中華民國第57屆中小學科學展覽會作品說明書

高級中等學校組 化學科

050213

能量。『油』我掌控。

學校名稱:國立鳳山高級中學

作者:

指導老師:

高二 陳敍嘉

陳冠仁

高二 卓冠廷

高二 黃湧錞

關鍵詞:生質柴油、轉酯化反應、熱值

摘要

本篇以動物油(豬、雞油)為原料,先固定好油的品質,再改變轉酯化反應中的各種變因, 製備出動物性生質柴油。並將生質柴油與高級柴油以不同比例混合,試圖測出最佳熱值(針對傳統卡計,特別改良為自製測燃燒熱的裝置)。

先探討不同酸價下對熱值之成效,比較吸水前後之熱值差異(固定油的品質)。進一步研究實驗油:醇之莫耳數比、加熱時間、溫度及催化劑濃度對最終熱值的影響。

以**最佳油組**回頭比較植物油熱值,確認其成果。再針對燃燒後的 CO₂ 排放量做比較,以 **自製抽氣裝置**和測量方式,探討其結果。

壹、研究動機

世界人口數持續攀升,相對地消耗能源越來越大,再生能源的議題引起大眾關注。高一上到能源的課程時,老師提到現今已有人使用玉米秸稈製造生質能源,生物為有機物,具有能量高且可再生的優點。

平常文獻研究的生質柴油,幾乎都以植物油當作原料。我們好奇動物油是否也能做出生質柴油,故以最常見的豬油及雞油著手。生質柴油的製法有很多種,我們採實驗室中最常用的原理-轉酯化反應來做,透過改變轉酯化反應中的因素,探討不同條件下生質柴油的熱值。

本研究主要探討「**生質柴油製作變因」、「生質柴油熱值比較」、「生質柴油 CO₂ 排放量**」 三大主題。以環保為出發點,試圖找出**低汙染、低成本、高效能**的動物油油組,使廢物回收 再利用。

教材相關性:高一(化學與化工)、高二(反應速率)、高三(有機化合物)

貳、研究目的

- 一、 生質柴油的製備
- 二、 生質柴油熱值的測定
- 三、 探討不同酸價對動物油之熱值影響
- 四、 探討吸水有無對動物油之熱值影響
- 五、 探討不同實驗油:醇莫耳數比對動物油之熱值影響
- 六、 探討不同加熱時間對動物油之熱值影響
- 七、 探討不同加熱溫度對動物油之熱值影響
- 八、 探討不同催化劑濃度對動物油之熱值影響
- 力、 探討最佳油組下動物油與植物油之熱值差異
- 十、 探討各實驗最佳比例 CO₂ 排放量之差異

▲圖一 實驗流程圖

參、研究設備及器材

表一 實驗器材

自製卡計	氧氣鋼瓶	電子天平
離心機	流量計	離心管
溫度計	磁攪拌子	乳頭滴管
燒杯	漏斗	加熱板
玻璃棒	分液漏斗	量筒
火柴	滴定管	容量瓶
錐形瓶	酚酞指示劑	廣用指示劑
紙黏土	三通管	止逆閥
針筒	玻璃管	玻璃棒
軟木塞	水管	止洩帶
pH 9.0 緩衝液	pH 值測量筆	耐熱快膠

表二 實驗藥品

C ₂ H ₅ OC ₂ H ₅	КОН	H ₂ SO ₄
C ₂ H ₅ OH	CuSO ₄ · 5H ₂ O	NaOH
蒸餾水	矽膠	雞油
豬油	高級柴油	花生油
玄米油	葡萄籽油	葵花油

▲圖二 離心機

▲圖三 流量計

▲圖五 氧氣鋼瓶

▲圖六 電子天平

▲圖七 pH 值測量筆

▲圖四 第一、二版自製卡計

肆、研究過程及方法

一、生質柴油的製備

(一)原理:轉酯化反應

三酸甘油脂與短鏈的醇類進行轉酯化反應,得到脂肪酸基酯類的產物(生質柴油) 及甘油,這是目前實驗室最常見的生質柴油製備方式。(圖八)為其方程式,以下又介 紹了三種轉酯化反應的催化方式。

▲圖八 轉酯化反應

1.鹼性催化轉酯

(1)若使用金屬氫氧化物作催化劑,則當其溶解於醇時,會產生水分(如圖九)

$MeOH+ROH \rightarrow Me^{+}+RO^{-}+H_{2}O$

▲圖九 金屬氫氧化物作轉酯化反應之催化劑產生水

(2)水分使三酸甘油酯水解產生二酸甘油酯與游離脂肪酸(如圖十),生成的游離脂肪酸又進一步與催化劑產生皂化反應而造成惡性循環。

$$\begin{array}{c} H \\ R_1COO\text{-C-H} \\ R_2COO\text{-C-H} \\ R_3COO\text{-C-H} \\ H \end{array} + \begin{array}{c} H_2O \longrightarrow \begin{array}{c} R_3COO\text{-CH}_3 \\ R_3COO\text{-CH}_3 \end{array} + \begin{array}{c} R_3COO\text{-CH}_3 \\ \end{array} \\ (FFA) \end{array}$$

▲圖十 水促成游離脂肪酸之形成(油酯水解得到脂肪酸)

(3)游離脂肪酸(Free Fatty Acid; FFA)在鹼性催化轉酯中,會與鹼性催化劑發生**包** 化反應,產生脂肪酸鹽(Fatty acid salts)。即所謂的皂(Soap)(如圖十一),產生的皂(Soap),促使膠(即親油端包覆油滴形成的乳化物)的形成,增加反應物的黏度與後續產物分離難度。

▲圖十一 游離脂肪酸與鹼性催化劑反應產生肥皂與水

(4)若甲醇鈉作催化劑,則不會有水分產生的問題,但甲醇鈉成本高,且屬於管制藥品,使用上仍以金屬氫氧化物為主。

2.酸性催化轉酯

酸性催化劑的功能不會受到原料中游離脂肪酸的影響,因其可以同步催化酯化

(Esterification)與轉酯化(Transesterification)。同步催化酯化(Esterification)可將游離脂肪酸(FFA)和醇反應產生新油脂(如圖十二),因此對游離脂肪酸含量過高的原料而言,酸性催化劑是比較有效且經濟之方式。

RCOOH +C₂H₅OH
$$\longrightarrow$$
 RCOOC₂H₅ + H₂O

▲圖十二 同步催化酯化(Esterification):游離脂肪酸(FFA)和醇反應產生新油脂

酸性催化轉酯的反應機制:

- (1)三酸甘油酯先被酸性催化劑質子化(Protonized)(如圖十三)
- (2)質子化後三酸甘油酯 C = O 鍵被打斷,而後經過質子移轉,與醇反應生成一個四面體結構之中間產物(Tetrahedral intermediate)(如圖十四)
- (3)該中間產物經重組後,產生脂肪酸基酯類(生質柴油)和二酸甘油酯(如圖十五)(註二)。

▲圖十三 三酸甘油酯被酸性催化劑質子化

$$\begin{array}{c|c}
OH & H \\
\parallel & C \\
R_1 & OR"
\end{array}$$

$$\begin{array}{c|c}
C & C \\
R_1 & OR"
\end{array}$$

$$\begin{array}{c|c}
OH & OR"
\end{array}$$

▲圖十四 三酸甘油酯與醇反應生成四面體結構之中間產物 `▲

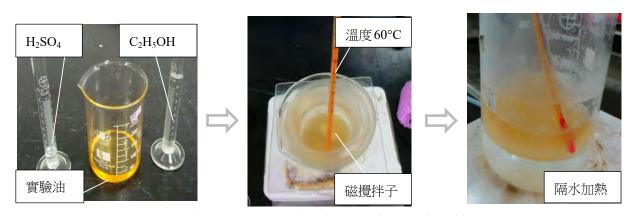
▲圖十五 中間產物產生脂肪酸基酯類和二酸甘油酯

3.兩階段催化轉酯

第一步先用酸性催化轉酯反應,待酸值降到一定程度後,乾燥除水,再進行第二步的鹼性催化轉酯(註三)。

(二)實驗說明

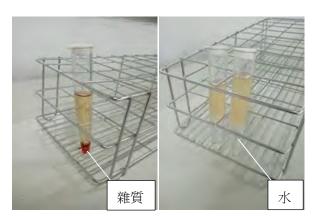
大多數文獻探討鹼性催化轉酯居多(反應時間快),故我們以酸性催化轉酯為基礎希望在動物油中發現一些結果,並做出最佳熱值的動物油油組。為測出生質柴油的熱值,須以一基準油組作為控制變因,再根據實驗結果調整其它變因以找出最佳比例。


基準油組:

酸價為 1(KOH) 的毫克數/實驗油 g 數),無吸水,實驗油:醇之莫耳數比為 1:6 (實驗油取 30g),加熱時間 1.5hr,加熱溫度 $60^{\circ}C$, H_2SO_4 1M。

(三)實驗步驟

- 1.取實驗油(豬、雞油),酸價為 1(KOH 的毫克數/實驗油 g 數),分別加入 C_2H_5OH 以 1:6 莫耳比混合之,再加入 H_2SO_4 1M (A 溶液)。
- 2.將 A 溶液隔水加熱,加入磁攪拌子,控制溫度在 60°C,加熱 1.5hr。
- 3.用 KOH 中和 A 溶液(以 H₂SO₄ 等 mole 中和), 放入分液漏斗靜置一天, 待其分層。
- 4.取上層溶液放入離心機中離心(轉速:3000 r.p.m.,時間:6 min)。
- 5.離心後,取上層溶液以 60°C 熱水水洗兩次(皆取上層油),再秤重。

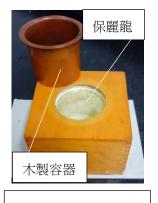

實驗流程圖:

▲圖十六 配置油組後,控制溫度並隔水加熱

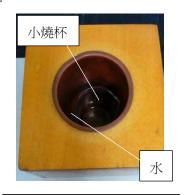
▲圖十七 取上層,下層漏掉,上層溶液做離心,再次分離雜質

▲圖十八 再取上層做水洗兩次(洗掉多餘醇類),並離心取上層

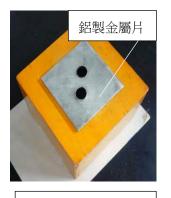
二、生質柴油熱值的測定

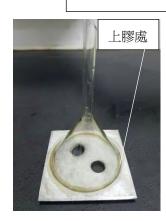

(一)實驗說明

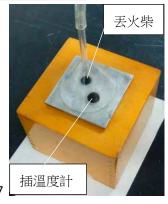
以**自製改良卡計**測量不同生質柴油:高級柴油混油體積比及純生質柴油,透過水 溫變化及消耗的油毫升數測量熱值,試圖在各變因中找出最佳熱值。


熱值公式:Δ H=mSΔ T/消耗油毫升數(cal/ml)

自製改良卡計的介紹(共兩版):


第一版改良卡計


1.木製容器外層搭 配內層保麗龍材 質,防止熱逸散。


2.中間孔洞放鍍銅容器,鍍銅容器內放小燒杯,燒杯外裝水。

3.上層蓋上鋁製 金屬片,以確保密 閉(防火燒)。

4.將通氧氣的漏斗和 鋁製金屬片以耐熱的 快膠結合(防漏氣)。

5.鋁製金屬片上有兩 孔,一孔丟火柴棒(入小 燒杯),一孔用來測初末 溫(入小燒杯外的水)。

第二版改良卡計

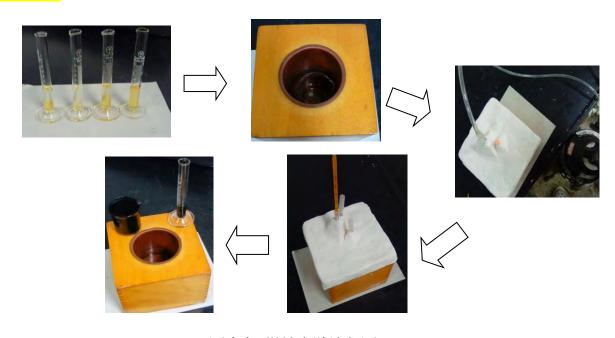
考慮到鋁製金屬片上下兩界面的漏氣及熱逸散情形,

針對此問題作改良。

插溫度計

通 O₂

丟火柴



6.以紙黏土(降低熱逸散)塑造外型,使其剛好單住木製容器(防鋁製金屬片上下兩界面漏氣)。上方分三個孔,分別用來通O₂、丟火柴、插溫度計。

(二)實驗步驟

- 1.將生質柴油加入高級柴油,調成三杯不同比例 1:1、1:2、2:1。(生質柴油:高級柴油之體積比)及一杯純生質柴油,總容量皆為 5ml。
- 2.將自製改良卡計內裝入 25ml 的水,放置調配好的油,測量初溫。
- 3.投入一根火柴棒,然後馬上通氧氣,固定氧氣流量為 5cm³/s,燃燒一分鐘。
- 4.燃燒完後,隨即插上溫度計,靜置測量最高溫。
- 5.測量燒杯中剩餘的混油溶液量,並記錄數據。

實驗流程圖:

▲圖十九 燃燒實驗流程圖

三、不同酸價對動物油之熱值影響

(一)實驗說明

由於不同實驗油(豬、雞油)的油脂品質不固定,為求一致的油品質,必須測定酸

價,探討在何種酸價下,做出的生質柴油熱值最佳。

酸價公式:

KOH 的毫克數/實驗油 g 數=(A-B)×N×56.1/W

溶劑: 取 $C_2H_5OC_2H_5$ 和 C_2H_5OH 等體積混合。

A: 樣品(實驗油)加入 100 ml 溶劑、0.1 ml 之酚酞指示劑溶液後,滴定此溶液所使用的 0.1M KOH 之體積(ml)

B: 100 ml 溶劑加入 0.1 ml 之酚酞指示劑溶液製備的空白溶液,進行空白滴定所使用的 0.1M KOH 之體積(ml)

N: KOH 之當量濃度(0.1M)

W: 樣品重量(實驗油的 g)

▲圖二十 測定酸價之裝置圖

優質 圖青

(二)實驗步驟

- 1.配製 250ml 的 KOH 0.1M,及 C_2H_5OH 和 $C_2H_5OC_2H_5$ 等體積混合(A 溶液)。
- 2.分別取實驗油(豬、雞油)各 5g,加入 A 溶液 100ml,再滴入 0.1ml 酚酞(B 溶液)。
- 3.以 KOH 0.1M 滴定 B 溶液,並記錄消耗的毫升數。
- 4.配置不同酸價的生質柴油,燃燒並比較熱值的差異。

四、吸水有無對動物油之熱值影響

(一)實驗說明

文獻指出,生質柴油中的水若過多會影響熱值,這跟原理呼應。又此實驗與油品質有關,所以探討有無吸水的實驗油(豬、雞油),對生成的生質柴油熱值有無差異。

(二)實驗步驟

- 1.將 CuSO₄·5H₂O 20g 以酒精燈加熱 20 分鐘,得到無水 CuSO₄。
- 2.配置 3 杯生質柴油,其中 2 杯分別加入**無水 CuSO_4 及矽膠吸水**。
- 3.製備成生質柴油,燃燒並比較吸水有無對熱值的影響。

五、不同實驗油:醇(莫耳數比)對動物油之熱值影響

(一)實驗說明

依實驗三、四的結果,對實驗油(豬、雞油)做**前處理(酸價及有無吸水的結果)**, **固定好油的品質**,再探討生質柴油熱值和實驗油(豬、雞油):醇之莫耳數的關係。 所有變因中,**此變因為反應物(原料)**,故優先測定,再以最佳結果修正基準油組。

此實驗比例測實驗油(豬、雞油):醇(莫耳數比 $1:3\sim1:9$),因為 1:3 為理論值,而文獻中常見比例為 1:6,因此我們測到 1:9。

(二)實驗步驟

- 1.以不同實驗油(豬、雞油):醇(莫耳數比 1:3~1:9)做前處理(酸價及有無吸水的結果),再加入 H_2SO_41M 。
- 2.將其隔水加熱,並加入磁攪拌子,控制溫度在60℃,加熱時間為1.5 小時。
- 3.製備成生質柴油,燃燒並比較熱值的差異。

六、不同加熱時間對動物油之熱值影響

(一)實驗說明

依實驗五的結果,對實驗油(豬、雞油)前處理,再探討生質柴油熱值和加熱時間的關係。**加熱時間攸關於反應的完整性**,得確保反應物是否轉酯化成生質柴油,故先於溫度的變因做測定。

由於植物油轉酯化,一小時即可完成反應,而動物油轉酯化,會多行同步催化酯化,增加反應物的量,加熱時間自然得加長。故我們測量 1hr、1.5hr、2hr、2.5hr,再以最佳結果修正基準油組。

(二)實驗步驟

- 1.以最佳實驗油(豬、雞油):醇(莫耳數比)做前處理(酸價及有無吸水的結果),再加入 H₂SO₄1M。
- 2.將其隔水加熱,並加入磁攪拌子,控制溫度在 60°C,以不同加熱時間(1hr、1.5hr、2hr)實驗。
- 3.製備成生質柴油,燃燒並比較熱值的差異。

七、不同加熱溫度對動物油之熱值影響

(一)實驗說明

依實驗六的結果,對實驗油(豬、雞油)做事前處理,再探討其熱值和加熱溫度的關係。又**溫度影響反應速率及活化能**,故先於催化劑濃度做測定,再以最佳結果修正基準油組。

由於植物油轉酯化,大都以 CH_3OH 作為反應物, CH_3OH 沸點為 $64.7^{\circ}C$,因此文獻中控制的溫度幾乎都在 $60^{\circ}C$ 。如今做動物油轉酯化,以 C_2H_5OH 為反應物, C_2H_5OH 沸點 $78.37^{\circ}C$,為了不讓反應物在過程中汽化,此實驗測 $50^{\circ}C\sim70^{\circ}C$ 。

(二)實驗步驟

- 1.以最佳實驗油(豬、雞油):醇(莫耳數比)做前處理(酸價及有無吸水的結果),再加入 H₂SO₄1M。
- 2.將其隔水加熱,加入磁攪拌子,以不同的溫度 $(50^{\circ}\text{C} \times 60^{\circ}\text{C} \times 70^{\circ}\text{C})$,在最佳的加熱時間下實驗。
- 3.製備成生質柴油,燃燒並比較熱值的差異。

八、不同催化劑濃度對動物油之熱值影響

(一)實驗說明

依實驗七的結果,對實驗油(豬、雞油)做事前處理,再探討生質柴油熱值和催化 劑濃度的關係,再以最佳結果修正基準油組,此即為**最佳油組**。

(二)實驗步驟

- 1.以最佳實驗油(豬、雞油):醇(莫耳數比)做前處理(酸價及有無吸水的結果),再加入不同濃度的 H₂SO₄(1M、1.5M、2M)。
- 2.將其隔水加熱,加入磁攪拌子,在最佳的加熱時間、溫度下實驗。
- 3.製備成生質柴油,燃燒並比較熱值的差異。

九、最佳油組下動物油與植物油之熱值差異

(一)實驗說明

以動物油測出的**最佳油組**製備植物油,探討動植物油間的熱值差異。此實驗中有 選擇高熱量的植物油來比較。檢驗**最佳油組**比上植物油是否仍為最高熱值。

(二)實驗步驟

- 1.以最佳實驗油(豬、雞油):醇(莫耳數比)對植物油做前處理(酸價及有無吸水的結果) 加入擁有最高熱值之催化劑濃度。
- 2.將其隔水加熱,加入磁攪拌子,在最佳的加熱時間、溫度下實驗。
- 3.製備成生質柴油,燃燒並比較熱值的差異。

十、各實驗最佳比例 CO2 排放量之差異

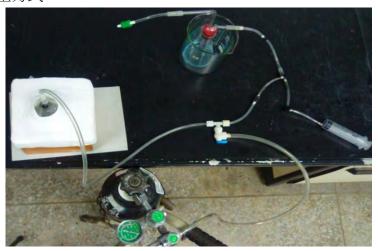
(一)實驗說明

透過測量每個實驗的最佳比例,預期是否隨基準油組變因的改變,CO₂排放量能有減少的趨勢,**實踐低汙染、低成本、高效能的理念**。而且,也可以 CO₂排放量來判斷,油組是否能燃燒完全,而非燃燒不完全的 CO,進而判斷其與高級柴油的相容性及此生質柴油的燃燒情形。

CO₂ mmol 數計算公式:

假設溫度皆於 25°C 下做計算, [H⁺][OH⁻]=10⁻¹⁴M

初濃度: pH12→pOH2→10⁻²M

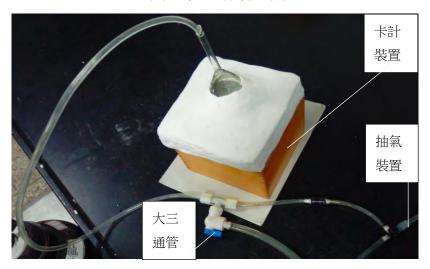

末濃度: pHx→pOH(14-x)→10^{-(14-x)}M

[(初濃度-末濃度)/2(CO₂溶於水變 H₂CO₃)]×50(NaOH ml 數)= CO₂ mmol 數


(二)實驗步驟

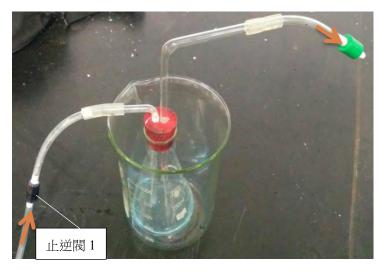
- 1.以容量瓶配置 pH12 的 NaOH 水溶液,滴入幾滴廣用指示劑。
- 2.取 50ml 倒入錐形瓶,並以軟木塞封住(其上有兩根 L 型玻璃管,一則連接抽氣裝置, 一則供排氣)。
- 3.先通 O_2 ,待油組燃燒完後,以抽氣裝置抽取卡計內的氣體,打入測量裝置中。

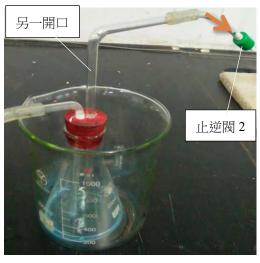
自製抽氣裝置和測量方式:



▲圖二十一 裝置全圖

分段介紹:


圖二十二 器材全圖

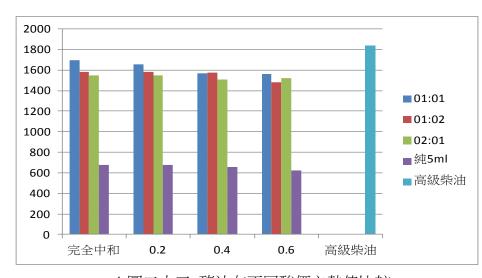

(1)大三通管為控制 O_2 的閥,一邊接卡計裝置,一邊接抽氣裝置(此管會遇到鎖上的小三通管)。 (線路一)

(2)鎖上大三通管,旋開小三通管以抽氣,此可讓線路一上的止逆閥 1,使抽出的 CO_2 不回流,直衝測量裝置。(線路二)

(3)線路二上的止逆閥 1 又能使衝過的 CO₂ 不回流, 打入測量系統的 NaOH 溶液中(滴入指示劑方便觀 測 CO₂ 有無打入)。

(4)錐形瓶上有另一開口(使錐形瓶內 氣壓不會過大導致破裂),其上又有 止逆閥 2(隔絕外界空氣,且會發出 聲音以確保有氣體排出)。

伍、研究結果與討論

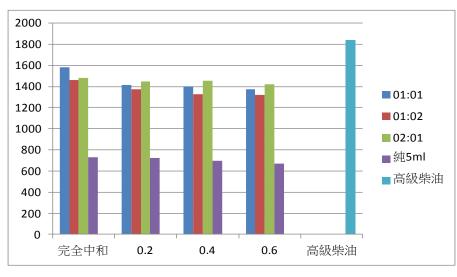

一、探討不同酸價對動物油之熱值影響

(一)實驗結果

本實驗的控制變因為實驗油:醇之莫耳數比 1:6(實驗油取 30g),加熱時間 1 小時,溫度 60° C, H_2SO_4 1M(加入 2ml),透過操縱酸價的高低探討熱值的差異。

從本實驗開始的熱值圖表,橫向為各實驗的操縱變因;縱向為此變因下的熱值 (單位:cal/ml),並在每張圖的最右側放入純 5ml 高級柴油之熱值當做對照。

1.豬油


▲圖二十三 豬油在不同酸價之熱值比較

表三 豬油在不同酸價之產率

酸價(KOH 的毫克數/ 實驗油 g 數)	產量(g)	產率(%) (生質柴油重/ 原豬油 30g)
完全中和	21.00	70.00
0.2	21.60	72.00
0.4	22.60	75.33
0.6	24.10	80.33

由(圖二十三)發現完全中和的熱值比有酸價時來的好,且熱值在各混油體積比中皆最高。隨酸價的提升各混油體積比的熱值皆不斷下降。而產率則隨酸價提升而增加。

2.雞油

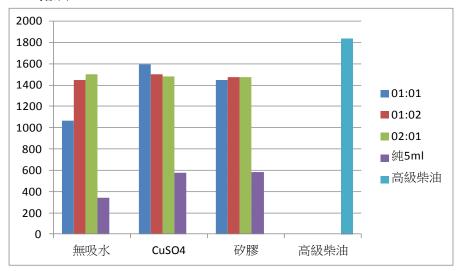
▲圖二十四 雞油在不同酸價之熱值比較

表四 雞油在不同酸價之產率

酸價(KOH 的毫克數/ 實驗油 g 數)	產量(g)	產率(%) (生質柴油重/ 原豬油 30g)
完全中和	17.80	59.33
0.2	17.90	59.67
0.4	21.20	70.67
0.6	21.50	71.67

由(圖二十四)發現完全中和的熱值仍比有酸價時來得好,且熱值在各混油體積比中皆是最高者。隨酸價的提升各混油體積比的熱值皆不斷下降。而產率則隨酸價提升而增加。

3.討論

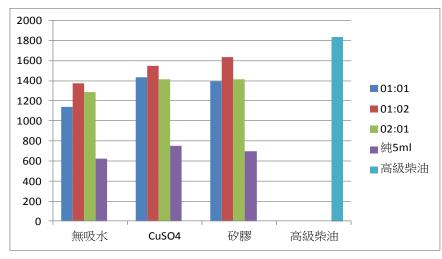

由這兩個酸價熱值比較圖來看,豬雞油完全中和的熱值皆最高,隨酸價提升各混油體積 比的熱值皆不斷下降。文獻中提到原料油中的游離脂肪酸在鹼性條件下容易起皂化反應,肥 皂、醇類和油形成穩定的乳化液,導致脂肪酸基酯類的產物(生質柴油)與甘油分相的困難以 及影響轉脂化的效率(註三),剛好可以跟此結果呼應。因此下個實驗中我們將完全中和作為 控制變因來探討其他因素。還可以發現有酸價的產值隨酸價提升而增加,這又呼應了原理的 部分,游離脂肪酸(FFA)會跟酸性催化劑產生同步催化酯化,使得反應物增加(產生新油脂), 導致產生的生質柴油量增加。

二、探討吸水有無對動物油之熱值影響

(一)實驗結果

本實驗的控制變因定酸價為 0(KOH) 的毫克數/實驗油 g 數)(完全中和),實驗油: 醇之莫耳數比 1:6(實驗油取 30g),加熱時間 1.5 小時,溫度 60° C, H_2SO_4 1M(加入 2ml),透過操縱有無吸水的變因來探討熱值差異。

1.豬油


▲圖二十五 豬油加入不同吸水物質之熱值比較

表五 豬油加入不同吸水物質之產率

吸水物質	產量(g)	產率(%) (生質柴油 重/原豬油 30g)
無	17.61	58.7
CuSO ₄	19.06	63.53
矽膠	19.11	63.70

由(圖二十五)發現不論以 $CuSO_4$ 、矽膠吸水,熱值都比無吸水時的熱值來的好。而 $CuSO_4$ 吸水的實驗油在混油體積比 $1:1\cdot 1:2\cdot 2:1$ 時,熱值都比矽膠吸水的熱值來的高,而純生質柴油的熱值,矽膠吸水反而較好。

2.雞油

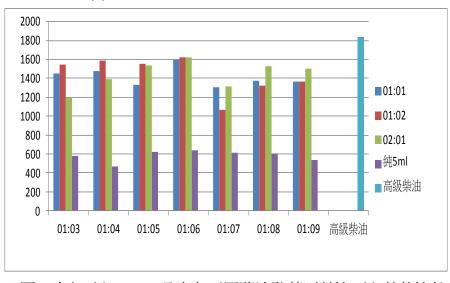
▲圖二十六 雞油加入不同吸水物質之熱值比較

表六 雞油加入不同吸水物質之產率

吸水物質	產量(g)	產率(%) (生質柴油重 /原雞油 30g)
無	17.90	59.67
CuSO ₄	21.58	71.93
矽膠	20.24	67.47

由(圖二十六)可發現不論以 $CuSO_4$ 、矽膠吸水,熱值仍比無吸水時的結果來的好。而產率方面也比沒吸水時來的高。

3.討論

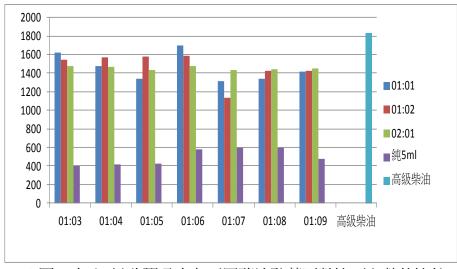

由這兩個吸水有無的熱值比較圖來看,發現不管哪種動物油,吸水的熱值都明顯比無吸水時來的高,此現象符合文獻所說,實驗油中水分含量的多寡會影響產率以及轉酯化反應的效果。Wright 等人(1944)指出:油脂之酸價必須低於 1,否則就必須使用更多之金屬氫氧化物才能中和油脂中的游離脂肪酸,且所有參與反應的反應物必須完全無水(Anhydrous),以免所含水分產生皂化反應(註二),這剛好可以跟此結果以及上個酸價實驗的討論呼應。因此下個實驗中我們都有做吸水的處理來探討其他因素。

三、探討不同實驗油:醇(莫耳數比)對動物油之熱值影響

(一)實驗結果

本實驗將酸價皆為 0(KOH 的毫克數/實驗油 g 數)(完全中和),加熱時間 1.5hr, 度 60°C, 皆使用 H₂SO₄ 1M(加入 2ml), 探討不同實驗油: 醇(莫耳數比 1:3~1:9) (實驗油皆取 30g)加入不同吸水物質時的熱值差異。

1.豬油 (1)以 CuSO₄ 吸水


▲圖二十七 以 CuSO4吸水在不同豬油醇莫耳數比下之熱值比較

表七 以 CuSO4 吸水的豬油 在不同醇莫耳數比下之產率

體積比 (生質柴 油:醇)	產量(g)	產率(%) (生質柴油 重/原豬油 30g)
1:3	17.47	58.23
1:4	18.33	61.10
1:5	19.11	63.70
1:6	19.17	63.90
1:7	18.65	61.87
1:8	17.1	57.00
1:9	19.56	65.20

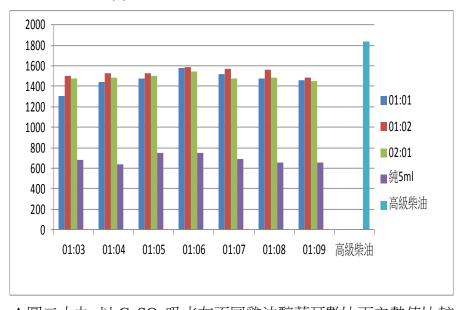
由(圖二十七)發現 1:6(豬油:醇之莫耳數比)在各混油體積比中,熱值皆最高。就產率而 言,1:4~1:7(豬油:醇之莫耳數比)都有超過60%的較佳產率,1:3~1:6(豬油:醇之莫耳 數比)的產率不斷上升。混油體積比 1:1、1:2、2:1 在 1:6(豬油:醇之莫耳數比)之後的 熱值大多不及前。混油體積比 1:2 的熱值在油醇莫耳數比 1:7~1:9 間不斷上升。混油體積 比 2:1 的熱值則在油醇莫耳數比 1:3~1:6 間不斷上升。

(2)以矽膠吸水

▲圖二十八 以矽膠吸水在不同豬油醇莫耳數比下之熱值比較 16

表八 以矽膠吸水的豬油 在不同豬油醇莫耳數比下之產率

区		
體積比 (生質柴 油:醇)	產量(g)	產率(%) (生質柴油 重/原豬油 30g)
1:3	18.77	62.56
1:4	18.81	62.70
1:5	19.03	63.40
1:6	19.06	63.53
1:7	19.53	65.10
1:8	18.52	61.73
1:9	18.57	61.90


由(圖二十八)發現 1:6(豬油:醇之莫耳數比)在各混油體積比中,熱值皆最高。產率則在 1:3~1:7(豬油:醇之莫耳數比)有上升趨勢。而混油體積比 1:1、1:2、2:1 在 1:6(豬油:醇之莫耳數比)之後的熱值大多不及前。混油體積比 1:1、1:2、2:1 的熱值在 1:7~1:9(豬油:醇之莫耳數比)不斷上升。混油體積比 1:2 時,熱值則在 1:3~1:6(豬油:醇之莫耳數比)間不斷上升。

(3)討論

由這兩個豬油熱值比較圖來看,發現不管以 CuSO₄、矽膠來吸水,1:6(豬油:醇之莫耳數比)的熱值都是最佳比例。Tashtoush 等人(2004)以用過的動物性油脂作為原料,並提到使用過量 100%之乙醇(油醇比從 1:3 變為 1:6)可以得到最高的轉酯率與黏度最低的產物(註二),剛好可以跟此結果呼應。因此下個豬油實驗中我們將 1:6(雞油:醇之莫耳數比)作為控制變因來探討其他因素。還可以發現 1:6(豬油:醇之莫耳數比)之後的熱值大多不及前,推測跟醇莫耳數過量有關係,導致正反應速率上升。由於加熱時間固定 2hr,過快轉變的生質柴油,又持續加熱至 2hr,導致生質柴油變質。1:3~1:6(豬油:醇之莫耳數比)之間的產率皆不斷上升。

2.雞油

(1)以 CuSO₄ 吸水

▲圖二十九 以 CuSO4吸水在不同雞油醇莫耳數比下之熱值比較

表九 以 CuSO₄ 吸水的雞油 在不同醇莫耳數比下之產率

-		
體積比 (生質柴 油:醇)	產量(g)	產率(%) (生質柴油 重/原雞油 30g)
1:3	16.12	53.73
1:4	18.35	61.17
1:5	18.44	61.47
1:6	21.58	71.93
1:7	22.74	75.80
1:8	21.93	73.10
1:9	20.74	69.13

由(圖二十九)發現 1:6(雞油:醇之莫耳數比)在各混油體積比中,熱值皆最高。就產率而言,1:6、1:7、1:8都有超過 70%的較佳產率。混油體積比 1:2 時,除 1:6(豬油:醇之莫耳數比)外,熱值在各混油體積比中皆最高。1:3~1:7(雞油:醇之莫耳數比)的產率不斷上升。

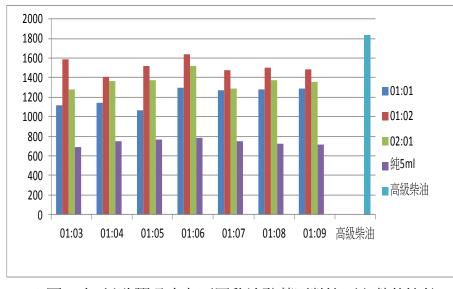
(2)以矽膠吸水

表十 以矽膠吸水的雞油 在不同醇莫耳數比下之產率

產量(g)

體積比

(生質柴


油:醇)

產率(%)

(生質柴油

重/原雞油

30g)

	•

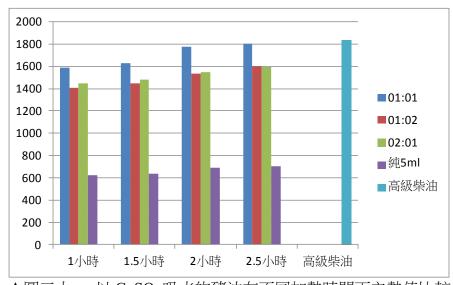
▲圖三十 以矽膠吸水在不同雞油醇莫耳數比下之熱值比較

1:3 16.52 55.07 1:4 17.93 59.77 1:5 19.65 65.50 1:6 20.24 67.47 1:7 21.31 71.03 1:8 20.85 69.50 1:9 22.74 75.80

由(圖三十)發現 1:6(雞油:醇之莫耳數比)在各混油體積比中,熱值皆最高。就產率而言, 產率隨著莫耳數比上升而有上升趨勢。混油體積比 2:1 的熱值在 1:3~1:6(雞油:醇之莫耳 數比)不斷上升。混油體積比 1:1 的熱值則在 1:7~1:9(雞油:醇之莫耳數比)不斷上升。而 純牛質柴油的熱值從 1:6(雞油:醇之莫耳數比)往兩側遞減。1:3~1:7(雞油:醇之莫耳數 比)的產率不斷上升。

(3)討論

由這兩個雞油熱值比較圖來看,發現不管以 CuSO₄或矽膠來吸水,1:6(雞油:醇之莫耳 數比)仍是最佳比例。因此下個雞油實驗中我們將 1:6(雞油:醇之莫耳數比)作為控制變因來 探討其他因素。混油體積比 1:2 在四組體積比中,幾乎都是熱值最高者,推測高級柴油本身 所提供的熱值仍勝於自製的生質柴油。產值可以發現 1:3~1:7(雞油:醇之莫耳數比)產率 不斷上升。推測跟反應物醇的比例有極大關係。轉酯化反應中,油醇比 1:3 是理論值,但實 際操作時須以過量的醇來反應,以免油未轉酯化前,醇就用盡的情況。

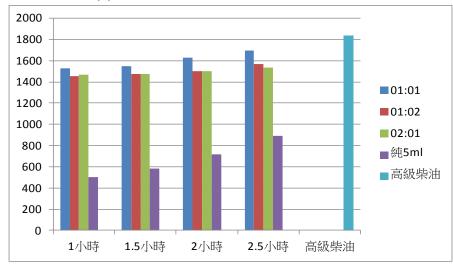

四、探討不同加熱時間對動物油之熱值影響

(一)實驗結果

本實驗控制酸價為 0(KOH) 的毫克數/實驗油 g 數)(完全中和),以不同物質吸水, 實驗油:醇之莫耳數比為 1:6(實驗油皆取 30g), 溫度 60° C, 皆使用 $H_2SO_4 1M(加入$ 2ml),探討不同加熱時間下的熱值差異。

1.豬油

(1)以 CuSO₄ 吸水


▲圖三十一 以 CuSO4吸水的豬油在不同加熱時間下之熱值比較

表十一 以 CuSO₄ 吸水的豬油 在不同加熱時間下之產率

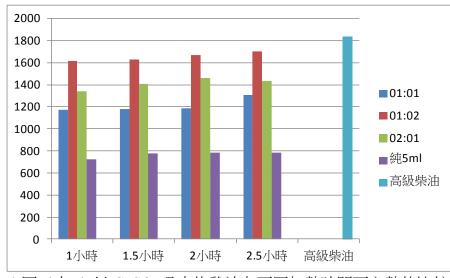
加熱時間 (hr)	產量(g)	產率(%) (生質柴油 重/原豬油 30g)
1	16.90	56.33
1.5	19.11	63.70
2	21.21	70.70
2.5	20.00	66.67

由(圖三十一)發現,各混油體積比在加熱 2.5hr 熱值皆最高,且隨加熱時間變長,各混油 比例的熱值亦升高,加熱 1hr 的熱值在各混油體積比中皆最低。產率部分加熱 2hr 的產值最 高,加熱 2.5hr 的產值其次。

(2)以矽膠吸水

▲圖三十二 以矽膠吸水的豬油在不同加熱時間下之熱值比較

表十二 以矽膠吸水的豬油 在不同加熱時間下之產率

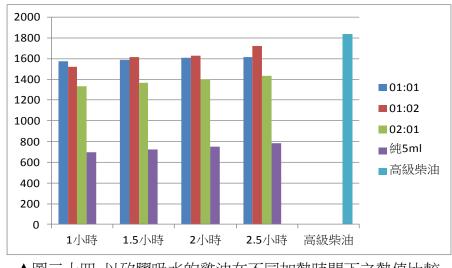

加熱時間 (hr)	產量(g)	產率(%) (生質柴油 重/原豬油 30g)
1	18.25	60.83
1.5	19.38	64.6
2	20.68	68.93
2.5	20.31	67.70

由(圖三十二)發現純生質柴油的熱值隨加熱時間變長而增加,各混油體積比中,加熱 1 小時的熱值皆最低。產率部分加熱 2hr 的產值最高,加熱 2.5hr 的產值其次。

(3)討論

由這兩個豬油熱值比較圖來看,發現不管以 CuSO₄、矽膠來吸水,純生質柴油的熱值都 隨加熱時間的增加而熱值提升。加熱 2.5hr 的熱值在混油中,熱值明顯較高。純生質柴油則在 加熱 2.5hr 的熱值最高,因此下個豬油實驗中我們將加熱時間 2.5hr 作為控制變因探討其他因素。加熱時間 1hr 的熱值在各混油體積比中皆最差。推測跟植物油轉酯化過程所需時間較短,而同樣 1hr 動物油轉酯化速度慢且轉酯化時間不夠有關,進而造成熱值皆最差的結果。還可發現產率在加熱 2hr 中皆有最高產率。

2.雞油 (1)以 CuSO₄ 吸水


▲圖三十三 以 CuSO4吸水的雞油在不同加熱時間下之熱值比較

表十三 以 CuSO₄ 吸水的雞油 在不同加熱時間下之產率

加熱時間 (hr)	產量(g)	產率(%) (生質柴油 重/原雞油 30g)
1	18.53	61.77
1.5	20.00	66.67
2	21.82	72.73
2.5	21.86	72.87

由(圖三十三)發現純生質柴油熱值有隨加熱時間變長而增加的趨勢。加熱 1hr 的熱值在各混油體積比中偏低。加熱 2.5hr 的熱值在各混由體積比中幾乎都最高。產率也有隨加熱時間變長而增加的趨勢,在 2.5hr 有最大產值。

(2)以矽膠吸水

▲圖三十四 以矽膠吸水的雞油在不同加熱時間下之熱值比較

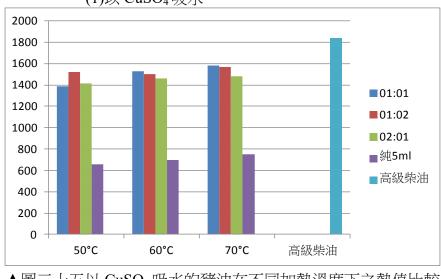
表十四 以矽膠吸水的雞油 在不同加熱時間下之產率

加熱時間(hr)	產量(g)	產率(%) (生質柴油 重/原雞油 30g)
1	18.25	60.83
1.5	19.38	64.60
2	19.68	65.60
2.5	22.12	73.73

由(圖三十四)發現純生質柴油熱值有隨加熱時間變長而增加的趨勢。各混油的熱值也有這趨勢。加熱 1hr 的熱值在各混油體積比中皆最低。加熱 2.5hr 的熱值在各混由體積比中皆最高。 產率有隨加熱時間變長而增加的趨勢,在 2.5hr 有最大產值。

(3)討論

由這兩個雞油熱值比較圖來看,發現不管以 CuSO₄、矽膠來吸水,純生質柴油的熱值都隨加熱時間加長而熱值提升。加熱 2.5hr 的熱值在各混油體積比中幾乎都最高,因此下個雞油實驗我們將加熱時間 2.5hr 作為控制變因探討其他因素。加熱時間 1hr 的熱值幾乎都最低,推測其還是跟反應時間有關,也呼應剛剛豬油的推測。產率可發現皆隨加熱時間變長而增加。

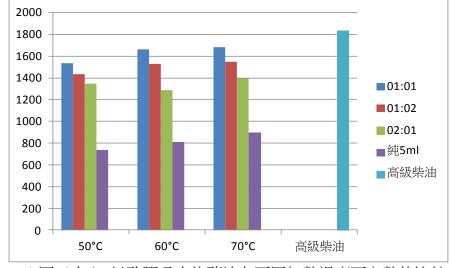

五、探討不同加熱溫度對動物油之熱值影響

(一)實驗結果

本實驗將酸價定為0(KOH的毫克數/實驗油g數)(完全中和),加入不同吸水物質,實驗油:醇之莫耳數比為1:6(實驗油皆取30g),加熱時間控制2.5hr,皆使用 H_2SO_4 1M(加入<math>2ml),探討不同溫度 $(50^{\circ}C \cdot 60^{\circ}C \cdot 70^{\circ}C)$ 的熱值差異。

1.豬油

(1)以 CuSO₄吸水


▲圖三十五以 CuSO4吸水的豬油在不同加熱溫度下之熱值比較

表十五 以 CuSO₄ 吸水的豬油 在不同加熱溫度下之產率

加熱溫度 (°C)	產量(g)	產率(%) (生質柴油 重/原豬油 30g)
50	18.06	60.20
60	23.06	76.87
70	23.60	78.67

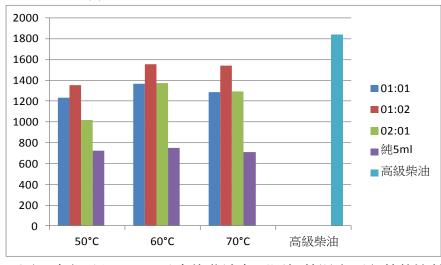
由(圖三十五)發現純生質柴油熱值有隨溫度上升而增加的趨勢。溫度 50°C 的熱值在各混油體積比中都偏低。溫度 70°C 的熱值在各混油體積比中皆最高。產率有隨溫度上升而增加的趨勢,在溫度 70°C 有最大產值。

(2)以矽膠吸水

▲圖三十六 以矽膠吸水的豬油在不同加熱溫度下之熱值比較

表十六 以矽膠吸水的豬油 在不同加熱溫度下之產率

加熱溫度 (°C)	產量(g)	產率(%) (生質柴油 重/原豬油 30g)
50	19.60	65.33
60	20.10	67.00
70	21.30	71.00

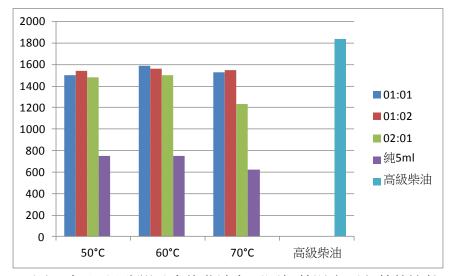

由(圖三十六)可發現純生質柴油熱值有隨溫度上升而增加的趨勢。溫度 50°C 的熱值在各混油體積比中都偏低。溫度 70°C 的熱值在各混油體積比中皆最高。產率仍有隨溫度上升而增加的趨勢,在溫度 70°C 有最大產值。

(3)討論

由這兩個豬油熱值比較圖來看,發現不管以 $CuSO_4$ 、矽膠來吸水,純生質柴油的熱值都 隨溫度的上升而提升。溫度 50° C 的熱值幾乎都最低,產率皆可發現隨溫度上升而提高的現象,推測溫度影響了正逆反應的速率以及改變產值,溫度的改變使得轉酯化反應效率提升。先前 看的植物油轉酯化中,大都以 CH_3OH 作為反應物, CH_3OH 的沸點為 64.7° C,因此文獻中控制的溫度幾乎都在 60° C。如今我們做動物油轉酯化,以 C_2H_5OH 為反應物, C_2H_5OH 的沸點 78.37° C,為了不讓反應物在過程中汽化,選擇改變的溫度到 70° C 為止。由於溫度 70° C 的熱值在各混油體積比中的熱值皆最高,因此下個豬油實驗中我們將加熱溫度 70° C 作為控制變因來探討其他因素。

2.雞油

(1)以 CuSO₄ 吸水


▲圖三十七 以 CuSO4 吸水的雞油在不同加熱溫度下之熱值比較

表十七 以 CuSO₄ 吸水的雞油 在不同加熱溫度下之產率

加熱溫度 (°C)	產量(g)	產率(%) (生質柴油 重/原雞油 30g)
50	16.73	55.77
60	19.81	66.03
70	20.38	67.93

由(圖三十七)發現純生質柴油熱值有隨溫度上升而增加的趨勢。溫度 50° C 的熱值在各混油體積比中幾乎都偏低。溫度 60° C 的熱值在混油體積比 1:1、1:2、2:1 皆最高。產率則隨溫度上升而增加,在溫度 70° C 時有最大產值。

(2)以矽膠吸水

▲圖三十八 以矽膠吸水的雞油在不同加熱溫度下之熱值比較

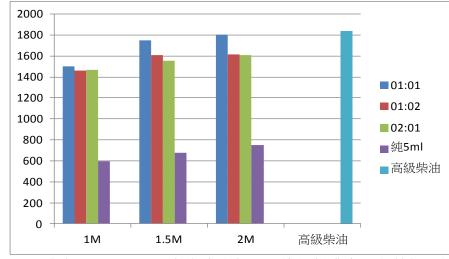
表十八 以矽膠吸水的雞油 在不同加熱溫度下之產率

加熱溫度 (°C)	產量(g)	產率(%) (生質柴油 重/原雞油 30g)
50	16.70	55.67
60	19.80	66.00
70	20.30	67.67

由(圖三十八)發現溫度 50°C 的熱值在各混油體積比中幾乎都偏低。溫度 60°C 的熱值在 各混油體積比中皆最高。產率隨溫度上升而增加,在溫度 70°C 仍有最大產值。

(3)討論

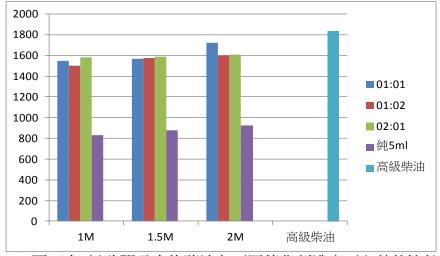
由這兩個雞油熱值比較圖來看,發現不管以 $CuSO_4$ 、矽膠來吸水,溫度 $60^{\circ}C$ 的熱值在各混油體積比中的熱值幾乎都最高,因此下個雞油實驗我們將加熱溫度 $60^{\circ}C$ 作為控制變因來探討其他因素。溫度 $50^{\circ}C$ 熱值都偏低,產率則皆有隨溫度上升而提高的現象。


六、探討不同催化劑濃度對動物油之熱值影響

(一)實驗結果

本實驗控制酸價為 0(KOH) 的毫克數/實驗油 g 數)(完全中和),加入不同吸水物質實驗油:醇之莫耳數比 1:6(實驗油皆取 30g),加熱時間 2.5hr,豬油溫度 $70^{\circ}C$,雞油溫度 $60^{\circ}C$,操縱 H_2SO_4 催化劑濃度 $(1M \cdot 1.5M \cdot 2M)$ (加入 2ml)來探討熱值差異。

1.豬油


表十九 以 CuSO₄ 吸水的豬油 在不同催化劑濃度下之產率

催化劑濃 度(M)	產量(g)	產率(%) (生質柴油 重/原豬油 30g)
1	20.45	68.17
1.5	20.76	69.20
2	20.90	69.67

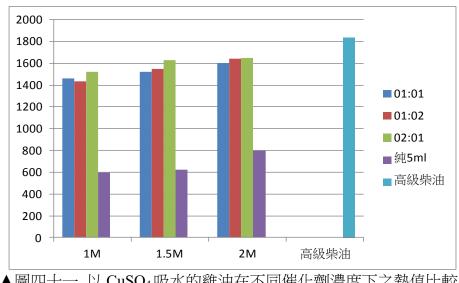
▲圖三十九 以 CuSO4 吸水的豬油在不同催化劑濃度下之熱值比較

由(圖三十九)發現H₂SO₄ 2M 在各混油體積比中,熱值都是最高的。且熱值隨濃度上升而增加。 就產率而言,H₂SO₄ 2M 為最高的,且產值隨濃度增加而略為上升。

▲圖四十 以矽膠吸水的豬油在不同催化劑濃度下之熱值比較

表二十 以矽膠吸水的豬油 在不同催化劑濃度下之產率

催化劑濃 度(M)	產量(g)	產率(%) (生質柴油 重/原豬油 30g)
1	20.57	68.57
1.5	20.76	69.20
2	20.84	69.47


由(圖四十)發現 H₂SO₄ 2M 在各混油體積比中,熱值都是最高的,且熱值隨濃度上升而增 加。而就產率而言,H₂SO₄ 2M 為最高的,且產值也隨濃度增加而略為上升。

(3)討論

由這兩個豬油熱值比較圖來看,發現不管以 CuSO₄、矽膠來吸水,H₂SO₄ 2M 的熱值在各 混油體積比中的熱值皆最高,因此豬油實驗我們把 H₂SO₄ 2M 做為最後的結果。H₂SO₄ 1M 熱 值皆最低,產率都可發現隨濃度上升略為提高的現象,這跟高中反應速率章節所學到的催化 劑性質相符合,催化劑並不影響產值,只會影響正逆反應速率的快慢,產值之所以略為提高, 推測應該是反應物中的三酸甘油酯尚未完全轉換為生質柴油,由於我們加熱時間固定,又活 化能隨催化劑濃度上升而下降,有效碰撞分率提升,產值自然也上升。

2.雞油

(1)以 CuSO₄ 吸水

表二十一以 CuSO4 吸水的豬油 在不同催化劑濃度下之產率

催化劑濃 度(M)	產量(g)	產率(%) (生質柴油 重/原雞油 30g)
1	21.26	70.86
1.5	21.30	71.00
2	21.40	71.33

▲圖四十一 以 CuSO4吸水的雞油在不同催化劑濃度下之熱值比較

由(圖四十一)發現H₂SO₄ 2M 在各混油體積比中,熱值皆最高,且熱值隨濃度上升而增加。 而就產率而言,H₂SO₄ 2M 為最高的,且產值隨濃度增加而略為上升。

(2)以矽膠吸水

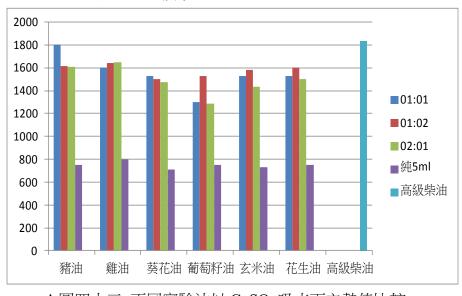
2000 1800 1600 1400 **01:01** 1200 **01:02** 1000 02:01 800 ■純5ml 600 ■高級柴油 400 200 0 1.5M 2M 高級柴油

▲圖四十二以矽膠吸水的雞油在不同催化劑濃度下之熱值比較

表二十二 以矽膠吸水的雞油 在不同催化劑濃度下之產率

催化劑濃 度(M)	產量(g)	產率(%) (生質柴油 重/原雞油 30g)
1	21.76	72.53
1.5	21.78	72.60
2	22.09	73.63

由(圖四十二)發現 H_2SO_4 2M 在各混油體積比中,熱值仍是最高的,且熱值隨濃度上升而增加。而就產率而言, H_2SO_4 2M 為最高的,且產值隨濃度增加而略為上升。

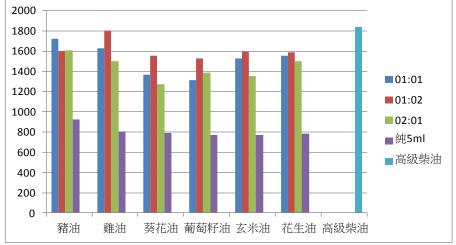

(3)討論

由這兩個雞油熱值比較圖來看,發現不管以 CuSO₄、矽膠來吸水,H₂SO₄ 2M 的熱值在各混油中的熱值皆最高,因此雞油實驗我們把 H₂SO₄ 2M 做為最後的結果。H₂SO₄ 1M 熱值皆最低,而產率可發現隨濃度上升而略為提高的現象。這還可以用另一種說法來解釋,H₂SO₄ 1M、1.5M、2M 相對於水溶液中的水濃度(55.5M)太稀薄,且只占 2ml 體積,故對於反應的活化能僅是略微降低,產率自然也只是隨濃度上升而稍稍提高。

七、探討最佳比例下動物油與植物油之熱值差異

(一)實驗結果

1.以 CuSO₄ 吸水


▲圖四十三 不同實驗油以 CuSO4吸水下之熱值比較

表二十三 不同實驗油 以 CuSO4 吸水下之產率

實驗油種類	產量(g)	產率(%) (生質柴油 重/原實驗 油 30g)
豬油	20.90	69.67
雞油	21.40	71.33
葵花油	20.76	69.20
葡萄籽油	20.34	67.80
玄米油	21.08	70.27
花生油	19.91	66.36

由(圖四十三)可發現,植物油的熱值皆比動物油來得高,其中還可發現玄米油、花生油等較飽和的油,熱值較其他植物油來的高。產率則可發現動、植物油的產率差距不大。

2.以矽膠吸水

▲圖四十四 不同實驗油以矽膠吸水下之熱值比較

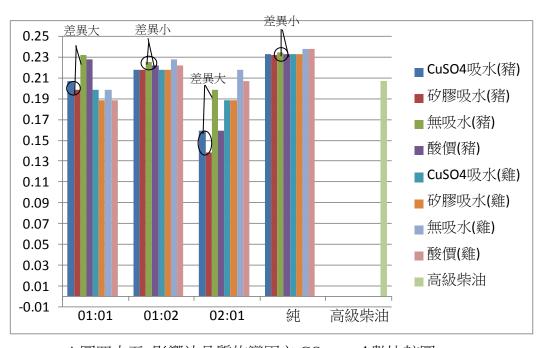
表二十四 不同實驗油 以矽膠吸水下之產率

實驗油種類	產量(g)	產率(%) (生質柴油 重/原實驗 油 30g)
豬油	20.84	69.47
雞油	22.09	73.63
葵花油	21.13	70.43
葡萄籽油	19.21	64.03
玄米油	20.17	67.23
花生油	18.29	60.97

由(圖四十四)可發現,植物油的熱值皆比動物油來得高,其中還可發現玄米油、花生油等較飽和的油,熱值較其他植物油來的高。產率則可發現動、植物油的產率差距不大。

3.討論

由這兩個熱值比較圖來看,發現不管以 CuSO₄、矽膠吸水,動物油的熱值皆比植物油來得高,又較飽和的植物油,熱值較其他植物油來的高。產率則可發現動、植物油的產率差距不大,這可能跟我們固定酸價為 0(KOH 的毫克數/實驗油 g 數)有關,由於游離脂肪酸(FFA)被中和了,導致動物油沒有做同步催化酯化,若是有酸價,動物油的產率推測會比植物油來得高。


八、探討各實驗最佳比例 CO₂ 排放量之差異

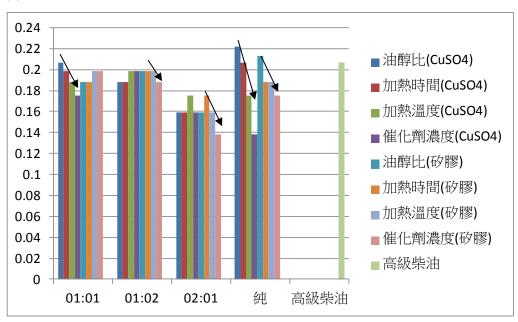
(一)實驗結果

本實驗固定以抽氣裝置抽取 30 個針筒(每筒 60ml),打入 pH12,50ml 的 NaOH 溶液中。且**做了前七個實驗的最佳比例**並測其 CO_2 mmol 數,探討動植物油跟高級柴油 CO_2 mmol 數排放量的差異。

本實驗開始的熱值圖表,橫向為生質柴油與高級柴油的混和體積比;縱向為 CO_2 mmol 數, 並在每張圖的最右側放入純5ml 高級柴油之 CO_2 mmol 數當做對照。

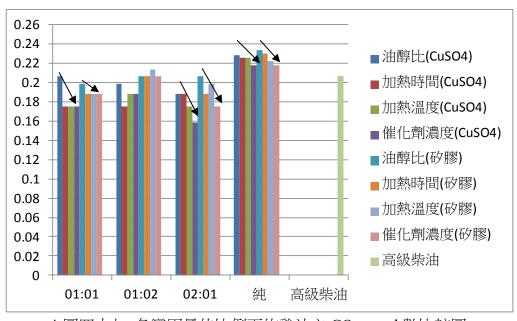
1.影響油品質的變因

▲圖四十五 影響油品質的變因之 CO₂ mmol 數比較圖


由(圖四十五)發現混油體積比 1:1 的 CO_2 mmol 數多半比 1:2 少,而混油體積比 2:1 的 CO_2 mmol 數幾乎比 1:2 少。就有無吸水而言,無吸水的 CO_2 mmol 數明顯比有吸水的多;就酸價 0 和無吸水而言,無吸水的 CO_2 mmol 數比酸價 0 多,但差異較小。純生質柴油的 CO_2 mmol 數皆比有混油的多,且各油組的 CO_2 mmol 數幾乎都小於高級柴油。

(1)討論

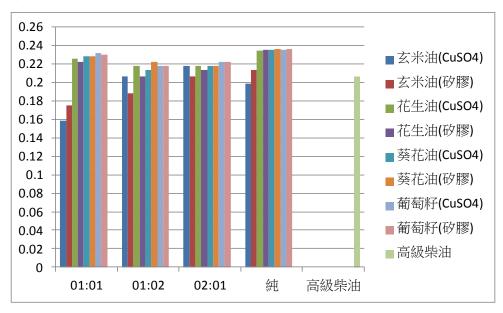
混油體積比 1:1 的 CO_2 mmol 數多半比 1:2 少,推測其相容性混油體積比 1:1 低於 1:2 ;混油體積比 2:1 的 CO_2 mmol 數幾乎比 1:2 少,推測其相容性混油體積比 2:1 又更差,使燃燒更不完全。回顧前七個熱值實驗,發現最佳油組混油中,體積比 2:1 的熱值幾乎最低,1:2 的熱值幾乎最高,這跟相容性好壞結果相驗證。無吸水的油其水分含量較多,容易水解油脂產生游離脂肪酸,使燃燒的 CO_2 mmol 數多,pH 值較低,故有無吸水的 CO_2 mmol 數差異明顯。酸價 0 因有中和沒吸水,故游離脂肪酸雖少, CO_2 mmol 數減少,但跟無吸水比差異較小。


2.各變因最佳比例下的動物油

(1)豬油

▲圖四十六 各變因最佳比例下的豬油之 CO₂ mmol 數比較圖

(2)雞油


▲圖四十七 各變因最佳比例下的雞油之 CO₂ mmol 數比較圖

由(圖四十六)、(圖四十七)發現豬雞油混油體積比 1:1 的 CO_2 mmol 數多半比 1:2 少,而混油體積比 2:1 的 CO_2 mmol 數幾乎比 1:2 少。還發現**隨各變因的最佳比例不斷調整基準油組,CO_2 mmol 數有下降的趨勢**,且各油組的 CO_2 mmol 數幾乎小於高級柴油。

(3)討論

混油體積比 1:1 的 CO_2 mmol 數多半比 1:2 少,推測其相容性混油體積比 1:1 低於 1:2 ;混油體積比 2:1 的 CO_2 mmol 數幾乎比 1:2 少,推測其相容性混油體積比 2:1 又更差,使燃燒更不完全。隨變因的最佳比例不斷調整基準油組, CO_2 mmol 數有下降趨勢,表示油組的確更加環保,符合我們的理念。各油組的 CO_2 mmol 數幾乎小於高級柴油,推測跟不飽和度有關,動物油不飽和度較低, CO_2 mmol 數也較低。

3.最佳油組下的植物油

▲圖四十八 不同植物油之 CO₂ mmol 數比較圖

表二十五 常見市售油的脂肪酸含量表

項目	牛油	豬油	雞油	清香油	動物性奶油	椰子油	葡萄籽油	葵花油	大豆油	玉 米 油	花生油	玄 米 油	純 芝 麻 油	油菜籽油	芥花油	純 橄 欖 油	苦茶油
單元性不飽和脂肪酸(%)	44	45	47	56	24	8	19	23	23	27	41	43	41	60	63	73	83
多元性不飽和脂肪酸(%)	2	16	18	18	3	2	71	65	62	60	38	35	44	34	30	11	7
飽和脂肪酸(%)	54	39	35	26	73	90	10	12	15	13	21	22	16	6	7	16	11
膽固醇 (%)	182	102	69	76	197	0	0	0	0	0	0	0	0	0	0	0	0

資料來源:行政院衛生署 食品成分資料庫

由(圖四十八)發現除玄米油外,混油體積比 1:1 的 CO_2 mmol 數比 1:2 多,而混油體積比 2:1 的 CO_2 mmol 數跟 1:2 差異沒動物油那麼大。還可發現 CO_2 mmol 數有玄米油<花生油<葵花油<葡萄籽油的趨勢,而純生質柴油的 CO_2 mmol 數皆比有混油的多,且各油組的 CO_2 mmol 數幾乎都大於高級柴油。

(1)討論

混油體積比 1:1 的 CO_2 mmol 數比 1:2 多,推測跟高級柴油比例有關,高級柴油測得的 CO_2 mmol 數比大多植物油的數據少,當其比例提升, CO_2 mmol 數將跟著減少。混油體積比 2:1 的 CO_2 mmol 數跟 1:2 比差異減少,推測由於植物油常溫為液態,跟相容性的提升有關。文獻中提到,脂肪酸的氧化跟不飽和度有關,油脂的不飽和度愈高,即雙鍵愈多,愈容易氧化,分解產生一些分子量較小而揮發性較高的化合物(註四)。植物油為不飽和脂肪,故脂肪酸較容易氧化, CO_2 mmol 自然較多,pH 值較低。又根據脂肪酸比例(表二十五),發現飽和脂肪酸越多的植物油,越不易氧化,使 CO_2 mmol 較少,pH 值較高,這跟文獻相呼應。各油組的 CO_2 mmol 數幾乎大於高級柴油,推測也跟不飽和度有關,植物油不飽和度較高, CO_2 mmol 數也較高。

陸、結論

- 一、由實驗一可知不管豬油雞油,完全中和時的熱值皆為最高,隨酸價之提升各混油或 純生質柴油的熱值皆不斷下降。產率則隨酸價的上升而增加。
- 二、由實驗二可知不管豬油雞油,不管以 CuSO₄、矽膠吸水的熱值都明顯比無吸水時來的高。產率則隨酸價的提升而增加。
- 三、由實驗三可知不管豬油雞油,不管以 CuSO₄、矽膠吸水,1:6(實驗油:醇之莫耳數比)的熱值都是最佳比例,而1:3~1:6(豬油:醇之莫耳數比)的產率不斷上升。
- 四、由實驗四可知不管豬油雞油,不管以 CuSO₄、矽膠吸水,加熱 2.5 小時的熱值在各混油 體積比中明顯較高,產值較大,加熱 2.5 小時在純生質柴油亦為熱值和產值較大者。
- 五、由實驗五可知豬油不管以 CuSO₄、矽膠來吸水,溫度 70°C 的熱值在混油中的熱值皆最高,純生質柴油的熱值隨溫度的上升而提升,產率可發現隨溫度上升而提高的現象。 雞油不管以 CuSO₄、矽膠來吸水,溫度 60°C 的熱值在各混油體積比中皆最高,產率仍可發現隨溫度上升而提高的現象。
- 六、由實驗六可知不管豬油雞油,不管以 $CuSO_4$ 、矽膠吸水, H_2SO_4 2M 的熱值在各混油中皆最高,產率熱值皆可發現隨濃度上升而略為提高的現象。
- 七、由以上實驗可得出不論以 CuSO4、矽膠吸水,最佳油組的豬油為酸價 0(KOH 的毫克數/

實驗油 g 數),油醇莫耳數比 1:6,時間 2.5 小時,溫度 70° C,催化劑濃度 2M;雞油為酸價 0 (KOH 的毫克數/實驗油 g 數),油醇莫耳數比 1:6,時間 2.5 小時,溫度 60° C,催化劑濃度 2M。

- 八、由實驗七可知,在最佳油組時,動物油的熱值在各混油體積比中都比植物油高,又較飽 和的植物油,熱值較其他植物油來的高,而產率方面,動植物油差異並不大。
- 九、由實驗八可知,動物油其混油體積比 1:1 的 CO₂ mmol 數多半比 1:2 少,而混油體積比 2:1 的 CO₂ mmol 數幾乎比 1:2 少。有無吸水的 CO₂ mmol 數差異明顯,重於酸價的影響,且發現**隨各變因的最佳比例不斷調整基準油組,CO₂ mmol 數有下降趨勢**,各油組的 CO₂ mmol 數幾乎都小於高級柴油,達成了**低汙染,高效能**的理念。植物油混油體積比 1:1 的 CO₂ mmol 數比 1:2 多,而混油體積比 2:1 的 CO₂ mmol 數跟:2 差異沒動物油那麼大。CO₂ mmol 數有隨不飽和度上升而提高的趨勢,且各油組的 CO₂ mmol 數幾乎都大於高級柴油。

柒、參考資料及其他

- (一) 柯岡旗。輔英科技大學生物技術系碩士論文(2010)-生質柴油製程研究:第二節生質柴油 $p.8\sim12$ 。
- (二) <u>陳志威</u>。國立清華大學化學工程學系博士論文(2003)-油脂轉酯化反應之製程開發及其應用:1-3 生化柴油 p.8~16。
- (三) 陳維新。綠色能源。3-1 生質柴油。高立圖書。民 103 年。
- (四) 李為民,王龍耀,許娟。新能源與化工概論。4-6生物柴油。五南圖書。民 101年。
- (五) 沈胤亨。台灣大學化學工程研究所論文-生質柴油製程簡介:

http://ebooks.lib.ntu.edu.tw/1 file/moeaidb/012647/gpt002.pdf(註一)

(六) 財團法人九二一震災重建基金會。轉酯化反應(Transesterification):

http://www.taiwan921.lib.ntu.edu.tw/mypdf/bd05-3.html(註二)

(七) 黄世豐,陳國,方柏山。酯化及轉酯化法製備生物柴油過程中催化劑的研究進展:

http://www.china-nengyuan.com/tech/china-nengyuan tech 102154.pdf(註三)

(八) 蔡蘊明,國立臺灣大學化學系。油理油趣—淺談食油的化學

http://highscope.ch.ntu.edu.tw/wordpress/?p=48723(註四)

(九) 臺安醫院,醫藥專欄。如何選擇市售食用油

http://www.tahsda.org.tw/newsletters/?p=2900

【評語】050213

轉酯反應製作生質柴油反應簡單,容易進行,且參考資料容易取得,故相對的較不容易表現創意;然該作品仍能以自製卡計,以系統方式比較各種油品類型的熱值與酸價影響等頗具科研精神。但報告中分子式有誤,且此概念(動植物油製備生質柴油)存在己久,經濟效應是一個主要因素。至於二氧化碳的排放量、由於動物性油脂主要依然是碳、氫的架構、要大幅減少、恐不容易。

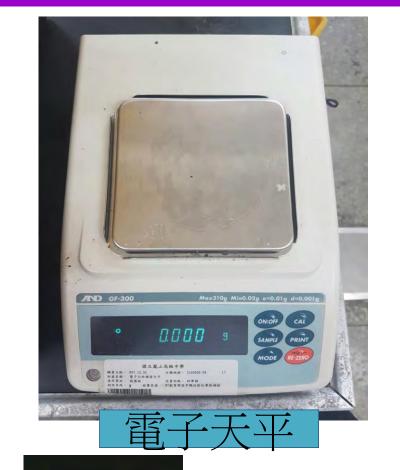
作品海報

研究動機和研究目的

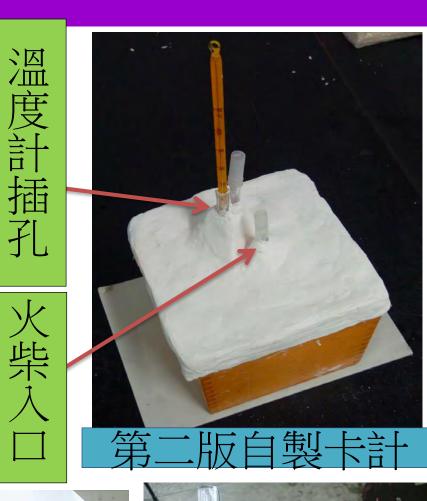
平常文獻研究的生質柴油,幾乎都以植物油當 作原料。我們好奇動物油是否也能做出生質柴油, 故以最常見的豬油及雞油著手。生質柴油的製法有 很多種,我們採實驗室中最常用的原理-轉酯化反應 來做,透過改變轉酯化反應中的因素,探討不同條 件下生質柴油的熱值。

本研究主要探討「生質柴油製作變因」、「生 質柴油熱值比較」、「生質柴油CO₂排放量」三大 主題。以環保為出發點,試圖找出低汙染、低成本、 高效能的動物油油組,使廢物回收再利用。

研究設備及器材


實驗器材

自製卡計	氧氣鋼瓶	電子天平	自製卡計	氧氣鋼瓶
離心機	流量計	玻璃管	離心機	流量計
温度計	磁攪拌子	乳頭滴管	温度計	磁攪拌子
燒杯	漏斗	加熱板	燒杯	漏斗
滴定管	分液漏斗	量筒	滴定管	分液漏斗
火柴	錐形瓶	容量瓶	火柴	錐形瓶


實驗藥品

$C_2H_5OC_2H_5$	КОН	H_2SO_4	$C_2H_5OC_2H_5$	КОН
C_2H_5OH	CuSO ₄ . 5H ₂ O	NaOH	C_2H_5OH	CuSO ₄ . 5H ₂ O
蒸餾水	矽膠	雞油	蒸餾水	矽膠

(圖二)

ÇH₂-OH

ÇH₂-OH

甘油

(圖一)

 $R''OH + H^+$

參、研究過程及方法

一、生質柴油的製備

(一)原理:轉酯化反應

1.鹼性催化轉酯

Ω ÇH₂-O-C-R₁ 3ROH Ω R₃-C-O−R CH₂-OH 脂肪酸R脂 三酸甘油脂 醇類

R_ICOO-C-H

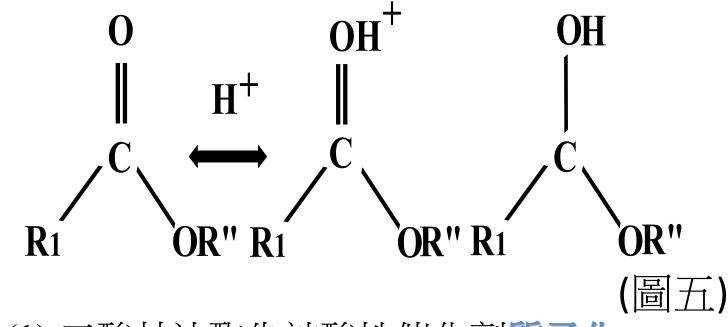
 $R_1COOH (FFA) + MeOH \longrightarrow R_1COOCMe + H_2O \text{ or } MeOH$

 $R_1COOH(FFA) + MeONa \longrightarrow R_1COOCNa + MeOH(圖三)$

R₂COO-C-H + H₂O + R₃COOH R₃COO-C-H (圖四)

(4)三酸甘油酯水解產生二酸甘油酯與游離脂肪酸(圖四)。

(1) 金屬氫氧化物作催化劑,當其溶解於 醇時,會產生水分(圖二)。


 $MeOH+ROH \longrightarrow Me^{+}+RO^{-}+H_{2}O$

(3)游離脂肪酸 (Free Fatty Acid; FFA) 在 鹼性催化轉酯中,會發生皂化反應。

(2)水分導致皂化反應

2.酸性催化轉酯 酸性催化劑可**同步催化酯化**(Esterification)與轉酯化(Transesterification)

OH

(1) 三酸甘油酯先被酸性催化劑質子化

(Protonized)(圖五)。

R'OH + OR" OR" \mathbf{R}_1 \mathbf{R}_1 **P**,(圖六) (2)質子化後C=O鍵被打斷,與醇反應生成一

面體之中間產物(Tetrahedral intermediate)(圖六)。

(3)中間產物重組,產生一個脂肪酸甲酯 (生質柴油)和二酸甘油酯(圖七)(註二)。

酸價為1(KOH的毫克數/實驗油g數)、無吸水

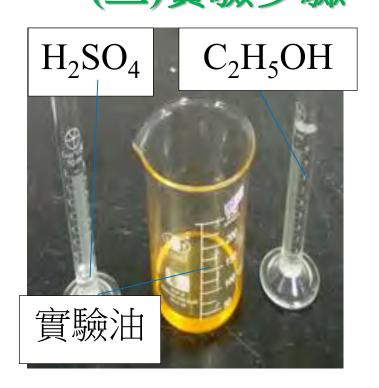
實驗油:醇之莫耳數比為1:6(實驗油取30g)

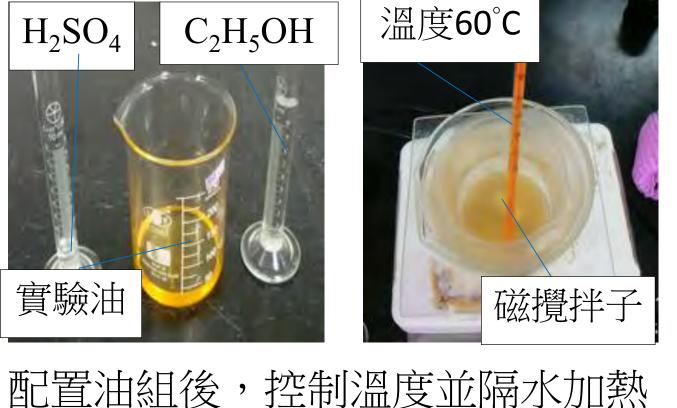
OR'

先用酸性催化轉酯反應,待酸值降到一定程度後,乾燥除水,再進行第二步的鹼性催化轉酯(註三)。

基準油組:

OR"

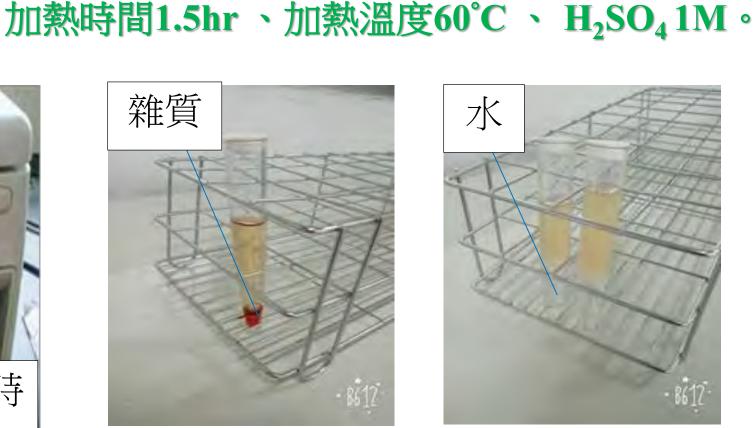

3.兩階段催化轉酯

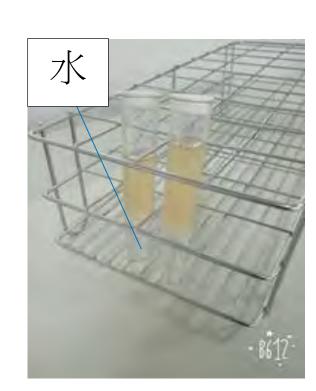

(二)實驗說明 目前大多數文獻以探討鹼性催化轉酯居多(反應時間快),故我們以酸性催化轉酯為基礎,希望在

動物油中發現一些結果,為測出最佳比例,須以一基準油組作為控制變因,再慢慢根據實驗結果調

整其他變因以找出最佳比例。

(三)實驗步驟



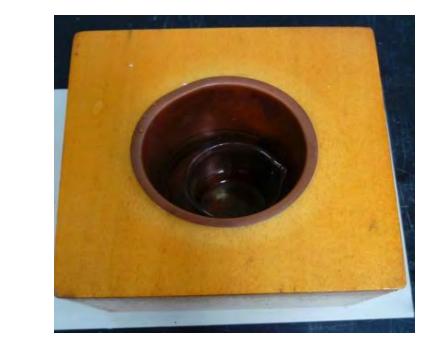


取上層,下層漏掉,上層溶液做離心,再次分離雜質

再取上層做水洗兩次(洗掉 多餘醇類),並離心取上層

熱值公式:△H=mS△T/消耗油毫升數(cal/ml)

二、生質柴油熱值的測定


(一)實驗步驟

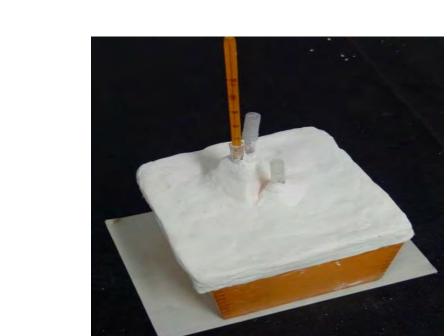
2.將自製卡計內裝入 1. 將生質柴油加入高級柴油,調成1:1、

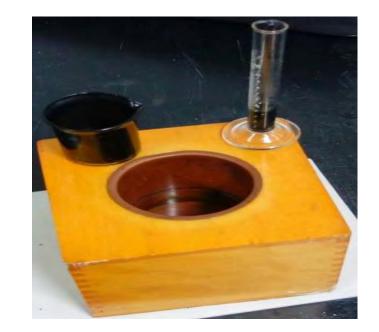
1:2、2:1(生質柴油:高級柴油之體

積比)及純生質柴油,總容量皆為5ml。

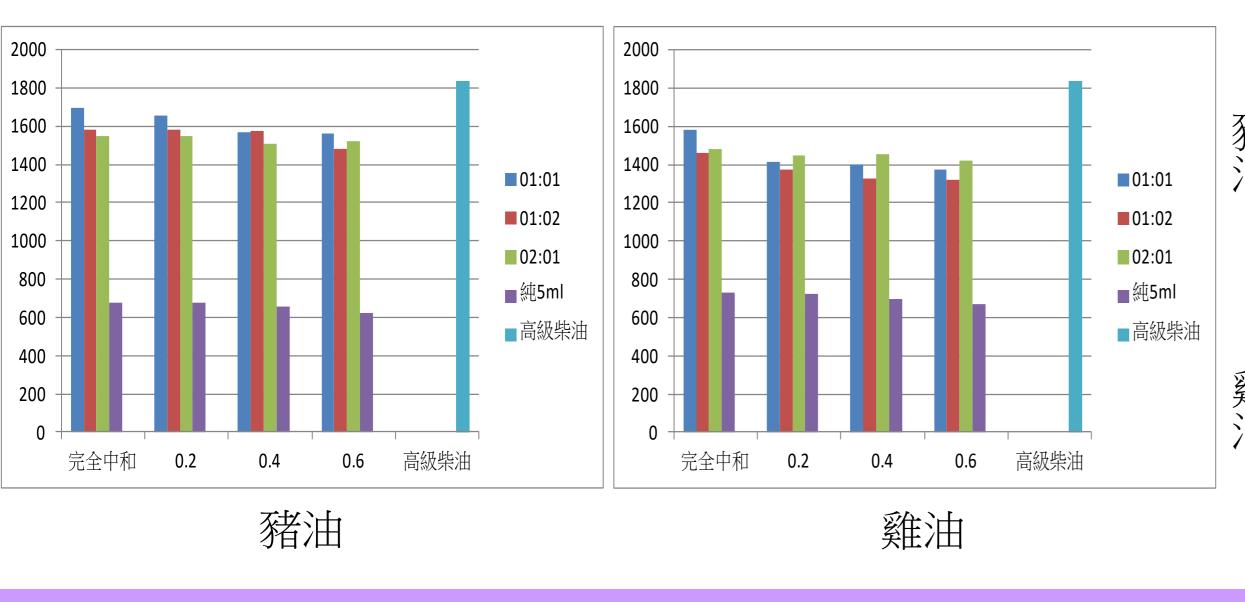
25ml的水,放置調

配好的油,測量初溫。

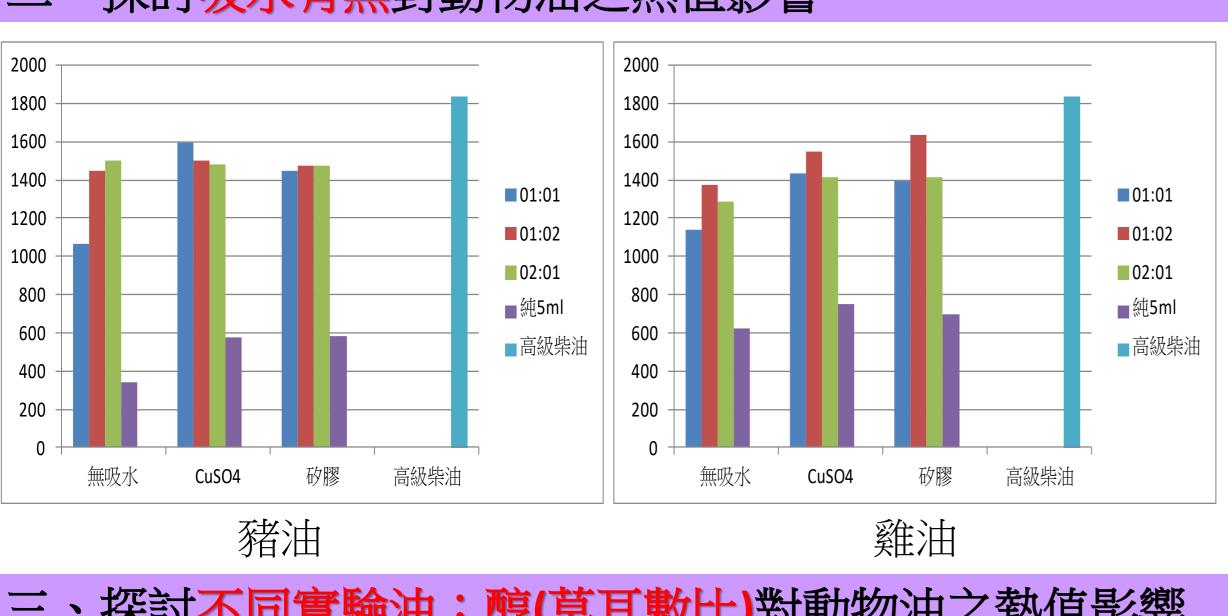



3.投入一根火柴棒,馬上通氧

4.燃燒完後,隨即插


5.測量燒杯中剩餘的 混油溶液量,並記 錄數據。

研究結果與討論


探討不同酸價對動物油之熱值影響

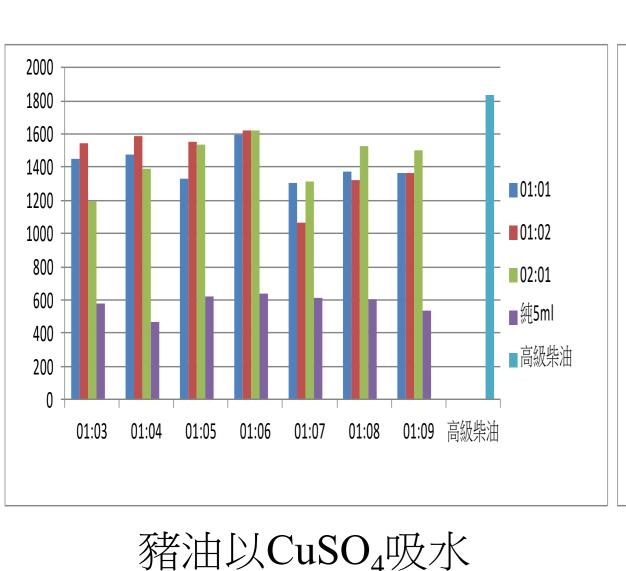
- 1.有酸價的產值隨酸價提升而增加,呼應了原理,游離脂肪酸(FFA)跟 酸性催化劑產生同步催化酯化,反應物增加(產生新油脂),產生的生 質柴油量增加
- 2.豬雞油完全中和的熱值皆最高,隨酸價提升各混油體積比的熱值皆 不斷下降。
- 3.文獻中游離脂肪酸在鹼性條件下容易起皂化反應,肥皂、醇類和油 形成穩定的乳化液,導致脂肪酸基酯類的產物(生質柴油)與甘油分相 的困難以及影響轉脂化的效率(註三),跟此結果呼應。
- 4.下個實驗中我們將完全中和作為控制變因。

探討吸水有無對動物油之熱值影響

豬油	次介绍来	猪油30g)
	無	58.7
	CuSO ₄	63.53
	矽膠	63.70
雞	吸水物質	產率(%) (生質柴油重/原 雞油30g)
油	無	59.67
	CuSO ₄	71.93

矽膠

產率(%)


(生質柴油重/原

67.47

產率(%) (生質柴油重/原

- 1.吸水的熱值都明顯比無吸水時來的高,符合文獻所說,實驗油中水 分含量的多寡會影響產率及轉酯化反應。
- 2.Wright等人(1944)指出:油脂之酸價必須低於1,否則就須使用更 多金屬氫氧化物才能中和游離脂肪酸,參與反應的反應物必須完全 無水(Anhydrous),以免所含水分產生皂化反應(註二),這跟此結 果以及上個酸價實驗的討論呼應。
- 3.下個實驗中我們都有做吸水處理。

三、探討不同實驗油:醇(莫耳數比)對動物油之熱值影響

02:01 ■純5ml ■高級柴油

豬油以矽膠吸水

` 🗻				
Sn'	(生質柴油:醇)	豬油30g)		
\sim	1:3	58.23		
\int_{Δ}	1:4	61.10		
TH	1:5	63.70		
	1:6	63.90		
八	1:7	61.87		
	1:8	57.00		
	1:9	65.20		
T.H	體積比 (生質柴油:醇)	產率(%) (生質柴油重/原 豬油30g)		
	1:3	62.56		
膠	1:4	62.70		
IF	1:5	63.40		
	1:6	63.53		
水	1:7	65.10		
	1:8	61.73		
	1:9	61.90		
1		→		
	禮籍!! (生質此	產率(%)		

油:醇)

油:醇)

1:3

1:4

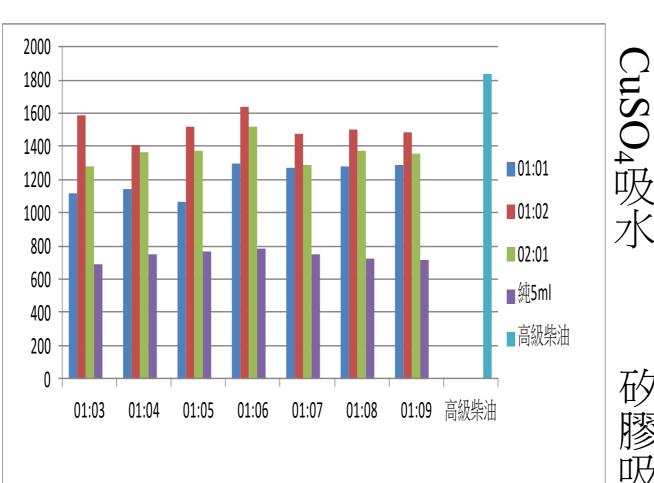
1:5

1:6

1:7

1:8

1:9


矽

1.1:6(豬汨	1:	早數比)乙後的熱性	直大多个	,推測跟野臭月
數過量有	關,導致正	三反應速率上升。	由於加熱時間	固定1.5hr,過
快轉變的	生質柴油,	又持續加熱至1.5	Shr,導致生質	柴油變質。

2.1:6(豬油:醇之莫耳數比)的熱值都是最佳比例。

- 3.Tashtoush 等人(2004)以用過的動物性油脂作為原料,並提到使 用過量100%之乙醇(油醇比從1:3變為1:6)可得到最高轉酯率與 黏度最低的產物(註二),跟此結果呼應。
- 4.下個豬油實驗我們將1:6(雞油:醇之莫耳數比)作為控制變因。
- 5.1:3~1:6(豬油:醇之莫耳數比)之間的產率皆不斷上升。

01:01 01:02 01:08 01:09 高級柴油

53.73 1:3 61.17 1:4 61.47 1:5 1:6 71.93 1:7 75.80 73.10 1:8 69.13 1:9 產率(%) 體積比(生質柴 (生質柴油重/原

(生質柴油重/原

雞油30g)

雞油30g)

55.07

59.77

65.50

67.47

71.03

69.50

75.80

64.60

68.93

67.70

產率(%)

(生質柴油重/

73.73

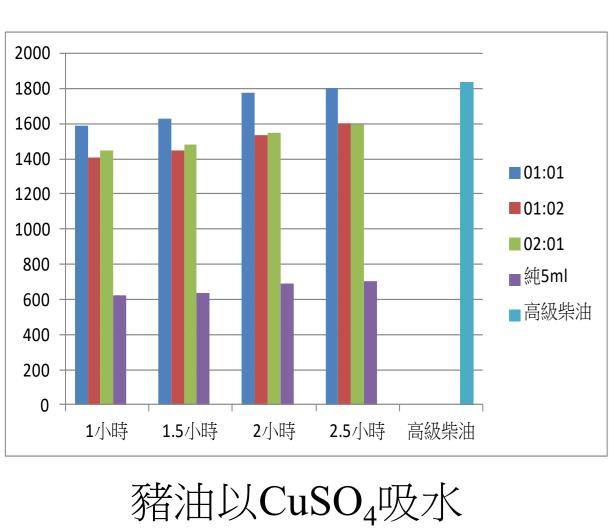
65.33

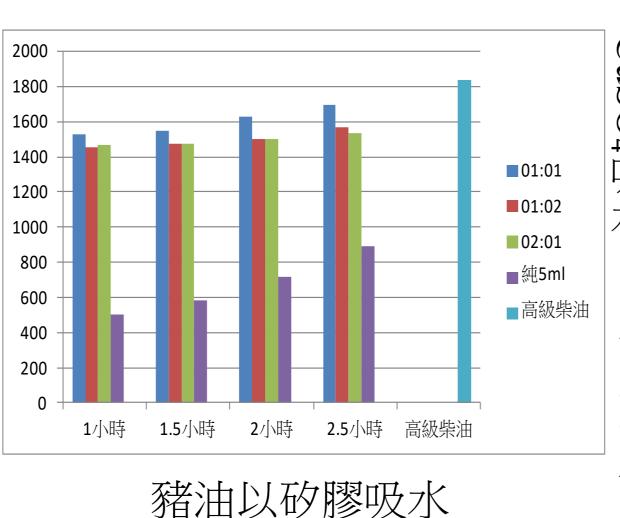
67.00

71.00

	油本身提供的熱值仍勝於自製生質柴油。
	3.下個雞油實驗我們將1:6(雞油:醇之莫耳數比)作為控制變因。
₹	4.產率1:3~1:7(雞油:醇之莫耳數比)產率不斷上升。推測跟反
- 1	

1.1:6(雞油:醇之莫耳數比)仍是最佳比例。


雞油以CuSO₄吸水


雞油以矽膠吸水

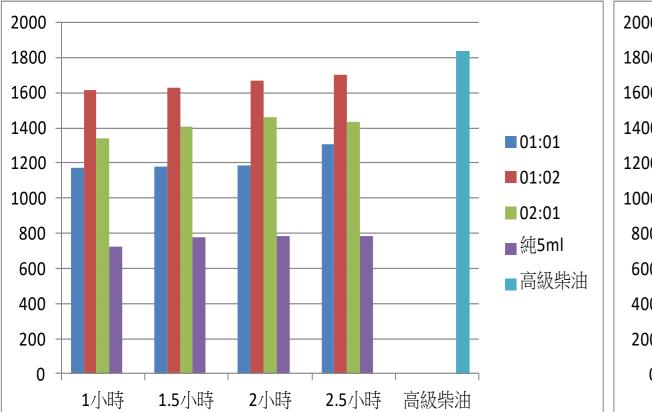
推測跟反應物 醇的比例有極大關係。轉酯化反應中,油醇比1:3是理論值,但實 際操作時須以過量的醇反應,以免油未轉酯化前,醇就用盡的情況。

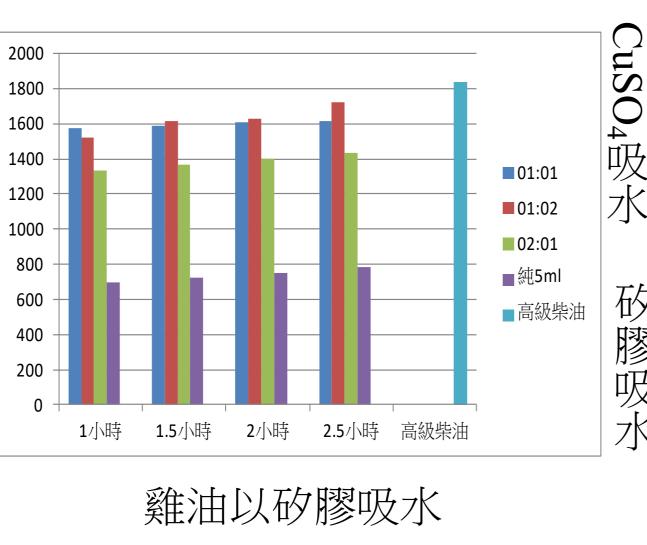
2.混油體積比1:2在四組體積比中,幾乎都是熱值最高者,推測高級柴

探討不同加熱時間對動物油之熱值影響

	加熱時間(hr)	產率(%) (生質柴油重/ 原豬油30g)
<u> </u>	1	56.33
	1.5	63.70
K	2	70.70
1 ,	2.5	66.67
		產率(%)
	加熱時間(hr)	(生質柴油重/
/ 		原豬油30g)
沙口	1	60.83

1.5

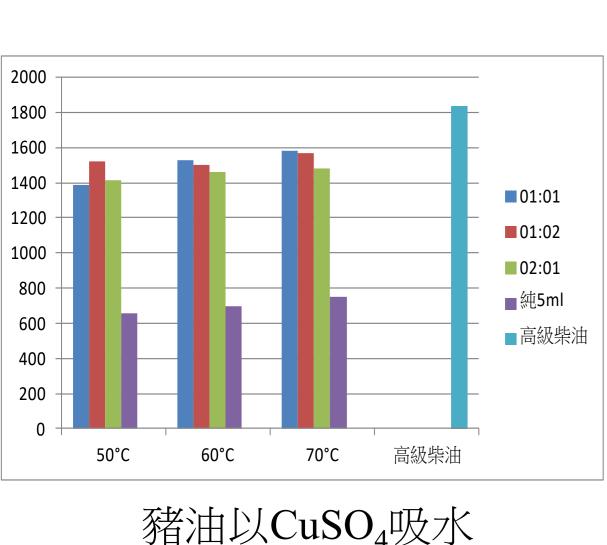

加熱時間(hr)


2.5

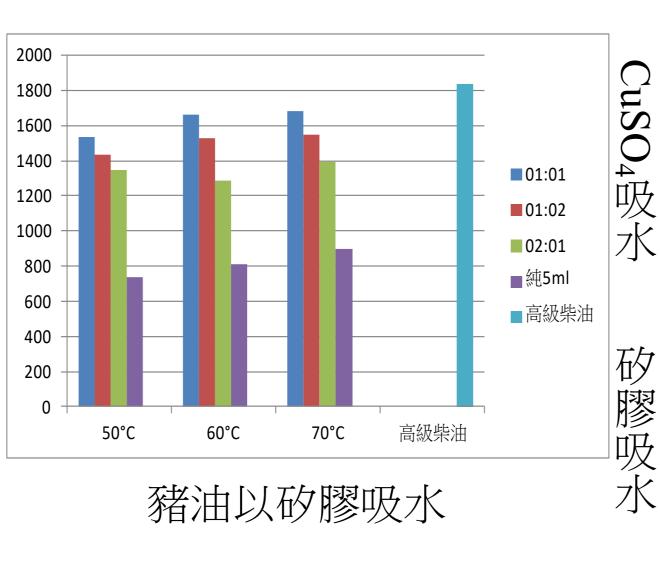
1.純生質柴油的熱值都隨加熱時間的增加而熱值提升。
2.加熱2.5hr的熱值在混油中,熱值明顯較高,.純生質柴油在加熱2.5hr
的熱值最高。加熱時間1hr的熱值在各混油體積比中皆最差。推測跟
植物油轉酯化過程所需時間較短,而同樣1hr動物油轉酯化速度慢且
轉酯化時間不夠有關,進而造成熱值皆最差的結果。

3.下個豬油實驗中我們將**加熱時間2.5hr**作為控制變因。

4.產率在加熱2hr中皆有最高產率。



_		/尔类性/四308/
)	1	61.77
	1.5	66.67
	2	72.73
	2.5	72.87
1		
夕叉	加熱時間(hr)	產率(%) (生質柴油重/ 原雞油30g)
夕 7	1	60.83
Z	1.5	64.60
	2	65.60
		1

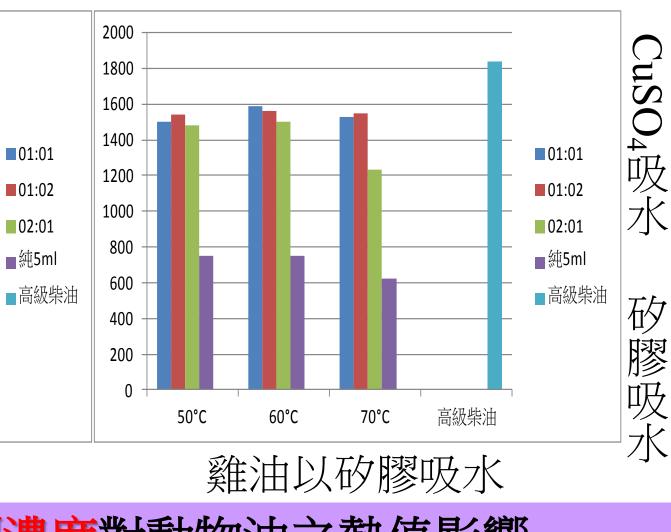

- 1.純生質柴油的熱值都隨加熱時間的加長而熱值提升。而加熱2.5hr的 熱值在各混油體積比中幾乎都最高。加熱時間1hr的熱值幾乎都最低, 推測其仍跟反應所需時間有關,也呼應剛剛豬油的推測。產率可發 現皆隨加熱時間變長而增加。
- 2.下個雞油實驗我們將加熱時間2.5hr作為控制變因。

1. 豬油純生質柴油的熱值都隨溫度的上升而提升。

五、探討不同加熱溫度對動物油之熱值影響

雞油以CuSO4吸水

	加熱溫度(°C)	產率(%) (生質柴油重/ 原豬油30g)
<i>)</i> →	50	60.20
之(60	76.87
	70	78.67
ı		
<u>,</u>	加熱溫度(°C)	產率(%) (生質柴油重/ 原豬油30g)


50

60

70

2.溫度50°C的熱值幾乎都最低,溫度70°C的熱值在各混油體積比中的熱
值皆最高。

- 3.下個豬油實驗中我們將加熱溫度70°C作為控制變因。
- 4.產率皆可發現隨溫度上升而提高的現象。推測溫度影響正逆反應的速 率及改變產值,溫度的改變使反應效率提升,植物油轉酯化中,大都 以CH₃OH作反應物,CH₃OH的沸點64.7°C,因此文獻中控制的溫度幾 乎都在 60° C。動物油轉酯化, C_2H_5OH 為反應物, C_2H_5OH 沸點 78.37° C ,為了不讓反應物在過程中汽化,選擇改變的溫度到70°C。

(生質柴油重/ 加熱溫度(°C) 原雞油30g) 50 55.77 66.03 60 70 67.93 產率(%) (生質柴油重/ 加熱溫度(°C) 原雞油30g) 50 55.67 60 66.00 67.67 70

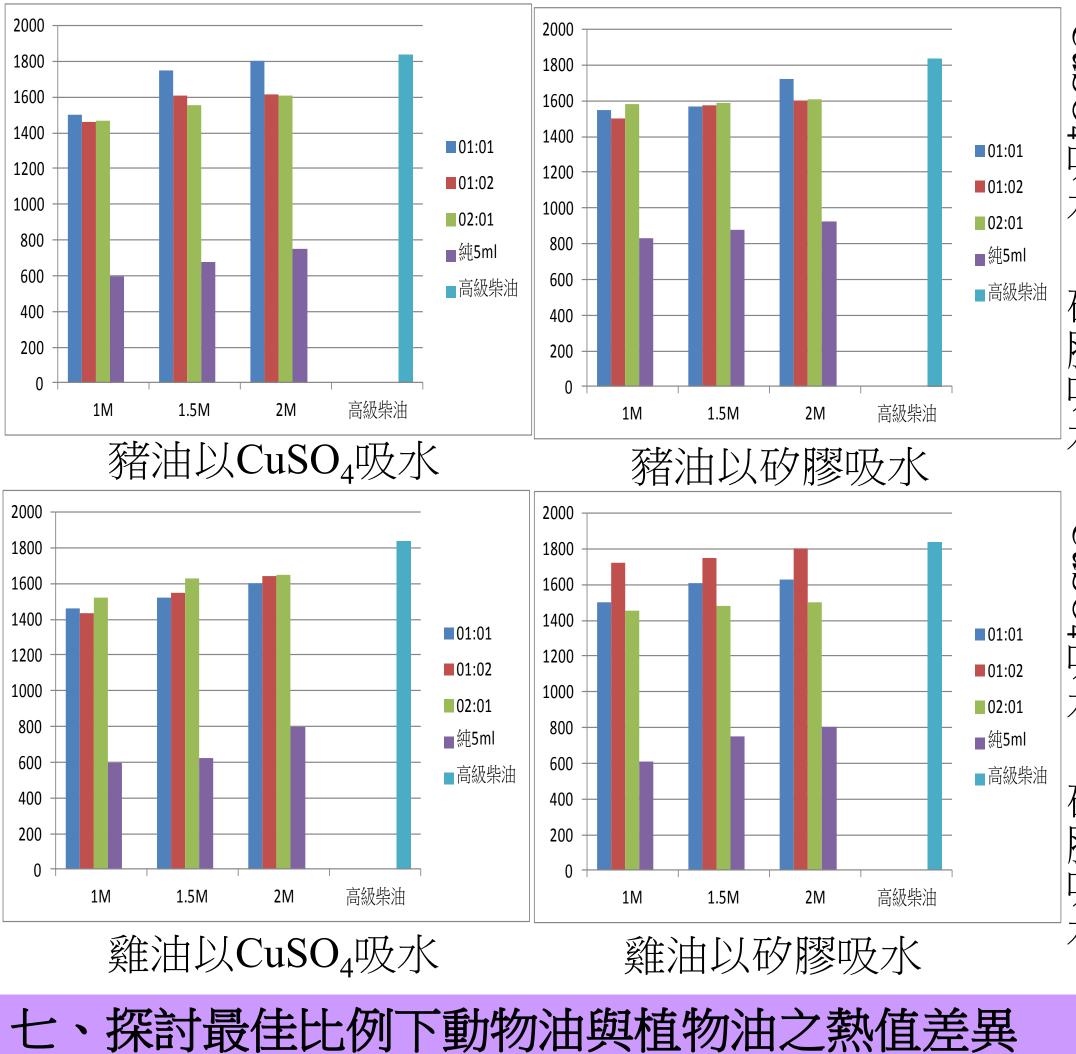
產率(%)

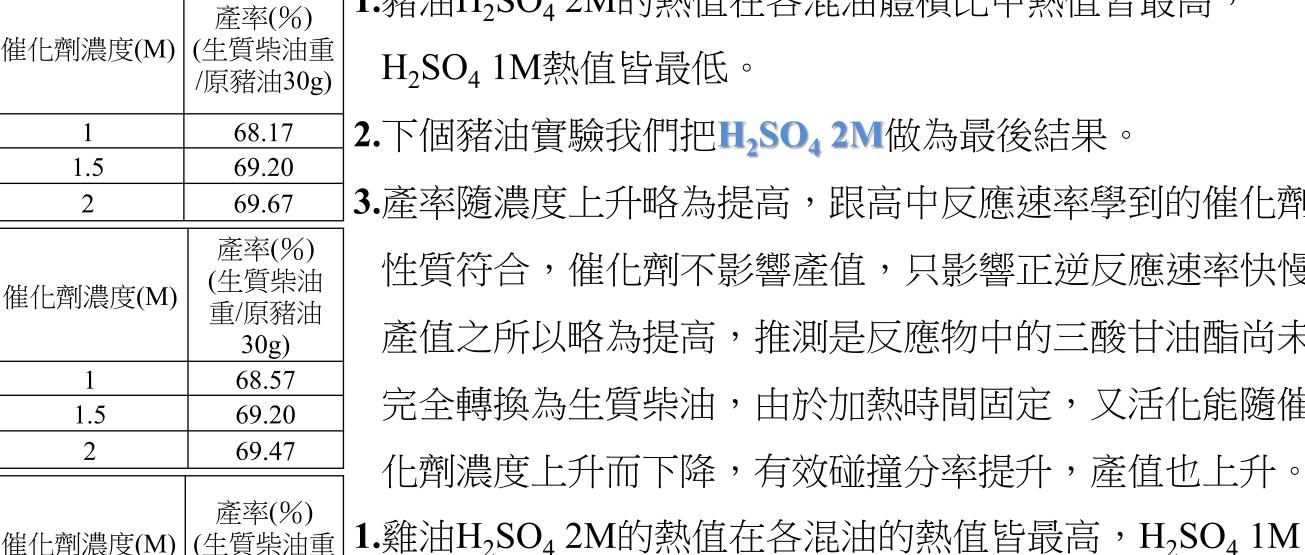
- 1.雞油溫度60°C的熱值在各混油體積比中的熱值幾乎都 最高溫度,50°C熱值都偏低。
- 2.下個雞油實驗我們將**加熱溫度60°**C作為控制變因。
- 3.產率則皆有隨溫度上升而提高的現象。

六、探討不同催化劑濃度對動物油之熱值影響

雞油以CuSO4吸水

1800


1600


1400

1200

1000

1800

產率(%)

(生質柴

油重/原

1.豬油H₂SO₄ 2M的熱值在各混油體積比中熱值皆最高, H₂SO₄ 1M熱值皆最低。

2.下個豬油實驗我們把H₂SO₄ 2M做為最後結果。 3.產率隨濃度上升略為提高,跟高中反應速率學到的催化劑

性質符合,催化劑不影響產值,只影響正逆反應速率快慢 產值之所以略為提高,推測是反應物中的三酸甘油酯尚未 完全轉換為生質柴油,由於加熱時間固定,又活化能隨催 化劑濃度上升而下降,有效碰撞分率提升,產值也上升。

熱值皆最低。 2.雞油實驗我們把H₂SO₄2M做為最後結果。

產率(%)

(生質柴

油重/原

CO₂mmol數幾乎比1:2少,推測其相容性2:1又更差,燃燒更不完全。回顧前七個熱值實驗,最佳

油組混油中,混油體積比2:1的熱值幾乎最低,1:2的熱值幾乎最高,這跟相容性好壞結果相驗證。

2.無吸水的油水分多,易水解油脂出游離脂肪酸,使燃燒 CO_2 mmol數多,pH值較低,故有無吸水 CO_2

產量

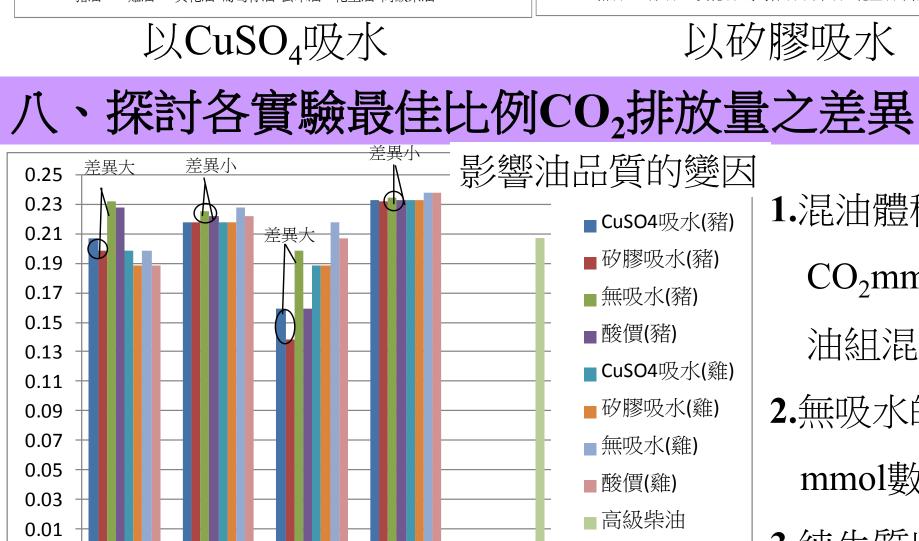
(g)

實驗油

種類

3.產率可發現隨催化劑濃度上升而略為提高,也可用另種說

法解釋,H₂SO₄ 1M、1.5M、2M 相對於水溶液中的水濃度

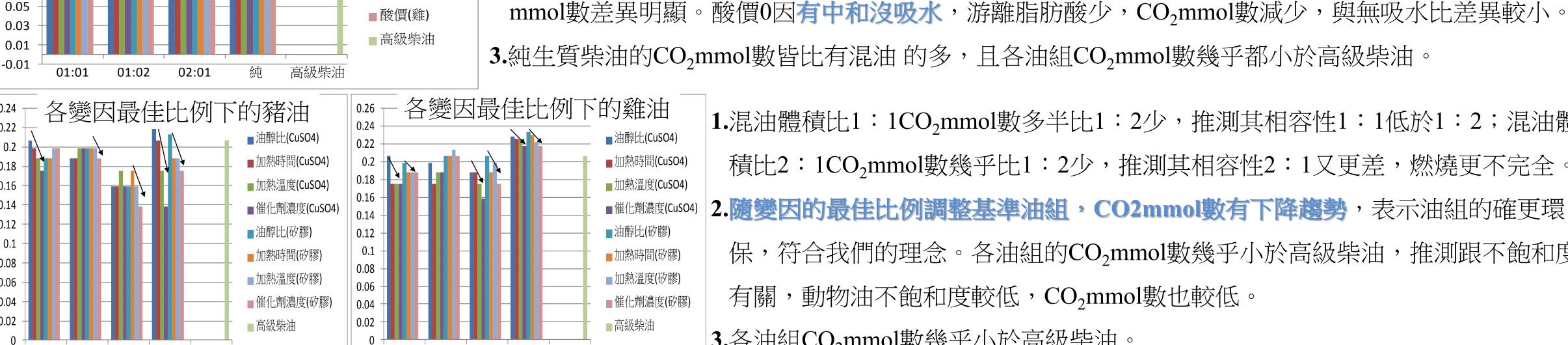

(55.5M)太稀薄,且只占2ml體積,故對反應的活化能僅是 略微降低,產率自然也只是隨其濃度上升略為提高。

01:01 1200 **01:02**

02:01

■純5ml

■高級柴油


產量

(g)

實驗油

1.動物油的熱值皆比植物油來得高,又較飽 和的植物油,熱值比其他植物油來的高。 2.產率可發現動、植物油的產率差距不大, 可能跟固定酸價為0(KOH的毫克數/實驗油 g數)有關,由於游離脂肪酸(FFA)被中和, 導致動物油沒有做**同步催化酯化**,若有酸 價,推測動物油的產率會比植物油來得高。

1.混油體積比1:1的CO₂mmol數多半比1:2少,推測其相容性1:1低於1:2;混油體積比2:1的

- 3.纯生質柴油的CO₂mmol數皆比有混油的多,且各油組CO₂mmol數幾乎都小於高級柴油。 1.混油體積比1:1CO₂mmol數多半比1:2少,推測其相容性1:1低於1:2;混油體 積比2:1CO₂mmol數幾乎比1:2少,推測其相容性2:1又更差,燃燒更不完全。
 - 2. 隨變因的最佳比例調整基準油組,CO2mmol數有下降趨勢,表示油組的確更環 保,符合我們的理念。各油組的CO₂mmol數幾乎小於高級柴油,推測跟不飽和度 有關,動物油不飽和度較低,CO₂mmol數也較低。
- 1.混油體積比1:1的CO₂mmol數比1:2多,推測跟高級柴油比例有關,高級柴油測得的CO₂mmol數比大多植

3.各油組CO₂mmol數幾乎小於高級柴油。

- 01:02 最佳油組下的植物油 0.26 0.24 ■玄米油(CuSO4) ■玄米油(矽膠) ■ 花生油(CuSO4) ■花生油(矽膠) 0.14 ■葵花油(CuSO4) 0.12 0.1 ■葵花油(矽膠) ■葡萄籽(CuSO4) ■葡萄籽(矽膠) 0.04 ■高級柴油 01:02 02:01
- ,推測因植物油常溫為液態,跟相容性的提升有關。 2.CO₂mmol數有玄米油<花生油<葵花油<葡萄籽油的趨勢,而純生質柴油的CO₂mmol數皆比有混油的多,且

物油的數據少,當其比例提升,CO₂mmol數將跟著減少。混油體積比2:1的CO₂mmol數跟1:2比差異減少

- 各油組CO₂mmol數幾乎都大於高級柴油。
- 3.文獻提到,脂肪酸氧化跟不飽和度有關,不飽和度愈高,雙鍵愈多,愈易氧化,分解出一些分子量較小揮 發性較高的化合物(註四)。植物油為不飽和脂肪,脂肪酸較易氧化, CO_2 mmol自然較多,pH值較低。各油

組的CO₂mmol數幾乎大於高級柴油,推測也跟不飽和度有關,植物油不飽和度較高, CO₂mmol數也較高。

(一) 由實驗一~實驗六可得不論CuSO₄、矽膠吸水,**最佳比例的豬油為酸價0(KOH的毫克數/實驗油g數),油醇莫耳數比1:6,時間2.5小時,溫度70°C,**

- 催化劑濃度2M;雞油為酸價0 (KOH的毫克數/實驗油g數),油醇莫耳數比1:6,時間2.5小時,溫度60℃,催化劑濃度2M。 (二) 由實驗七知,最佳油組時,動物油熱值在各混油體積比中都比植物油高,又較飽和的植物油,熱值比其他植物油高,產率則動植物油差異並不大。
- (三)由實驗八知,動物油其混油體積比1:1的CO₂mmol數多半比1:2少,而混油體積比2:1的CO₂mmol數幾乎比1:2少。有無吸水的CO₂mmol數差異

明顯,重於酸價的影響,且發現**隨各變因的最佳比例不斷調整基準油組, CO₂ mmol數有下降趨勢**,各油組的CO₂mmol數幾乎都小於高級柴油,

達成了低汙染、高效能的理念。植物油混油體積比1:1的CO₂mmol數比1:2多,而混油體積比2:1的CO₂mmol數跟1:2差異沒動物油那麼大。 CO_2 mmol數有隨不飽和度上升而提高的趨勢,且各油組的 CO_2 mmol數幾乎都大於高級柴油。

- (一) 陳志威。國立清華大學化學工程學系博士論文(2003)-油脂轉酯化反應之製程開發及其應用:1-3 生化柴油p.8~16。
- (三)沈胤亨。台灣大學化學工程研究所論文-生質柴油製程簡介 http://ebooks.lib.ntu.edu.tw/1_file/moeaidb/012647/gpt002.pdf(註一)

(二) 陳維新。綠色能源。3-1生質柴油。高立圖書。民103年。

- (四) 財團法人九二一震災重建基金會。轉酯化反應(Transesterification) http://www.taiwan921.lib.ntu.edu.tw/mypdf/bd05-3.html(註二)
- (五) 黃世豐,陳國,方柏山。酯化及轉酯化法製備生物柴油過程中催化劑的研究進展 http://www.china-nengyuan.com/tech/china-nengyuan_tech_102154.pdf (註三)
- (六)蔡蘊明,國立臺灣大學化學系。油理油趣—淺談食油的化學 http://highscope.ch.ntu.edu.tw/wordpress/?p=48723(註四)