中華民國第58屆中小學科學展覽會作品說明書

國中組 數學科

030403

探討整數三角形周長與面積的關係與疊合性質

學校名稱:臺中市私立弘文高級中學

作者:

國三 楊家婕

國二 歐陽芊芊

國二 林家仔

指導老師:

廖寶貴

曾智鈿

關鍵詞:畢氏數、海龍公式、整數三角形

摘 要

本篇在探討整數三角形〔指邊長與面積均為自然數〕周長與面積成倍數關係的存在與否;由〔 $6 \cdot 8 \cdot 10$ 〕的三角形出發,發現其面積與周長的數值相同,但這是否唯一?還是有限個?或以某種形式無限個存在?再拓展方向考慮 $p \cdot$ 面積 = $k \cdot$ 周長〔 $p \cdot k$ 均為自然數〕時的情形,更發現到面積值、s - c值〔s為周長的一半,c為三角形最長邊〕、p值與k 值存在某種巧妙的關聯。

至於整數三角形與整數邊三角形〔指邊長為自然數但面積不為整數〕的疊合與鑲嵌,以往前人在疊合的經驗上始終纏繞在整數直角三角形,即其高必為整數;卻忽略了高不為整數的情況。我們不但發現了它,更了解如何去找尋它。在疊合的部分,更以不同型式來呈現,而非千篇一律繞著直角的方向思維。

壹、 研究動機

自從接觸到國二有關根號的單元後,深深感受到課本裡數學的世界變得更具有挑戰性!從原本快樂的有理數進入到更具有挑戰性的無理數之後,頓時每個數學題目的答案已經回不到那比較簡單的有理數了。在某次課堂上,老師隨口一提之下,接觸到了海龍公式,發現有一群整數三角形默默躲在其中,更有趣的是,它不僅僅是各邊長為整數,甚至面積也是整數!在這些整數三角形裡,更有一群面積值與周長值有著整數倍關係存在的形式,例如: $(6 \cdot 8 \cdot 10)$ 的三角形周長與面積的值相等, $(18 \cdot 20 \cdot 34)$ 的三角形面積值等於兩倍的周長值等等。所以,我們希望能找出 面積值 = $k \cdot$ 周長值 或 周長值 = $p \cdot$ 面積值 ($k \cdot p$ 均為自然數)時,是否依舊存在此關係的整數三角形?且這些特殊的整數三角形還有著哪些我們尚未發現的秘密藏在其中...。

貳、 研究目的

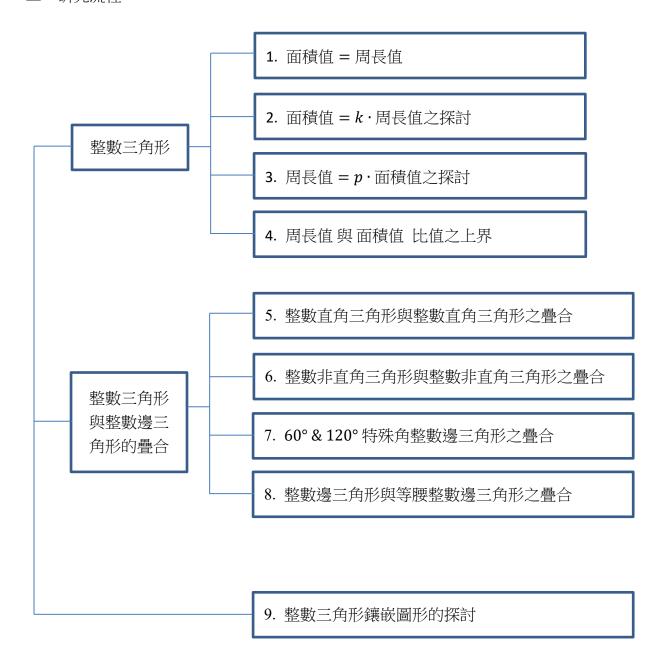
- 一、 探討整數三角形的性質
- 二、 探討 面積值 = 周長值 的整數三角形邊長解。
- 三、 探討 面積值 $= k \cdot$ 周長值 $(k \land k)$ 自然數) 的整數三角形邊長解。
- 四、 探討 **周長值** = p·面積值 (p為自然數) 的整數三角形邊長解。
- 五、 探討 $\mathbf{k} \cdot \mathbf{周}$ 長值 = $\mathbf{p} \cdot \mathbf{n}$ 積值 的整數三角形之 $\frac{p}{h}$ 值上界。
- 六、 整數三角形與整數邊三角形的疊合與探究。

參、 研究設備及器材

一、 筆、紙、電腦、excel

肆、 研究方法

- 一、名詞定義
 - (一) 整數三角形:即邊長與面積均為整數之三角形。
 - (二)整數邊三角形:邊長為整數但面積**不為整數**之三角形。
- 二、研究流程



三、先備知識

1. 定理 1:海龍公式 (既有定理): 若三角形ABC三邊為 $a \cdot b \cdot c$,則三角形面積如下所示:

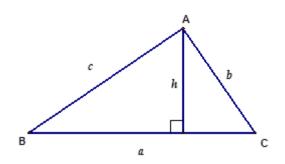
$$\triangle ABC = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} \cdot s = \frac{a+b+c}{2}$$

2. 三角形面積公式:

$$\triangle ABC = \frac{1}{2} \cdot a \cdot h = \frac{1}{2} \cdot a \cdot b \cdot sinC$$

3. 餘弦定理:

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot cosC$$
 \leftrightarrow $cosC = \frac{a^2 + b^2 - c^2}{2 \cdot a \cdot b}$



引理 1:若 \triangle ABC 為三邊 a、b、c 所組成之整數三角形,則 a、b、c 必為二奇一偶、或三偶的情況,即整數三角形其周長必為偶數,亦即半周長 $s=\frac{a+b+c}{2}$ 為整數。

證明:

由定理一可知 \triangle $ABC = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$,且 $s = \frac{a+b+c}{2}$ 。若 $a \cdot b \cdot c$ 為三奇數,則 $\sqrt{\frac{(a+c+b)}{2} \cdot \frac{(a+b+c-2b)}{2} \cdot \frac{(a+b+c-2c)}{2} \cdot \frac{(a+b+c-2a)}{2}} = \sqrt{\frac{\hat{\sigma}}{2} \cdot \frac{\hat{\sigma}}{2} \cdot \frac{\hat{\sigma}}{2} \cdot \frac{\hat{\sigma}}{2}}$,其結果與整數三角形定義不符,故整數三角形三邊為三奇數情況不成立;同理,若 $a \cdot b \cdot c$ 為一奇數二偶數,情況亦是如此。

故三邊為 $a \cdot b \cdot c$ 所組成之整數三角形,則必為二奇一偶、或三偶的情況;即整數三角形其周長必為偶數,故得證。

四、原始命題:探討 **面積值 = 周長值** 的整數三角形邊長解。 證明:

已知 $\triangle = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = a+b+c=2s \circ \Leftrightarrow s-a=x \cdot s-b=y \cdot s-c=z$,三式相加可得 3s-(a+b+c)=x+y+z,即 $x+y+z=s \circ$ 則 $\triangle = \sqrt{(x+y+z) \cdot x \cdot y \cdot z} = 2(x+y+z) \circ$ 平方得 $(x+y+z) \cdot x \cdot y \cdot z = 4(x+y+z)^2$,又 $s \neq 0$ $\rightarrow x+y+z \neq 0$,故 $x \cdot y \cdot z = 4(x+y+z)...$ ① \circ

又可知 $x=s-a=\frac{b+c-a}{2}>0$ (兩邊和大於第三邊),同理y>0、z>0,不失一般性,假設 $x\geq y\geq z>0...$ ②,式①可改為x(yz-4)=4(y+z) \to $x=\frac{4y+4z}{yz-4}$...③。又 $x\geq y$,得

 $\frac{4y+4z}{yz-4} \ge y > 0...$ ④。其中4y + 4z為正,可知yz - 4亦為正數。式④可移項得 $4y + 4z \ge y(yz-4)$,即 $y^2z - 8y - 4z \le 0...$ ⑤。解 y 的二次不等式得 $\left(y - \frac{4+\sqrt{16+4z^2}}{z}\right)\left(y - \frac{4-\sqrt{16+4z^2}}{z}\right) \le 0$,又 $4 + \sqrt{16+4z^2}$ 為正, $4 - \sqrt{16+4z^2}$ 為負,所以 $0 < y \le \frac{4+\sqrt{16+4z^2}}{z} \to yz \le 4+\sqrt{16+4z^2}$ 。由②式可將式子改為 $zz \le yz \le 4+\sqrt{16+4z^2}...$ ⑥,即 $z^2 \le 4+\sqrt{16+4z^2}$...⑦。解式⑦, $z^2 - 4 \le \sqrt{16+4z^2}$,兩邊平方 $z^4 - 8z^2 + 16 \le 16 + 4z^2$,他簡可得 $z^4 \le 12z^2 \to z^2 \le 12$,又因為 z 為正整數,故z = 1,2,3。

(一) 當z = 1:

由式⑥得知 $y \le \frac{4+\sqrt{16+4}}{1} < 9 \to y < 9$,又由式③可得 $x = \frac{4y+4}{y-4} \to y > 4$ 。由此兩條件可知4 < y < 9,可得整數解如下:(計算 sinC 值理由在 P15 定理二詳細說明)

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
Z	у	х	S	c	b	a	a+b+c	$\sqrt{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}$	最大角 正弦	型態
1	5	24	30	29	25	6	60	60	0.8	鈍角
1	6	14	21	20	15	7	42	42	0.8	鈍角
1	8	9	18	17	10	9	36	36	0.8	鈍角

(二) 當z = 2:

由式⑥得知 $y \le \frac{4+\sqrt{16+16}}{2} < 5 \to y < 5$,又由式③可得 $x = \frac{4y+8}{2y-4} \to y > 2$ 。由此兩條件可知2 < y < 5,可得整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
Z	у	X	S	c	b	a	a+b+c	$\sqrt{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}$	最大角 正弦	型態
2	3	10	15	13	12	5	30	30	1	直角
2	4	6	12	10	8	6	24	24	1	直角

(三) 當z = 3:

由式⑥得知
$$y \le \frac{4+\sqrt{16+36}}{3} < 4 \to y < 4$$
,又由式③可得 $x = \frac{4y+12}{3y-4} \to y > 1$,且 $y \ge z = 3$ 。由上述條件可知 $y = 3$,代入得 $x = \frac{24}{5} \notin N$ (不合)。

綜合 $(-)\sim(\Xi)$ 之結果,我們可以求出 面積值 = 周長值 的整數三角形僅有 5 組。

五、推廣命題:

- (一) 探討 面積值 $= k \cdot$ 周長值 的整數三角形邊長解。 $(k = 1 \cdot 2 \cdot 3)$ 為例)
 - 1. 若 k = 1為原始命題,故不再贅述。
 - 2. 若 k=2,即面積值 =2·周長值:

已知
$$\triangle = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = 2(a+b+c) = 4s \circ \Leftrightarrow s-a=x \circ s-b=y \circ s-c=z$$
,三式相加可得 $3s-(a+b+c)=x+y+z$,即 $x+y+z=s \circ$ 則 $\triangle = \sqrt{(x+y+z) \cdot x \cdot y \cdot z} = 4(x+y+z) \circ$ 平方得 $(x+y+z) \cdot x \cdot y \cdot z = 16(x+y+z)^2$,又 $s \neq 0 \rightarrow x+y+z \neq 0$,故 $x \cdot y \cdot z = 16(x+y+z)...$ ①。

式①化簡可得
$$x = \frac{16y + 16z}{yz - 16} \ge y...$$
②。故 $y^2z - 16y \le 16y + 16z \rightarrow y^2z - 32y - 16z \le 0$,整理得 $\left(y - \frac{16 - \sqrt{256 + 16z^2}}{z}\right) \cdot \left(y - \frac{16 + \sqrt{256 + 16z^2}}{z}\right) \le 0$ 。因此, $(z \le) y \le$

 $\frac{16+\sqrt{256+16z^2}}{z}...(3), 即 z^2-16 \leq \sqrt{256+16z^2} , 兩邊平方 z^4-32z^2+256 \leq 256+16z^2 ,$ 化簡可得 $z^4-48z^2 \leq 0$,即 $z^2\cdot(z^2-48) \leq 0 \rightarrow z^2 \leq 48$,又因為 z 為正整數,故 z=1,2,3,4,5,6 。

(1) 當z = 1:

由式③得知 $y \le \frac{16+\sqrt{256+16}}{1} < 33 \rightarrow y < 33$,又由式②可得 $x = \frac{16y+16}{y-16} \rightarrow y > 16$ 。 由此兩條件可知16 < y < 33,可得整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
Z	у	x	S	c	ь	a	a + b + c	$\sqrt{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}$	最大角 正弦	型態
1	17	288	306	305	289	18	612	1224	0.47	鈍角
1	18	152	171	170	153	19	342	684	0.47	鈍角
1	20	84	105	104	85	21	210	420	0.47	鈍角
1	24	50	75	74	51	25	150	300	0.47	鈍角
1	32	33	66	65	34	33	132	264	0.47	鈍角

(2) 當z = 2:

由式③得知 $y \le \frac{16+\sqrt{256+64}}{2} < 17 \rightarrow y < 17$,又由式②可得 $x = \frac{16y+32}{2y-16} \rightarrow y > 8$ 。 由此兩條件可知 8 < y < 17,可得整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
Z	у	X	S	c	b	a	a+b+c	$\sqrt{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}$	最大角 正弦	型態
2	9	88	99	97	90	11	198	396	0.8	鈍角
2	10	48	60	58	50	12	120	240	0.8	鈍角
2	12	28	42	40	30	14	84	168	0.8	鈍角
2	13	24	39	37	26	15	78	156	0.8	鈍角
2	16	18	36	34	20	18	72	144	0.8	鈍角

(3) 當z = 3:

由式③得知 $y \le \frac{16+\sqrt{256+144}}{3} = 12 \rightarrow y \le 12$,又由式②可得 $x = \frac{16y+48}{3y-16} \rightarrow y > 5$ 。 由此兩條件可知 $5 < y \le 12$,可得整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
			_		1.		~ h a		最大角	型態
Z	У	X	S	С	b	a	a+b+c	$\sqrt{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}$	正弦	空怨
3	6	72	81	78	75	9	162	324	0.96	鈍角
3	7	32	42	39	35	10	84	168	0.96	鈍角
3	8	22	33	30	25	11	66	132	0.96	鈍角
3	12	12	27	24	15	15	54	108	0.96	鈍角

(4) 當z = 4:

由式③得知 $y \le \frac{16+\sqrt{256+256}}{4} < 10 \rightarrow y < 10$,又由式②可得 $x = \frac{16y+64}{4y-16} \rightarrow y > 4$ 。 由此兩條件可知 4 < y < 10,可得整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
Z	у	x	S	c	ь	a	a+b+c	$\sqrt{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}$	最大角 正弦	型態
4	5	36	45	41	40	9	90	180	1	直角
4	6	20	30	26	24	10	60	120	1	直角
4	8	12	24	20	16	12	48	96	1	直角

(5) 當z = 5:

由式③得知
$$y \le \frac{16+\sqrt{256+400}}{5} < 9 \to y < 9$$
,又由式②可得 $x = \frac{16y+80}{5y-16} \to y > 3$;又因為 $x \ge y \ge z > 0$,由此三條件可知 $5 \le y < 9$,此情况無整數解。

(6) 當z = 6:

由式③得知
$$y \le \frac{16+\sqrt{256+576}}{6} < 8 \to y < 8$$
,又由式②可得 $x = \frac{16y+96}{6y-16} \to y > 2$;又因为 $x \ge y \ge z > 0$;由此三條件可知 $6 \le y < 8$,可得整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
Z	у	X	S	c	b	a	a+b+c	$\sqrt{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}$	最大邊 正弦	型態
6	7	8	21	15	14	13	42	84	0.92	銳角

綜合 $(1) \sim (6)$ 之結果,我們可以求出面積值 = $2 \cdot$ 周長值的整數三角形共有 18 組;然而,從上述的資料中,我們發現一個非常奇妙的結果,就是每一類的整數三角形其最長邊所對的角的正弦值(餘弦值)均相同。(在 P15 定理二詳細說明)

3. 若 k=3,即面積值 = 3·周長值:

已知
$$\triangle = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = 3(a+b+c) = 6s \circ \Leftrightarrow s-a=x \circ s-b=y \circ s-c=z$$
,三式相加可得 $3s-(a+b+c)=x+y+z$,即 $x+y+z=s \circ$ 則 $\triangle = \sqrt{(x+y+z) \cdot x \cdot y \cdot z} = 6(x+y+z) \circ$ 平方得 $(x+y+z) \cdot x \cdot y \cdot z = 36(x+y+z)^2$,又 $s \neq 0$ $\rightarrow x+y+z \neq 0$,故 $x \cdot y \cdot z = 36(x+y+z)...① $\circ$$

式①化簡可得
$$x = \frac{36y+36z}{yz-36} \ge y...$$
②。故 $y^2z - 36y \le 36y + 36z \rightarrow y^2z - 72y - 36z \le 0$,整理得 $\left(y - \frac{36-\sqrt{1296+36z^2}}{z}\right) \cdot \left(y - \frac{36+\sqrt{1296+36z^2}}{z}\right) \le 0$ 。因此, $(z \le) y \le \frac{36+\sqrt{1296+36z^2}}{z}...$ ③,即 $z^2 - 36 \le \sqrt{1296 + 36z^2}$,兩邊平方 $z^4 - 72z^2 + 1296 \le 1296 + 36z^2$,化簡可得 $z^4 - 108z^2 \le 0$,即 $z^2 \cdot (z^2 - 108) \le 0 \rightarrow z^2 \le 108$,又因為 z 為正整數,故 $z = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$ 。

(1) 當z = 1:

由式③得知 $y \le \frac{36+\sqrt{1296+36}}{1} < 73 \rightarrow y < 73$,又由式②可得 $x = \frac{36y+36}{y-36} \rightarrow y >$ 36 。 由此兩條件可知36 < y < 73,可得整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
z	у	x	S	c	b	a	a+b+c	$\sqrt{s\cdot (s-a)\cdot (s-b)\cdot (s-c)}$	最大角 正弦	型態
1	37	1368	1406	1405	1369	38	2812	8436	0.32	
1	38	702	741	740	703	39	1482	4446	0.32	鈍角
1	39	480	520	519	481	40	1040	3120	0.32	鈍角
1	40	369	410	409	370	41	820	2460	0.32	鈍角
1	42	258	301	300	259	43	602	1806	0.32	鈍角
1	45	184	230	229	185	46	460	1380	0.32	鈍角
1	48	147	196	195	148	49	392	1176	0.32	鈍角
1	54	110	165	164	111	55	330	990	0.32	鈍角
1	72	73	146	145	74	73	292	876	0.32	鈍角

(2) 當z = 2:

由式③得知 $y \le \frac{36+\sqrt{1296+144}}{2} < 37 \rightarrow y < 37$,又由式②可得 $x = \frac{36y+72}{2y-36} \rightarrow y > 18$ 。 由此兩條件可知18 < y < 37,可得整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
Z	у	X	S	c	b	a	a+b+c	$\sqrt{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}$	最大角 正弦	型態
2	19	378	399	397	380	21	798	2394	0.60	鈍角
2	20	198	220	218	200	22	440	1320	0.60	鈍角
2	21	138	161	159	140	23	322	966	0.60	鈍角
2	22	108	132	130	110	24	264	792	0.60	鈍角
2	23	90	115	113	92	25	230	690	0.60	鈍角
2	24	78	104	102	80	26	208	624	0.60	鈍角
2	26	63	91	89	65	28	182	546	0.60	鈍角
2	27	58	87	85	60	29	174	522	0.60	鈍角
2	28	54	84	82	56	30	168	504	0.60	鈍角
2	30	48	80	78	50	32	160	480	0.60	鈍角
2	33	42	77	75	44	35	154	462	0.60	鈍角
2	36	38	76	74	40	38	152	456	0.60	鈍角

(3) 當z = 3:

由式③得知 $y \le \frac{36+\sqrt{1296+324}}{3} < 26 \rightarrow y < 26$,又由式②可得 $x = \frac{36y+108}{3y-36} \rightarrow y > 12$ 。

由此兩條件可知12 < y < 26,可得整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
	**	v	G		b		a + b + a		最大角	型態
Z	У	X	S	С	υ	a	u + v + c	$\sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$	正弦	至忠
3	13	192	208	205	195	16	416	1248	0.80	鈍角
3	14	102	119	116	105	17	238	714	0.80	鈍角
3	15	72	90	87	75	18	180	540	0.80	鈍角
3	16	57	76	73	60	19	152	456	0.80	鈍角
3	17	48	68	65	51	20	136	408	0.80	鈍角
3	18	42	63	60	45	21	126	378	0.80	鈍角
3	21	32	56	53	35	24	112	336	0.80	鈍角
3	22	30	55	52	33	25	110	330	0.80	鈍角
3	24	27	54	51	30	27	108	324	0.80	鈍角

(4) 當z = 4:

由式③得知
$$y \le \frac{36+\sqrt{1296+576}}{4} < 20 \rightarrow y < 20$$
,又由式②可得 $x = \frac{36y+144}{4y-36} \rightarrow y > 9$ 。

由此兩條件可知9 < y < 20,可得整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
Z	у	x	s	c	ь	a	a+b+c	$\sqrt{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}$	最大角 正弦	型態
4	10	126	140	136	130	14	280	840	0.92	鈍角
4	12	48	64	60	52	16	128	384	0.92	鈍角
4	18	22	44	40	26	22	88	264	0.92	鈍角

(5) 當z = 5:

由式③得知
$$y \le \frac{36+\sqrt{1296+900}}{5} < 17 \rightarrow y < 17$$
,又由式②可得 $x = \frac{36y+180}{5y-36} \rightarrow y > 7$ 。

由此兩條件可知7 < y < 17,可得整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
z	у	X	s	c	b	a	$a+b+c \sqrt{s}$	$(s-a)\cdot(s-b)\cdot(s-b)$	<u>−c)</u> 最大角	型態

									正弦	
5	8	117	130	125	122	13	260	780	0.98	鈍角
5	9	56	70	65	61	14	140	420	0.98	鈍角

(6) 當z = 6:

由式③得知
$$y \le \frac{36+\sqrt{1296+900}}{6} < 15 \rightarrow y < 15$$
,又由式②可得 $x = \frac{36y+216}{6y-36} \rightarrow y > 6$ 。

由此兩條件可知6 < y < 15,可得整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
z	у	X	S	c	b	a	a + b + c	$\sqrt{s\cdot (s-a)\cdot (s-b)\cdot (s-c)}$	最大角 正弦	型態
6	7	78	91	85	84	13	182	546	1.00	直角
6	8	42	56	50	48	14	112	336	1.00	直角
6	9	30	45	39	36	15	90	270	1.00	直角
6	10	24	40	34	30	16	80	240	1.00	直角
6	12	18	36	30	24	18	72	216	1.00	直角
6	14	15	35	29	21	20	70	210	1.00	直角

(7) 當z = 7:

由式③得知
$$y \le \frac{36+\sqrt{1296+1764}}{7} < 14 \rightarrow y < 14$$
,又由式②可得 $x = \frac{36y+252}{7y-36} \rightarrow y > 5$ 。

又 $y \ge z$,由此條件可知7 ≤ y < 14,可得整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
Z	у	x	S	c	b	a	a+b+c	$\sqrt{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}$	最大角 正弦	型態
7	8	27	42	35	34	15	84	252	0.99	銳角
7	10	18	35	28	25	17	70	210	0.99	銳角

(8) 當z = 8:

由式③得知
$$y \le \frac{36+\sqrt{1296+2304}}{8} = 12 \rightarrow y \le 12$$
,又由式②可得 $x = \frac{36y+288}{8y-36} \rightarrow y >$

4 .

又 $y \ge z$,由此條件可知8 ≤ $y \le 12$,可得整數解如下:

s-c	s-b	s-a	x+y+z	周長	面積	sinC

Z	у	Х	S	с	b	a	a+b+c	$\sqrt{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}$	最大角 正弦	型態
8	9	17	34	26	25	17	68	204	0.96	銳角
8	12	12	32	24	20	20	64	192	0.96	銳角

(9) 當z = 9:

又 $y \ge z$,由此條件可知9 ≤ y < 12,此情況無整數解。

(10) 當z = 10:

又 $y \ge z$,由此條件可知10 ≤y < 11,此情况無整數解。

綜合 $(1) \sim (10)$ 之結果,我們可以求出面積值 = $3 \cdot$ 周長值的整數三角形共有 45 組;且每一類的整數三角形其最長邊所對的角度依然相同。另外,由此猜測當面積值 = $k \cdot$ 周長值,其 k 值越大,符合的情況就越多。

- (二) 探討 周長值 = p·面積值 的整數三角形邊長解。($p = 1 \cdot 2 \cdot 3 \cdot 4$ 為例)
- 1. 若 p = 1為原始命題,故不再贅述。
- 2. 若 p = 2,即周長值 = $2 \cdot$ 面積值:

已知
$$\triangle = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = \frac{(a+b+c)}{2} = s \circ \Leftrightarrow s-a=x \circ s-b=y \circ s-c=z$$
,三式相加可得 $3s-(a+b+c)=x+y+z$,即 $x+y+z=s$ 。則 $\triangle =$

式①化簡可得
$$x = \frac{y+z}{yz-1} \ge y$$
…②。故 $y^2z - y \le y + z \rightarrow y^2z - 2y - z \le 0$,整理得

(1) 當z = 1:

由式③得知
$$y \le \frac{1+\sqrt{1+1}}{1} < 3 \to y < 3$$
,又由式②可得 $x = \frac{y+1}{y-1} \to y > 1$ 。由此兩條件可知 $1 < y < 3$,可得整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
Z	у	x	S	c	b	a	a+b+c	$\sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$	最大邊 正弦	型態
1	2	3	6	5	4	3	12	6	1.00	直角

3. 若 p=3,即周長值 = $3 \cdot$ 面積值:

已知
$$\triangle = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = \frac{(a+b+c)}{3} = \frac{2s}{3} \circ \Leftrightarrow s-a=x \cdot s-b=y \cdot s-c=z$$
,三式相加可得 $3s-(a+b+c)=x+y+z$,即 $x+y+z=s$ 。則 $\triangle = \sqrt{(x+y+z) \cdot x \cdot y \cdot z} = \frac{2}{3} \cdot (x+y+z) \circ$ 平方得 $(x+y+z) \cdot x \cdot y \cdot z = \frac{4}{9} \cdot (x+y+z)^2$,又 $s \ne 0 \rightarrow x+y+z \ne 0$,故 $x \cdot y \cdot z = \frac{4}{9} \cdot (x+y+z)$ …①。

式①化簡可得 $x = \frac{4(y+z)}{9yz-4} \ge y\dots$ ②。故 $9y^2z - 4y \le 4y + 4z \rightarrow 9y^2z - 8y - 4z \le 0$,整 理得 $\left(y - \frac{4-\sqrt{16+36z^2}}{9z}\right)\cdot\left(y - \frac{4+\sqrt{16+36z^2}}{9z}\right) \le 0$ 。因此, $(z \le) y \le \frac{4+\sqrt{16+36z^2}}{9z}\dots$ ③,即 $9z^2 - 4 \le \sqrt{16+36z^2}$,兩邊平方 $81z^4 - 72z^2 + 16 \le 16 + 36z^2$,化簡可得 $81z^4 - 108z^2 \le 0$,即 $27z^2\cdot(3z^2-4) \le 0 \rightarrow 3z^2 \le 4$,又因為 z 為正整數,故z = 1。

(1) 當z = 1:

由式③得知 $y \le \frac{4+\sqrt{16+36}}{9} < 2 \to y < 2$,又由式②可得 $x = \frac{4(y+1)}{9y-4} \to y > 0$ 。由此兩條件可知0 < y < 2,此情況無整數解。

4. 若 p = 4,即周長值 = $4 \cdot$ 面積值:

已知
$$\triangle = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = \frac{(a+b+c)}{4} = \frac{s}{2} \circ \Leftrightarrow s-a=x \circ s-b=y \circ s-c=z$$
,三式相加可得 $3s-(a+b+c)=x+y+z$,即 $x+y+z=s$ 。則 $\triangle = \sqrt{(x+y+z) \cdot x \cdot y \cdot z} = \frac{(x+y+z)}{2} \circ$ 平方得 $(x+y+z) \cdot x \cdot y \cdot z = \frac{(x+y+z)^2}{4} \circ$ 又 $s \neq 0 \rightarrow x+y+z \in S$ 。 故 $x \cdot y \cdot z = \frac{(x+y+z)}{4} \circ$ 。

式①化簡可得 $x = \frac{(y+z)}{4yz-1} \ge y...$ ②。故 $4y^2z - y \le y + z \rightarrow 4y^2z - 2y - z \le 0$,整理得 $\left(y - \frac{1-\sqrt{1+4z^2}}{4z}\right) \cdot \left(y - \frac{1+\sqrt{1+4z^2}}{4z}\right) \le 0$ 。因此, $(z \le) y \le \frac{1+\sqrt{1+4z^2}}{4z}...$ ③,即 $4z^2 - 1 \le \sqrt{1+4z^2}$,兩邊平方 $16z^4 - 8z^2 + 1 \le 1 + 4z^2$,化簡可得 $16z^4 - 12z^2 \le 0$,即 $4z^2 \cdot (4z^2 - 3) \le 0 \rightarrow 4z^2 \le 3$,又因為 z 為正整數,故不存在周長值 $= 4 \cdot$ 面積值的整數三角形。

綜合(1)~(4)之結果,可得知若 $p=1\cdot 2\cdot 3\cdot 4$ 時,可求出周長值 = $p\cdot$ 面積值的整數 三角形只有 6 組 (只有 $p=1\cdot 2$ 才有解)。且經由上面探索,我們發現似乎只有 $p=1\cdot 2$ 時,才能找出周長值等於整數倍面積值,故我們大膽假設當 $p\geq 3$,無周長值 = $p\cdot$ 面積值的整數三角形;證明如下。

引理 2:若 \triangle ABC 為三邊 $a \cdot b \cdot c$ 所組成之整數三角形,當 $p \ge 3$ ($p \in N$) 時,周長值 $= p \cdot$ 面積值的整數三角形是不存在。

證明:

設 $\frac{(a+b+c)}{2}=s$,故 $(a+b+c)=p\cdot\sqrt{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}$ 。 令 s-a=x、 $s-b=y\cdot s-c=z$,不失一般性我們假設 $x\geq y\geq z>0$ 。三式相加可得 3s-(a+b+c)=x+y+z,即x+y+z=s。則 $2(x+y+z)=p\cdot\sqrt{(x+y+z)\cdot x\cdot y\cdot z}$ 。平方得 $4(x+y+z)^2=p^2\cdot(x+y+z)\cdot x\cdot y\cdot z$,又 $s\neq 0$ → $x+y+z\neq 0$,故 $4(x+y+z)=p^2\cdot x\cdot y\cdot z$ 。

上式化簡可得 $x = \frac{4(y+z)}{p^2yz-4} \ge y$ 。故 $p^2y^2z - 4y \le 4(y+z) \rightarrow p^2y^2z - 8y - 4z \le 0$,解 y 之不等式得 $\left(y - \frac{8-\sqrt{64+16p^2z^2}}{2p^2z}\right) \cdot \left(y - \frac{8+\sqrt{64+16p^2z^2}}{2p^2z}\right) \le 0$,又 $y \ge z$,故 $z \le y \le \frac{8+\sqrt{64+16p^2z^2}}{2p^2z} = \frac{4+\sqrt{16+4p^2z^2}}{p^2z} \rightarrow 0 < z \le \frac{4+\sqrt{16+4p^2z^2}}{p^2z}$ 。

再次移項得 $p^2z^2 \le 4 + \sqrt{16 + 4p^2z^2} \rightarrow (p^2z^2 - 4)^2 \le (\sqrt{16 + 4p^2z^2})^2$,化簡得 $p^4z^4 - 8p^2z^2 + 16 \le 16 + 4p^2z^2$,故 $p^4z^4 - 12p^2z^2 \le 0$,即 $p^2z^2(p^2z^2 - 12) \le 0$ 。因此,若 $p \ge 4$,且 $p^2z^2 - 12 \le 0$,此時 $z^2 \le \frac{12}{p^2} < 1$,則不存在自然數 z 符合此條件。故 p 必為自然數 $1 \cdot 2 \cdot 3$ 。又因為 p = 3 時,由 (二) -3 可知,其解不存在。故 $p \ge 3$ 時,周長值 = p.面積值的整數三角形是不存在。

觀察上述的數據,發現若面積與周長的倍數關係與 s-c 值固定,我們可知其最長邊的正弦值(餘弦值)是固定的,故

定理 2-1:若整數三角形三邊 $a \cdot b \cdot c$ (最長邊),其面積 = 自然數 $k \cdot$ 周長,且 s - c = t (固定值),則符合此情況之所有整數三角形,其最長邊所對的角之餘弦值為 $\frac{t^2 - 4k^2}{t^2 + 4k^2}$,故可知所對的角度量相同。

證明:已知

$$\sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = k \cdot (a+b+c)$$

(一) 因為
$$s-c=t \rightarrow a+b-c=2t$$
 ,可得 $(a-b)^2=4t^2+4ct+c^2-4ab$ 式(2)

(三) 由式(3)可知,
$$(a-b)^2-c^2=\frac{-16k^2\cdot(t+c)}{t}$$
, $\Rightarrow a^2+b^2-c^2-2ab=\frac{-16k^2\cdot(t+c)}{t}$,故

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = 1 - \frac{16k^2 \cdot (t+c)}{2abt}$$

(四) 利用式(4)與式(5)代換後可得
$$\cos C = 1 - \frac{16k^2 \cdot (t+c)}{2(4k^2+t^2) \cdot (t+c)} = 1 - \frac{8k^2}{4k^2+t^2} = \frac{t^2-4k^2}{t^2+4k^2}$$
 式(6)

由式(6)可知,若整數三角形三邊 $a \cdot b \cdot c$ (最長邊),其面積 $= k \cdot$ 周長,且 s - c = t ,則符合此情況之所有整數三角形,其最長邊所對的角之餘弦值為 $\frac{t^2 - 4k^2}{t^2 + 4k^2}$ 為定值,故得證。

定理 2-2:若整數三角形三邊 $a \cdot b \cdot c$ (最長邊),其周長 = 自然數 $p \cdot$ 面積,且 s - c = t (固定值),則符合此情況之所有整數三角形,其最長邊所對的角之餘弦值為 $\frac{p^2t^2-4}{4+p^2t^2}$,故可知所對的角度量相同。

證明:過程類似定理 2-1,不贅述。

定理 2-1、2-2 解決完自然數倍的問題後,非自然數倍的情形又如何呢?故我們轉而討論有理數倍的情況:

引理 3:若整數三角形三邊 $a \cdot b \cdot c$ (最長邊),其 $p \cdot$ 面積 = $k \cdot$ 周長,且 s-c=t (固定值),則符合此情況之所有整數三角形,其最長邊所對的角度量相同,其餘弦值為 $\frac{p^2t^2-4k^2}{p^2t^2+4k^2}$ 。

證明:已知

$$p \cdot \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = k \cdot (a+b+c)$$

(一) 因為
$$s-c=t \rightarrow a+b-c=2t$$
 ,可得 $(a-b)^2=4t^2+4ct+c^2-4ab$ 式(2)

(三) 由式(3)可知,
$$(a-b)^2-c^2=\frac{-16k^2\cdot(t+c)}{p^2\cdot t}$$
, $\Rightarrow a^2+b^2-c^2-2ab=\frac{-16k^2\cdot(t+c)}{p^2\cdot t}$,故

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = 1 - \frac{16k^2 \cdot (t+c)}{p^2 t \cdot 2ab}$$

(四) 式(4)與式(5)代換後可得
$$\cos C = 1 - \frac{16k^2 \cdot (t+c)}{2(4k^2 + p^2t^2) \cdot (t+c)} = 1 - \frac{8k^2}{4k^2 + p^2t^2} = \frac{p^2t^2 - 4k^2}{p^2t^2 + 4k^2}$$
 式(6)

由定理 2-1、定理 2-2 可整理如下表:

引理 3		定理 $2-1$: 面積 = 自然數 k ·周長				
若 $p \cdot$ 面積 = $k \cdot$ 周長	當 $p=1$,則	t^2-4k^2				
(p、k 為自然數)		最大角之餘弦值為 $\frac{t^2-4k^2}{t^2+4k^2}$				
s-c=t (固定值)		定理 2-2:周長 = 自然數 p ·面積				
最大角之餘弦值為	24 1 1 미리					
$\frac{p^2t^2 - 4k^2}{p^2t^2 + 4k^2}$	當 $k=1$,則	最大角之餘弦值為 $\frac{p^2t^2-4}{p^2t^2+4}$				

(三) 探討 $\mathbf{k} \cdot \mathbf{B}$ 長值 = $\mathbf{p} \cdot \mathbf{m}$ 積值 的整數三角形之 $\frac{p}{k}$ 上界

由上述資料可知,若周長與面積互為整倍數關係,我們能找到符合此情況的解。但若非整倍數關係,是否有解呢?因此,我們試著先尋找 2·周長值 = 3·面積值 的解是否存在,尋得唯一整數解如下:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
Z	у	x	S	c	b	a	a+b+c	$\sqrt{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}$	最大邊 正弦	型態
1	2	24	27	26	25	3	54	36	0.96	鈍角

由(一)我們能得知,若面積值 = $k \cdot$ 周長值,隨著 k 值越大,符合限制的整數三角形越多組,故 k 為任意自然數;但由(二)知,若周長值 = $p \cdot$ 面積值,卻僅有 6 組符合,且 p 值只能 1 或 2 。因此,我們欲知 **周長值** = $\frac{p}{k} \cdot$ **面積值** 的整數三角形之 $\frac{p}{k}$ 值是否存在上界,若有又是多少呢?

定理 $3: k \cdot$ **周長值** $= p \cdot$ **面積值** 的整數三角形之 $\frac{p}{k}$ 值有一上界為 $\sqrt{12}$

證明:

設
$$\frac{(a+b+c)}{2} = s$$
,故 $p \cdot \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = k \cdot (a+b+c)$ 。令 $s-a=x$ 、 $s-b=y$ 、 $s-c=z$,不失一般性我們假設 $x \ge y \ge z > 0$ 。三式相加可得 $3s-(a+b+c) = x+y+z$,即 $x+y+z=s$ 。則 $p \cdot \sqrt{(x+y+z) \cdot x \cdot y \cdot z} = 2k \cdot (x+y+z)$ 。平方得 $p^2 \cdot (x+y+z) \cdot x \cdot y \cdot z = 4k^2 \cdot (x+y+z)^2$,又 $s \ne 0 \rightarrow x+y+z \ne 0$,故 $p^2 \cdot x \cdot y \cdot z = 4p^2 \cdot (x+y+z)$ 。

上式化簡可得
$$x = \frac{4k^2 \cdot (y+z)}{p^2 yz - 4k^2} \ge y$$
。故 $p^2 z y^2 - 4k^2 y \le 4k^2 (y+z) \rightarrow p^2 z y^2 - 8k^2 y - 4k^2 z \le 0$,解 y 之不等式得 $\left(y - \frac{4k^2 - \sqrt{16k^4 + 4k^2 p^2 z^2}}{p^2 z}\right) \cdot \left(y - \frac{4k^2 + \sqrt{16k^4 + 4k^2 p^2 z^2}}{p^2 z}\right) \le 0$,又 $y \ge z$,故 $z \le y \le \frac{4k^2 + \sqrt{16k^4 + 4k^2 p^2 z^2}}{p^2 z} \rightarrow 0 < z \le \frac{4k^2 + \sqrt{16k^4 + 4k^2 p^2 z^2}}{p^2 z}$ 。

再次移項得 $p^2z^2 \le 4k^2 + \sqrt{16k^4 + 4k^2p^2z^2} \rightarrow (p^2z^2 - 4k^2)^2 \le (\sqrt{16k^4 + 4k^2p^2z^2})^2$, 化簡得 $p^4z^4 - 8p^2k^2z^2 + 16k^4 \le 16k^4 + 4p^2k^2z^2$,故 $p^4z^4 - 12p^2k^2z^2 \le 0$,即 $p^2z^2(p^2z^2 - 12k^2) \le 0$ 。因為 $p \cdot z$ 為自然數,故 $p^2z^2 - 12k^2 \le 0 \rightarrow \frac{p^2}{k^2} \le \frac{12}{z^2}$,得 $\frac{p}{k} \le \frac{\sqrt{12}}{z}$, 又因為 $x \ge y \ge z > 0$,且 $x \cdot y \cdot z \in N$,故若 z 存在最小值為 1 時,得 $\frac{p}{k} \le \sqrt{12}$ 。

(四) 探討 周長值 = $\sqrt{\mathbf{k}} \cdot$ 面積值 的整數邊三角形情況 (k為自然數)

已知 $(a+b+c) = \sqrt{k} \cdot \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$, 仿上化簡可得下列各式:

$$x = \frac{4(y+z)}{kyz-4} \ge y$$

$$z \le y \le \frac{4 + 2\sqrt{4 + kz^2}}{kz}$$
 $\vec{x}(2)$

$$z^2 \le \frac{12}{k}$$

以 k=2,z=1、2 為例,我們可以得出以下 (周長值 = $\sqrt{2}$ ·面積值)的整數邊三角形:

s-c	s-b	s-a	x+y+z				周長	面積	sinC	
Z	у	x	S	c	b	a	$a+b+c$ \sqrt{s}	$s \cdot (s-a) \cdot (s-b) \cdot (s-c)$	最大角 正弦	型態
1	3	8	12	11	9	4	24	$12\sqrt{2}$	0.94	鈍角

1	4	5	10	9	6	5	20	$10\sqrt{2}$	0.94	鈍角
2	2	4	8	6	6	4	16	$8\sqrt{2}$	0.94	銳角

由 $(-)\sim(\square)$ 可以得知,運用這模式能順利得到 **周長值** = $m\cdot$ 面積值(m為任意實數) 的所有整數邊三角形情形。

(五) 已知整數三角形周長,探討符合此周長之整數三角形所有解

在賴昱維(Sands[5])提出十八種整數三角形邊長生成公式中,我們能利用這些公式檢驗若已知整數三角形周長,其整數三角形是否真的存在。然而,這些生成公式都是由整數直角三角形所拼貼而成;因此,必有一邊其對應的高為正整數,這樣的生成公式其實只涵蓋部分整數三角形而已。舉例來說,就(10,35,39)這組三角形來說,其周長值84與面積值168均為正整數;顯然的,(10,35,39)為一整數三角形,然而,其三邊所對應的高均不為正整數,因此在這些公式中是無法直接找到解的。因此,若欲探討已知整數三角形周長求三角形邊長,我們還是回到最基本的代數解法:

舉例:試求周長為 42 的整數三角形所有解:

解:

已知 $a+b+c=42 \cdot c=42-a-b$,利用海龍公式得

$$\Delta = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = \sqrt{21 \cdot (21-a) \cdot (21-b) \cdot (a+b-21)}$$
 $\overrightarrow{\mathbb{R}}(1)$

因為 \triangle ABC 為整數三角形,因此為了使式(1)的結果為正整數,我們分為兩個部分討論:(不 失一般性,假設 $a \le b$)

(1) 若 a+b 為 7 的倍數,其整數解如下:

周長	a + b	С	а	b	S	x	у	Z	面積
42	28	14	13	15	21	8	6	7	84
42	35	7	15	20	21	6	1	14	42

周	a	b	с	s	Х	у	Z	面積
42	7	15	20	21	14	6	1	42
42	7	20	15	21	14	1	6	42
42	14	15	13	21	7	6	8	84

由上述可知,若已知三角形周長,利用海龍公式我們能簡單分組找出所有符合限制的整數三角形。

(六) 整數三角形與整數邊三角形的疊合

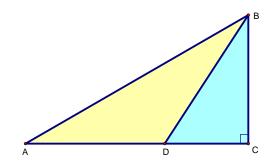
定理 4:整數直角三角形的通式 (Sands[2])

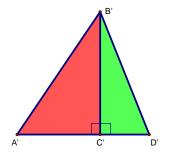
三個正整數 $a \cdot b \cdot c$ 滿足畢氏定理 $a^2 + b^2 = c^2$ 時, $(a \cdot b \cdot c)$ 稱為畢氏三元數。回顧 文獻上的畢氏三元數的生成公式有下列三種:

 $\begin{cases} a = 2n + 1 \\ b = 2n^2 + 2n & \triangle 式(1) \\ c = 2n^2 + 2n + 1 \end{cases} \begin{cases} a = 2n \\ b = n^2 - 1 & \triangle 式(2) \\ c = n^2 + 1 \end{cases} \qquad \begin{cases} a = m^2 - n^2 \\ b = 2mn & \triangle 式(3) \\ c = m^2 + n^2 \end{cases}$ $n \in \mathbb{R}$ 和 是正整數 $n \in \mathbb{R}$

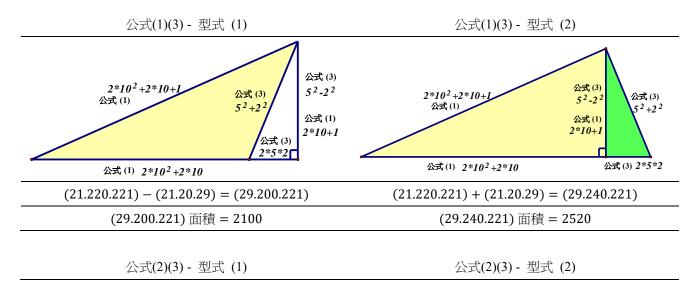
1. 整數直角三角形與整數直角三角形的疊合 (整數直角 Δ ± 整數直角 Δ = 整數 Δ)

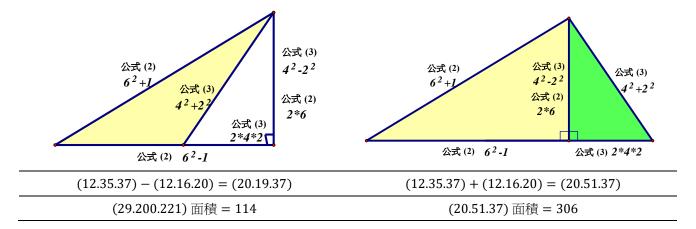
在探索題目的過程中,我們對於畢氏數有了初步的認識與了解。然而,卻也從中有了另外一個想法,也就是我們是否可利用前人的智慧,簡單利用疊合概念找出非直角整數三角形。 其概念分為以下兩種:





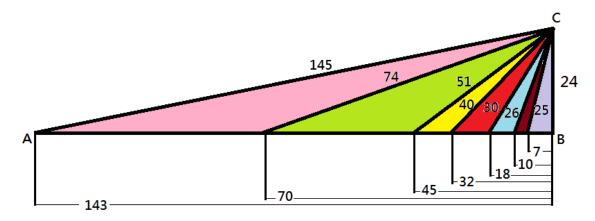
此兩種型式的疊合我們的想法是採用【公式(1)(3)】或【公式(2)(3)】一組;因為就a值而言,a有奇數與偶數之分,然而公式(1)(2)之公式a值恰為一奇一偶,故我們將拆開分別與公式(3) 配對,因此,只要討論公式(3)之 m^2-n^2 的奇偶性即可。且短股的 a 值比較容易看出其值,舉例如下:





承上表,我們能利用簡單的疊合概念找出非直角的整數三角形。然而,若我們想要固定有某邊的整數三角形,是否能找到呢?其實只要反其道而行,便能輕鬆解決。參考公式(1)~(3) 的 c 值可知,若其邊 c 能同時符合 $2n^2+2n+1$ 、 n^2+1 、或 m^2+n^2 三者其中之一的形式就可辦到!

在探討疊合時,發現一個頗有趣的邊長24,為何說它有趣呢!因為它可找到非常多的整 數三角形疊合而成的直角三角形!如下圖:



由上面的圖可以看出,(145.143.24)直角三角形是由許多非直角之整數三角形與直角三角形(7.24.25)所緊密疊合組成。那麼還有沒有一股長為24之整數直角三角形,其斜邊大於145呢?答案是沒有的!

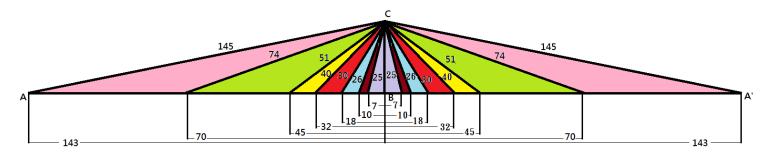
證明:

若直角三角形三邊為(a.b.24),其中a為斜邊,故 $a^2-b^2=24^2=576$ 。所以 (a+b)(a-b)=576,可得整數解如下表,因此,不存在以一股長為24之直角三角形,其斜邊大於145之整數直角三角形。

(a+b)(a-b)	a+b	a-b	a	b	固定邊	面積	周長
576	288	2	145	143	24	1716	312
576	144	4	74	70	24	840	168
576	96	6	51	45	24	540	120
576	72	8	40	32	24	384	96
576	48	12	30	18	24	216	72

576	36	16	26	10	24	120	60
576	32	18	25	7	24	84	56

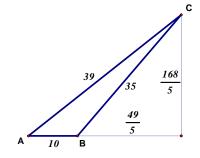
除此之外,若以 \overline{BC} 為對稱軸做出線對稱圖形,就能得到更多非直角之整數三角形,例如(51.45.24) + (24.143.145) = (51.188.145)。



<u>卡邁克爾以及歐拉</u>都曾提出這種型式疊合的邊長生成公式。另外,在 2007 年台灣國際科展中,<u>楊媛甯</u>同學利用拼接兩個不同的畢氏三角形得到新的三角形之「比例通式解」已有論證,在此便不多做說明。(Sands[3] 、Sands[4])

2. 整數三角形與非直角整數三角形的疊合

我們一樣舉(10,35,39)為例,從右圖可明顯看出,若以 10 為底邊,其高為 $\frac{168}{5}$ 並非整數邊;因此,無法順利直接使用畢氏定理關係找出疊合三角形。然而(10,35,39)此三角形,是否在 \overrightarrow{AB} 上存在一點 D,使得 \triangle ADC 為整數三角形呢?

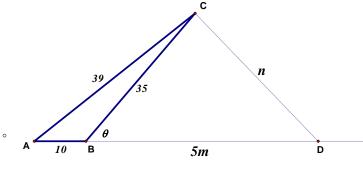


想法:

首先,先利用 \triangle ABC三邊與餘弦定理求出 $cosB = \frac{-7}{25}$,且由於(10,35,39)此組三角形面積為

168;故以 \overline{AB} 為底邊時,假設邊長 \overline{BD} 為

5m (m為自然數),此時 \triangle BCD面積(84m)必為整數因此,我們只要利用 $cos\theta$ 值、5m、n 的關係求出正整數 5m、n 的解即可。



解法:

利用餘弦定理可得 $n^2 = 35^2 + 25m^2 - 350m \cdot \frac{7}{25} \rightarrow n^2 = 35^2 + 25\left(m - \frac{49}{25}\right)^2 - \frac{49^2}{25}$,兩邊同乘25且移項得 $(5n)^2 - (25m - 49)^2 = 175^2 - 49^2 = 28224$,故

$$(5n + 25m - 49)(5n - 25m + 49) = 28224$$
 $\equiv (1)$

可求得 $5m \cdot n$ 的正整數解:

196	144	28224	34	15
336	84	28224	42	35
1176	24	28224	120	125
2016	14	28224	203	210
7056	4	28224	706	715

驗證:(可與原△ABC疊合如下)

		原△Æ	ABC					疊合後	$\triangle ADC$		
а	b	С	S	面積	cosA	a'(n)	d	c'(c+5m)	S	面積	cosA
35	39	10	42	168	0.51	34	39	25	49	420	0.51
35	39	10	42	168	0.51	 42	39	45	63	756	0.51
35	39	10	42	168	0.51	120	39	135	147	2268	0.51
35	39	10	42	168	0.51	203	39	220	231	3696	0.51
35	39	10	42	168	0.51	706	39	725	735	12180	0.51

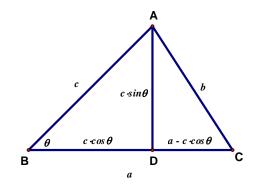
因此,若使用上述所列之方法,我們可在整數三角形某邊延長線再找尋其他整數三角形與原圖疊合。

定理 5:整數三角形三內角的正弦值(餘弦值)必為有理數,且其必可分成兩個有理邊直角 三角形。

證明:

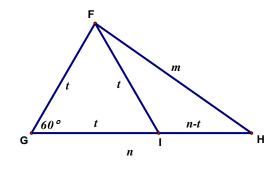
因為 $a\Delta ABC=\frac{1}{2}absinC=\frac{1}{2}bcsinA=\frac{1}{2}acsinB$ 為整數,故 $sinA\cdot sinB\cdot sinC$ 均為有理數,又可利用餘弦定理知 $cosB=\frac{a^2+c^2-b^2}{2ac}$ 為有理數;同理, $cosA\cdot cosC$ 亦為有理數。

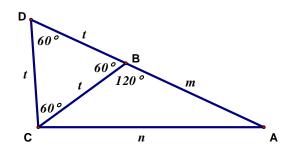
因此,如右圖所示,可以明顯得知整數 ΔABC 必可分為兩個有理邊直角 ΔABD 與 ΔACD ,故得證。



3. 60° 與 120° 的整數邊三角形之疊合 (整數邊 $\triangle \pm$ 整數邊 $\triangle =$ 整數邊 \triangle) (Sands[6])

然而除了整數直角三角形的疊合以外,還有一批三角形也頗有趣!此類三角形因為面積不為整數,故將此稱為整數邊三角形。然而整數邊三角形並不稀奇,因為只要第三邊介於其他兩邊和與兩邊差之間,就是一個整數邊三角形。但驚訝的是若整數邊三角形中恰有一角為60°或120°,就能利用正三角形的拆解,成為另一組整數邊三角形。如下圖所示:(m、n、t 為自然數)





(m.n.t) - (t.t.t) = (t.n - t.m)

(m.n.t) + (t.t.t) = (t.m + t.n)

問題一:

設 ΔABC 其中兩邊長為 $a \cdot b$,且夾角 60° ,則其對邊為 $\sqrt{a^2-ab+b^2}$;若兩邊為 $a \cdot b$,且夾角 120° ,則其對邊為 $\sqrt{a^2+ab+b^2}$ 。

說明:

利用餘弦定理可得知,若邊長 $a \cdot b$ 夾角 60° ,其對邊為 $\sqrt{a^2-ab+b^2}$ 。若邊長 $a \cdot b$ 夾角 120° ,其對邊為 $\sqrt{a^2+ab+b^2}$ 。

若欲使 60° 或 120° ΔABC 三邊長 $a \cdot b \cdot \sqrt{a^2 \pm ab + b^2}$ 為正整數,第一需解決的問題就是使 $a^2 \pm ab + b^2$ 為完全平方數。然而, $a \cdot b$ 必須代入那些正整數才會使得 $a^2 \pm ab + b^2$ 為完全平方數呢?我們的想法是先將其簡化,將三正數 $a \cdot b \cdot \sqrt{a^2 \pm ab + b^2}$ 同時除以 b 得 $\frac{a}{b} \cdot 1 \cdot \sqrt{(\frac{a}{b})^2 \pm \frac{a}{b} + 1}$ 則以 $1 \cdot \frac{a}{b} \cdot \sqrt{(\frac{a}{b})^2 \pm \frac{a}{b} + 1}$ 為三邊長的三角形必為原 ΔABC 的相似三角形,且 $\sqrt{(\frac{a}{b})^2 \pm \frac{a}{b} + 1}$ 的對角亦為 120° 或 60° 。故可將題目轉化如下:

問題二:先討論 120° 的情形,試找出正有理數 $\frac{a}{b}$,使得 $\sqrt{(\frac{a}{b})^2 + \frac{a}{b} + 1}$ 也是有理數;再轉 化為找出正有理數x,使得 $\sqrt{x^2 + x + 1}$ 也是有理數

解答:

\$

$$y = \sqrt{x^2 + x + 1} \tag{1}$$

任意挑選一有理數點滿足式(1),如(0,1)。因此,若存在一點(x,y)為有理數點滿足式(1),則通過(0,1)與(x,y)兩點的直線方程式其斜率必為有理數。考慮通過(0,1)的直線方程式

$$y = tx + 1 , t \in Q$$
 (2)

則式(1)與式(2)聯立可得解為

$$x = \frac{2t-1}{1-t^2}$$
 , $y = \frac{t^2-t+1}{1-t^2}$ (3)

且 $y \ge 0$,所以|t| < 1。因此,可得對所有的|t| < 1, $t \in Q$,若 $x = \frac{2t-1}{1-t^2}$,則 $\sqrt{x^2 + x + 1}$ 必 為一有理數。

回到原問題一,欲找出正有理數 $\frac{a}{b}$,使得 $\sqrt{(\frac{a}{b})^2+\frac{a}{b}+1}$ 也是有理數;應用上述的結果, 我們可設 $t=\frac{m}{n}$,且因為是考慮三角形邊長因素,我們將 t 的定義域限在 $\frac{1}{2}$ 與 1 之間的最簡分數,分別代入 $x=\frac{2t-1}{1-t^2}$ 與 $y=\frac{t^2-t+1}{1-t^2}$,得

$$x = \frac{n(2m-n)}{n^2 - m^2}$$
 , $y = \frac{m^2 - mn + n^2}{n^2 - m^2}$

也就是說,由 $1 \cdot \frac{n(2m-n)}{n^2-m^2} \cdot \frac{m^2-mn+n^2}{n^2-m^2}$ 此三邊所構成的三角形有一角度量為 120° ,且其中 $\frac{m^2-mn+n^2}{n^2-m^2}$ 此邊所對角為 120° 。故 $n^2-m^2 \cdot n(2m-n) \cdot m^2-mn+n^2$ 三邊長中最長邊 m^2-mn+n^2 所對角為 120° ,m 與 n為二互質正整數且 m < n < 2m。 簡單列出 $m=2\sim5$ 的情況:

				а	b	С	
-	m	n	2m	$n^2 - m^2$	n(2m-n)	$m^2 - mn + n^2$	cos C
_	2	3	4	5	3	7	-0.5
形成	3	4	6	7	8	13	-0.5
120°的	3	5	6	16	5	19	-0.5
整數	4	5	8	9	15	21	-0.5
邊三	4	7	8	33	7	37	-0.5
角形	5	6	10	11	24	31	-0.5
_	5	7	10	24	21	39	-0.5
	5	8	10	39	16	49	-0.5
	5	9	10	56	9	61	-0.5

因此,處理另外一組 60° 的情況,會與問題二極為類似。

問題三:試找出正有理數 $\frac{a}{b}$,使得 $\sqrt{(\frac{a}{b})^2 - \frac{a}{b} + 1}$ 也是有理數;再轉為找出正有理數 x ,使 得 $\sqrt{x^2 - x + 1}$ 也是有理數

解答:

 \Rightarrow

$$y = \sqrt{x^2 - x + 1} \tag{4}$$

任意挑選一有理數點滿足式(4),如(0,1)。因此,若存在一點(x,y)為有理數點滿足式(4),則通過(0,1)與(x,y)兩點的直線方程式其斜率必為有理數。考慮通過(0,1)的直線方程式

$$y = tx + 1 , t \in Q$$
 (5)

則式(4)與式(5)聯立可得解為

$$x = \frac{2t+1}{1-t^2}$$
 , $y = \frac{t^2+t+1}{1-t^2}$ (6)

且 $y \ge 0$,所以 $-\frac{1}{2} < t < 1$ 。因此,可得對所有的 $-\frac{1}{2} < t < 1$, $t \in Q$,若 $x = \frac{2t+1}{1-t^2}$,則 $\sqrt{x^2 - x + 1}$ 亦為一有理數。

回到問題二,欲找出正有理數 $\frac{a}{b}$,使得 $\sqrt{(\frac{a}{b})^2-\frac{a}{b}+1}$ 也是有理數;應用上述的結果, 我們可設 $t=\frac{m}{n}$,且因為考慮三角形邊長因素,我們將 t 的定義域限制在 $-\frac{1}{2}$ 與 1 之間的最簡分數,分別代入 $x=\frac{2t+1}{1-t^2}$ 與 $y=\frac{t^2+t+1}{1-t^2}$,得

$$x = \frac{n(2m+n)}{n^2 - m^2}$$
 , $y = \frac{m^2 + mn + n^2}{n^2 - m^2}$

也就是說,由 $1 \cdot \frac{n(2m+n)}{n^2-m^2} \cdot \frac{m^2+mn+n^2}{n^2-m^2}$ 此三邊所構成的三角形有一角度量為 60° ,且其中 $\frac{m^2-mn+n^2}{n^2-m^2}$ 此邊所對角為 60° 。故 $n^2-m^2 \cdot n(2m+n) \cdot m^2+mn+n^2$ 三邊長中第二長邊 m^2-mn+n^2 所對角為 60° ,m 與 n為二互質正整數且 m < n。簡單列出 $m=1\sim3$ 的些許情況:

				а	h	С	
	m	n	2m		n(2m+n)	$\frac{c}{m^2 + mn + n^2}$	cos C
形成 -	1	2	1	3	8	7	0.5
60°的 -	1	3	1	8	15	13	0.5
整數 - 邊三 -	2	3	2	5	21	19	0.5
一	2	5	2	21	45	39	0.5
円/// -	3	4	3	7	40	37	0.5
-	3	5	3	16	55	49	0.5

由上表我們可以觀察出,若有一角為 60° 或 120° 的整數三角形,其對邊必為奇數。

定理 6:

整數邊 $\triangle ABC$ 三邊長分別為 $a \cdot b \cdot c$,且 $(a \cdot b \cdot c) = 1$,若邊長 c 所對的角為 60° 或 120° ,則 c 必為奇數。

證明:

由問題二、與問題三的資料可知,若有一整數三角形其內角含有 60° 或 120° 時,其三邊可表示為 $n^2 - m^2 \cdot n(2m \pm n) \cdot m^2 \pm mn + n^2$ $(m \cdot n - 2)$,且內角為 60° 或 120° 所對的邊 $m^2 \pm mn + n^2$ 表示情况如下:

120° 整數邊三角形

60° 整數邊三角形

m	n	$n^2 - m^2$	n(2m-n)	$m^2 - mn + n^2$	m	n	$n^2 - m^2$	n(2m+n)	$m^2 + mn + n^2$
奇	偶	奇	偶	奇	奇	偶	奇	偶	奇
偶	奇	奇	奇	奇	偶	奇	奇	奇	奇
奇	奇	偶	奇	奇	奇	奇	偶	奇	奇

若 $m \cdot n$ 沒有互質(偶偶情形),則會得到上述三種情形的相似放大圖;將三邊之公因數約分後,依舊會得到上述結果。因此,若整數三角形有一角為 60° 或 120° ,且 $(a \cdot b \cdot c) = 1$,其對邊必為奇數,故得證。

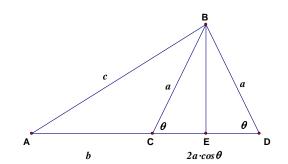
例如 $n = 6 \cdot m = 4$,可得 120° 整數邊三角形三邊長 20、12、28,又(20、12、28) = 4, 將公因數約分後可得三邊長 5、3、7,其120°角所對的邊為7。

4. 整數邊三角形與等腰整數邊三角形的疊合

屏除特殊角 60° 、 90° 、 120° 的疊合,我們嘗試非特殊角的疊合!如右圖:若欲使整數邊 ΔABC 某邊的延長線上取一點D,使 ΔABD 成為一個整數邊三角形。作法:

可在 \overline{BC} 右方增加一個等腰 ΔBCD (A、C、D 共線),若 \overline{CD} 為整數,那麼 ΔABD 亦為整數邊三角形。由餘弦定理可知, $c^2=a^2+b^2-2ab\cdot\cos(180-\theta)$,因此 $\overline{CD}=2a\cdot$

$$cos\theta = \frac{c^2 - (a^2 + b^2)}{b}$$
,故 $\overline{AD} = b + 2a \cdot cos\theta = \frac{c^2 - a^2}{b}$,即



$$(c \cdot a \cdot b) + (a \cdot a \cdot 2a \cdot cos\theta)$$
$$= (c \cdot a \cdot b + 2a \cdot cos\theta)$$

 $\triangle ABD$ 的三邊長為 c 、 a 、 $\frac{c^2-a^2}{b}$ 。

由上述關係可以得知,若整數邊 ΔABC 三邊長 c 、 a 、 b 符合

$$\begin{cases} c-a < \frac{c^2 - a^2}{b} < c + a \\ \exists b \mid c^2 - a^2 \end{cases}$$

(備註: 若 $\theta = 60^{\circ}$, 即為 60° 或 120° 之疊合情形)

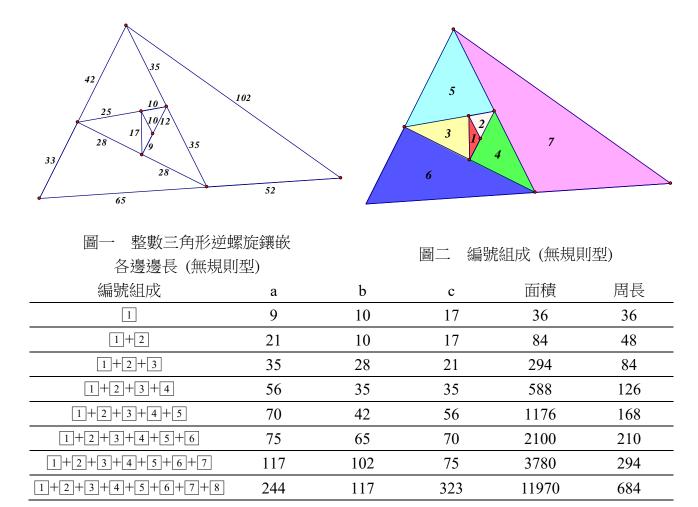
則 $\triangle ABD$ 亦為整數邊三角形。以 $c = 40 \cdot a = 32$ 為例,我們能得出以下情形:

	ΔΑΒϹ									ΔA	BD		
	c	a	b	S	面積	cosA		c	a	b"	S	面積	cosA
	40	32	9	40.5	73.63	0.9125		40	32	64	68	523.62 (0.9125
邊長	40	32	12	42	158.75	0.75	邊長 - 65 625	40	32	48	60	634.98	0.75
透区	40	32	16	44	243.18	0.65		40	32	36	54	547.15	0.65
	40	32	18	45	281.02	0.625		40	32	32	52	499.60	0.625
	40	32	24	48	384.00	0.6		40	32	24	48	384.00	0.6

這些整數邊三角形著實令人眼熟,猛然發現這些都是目前所學的課程裡,三角形全等性質中 SSA 的反例,頗耐人尋味!

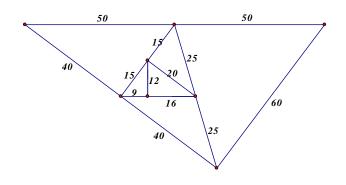
5. 整數三角形的鑲嵌

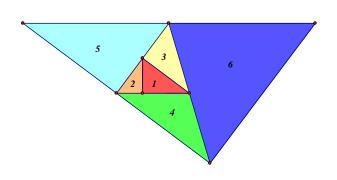
從疊合的想法為出發點,我們找到整數三角形彼此緊密鑲嵌的圖形;在下例左圖中,是各整數三角形邊長的鑲嵌圖 (無規則)。右圖中,我們將之編號並與下表結合,可清楚知道各整數三角形的邊長與面積等詳細資料。(此圖,乃逆時針的順序尋找)



如(圖二),其實每個三角形往外尋找鑲嵌圖形時,情況不唯一,也不一定存在整數解! 因此,這只是我們刻意找的一組圖形,唯一限制就是盡量數值小且存在能繼續找出下一個鑲嵌圖形。然而,其中是否隱含更有趣的數學元素,尚不得而知!

這些整數三角形鑲嵌圖除可分為逆時針螺旋與順時針螺旋,且又可再細分規則形與不規則形;所謂的「規則」乃是整數三角形的邊長比是否相同。(圖四)為順時針螺旋規則形之範例,邊長比例採 3:4:5 的比例:





圖三 整數三角形順螺旋鑲嵌 各邊邊長 (規則型)

圖四 編號組成 (規則型)

編號組成	a	b	c	面積	周長
1	20	16	12	96	48
1+2	25	20	15	150	60
1+2+3	30	25	25	300	80
1+2+3+4	50	40	30	600	120
1+2+3+4+5	80	50	50	1200	180
1+2+3+4+5+6	100	80	60	2400	240

這樣的鑲嵌模式讓我們對於整數三角形的疊合更有一股興奮的感覺,因為我們擺脫了前人只會利用直角的元素進行組合,且相信一定還有更多更有趣的型式讓我們慢慢發掘。

伍、 研究結果

- 1. 若 \triangle ABC為三邊 $a \cdot b \cdot c$ 所組成之整數三角形,則 $a \cdot b \cdot c$ 必為 二奇一偶 或 三偶的情況。
- 2. 由四可知,面積值=周長值的整數三角形邊長一共有五組。
- 3. 由 五-(一) 可知,面積值 = k·周長值 (k為自然數) 的整數三角形,隨著 k 值越大,符合條件的整數三角形就越多。
- 4. 由 五-(二) 可知,**周長值 = p·面積值 (p為自然數)** 的整數三角形,只有在 p=1 或 p=2 時,才有符合條件的整數三角形。
- 5. 整數三角形三邊 $a \cdot b \cdot c$ (最長邊),其面積 = 常數 $k \cdot$ 周長,且 s c = t (固定值),則符合此情况之所有整數三角形,其最長邊所對的角之餘弦值為 $\frac{t^2 4k^2}{t^2 + 4k^2}$;若周長 = $p \cdot$ 面積,
 - 且 s-c=t,其最長邊所對的角之餘弦值為 $\frac{p^2t^2-4}{4+p^2t^2}$ 。

- 6. 整數三角形三邊 $a \cdot b \cdot c$ (最長邊),其 $p \cdot$ 面積 = $k \cdot$ 周長,且 s c = t (固定值) ,則符合此情况之所有整數三角形,其最長邊所對的角之餘弦值為 $\frac{p^2t^2-4k^2}{p^2t^2+4k^2}$ 。
- 7. 若 $\mathbf{k} \cdot$ 周長值 = $\mathbf{t} \cdot$ 面積值 的整數三角形之 $\frac{p}{k}$ 值有一上界為 $\sqrt{12}$ 。
- 8. $\triangle ABC$ 有兩邊長為 $a \cdot b$,其夾角 60° ,其對邊長為 $\sqrt{a^2-ab+b^2}$;若兩邊長為 $a \cdot b$, 其夾角 120° ,其對邊長為 $\sqrt{a^2+ab+b^2}$ 。
- 9. 整數邊三角形有一角為 120° 之生成通式: $n^2 m^2 \cdot n(2m n) \cdot m^2 mn + n^2$ 。
- 10. 整數邊三角形有一角為 60° 之生成通式: $n^2 m^2 \cdot n(2m + n) \cdot m^2 + mn + n^2$ 。
- 11. 若整數邊 ΔABC 三邊長c、a、b符合(1) $c-a < \frac{c^2-a^2}{b} < c+a$ (2) $b \mid c^2-a^2$,則存在另一整數邊 ΔABD ,其邊長為 c、a、 $\frac{c^2-a^2}{b}$ 。

陸、 結論與展望

運用不等式與邊長關係,我們解決了 $k \cdot$ 周長 = $p \cdot$ 面積的整數三角形求解問題。不僅如此,在研究過程中,我們更發現面積值、s - c值、p值與k 值與最長邊所對的角度存在某種關係,且 $\frac{p}{k}$ 值有一上界,這樣的結果讓我們欣喜萬分。原本完全未知的領域,在自己一行一行的運算當中,逐漸增加了對它的了解。就像現在若問我是否存在「 $2 \cdot$ 周長值 = $7 \cdot$ 面積值 」的整數三角形?我能非常自信回答:「不可能!」我們都覺得這個研究主題真的很好玩!

最後疊合的結果更讓我們驚訝,一開始覺得「要找到整數三角形就好難了,要從那麼多的數據中找到我們要的資料!」到最後我們居然可以運用我們的結果,利用不同的整數三角 形鑲嵌成一平面,真是始料未及阿。

雖然找到 $\frac{p}{k}$ 值上界為 $\sqrt{12}$,然而從過程中其實我們只發現 $\frac{p}{k}$ 值為 2 的唯一一組解 $\left(3 \cdot 4 \cdot 5, \frac{\text{BE}}{\text{BE}} = \frac{p}{k} = 2\right) \cdot \frac{p}{k}$ 值大於 2 的整數三角形我們目前尚未找到!那麼,究竟是我們尚未找到,還是上界值 $\sqrt{12}$ 其實可以再更小不得而知?也由於時間與課業種種因素,無法再探討後面的延續問題讓我們深感惋惜!

柒、 参考資料及其他

- 一、 賴柏憲、黃啟祥、黃蘭翔、羅新衡,由不定方程 1. $x^2 + y^2 = z^2$, 2. $x^2 + y^2 + z^2 = w^2$ 之 正整數解探求整數三角形結構,中華民國第十七屆科學展覽(1977)。
- 二、 蔡聰明 (2010)。數學拾貝。台北市:三民書局。
- 三、楊媛甯,直角三角形生成關係的研究與發展,臺灣 2007 年國際科學展覽會數學科,(2007)。
- 四、 楊媛甯,海倫家族三代同堂大蒐秘,中華民國第四十七屆中小學科學展覽會國中組數學科, (2007)。
- 五、賴昱維,接二連三·拼剪「海倫三角形」,中華民國第五十三屆中小學科學展覽會國小組數學 科,(2013)。
- 六、鄭有志,邊長為正整數且有一個角是60°或120°的三角形,數學傳播季刊,35, p.84-88, (2011)。

【評語】030403

考慮邊長與面積均為整數的整數三角形,在限制周長與面積相等的情形下,所能造出的整數三角形有多少的問題。對此給出了完整的解答。對於限制周長與面積比值為有理數的更一般化的問題,也作了一些討論。這是一個有趣的問題。藉由分析滿足前提的整數三角形的邊長的限制,作者成功的解決了原始的問題。對於更一般化的,周長與面積的比值為有理數的情況,也給出了分析的方法。能夠把處理特定問題的技巧進一步延伸,用來解決更一般化的問題,想法很好,值得嘉許。比較美中不足的是,說明稍嫌冗長了些。作者們應該有注意到,有許多的論述其實是非常類似的,如果能適當的用未知數取代數字,應該可以給出一般化的通則,而不需要針對不同的數字重複一再做類似的計算工作。如果能在這部分稍做改進,作品會更為精簡優美,有點可惜。

摘 要

本篇在探討整數三角形(邊長與面積均為自然數)周長與面積成倍數關係的存在與否;由 $(6 \cdot 8 \cdot 10)$ 的三角形出發,發現其面積與周長的數值相同,但這是否唯一?還是有限個?或以某種形式無限個存在?再拓展方向考慮p·面積 = k·周長的情形,更發

現到面積值、s-c值(s為周長的一半,c為三角形最長邊)、p值與k值存在某種巧妙的關聯。

在疊合部分,以往前人的 經驗始終纏繞在整數直角三角 形的想法,即其高必為整數;

5 7 6

卻忽略了高不為整數的情況。我們不但發現它,更了解如何去找 尋它。鑲嵌部分,更以不同型式來呈現,而非千篇一律繞著直角 的方向思維。

研究目的

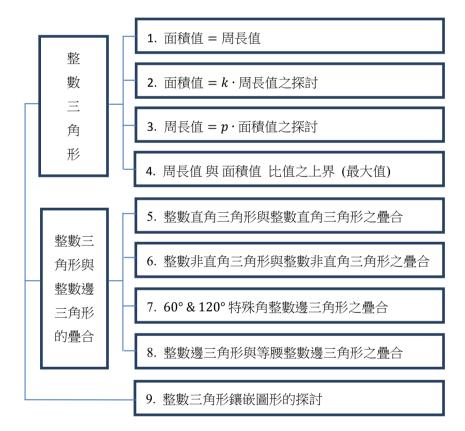
- 一、 探討整數三角形的性質
- 二、探討面積值 = 周長值 的整數三角形邊長解
- $= \cdot$ 探討**面積值 = k \cdot 周長值 (k為自然數)** 的整數三角形邊長解
- 四、 探討周長值 = p·面積值 (p為自然數) 的整數三角形邊長解
- 五、 探討 $\mathbf{k} \cdot \mathbf{周}$ 長值 = $\mathbf{p} \cdot \mathbf{m}$ 積值整數三角形之 $\frac{p}{k}$ 值上界 (最大值)
- 六、 整數三角形與整數邊三角形的疊合與探討

研究方法

一、名詞定義

- 1. 整數三角形:即邊長與面積均為整數之三角形。
- 整數邊三角形:邊長為整數但面積不為整數之三角形。

二、研究流程



三、先備知識

1. 定理 1:海龍公式:(既有定理)

$$\triangle ABC = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} \cdot s = \frac{a+b+c}{2}$$

- 2. 三角形面積公式: $\triangle ABC = \frac{1}{2} \cdot a \cdot h = \frac{1}{2} \cdot a \cdot b \cdot sinC$
- 3. 餘弦定理:

$$c^{2} = a^{2} + b^{2} - 2 \cdot a \cdot b \cdot cosC \quad \leftrightarrow \quad cosC = \frac{a^{2} + b^{2} - c^{2}}{2 \cdot a \cdot b}$$

引理 $1: \triangle ABC$ 為三邊 $a \cdot b \cdot c$ 所組之整數三角形,則 $a \cdot b \cdot c$ 必為二奇一偶、或三偶的情況,**即整數三角形周長必為偶數,亦**

即半周長 $s = \frac{a+b+c}{2}$ 為整數。

四、原始命題:探討 面積值 = 周長值 的整數三角形邊長解。 證明:

已知 $\Delta = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = a+b+c=2s$ 。令 $s-a=x \cdot s-b=y \cdot s-c=z$,相加得 x+y+z=s。則 $\Delta = \sqrt{(x+y+z) \cdot x \cdot y \cdot z} = 2(x+y+z)$ 。平方化簡到最後可得 $x \cdot y \cdot z = 4(x+y+z)...$ ①。

又可知 $x = s - a = \frac{b + c - a}{2} > 0$,同理y > 0,z > 0,不失一般

性,假設 $x \ge y \ge z > 0...$ ②,式①可改為 $x(yz - 4) = 4(y + z) \rightarrow x = \frac{4y + 4z}{yz - 4} ...$ ③。又 $x \ge y$,得 $\frac{4y + 4z}{yz - 4} \ge y > 0...$ ④。其中4y + 4z為

正,可知yz - 4亦為正數。式④可移項得 $4y + 4z \ge y(yz - 4)$,即 $y^2z - 8y - 4z \le 0$ …⑤。解 y 的二次不等式得

$$\left(y - \frac{4 + \sqrt{16 + 4z^2}}{z}\right) \left(y - \frac{4 - \sqrt{16 + 4z^2}}{z}\right) \le 0$$
 , $24 + \sqrt{16 + 4z^2}$ $3z$

$$4 - \sqrt{16 + 4z^2}$$
為負,所以 $0 < y \le \frac{4 + \sqrt{16 + 4z^2}}{z} \to yz \le 4 + \sqrt{16 + 4z^2}$

 $\sqrt{16+4z^2}$ 。由②式可將式子改為 $zz \le yz \le 4+\sqrt{16+4z^2}$ …⑥,即 $z^2 \le 4+\sqrt{16+4z^2}$ …⑦。解式⑦, $z^2-4 \le \sqrt{16+4z^2}$,兩邊平方 $z^4-8z^2+16 \le 16+4z^2$,他簡可得 $z^4 \le 12z^2 \rightarrow z^2 \le 12$,又因為 z 為正整數,故z=1,z,3。

當z = 1,由式⑥知 $y \le \frac{4+\sqrt{16+4}}{1} < 9 \rightarrow y < 9$,又式③可得 $x = \frac{4y+4}{y-4}$

 $\rightarrow y > 4$ 。由此兩條件可知4 < y < 9,可得整數解如下:

z	у	X	s	c	b	a	周長	面積	sinC
1	5	24	30	29	25	6	60	60	0.8
1	6	14	21	20	15	7	42	42	0.8
1	8	9	18	17	10	9	36	36	0.8

當z = 2,可得整數解如下:(因 z = 3,無整數解成立,故不列)

Z	у	X	S	c	b	a	周長	面積	sinC
2	3	10	15	13	12	5	30	30	1
2	4	6	12	10	8	6	24	24	1

綜合上述結果,可求出 面積值 = 周長值 的整數三角形僅有5組。

五、推廣命題:

- (一) 探討 面積值 = k· 周長值 整數三角形邊長解。
- 1. 若 k = 1為原始命題,故不再贅述。
- 2. 若 k = 2,即面積值 = 2.周長值: 解題過程同上,我們一共得到 18 組。因資料繁多,請查閱作品說明書,於此僅列出 6 組以供參考。

Z	y	X	S	c	b	a	周長	面積	sinC
1	17	288	306	305	289	18	612	1224	0.47
1	18	152	171	170	153	19	342	684	0.47
2	9	88	99	97	90	11	198	396	0.8
2	10	48	60	58	50	12	120	240	0.8
3	6	72	81	78	75	9	162	324	0.96
3	7	32	42	39	35	10	84	168	0.96

若 k = 3,即面積值 = 3.周長值:
 我們一共得出 45 組,於此亦僅列出 6 組以供參考。

Z	У	X	S	С	b	a	周長	面積	sinC
1	54	110	165	164	111	55	330	990	0.32
1	72	73	146	145	74	73	292	876	0.32
2	33	42	77	75	44	35	154	462	0.60
2	36	38	76	74	40	38	152	456	0.60
3	16	57	76	73	60	19	152	456	0.80
3	17	48	68	65	51	20	136	408	0.80

從上述資料中,發現一個奇妙的結果,就是**每一類的整數三 角形其最長邊所對的角之正弦值均相同**。且由此能看出當面積值 $= k \cdot$ 周長值,其 k 值越大,符合的情況似乎就越多組。

- (二) 探討周長值 = p·面積值的整數三角形邊長解。($p = 1\sim4$ 為例)
- 1. 若 p = 1為原始命題,故不再贅述。
- 2. 若 p=2,即周長值 = 2·面積值:僅得出 1 組如下:

Z	y	X	S	c	b	a	周長	面積	sinC
1	2	3	6	5	4	3	12	6	1.00

- 3. 若 p = 3,即周長值 = 3·面積值,得z = 1,此情況無整數解。
- 4. 若 p = 4,即周長值 = 4·面積值,正整數 z 不存在。

綜合以上得知,若 $p=1\sim4$ 時,可求出周長值 $=p\cdot$ 面積值 的整數三角形只有 6 組;且只有當 $p=1\cdot2$ 時,才能成立。

引理 2:若 \triangle ABC 為三邊 $a \cdot b \cdot c$ 所組成之整數三角形,當 $p \geq 3$ ($p \in N$) 時,周長值 = $p \cdot$ 面積值的整數三角形是不存在。

觀察上述的數據,發現若面積與周長的倍數關係與 s-c 值 固定,我們可知其最長邊的正弦值是固定的,故

定理 2-1: 若整數三角形三邊 $a \cdot b \cdot c$ (最長邊), 其面積 = $k \cdot$ 周長 ($k \in N$), 且 s-c=t (固定值),則符合此情況之所有整數三角形,其最長邊所對的 角之餘弦值為 $\frac{t^2-4k^2}{t^2+4k^2}$, 故可知所對的角度量相同。

證明:

已知
$$\sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = k \cdot (a+b+c)$$
 式(1)

(1) 因為 $s-c=t \rightarrow a+b-c=2t$,可得 $(a-b)^2 = 4t^2 + 4ct + c^2 - 4ab$ 式(2)

(2) 式(1) 化簡
$$\sqrt{(t+c)\cdot\frac{b+c-a}{2}\cdot\frac{a+c-b}{2}\cdot t} = k\cdot(a+b+c) = k\cdot(2t+2c)$$
,再

平方化簡得

$$t \cdot [c^2 - (b-a)^2] = 16k^2 \cdot (t+c)$$
 $\sharp (3)$

(3) 式(2)代入可繼續化簡得

$$tab = (4k^2 + t^2) \cdot (t+c)$$

(4) 由式(3)知, $a^2 + b^2 - c^2 - 2ab = \frac{-16k^2 \cdot (t+c)}{t}$,故

$$cosC = \frac{a^2 + b^2 - c^2}{2ab} = 1 - \frac{16k^2 \cdot (t+c)}{2abt}$$
 $\vec{x}(5)$

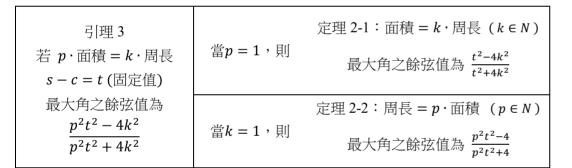
(5) 利用式(4)、式(5)代換得 $\cos C = 1 - \frac{16k^2 \cdot (t+c)}{2(4k^2+t^2) \cdot (t+c)} = \frac{t^2-4k^2}{t^2+4k^2}$

定理 2-2: 若整數三角形三邊 $a \cdot b \cdot c$ (最長邊), 其周長 = $p \cdot$ 面積 ($p \in N$), 且 s-c=t (固定值),則符合此情況之所有整數三角形,其最長邊所對的 角之餘弦值為 $\frac{p^2t^2-4}{4+p^2t^2}$

定理 2-1、2-2 解決完自然數倍的問題後,非自然數倍的情形又如何呢?故我 們轉而討論有理數倍的情況:

引理 3:若整數三角形三邊 $a \cdot b \cdot c$ (最長邊),其 $p \cdot 面積 = k \cdot 周長,且$ s-c=t (固定值),則符合此情況之所有整數三角形,其最長邊所對的角 度量相同,其餘弦值為 $\frac{p^2t^2-4k^2}{p^2t^2+4k^2}$

由定理 2-1、定理 2-2 可整理如下表:



定理 $3: k \cdot$ **周長值** = $p \cdot$ 面積值 的整數三角形之 $\frac{p}{k}$ 值有一上界為 $\sqrt{12}$

證明:

已知 $p \cdot \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = k \cdot (a+b+c) \circ \Leftrightarrow s-a=x$ $s-b=y \cdot s-c=z$,假設 $x \ge y \ge z > 0$ 。相加得 x+y+z=s ,代入原 式平方化簡到最後得 $p^2 \cdot x \cdot y \cdot z = 4k^2 \cdot (x + y + z)$ 。

由上可知 $x = \frac{4k^2 \cdot (y+z)}{n^2 yz - 4k^2} \ge y \rightarrow p^2 z y^2 - 8k^2 y - 4k^2 z \le 0$; $\forall y \ge z$, 解

$$y$$
 之不等式得 $z \le y \le \frac{4k^2 + \sqrt{16k^4 + 4k^2p^2z^2}}{p^2z} \to 0 < z \le \frac{4k^2 + \sqrt{16k^4 + 4k^2p^2z^2}}{p^2z}$ 。

再次移項化簡整理得 $p^2z^2(p^2z^2-12k^2) \leq 0$ 。因為 $p \cdot z$ 為自然數,

故 $p^2z^2 - 12k^2 \le 0 \to \frac{p^2}{k^2} \le \frac{12}{z^2}$,得 $\frac{p}{k} \le \frac{\sqrt{12}}{z}$,又因為 $x \ge y \ge z > 0$,且

 $x \cdot y \cdot z \in N$,故 z 可以最小值為 1 ;因此 $\frac{p}{k} \leq \sqrt{12}$,故得證。

然而,我們卻始終找不到 $\frac{p}{k}$ 值大於 2 的整數三角形!因此,我們回到最 原始的方法(窮舉),去試著找出 $\frac{p}{k}$ 值是否能比 $\sqrt{12}$ 更小一些。

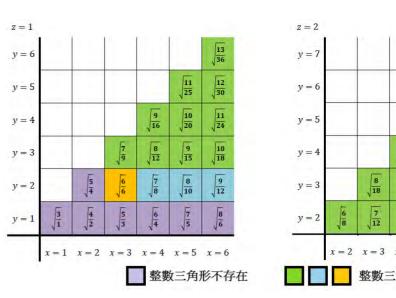
證明:

已知 $p \cdot \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = k \cdot (a+b+c)$,利用上述方法可代 換為 $p \cdot \sqrt{(x+y+z) \cdot x \cdot y \cdot z} = k \cdot 2(x+y+z)$, 得

$$\frac{p}{k} = 2 \cdot \sqrt{\frac{(x+y+z)}{x \cdot y \cdot z}}$$

因此,我們只需探討 $\frac{(x+y+z)}{x\cdot y\cdot z}$ 的值即可。我們將它分為兩部分探討:

(1) z = 1、(2) $z \ge 2$ 。 如下圖所示:



右圖清楚可知,當 $z \ge 2$, $\frac{p}{k}$ 值必定小於 2;而左圖中,當z = 1時,我 們發現 $\frac{p}{k}$ 值若大於2,則整數三角形不存在, $\frac{p}{k}$ 值等於2時,該整數三角形 即是(3、4、5)此組整數三角形。故

引理 $3: k \cdot$ **周長值** = $p \cdot$ 面積值 的整數三角形之 $\frac{p}{k}$ 最大值為2

(三) 探討 **周長值** = $\sqrt{\mathbf{k}}$ · **面積值** 的整數邊三角形情況 (k為自然數)

已知
$$(a+b+c) = \sqrt{k} \cdot \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$$
,仿上化簡得下列

各式: 式(1): $x = \frac{4(y+z)}{kyz-4} \ge y$, 式(2): $z \le y \le \frac{4+2\sqrt{4+kz^2}}{kz}$, 式(3): $z^2 \le \frac{12}{kz}$ 以k = 2,z = 1、2 為例,可得 (周長值 = $\sqrt{2}$ ·面積值)整數邊三角形如下:

Z	У	X	S	c	b	a	周長	面積	sinC
1	3	8	12	11	9	4	24	$12\sqrt{2}$	0.94
1	4	5	10	9	6	5	20	$10\sqrt{2}$	0.94
2	2	4	8	6	6	4	16	$8\sqrt{2}$	0.94

由上知,可運用此模式求出 面積值 $= m \cdot$ 周長值 $(m \in R)$ 的所有情形。

(四)整數三角形與整數邊三角形的疊合

1. 整數直角三角形與整數直角三角形的疊合:

由文獻得知畢氏三元數的生成公式有下列三種:(Sands[2]

$$\begin{cases} a = 2n + 1 \\ b = 2n^2 + 2n & 公式 1 \\ c = 2n^2 + 2n + 1 \end{cases}$$

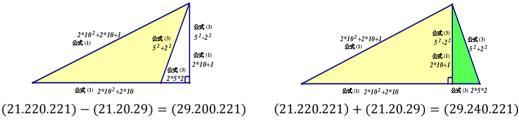
$$\begin{cases} a = 2n \\ b = n^2 - 1 \\ c = n^2 + 1 \end{cases}$$
 公式 2
$$\begin{cases} a = m^2 - n^2 \\ b = 2mn \\ c = m^2 + n^2 \end{cases}$$

n 是正整數

n 是大於 1 正整數

m > n ,m 、n 是正整數

故我們希望利用簡單疊合概念找出非直角整數三角形,如下圖所示:



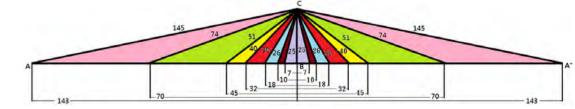
(29.200.221) 面積 = 2100

公式(1)(3) - 型式 (1)

(29.240.221) 面積 = 2520

公式(1)(3) - 型式 (2)

承上,能利用簡單的疊合概念就能找出非直角的整數三角形。下圖是以 高24為例,它可找到非常多整數三角形疊合而成的直角三角形!且若以 \overline{BC} 為 對稱軸做出另一邊線對稱圖形,就能得到更多非直角之整數三角形,例如 $(51.45.24) + (24.143.145) = (51.188.145) \circ$

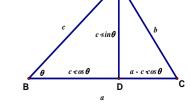


<u>卡邁克爾以及歐拉</u>都曾提出這種型式疊合的邊長生成公式。另外,在 2007年台灣國際科展中,楊媛甯同學將兩個不同的畢氏三角形拼接而成所得 到新的三角形之「比例通式解」已有論證,在此便不多做說明。

定理 4:整數三角形三內角的正弦值(餘弦值)必為有理數,且其必可分成兩 個有理邊直角三角形。

因為 $\triangle ABC$ 面積 = $\frac{1}{2}ac \cdot sinB$ 為整數,故 sinB 為有理

數;同理,sinA,sinC亦為有理數;又cosB = $\frac{a^2+c^2-b^2}{2aa}$ 為有理數,同理, $\cos A \cdot \cos C$ 亦為有理數

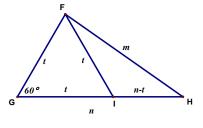


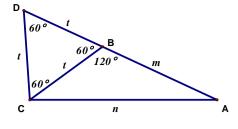
由此,整數 $\triangle ABC$ 必可分為兩個有理邊直角 $\triangle ABD$ 與 $\triangle ACD$,故得證。

2. 60° 與 120° 的整數邊三角形之疊合

另外,還有一群三角形邊長為整數但面積不為整數的**整數邊三角形**。然 而整數邊三角形並不稀奇,只要第三邊介於其他兩邊和與差即可。但若整數 邊三角形洽有一角為 60° 或 120°,就能利用正三角形的拆解,成為另一組

整數邊三角形引起我們的好奇。如下圖所示: $(m \cdot n \cdot t)$ 為自然數)





(m.n.t) - (t.t.t) = (t.n - t.m)

(m.n.t) + (t.t.t) = (t.m + t.n)

利用餘弦定理我們可知若 ΔABC 其中兩邊長為 $a \cdot b$,且夾角 120° 或 60° ,則其對邊為 $\sqrt{a^2 \pm ab + b^2}$ 。

用 120°或 60°,則具對邊為 $\sqrt{a^2 \pm ab + b^2}$ 。 若欲使 60°或 120° ΔABC 三邊長 $a \cdot b \cdot \sqrt{a^2 \pm ab + b^2}$ 為正整數,第一需解決的問題就是使 $\sqrt{a^2 \pm ab + b^2}$ 化為有理數。故先同時除以 b,則以 $1 \cdot \frac{a}{b} \cdot \sqrt{(\frac{a}{b})^2 \pm \frac{a}{b} + 1}$ 為三邊長的三角形必為原 ΔABC 的相似三角形,且 $\sqrt{(\frac{a}{b})^2 \pm \frac{a}{b} + 1}$ 的對角亦為120°或 60°。以 120°三角形為例,若假設 $\frac{a}{b} = x$,題意可簡化為找出有理數 x,使 得 $\sqrt{x^2 + x + 1}$ 也是有理數。($\Leftrightarrow y = \sqrt{x^2 + x + 1}$ …式 1) 證明:

因(0,1)滿足式(1),考慮通過(0,1)的直線方程式y=tx+1 (式 2) $t \in Q$ 。則式(1)與式(2)聯立所得的解必為有理數點,如下:

$$x = \frac{2t-1}{1-t^2}$$
 , $y = \frac{t^2-t+1}{1-t^2}$

又 $t \in Q$,假設 $t = \frac{m}{n}$ 代入上式可得 $x = \frac{n(2m-n)}{n^2-m^2}$, $y = \frac{m^2-mn+n^2}{n^2-m^2}$,

即 $1 \cdot \frac{n(2m-n)}{n^2-m^2} \cdot \frac{m^2-mn+n^2}{n^2-m^2}$ 所構成的三角形有一角度量為 120° ,其

中 $\frac{m^2-mn+n^2}{n^2-m^2}$ 此邊所對角為 120° 。故通分後可知 n^2-m^2 、

 $n(2m-n) \cdot m^2 - mn + n^2$ 中最長邊 $m^2 - mn + n^2$ 所對角為 120° 且 m < n < 2m,簡單列出 $m = 2 \sim 5$ 的情況:

m	n	2m	$n^2 - m^2$	n(2m-n)	$m^2 - mn + n^2$	cos C
2	3	4	5	3	7	-0.5
3	4	6	7	8	13	-0.5
4	5	8	9	15	21	-0.5
5	6	10	11	24	31	-0.5

60°的情況與上述極為類似,故不詳述。

定理 5:整數邊 $\triangle ABC$ 三邊長分別為 $a \cdot b \cdot c$,且 $(a \cdot b \cdot c)$ = 1,若邊長 c 所對的角為 60° 或 120° ,則 c 必為奇數。

證明:我們將所有情況考慮如下表:

	120° 整數邊三角形							60° 整數邊三角形				
m	n	n^2-m^2	n(2m-n)	$m^2 - mn + n^2$	m	n	n^2-m^2	n(2m+n)	$m^2 + mn + n^2$			
奇	偶	奇	偶	奇	奇	偶	奇	偶	——— 奇			
偶	奇	奇	奇	奇	偶	奇	奇	奇				
奇	奇	偶	奇	奇	奇	奇	偶	奇	奇			

若 $m \cdot n$ 沒有互質(偶偶情形),則會得到上述三種情形的相似放大圖;將三邊之公因數約分後,依舊會得到上述結果。因此,若整數三角形有一角為 60° 或 120° ,且 $(a \cdot b \cdot c) = 1$,其對邊必為奇數,故得證。

3. 整數邊三角形與等腰整數邊三角形的疊合

在整數邊 ΔABC 某邊延長線上取一點D,使 ΔABD 為一個整數邊三角形。如右圖,利用餘弦定理可推知 $\overline{AD}=b+2a\cdot cos\theta=\frac{c^2-a^2}{b}$ 。由此關係可得知,若整數邊 ΔABC 三邊長 $c \cdot a \cdot b$ 符合

$$\begin{cases} c - a < \frac{c^2 - a^2}{b} < c + a \\ \exists . \\ b \mid c^2 - a^2 \end{cases}$$

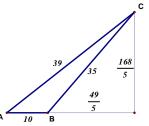
那麼,就可在 \overline{AC} 的延長線長找一點D,使得 $\overline{BC} = \overline{BD}$,且 ΔABD 為一

個整數邊三角形。以 $c = 40 \cdot a = 32$ 為例,如下情形:

ILLIES/		ΔΑΒС					ΔABD		
	c	a	b	cosA		с	a	b"	cosA
·	40	32	9	0.9125	·	40	32	64	0.9125
邊長	40	32	12	0.75	邊長	40	32	48	0.75
•	40	32	16	0.65	•	40	32	36	0.65
•	40	32	18	0.625	•	40	32	32	0.625
								- J 2	0.025

4. 整數三角形與整數非直角三角形的疊合

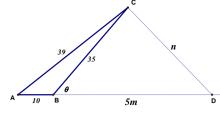
如右圖,舉(10,35,39)為例,以10為底, 其高為¹⁶⁸並非整數邊;因此,無法直接利 用畢氏三元數疊合出此三角形。然而



(10,35,39) 此三角形,是否在 \overrightarrow{AB} 上存在一點 D,使得 \triangle ADC為整 數三角形呢?

想法:先利用三邊求出 $\cos B = \frac{-7}{25}$;由於(10,35,39) 此三角形面積為

168;故以 \overline{AB} 為底邊時,假設 \overline{BD} 為 5m $(m \in N)$,此時 Δ BCD 面積必為整數。因此,利用 $\cos\theta$ 值、5m、n的關係求出正整數 5m、n的解即可。



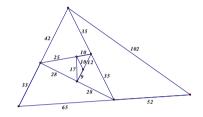
解法:

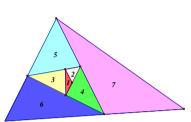
由餘弦定理知 $n^2 = 35^2 + 25m^2 - 350m \cdot \frac{7}{25}$,移項化簡得 $(5n)^2 - (25m - 49)^2 = 175^2 - 49^2 = 28224$,故 (5n + 25m - 49)(5n - 25m + 49) = 28224,可求得 $5m \cdot n$ 的整數解如下:

(5n + 25m - 49)	(5n-25m+49)	28224	n	5m
196	144	28224	34	15
336	84	28224	42	35
1176	24	28224	120	125
2016	14	28224	203	210
7056	4	28224	706	715

5. 整數三角形的鑲嵌

利用四-4的方法,我們擺脫直角的限制,利用「數個」整數三角形緊密拼成另一個整數三角形:(此圖,乃逆時針無規則的順序尋找:)





編號組成	a	b	c	面積	周長
Ť	9	10	17	36	36
1+2	21	10	17	84	48
T+2+3	35	28	21	294	84
1+2+3+4	56	35	35	588	126
1+2+3+4+5	70	42	56	1176	168
1+2+3+4+5+6	75	65	70	2100	210
1+2+3+4+5+6+7	117	102	75	3780	294

鑲嵌圖除可分為逆時針與順時針螺旋,又可細分規則與不規 則型;所謂「規則」是邊長比是否相同。詳細資料參閱作品說明書

研究結果

- 1. 若△ABC為整數三角形,則三邊必為二奇一偶、或三偶的情況
- 2. 原始命題 面積值 = 周長值 的整數三角形一共只有五組,而面積值 = $k \cdot$ 周長值 的整數三角形,隨著 k 值越大,符合條件的整數三角形就越多。
- 3. 推廣命題 **周長值** = $p \cdot$ 面積值 的整數三角形,在 $p = 1 \cdot 2$ 時,才有符合條件的整數三角形。
- 4. 整數三角形三邊 $a \cdot b \cdot c$ (最長邊),其 $p \cdot$ 面積 = $k \cdot$ 周長,且 s c = t (固定值),則符合此情況之所有整數三角形,其最長邊所對的角之餘弦值為 $\frac{p^2t^2-4k^2}{n^2t^2+4k^2}$ 。
- 5. 若 $k \cdot$ 周長值 = $p \cdot$ 面積值整數三角形之 $\frac{p}{k}$ 值有一上界為 $\sqrt{12}$ 。
- 6. $\triangle ABC$ 有兩邊長為 $a \cdot b$,其夾角 60° ,其對邊長為 $\sqrt{a^2 ab + b^2}$;若兩邊長為 $a \cdot b$,其夾角 120° ,其對邊長為 $\sqrt{a^2 + ab + b^2}$ 。
- 7. 整數邊三角形有一角為 120° 之生成通式: $n^{2}-m^{2} \cdot n(2m-n) \cdot m^{2}-mn+n^{2}$;整數邊三角形有一角為 60° 之生成通式: $n^{2}-m^{2} \cdot n(2m+n) \cdot m^{2}+mn+n^{2}$ 。
- 8. 整數邊 $\triangle ABC$ 三邊 $c \cdot a \cdot b$ 符合

文獻探討

- 一、 賴柏憲、黃啟祥、黃蘭翔、羅新衡。由不定方程 1. $x^2 + y^2 = z^2$, 2. $x^2 + y^2 + z^2 = w^2$ 之正整數解探求整數三角形結構(1977)。中華民國第十七屆科學展覽。
- 二、 蔡聰明(2010)。數學拾貝。台北市:三民。
- 三、楊媛甯(2007)。直角三角形生成關係的研究與發展。臺灣2007年國際科學展覽會數學科。
- 四、 楊媛甯 (2007)。海倫家族三代同堂大蒐秘。中華民國第四十七屆 中小學科學展覽會國中組數學科。
- 五、賴昱維(2013)。接二連三 拼剪「海倫三角形」。中華民國第 五十三屆中小學科學展覽會國小組數學科。
- 六、鄭有志,邊長為正整數且有一個角是60°或120°的三角形,數學傳播季刊,35, p.84-88, (2011)。