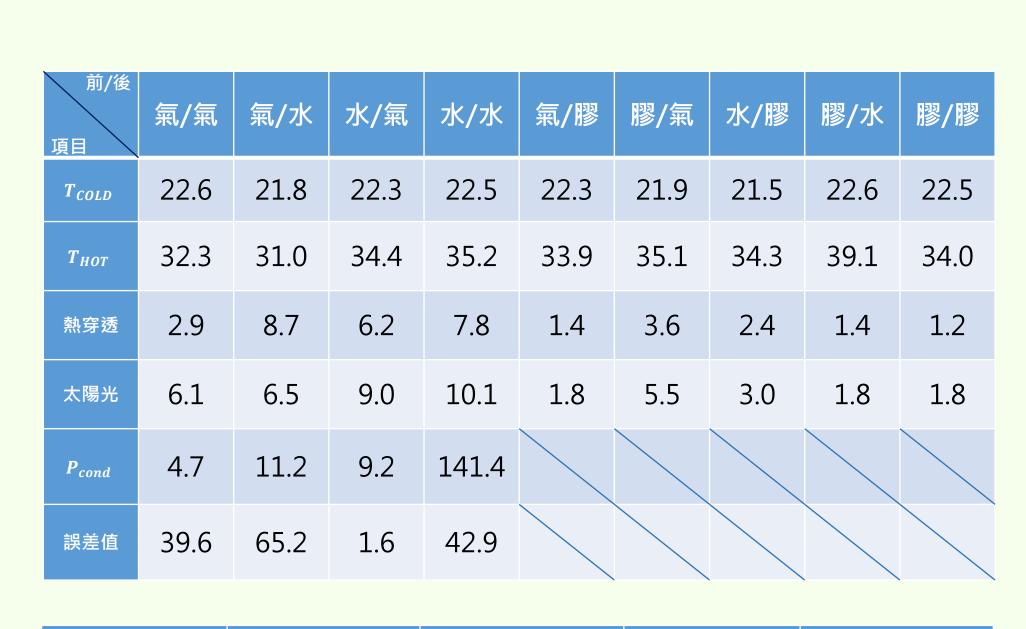

- 3. 以太陽能光測量儀、熱穿透測量儀及太陽能功率表進行實驗。使用熱穿透測量儀後,測量玻璃面光面與背 光面的溫度 $(T_H \setminus T_C)$ 。
- 讀寫數據,並將其套入普物的公式,比較誤差值。

實驗紀錄:

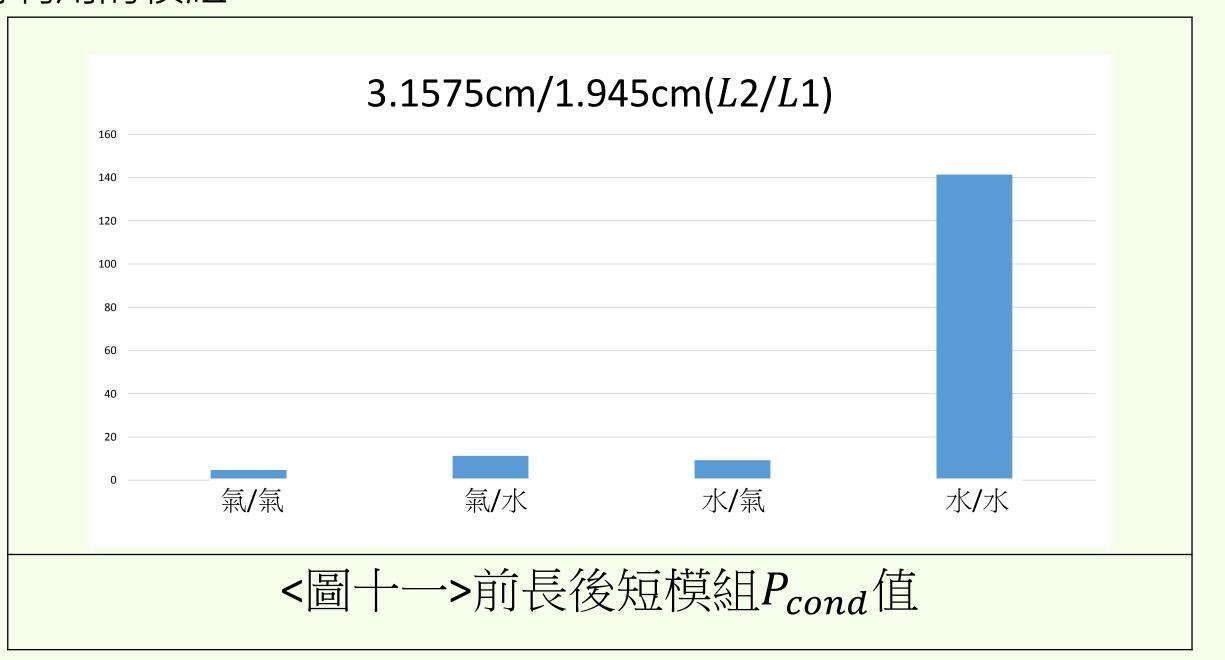
1. 3.1575cm/3.1575cm(L_2/L_1)


在間距固定的情況下,氣/氣模組的熱穿透及太陽光實驗數據皆最小, P_{cond} 值最低,代表單位時間通過的熱量最小,也就是隔熱效果最佳。

2. 1.945cm/3.1575cm(L_2/L_1)


在不等距且間距前短後長的情況下,氣/氣模組的熱穿透及太陽光實驗數據皆最小, P_{cond} 值最低,代表單位時間通過的熱量最小,也就是隔熱效果最佳;誤差值最大的是水/氣模組。在此實驗中,誤差值較小的是氣/水模組,系統受熱較均勻、穩定。

3. 3.1575cm/1.945cm(L_2 / L_1)


在不等距且間距前長後短的情況下,氣/氣模組的熱穿透及太陽光實驗數據皆最小, P_{cond} 值最低,代表單位時間通過的熱量最小,也就是隔熱效果最佳。在此實驗中,誤差值最小的是水/氣模組,與其他有顯著差別,代表此系統穩定、受熱均勻;誤差值最大的是氣/水模組;同時,此模組之熱穿透、太陽光實驗數據和 P_{cond} 皆低,也是可利用的模組。

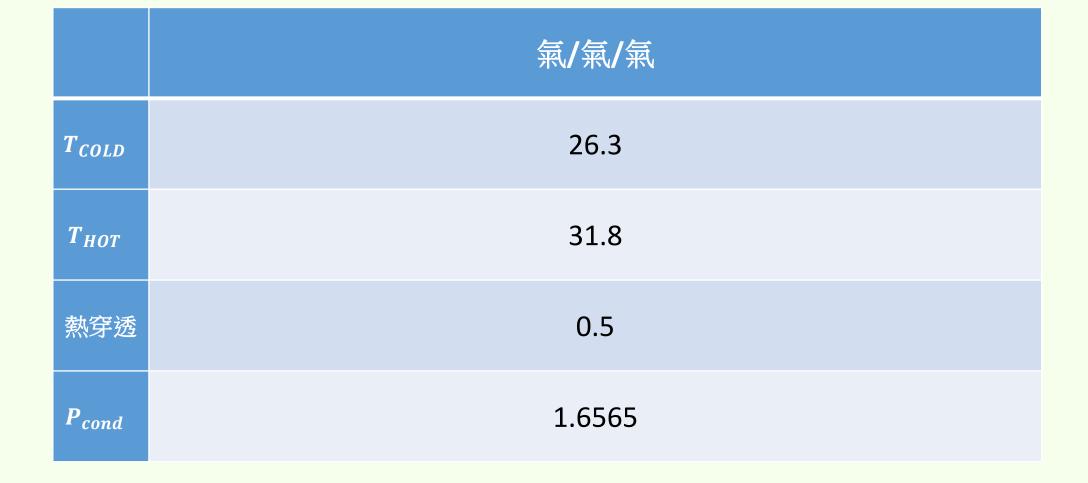
前/後	1.945/1.945	3.1575/3.1575	4.3/4.3	4.95/4.95
T_{cold}	27.7	26.2	27.1	28.9
T_{hot}	31.4	32.1	33.3	35.0
熱穿透	2.5	1.4	1.3	1.8
光通量	4	4	4	4
P_{cond}	2.7	2.6	2.1	1.9
誤差值	-19.0	-20.5	-38.6	-43.6

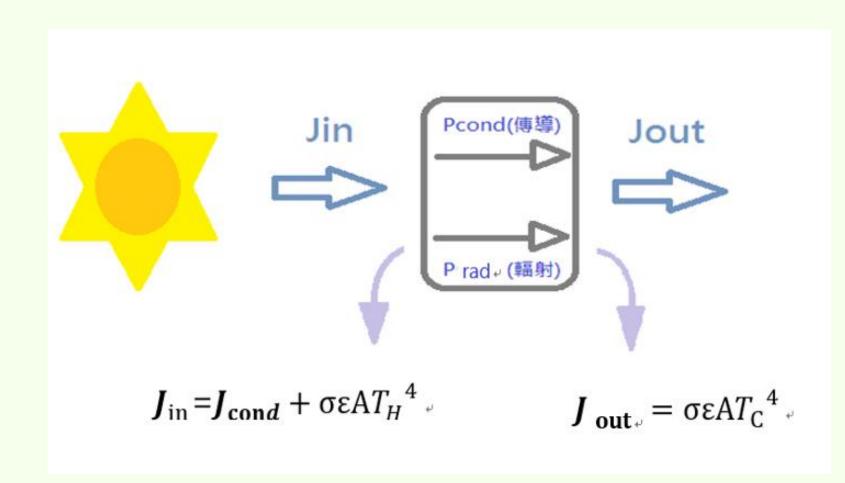
前/後	1.945/3.1575	1.945/4.3	1.945/4.95	3.1575/4.3	3.1575/4.95	4.3/4.95
T_{cold}	21.8	26.2	26.4	26.7	25.8	28.9
T_{hot}	32.2	33.3	32.2	31.8	33.2	32.2
熱穿透	2.9	1.6	2.2	1.6	1.7	1.5
光通量	7	5	9	2	6	4
P_{cond}	5.0	3.2	2.5	1.9	2.7	1.0
誤差值	49.6	-3.2	-32.9	-41.7	-18.8	-68.4

前/後	3.1575/1.945	4.3/1.945	4.3/3.1575	4.95/1.945	4.95/3.1575	4.95/4.3
T_{cold}	22.6	29.0	26.4	26.4	28.0	27.1
Thot	32.3	33.3	31.3	32.6	31.1	31.2
熱穿透	3.0	1.4	1.5	2.5	1.5	1.3
光通量	7	5	2	9	6	4
P_{cond}	4.6	1.9	1.8	2.7	1.1	1.3
誤差值	39.5	-41.3	-44.0	-19.3	-65.9	-60.8

由以下各模組實驗得知,氣/氣為最佳介質層,故以下為不同長度氣/氣之模組實驗數據;此外,我們多測光通量 $lux = 在生活中,P_{cond}$ 越低,lux越高,為最佳隔熱及高進光量模組。

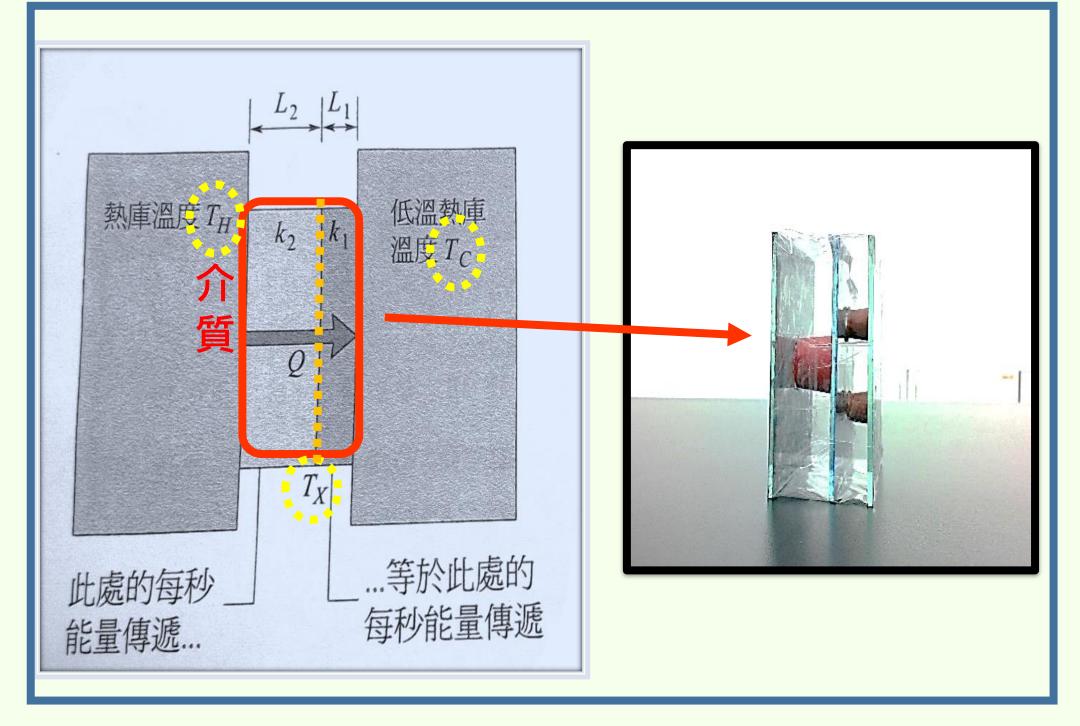
證實等距的誤差為最小,是最優良的模組。


明顯 P_{cond} 值最高,為差的隔熱模組;但光通量高,為高進光量模組。



 P_{cond} 明顯比前短後長低,因為前長後短 L_2 較長,熱能通過所需時間長,導致溫度偏低,為較佳隔熱模組。

四、測量四片玻璃(三層介質)實驗數據


- 1. 設定介質層為果最佳的等距3.1575cm/3.1575cm/3.1575cm,介質為空氣,並將四片玻璃分別固定間距後組合。
- 2. 在這個實驗中我們發現四片玻璃的效果比三片玻璃的效果還要好,因為四片玻璃厚度厚,Sc值(遮蔽係數)低,所測出來的數值及 P_{cond} 也低。並且比較雙片、三片、四片玻璃,玻璃厚度越厚遮蔽係數越低,故隔熱效果好,可用於生活。
- 3. 此外,我們利用普物熱輻射公式應用在模組上,如下列等式: $J_{in}=J_{cond}+\sigma\varepsilon AT^4=J_{out}$

三片及四片玻璃之熱傳導公式:

兩面的溫度分別保持在 $T_H \setminus T_C$ 兩面的面積均為A。現在我們要導出在穩態過程中,雙層板的熱傳導率。所謂穩態,就是在任何時刻,板子裡面各點的溫度以及熱傳導率均不隨時間改變。在穩態之下雙層板中各點的熱傳導率必相同。這等於是指,在一段時間內傳過某一物質之能量,必等於同一段時間內傳過另一物質之能量。否則,雙層板中的溫度即不可能保持穩定。令兩不同質料平板界面之溫度為 T_X ,則可得到公式。

$$P_{cond} = rac{k_2 A (T_H - T_X)}{L_2} = rac{k_1 A (T_H - T_C)}{L_1}$$
 物質 熱導係數K
 $T_X = rac{k_1 L_2 T_C + k_2 L_1 T_H}{k_1 L_2 + K_2 L_1}$ 空氣 0.026
 $P_{cond} = rac{Q}{t} = KA rac{T_H - T_C}{L}$ 水 0.6

由 P_{cond} ,熱傳導和太陽能實驗可得知,氣/氣的隔熱效果皆最佳,三片玻璃和雙片玻璃實驗之最佳結果相反,前者在空氣的效果最好,後者則是最差,我們推論是儀器主要是測輻射熱,而三片玻璃的厚度越厚,遮蔽係數越低,所測出的值就越低,也就是隔熱效果好。反之,雙片玻璃玻璃厚度薄,遮蔽係數高,測出的值比較高,也就是隔熱效果差。由誤差值可得知,改變 $L_1 \cdot L_2$ 有極大的影響,而等距(3.1575cm/3.1575cm),效果最好。

Sc值實驗及分析:

- 1. Sc值為太陽輻射能量透過任意玻璃的量與空白能量實驗(539.3)之比值,遮蔽係數越小,熱源流入越少,可降低冷氣房負荷,節省能源。
- 2. 在實驗和Sc值的三片玻璃實驗中,前者在等距模組最好,後者則是前短後長模組,推測原因是因 P_{cond} 是理論值,Sc值是測量實際值,可能有熱量散失,導致結果不一致。

熱輻射原理分析:

我們利用普物熱輻射公式應用在模組上,如下列等式:

$$J_{in} = J_{cond} + \sigma \varepsilon A T^4 = J_{out}$$

 J_{in} 即熱源進入時的能量, J_{out} 為熱能射出時的能量, J_{cond} 即 P_{cond} , σ 為斯特凡-波耳茲曼常數,放射率 ϵ 介於 $0\sim1$ 之間,A為面積,T為溫度。

結論

- 一. 雙片玻璃(單層介質)的實驗中,隔熱效果是太白粉膠體>水>空氣層。其中,太白粉膠體的填充,水的比例愈高,隔熱效果愈差。最佳的結果為水比太白粉1:2膠體。
- 二. 三片玻璃實驗中,計算結果誤差值較大者,不適合製造隔熱玻璃。誤差小者系統穩定,可多多利用。
- 三. 因為玻璃厚度是四片玻璃>三片玻璃>雙片玻璃,所以在Sc值的比較中,雙片玻璃>三片玻璃>四片玻璃,因此,隔熱效果是四片玻璃>三片玻璃>雙片玻璃。
- 四. 三片玻璃(雙層介質)的實驗中,兩層皆空氣的模組是隔熱效果最佳的,跟雙片玻璃(單層介質)的實驗結果相反, 我們推測原因是三片玻璃的玻璃厚度厚,遮蔽係數低,測出的輻射熱值低,也就是隔熱效果好。反之,雙片玻璃厚 度薄,遮蔽係數較高,測出輻射熱值高,也就是隔熱比較不好。另外,我們也補測了其他等距、前長後短、前短 後長模組,並進行比較。
- 五. Sc值(遮蔽係數)即測出之熱穿透÷清玻璃數據數據(539.3)。雙片玻璃厚度薄,遮蔽係數高,效果較差;反之,四片玻璃厚度厚,Sc值低,效果較佳。另外,我們可代入雙、三、四片的Sc值來計算。我們也找到了熱輻射公式 $P_{rad} = \sigma \epsilon A T^4$,若要考慮穿透輻射,需計算通過玻璃層的折射和反射,因為通過玻璃的折射、反射造成的能量穿透效應,遠大於黑體輻射($P_{rad} = \sigma \epsilon A T^4$)。
- 六.以台灣氣候而言,低熱穿透且低Sc值的玻璃為優良隔熱模組,高光通量為省電模組,雖然理論上反射光越高,透射光就會減少,熱能同時減少,然而實驗數據顯示光通量越高,熱穿透也越高,不可二者兼得。
- 七. 倘若未來能查到貼了隔熱紙(F20)的玻璃之 ε ,就可以精準計算 J_{in} 、 J_{out} ,進一步算出熱量散失,以改善本實驗之誤差,並精準求出 J_{cond} 的大小。
- 八. 在與反射、折射穿透能量大小做比較,以達到更精準的實驗模組。

未來展望

- 一. 希望未來可以更加精算 P_{cond} 值、並用Sc值做對照;此外,精算 J_{in} 、 J_{out} 值,求出 P_{rad} 的實際值,並和理論公式 $P_{rad} = \sigma \varepsilon A T^4$ 比較,求出誤差大小,進一步了解如何改善散失熱量的大小。
- 二.若有機會將更準確改變 $L_1 \setminus L_2$,算出誤差最小以及隔熱最佳的模組。
- 三. 若要考慮穿透輻射,需計算先通過玻璃層介質的折射和反射造成的穿透能量,以下的圖片中發現輻射的反射、折射和角度有很大關係,我們也想繼續往這個方向研究。

參考資料