中華民國第56屆中小學科學展覽會作品說明書

國小組 物理科

第二名

080110

旋轉吧!貝殼!

- 貝殼製造漩渦原理與變因之研究

學校名稱:國立臺中教育大學附設實驗國民小學

作者:

小六 姚杰邑

小六 張詩篇

小六 林敬旻

小六 朱唯與

指導老師:

黄尚偉

林嘉威

關鍵詞:貝殼、漩渦、3D 列印

摘要

我們發現**貝殼旋轉能產生漩渦**,進一步探討**變因、原因和應用**。研究過程中,我們自 製漩渦檢測裝置,設計量化漩渦的方法。經過實驗得出下列結論:

- 1. 貝殼最佳放置方式為「開口在上、逆開口轉、開口不封」。
- 2. 製造漩渦效果較好的貝殼形狀為「紡錘形、棍棒形、琵琶形和梨形」。
- 3. 推薦最佳製造漩渦貝殼為「玉女象法螺」!使用 3V 電壓時推薦使用「黑長香螺」。
- 4. 推論貝殼容易製造漩渦的原因為:(1)為雙錐造型;(2)外型有螺旋向上紋路;(3)內部 有螺旋向上的螺管。
- 5. **3D** 列印貝殼模型與中心縱切片都能製造漩渦。因此可人工大量製造與應用,不會有 貝殼生態保育問題。
- 6. 製造漩渦貝殼可應用於「中心縱切片取代螺旋槳、360度打氣機、貝殼旋轉冷靜瓶」。

壹、研究動機

有一天老師介紹以前去科學博物館參觀的照片,其中一張照片的大圓 筒裡有一條好長又美的漩渦(圖 2)!最讓我們驚訝的是「**漩渦居然是貝殼** 製造出來的!」原來那次展場是「抄自然:力與形的生存遊戲」特展(圖 1)! 希望參觀者藉由仿生學,理解大自然生物有很多值得學習的地方。

但到底什麼樣的貝殼可以形成漩渦?貝殼製造漩渦的效果是最好嗎? 貝殼為什麼能產生漩渦?我們有可能做出這樣的效果嗎?這個現象引起 我們強烈的好奇心,我們決定透過研究來尋找想要的答案!希望能夠解開 貝殼製造漩渦的迷團,並以貝殼為師,想出更多應用貝殼旋轉的方法。

貳、研究目的

- 一、研究影響貝殼製造漩渦的變因。
- 二、研究最佳化的製造漩渦貝殼。
- 三、研究貝殼容易製造漩渦的原因。
- 四、研究製造漩渦貝殼的應用。

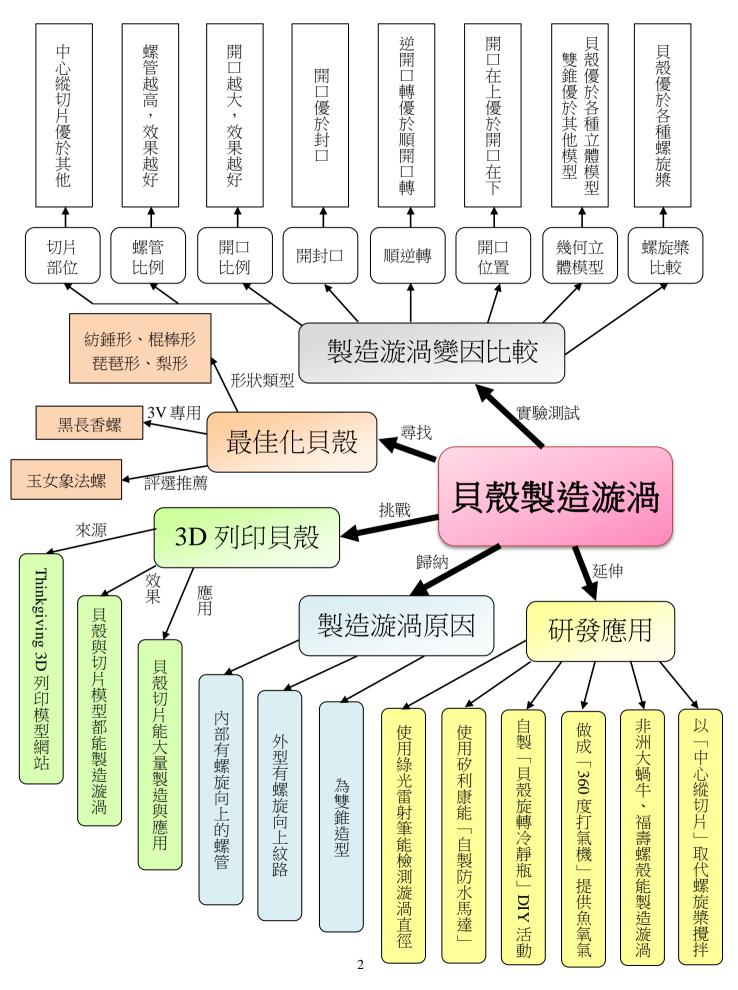


圖1:科博館 抄自然特展

圖 2: 抄自然特展展示 貝殼旋轉產生漩渦。

參、概念圖

肆、文獻探討

一、歷屆漩渦科展作品研究分析:

為了測量貝殼是否能夠製造漩渦,我們**需要一個能夠替換貝殼的漩渦檢測裝置**。我們**研究歷屆全國科展有關漩渦實驗的作品**進行分析(見下表),但發現這些漩渦製造方式都無法滿足我們的需求,我們需要像科博館抄自然特展的漩渦展台一樣,將貝殼固定在馬達,安置在水筒的最下方,如此才能清楚觀察漩渦變化。我們決定自己挑戰設計漩渦檢測裝置!

方法	屆數	作品簡稱	製造漩渦方式		分析
旋轉台	43	水龍捲	將裝水容器,放在自製旋轉 台上,連同容器一起旋轉。	1.	以旋轉台旋轉整個容器,無法應 用在貝殼旋轉上!
孔洞漏水	47	水中的 殺手	容器下方有孔洞,水從孔洞漏出,自然形成漩渦。	1.	水位會逐漸降低,水位會對漩渦 形狀產生影響,測量不精準。 容器漏水,無法應用在貝殼旋轉
手持物品 攪拌	47	水中的 殺手	以湯匙、吸管或針筒放入裝 水容器裡攪拌。	1.	手持物品攪拌,速度過慢,且誤 差大。
加熱板 攪拌	47	水中的 殺手	以儀器讓旋轉石旋轉,帶動 容器中的水形成漩渦。	1.	以加熱板的攪拌子旋轉,無法應 用在貝殼旋轉上!
馬達連接長軸從上	43	水龍捲	用自製電動轉槳(馬達上連接長軸),從上方放入裝水容器。 器中旋轉 20 秒,再將轉槳抽離裝水容器。	1. 2.	以馬達轉動轉槳,穩定度高! 馬達與轉槳從上方放入水中,轉 槳同時在漩渦裡轉動,會影響漩 渦的形狀與效果。
方攪拌	48	水中 舞者	以馬達連接拉直前端折彎的 迴紋針,從上方放入裝水容 器中旋轉。		將轉槳抽離裝水容器,可避免轉 槳干擾漩渦,但轉槳離開水後, 漩渦會越來越小,測量不精準。
馬達在容 器底部	-		密封的圓筒裝水,馬達與貝殼架在圓筒底部		馬達與貝殼在容器底部,漩渦會 在上方,貝殼不會影響漩渦形狀 密封圓筒,無法更換貝殼與馬達

二、貝殼專有名詞定義:

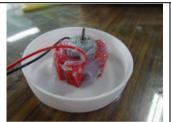
實驗過程中,我們需要描述貝殼外型產生的差異,因此根據 貝殼圖鑑界定貝殼用到的部位名稱,以方便稱呼。

三、貝殼形狀分類:

我們需要針對不同形狀的貝殼進 行研究,因此採用貝殼圖鑑的形狀 分類系統,並進行收集。但不研究 價錢太貴、稀有或長相奇特貝殼。

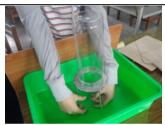
伍、實驗裝置設計

研究過全國科展有關漩渦實驗的作品,我們需要的漩渦檢測裝置要有以下的特色:馬達 與貝殼在裝水容器的底部、貝殼和馬達要容易更換、漩渦周圍不能有其他物品,才容易測量。 我們花了三個月設計與製作出所需要的「漩渦檢測裝置」,並設計測量漩渦量化的方法。


一、自製漩渦檢測裝置

1. 倒放裝水容器:

我們需要一個裝水很高的圓形容器檢測漩渦,但馬達和貝殼需要架在水底,因此**裝水容器必須倒放**,讓開口朝下。如果容器正放,那馬達和貝殼必須黏在容器底部,更換貝殼很麻煩。嘗試過果汁機和馬達黏貼蓋子方法後,最後想到大氣壓力的實驗,將圓形容器裝水倒放在水族箱中,即使圓形容器高出水面,只要開口不離開水,裡面的水也不會降低流失。為了撐住圓形容器,且容易更換貝殼和馬達,我們找到中空的三腳架來架住上方的圓形容器。


拆解果汁機當容器,但 馬達轉速過快,會無法 判斷貝殼效果。

將馬達黏貼在蓋子上, 將瓶子倒放,能形成漩 渦。但更換馬達麻煩。

使用大氣壓力實驗,瓶 子裝水倒放,瓶口泡在 水中,水不會流下來。

使用三腳架來撐住圓 形容器,更換貝殼和馬 達都方便。

2. 防水馬達:

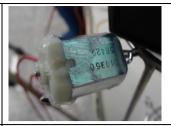
為了將馬達放置在容器底部,我們嘗試過將馬達放入水中,但馬達入水就壞了。後來購買潛水艇玩具,但潛水艇玩具的馬達馬力不夠強,黏上貝殼就無法出現漩渦!我們得自己想辦法做出能夠防水的馬達!我們嘗試將馬達包覆保鮮膜、熱塑水晶、塞入剖半塑膠瓶中,但都無法防水。我們測試各種黏著劑,最後找到使用能夠防水的矽利康(Silicone)。我們發現只要將馬達的孔洞與電線連接處途上矽利康(馬達轉軸的前後兩個洞本身就能防水不需要塗,塗了會黏著轉軸,無法轉動),連玩具馬達都能夠防水,放入水中轉動。我們找到了超簡易製作防水馬達方法!

潛水艇玩具放入水中 能夠製造出漩渦。

潛水艇黏上貝殼,因轉 速太慢沒有漩渦產生

嘗試用保鮮膜包住電腦風扇放入水中失敗

將馬達外面包上熱塑 水晶,馬達還是滲水。


麗龍膠,膠黏住馬達軸

馬達塞入塑膠瓶,灌保 跟學校其他老師學習 使用矽利康。

將玩具馬達塗上矽利 康就能變成防水馬達。

矽利康只要塗馬達的 孔洞和電線接合處。

3. 固定馬達鐵夾:

因為我們需要測試不同馬達的效果,也希望維修方便,我們開始思考如何將馬達架在三腳架 上,又能快速折換馬達。我們將電腦風扇擋板綁在三腳架上,用洗衣鐵夾夾住馬達,只要打開夾 **子就能更換馬達。**我們使用木片黏在三腳架上固定鐵夾,將馬達包泡棉片,避免夾住馬達時搖動。

將電腦風扇擋板以棉 線綁在三腳架上。

原本將馬達黏在擋板 上但無法更換,放棄

跟老師學習使用線鋸。

用線鋸將擋板中心切 斷,才不會擋到馬達軸

將馬達包泡棉增加厚 度,讓鐵夾能夾住馬達 利用鐵夾更換馬達。

將鐵灰固定在木板上,

以熱熔槍將木板固定 在三腳架上。

熱熔槍固定處需用矽 利康塗過才能防水。

4. 貝殼固定平台:

我們需要將貝殼固定在馬達軸上,並且要能快速更換貝殼。嘗試過熱熔膠、各種黏土、熱塑水 晶效果都不好。後來想到馬達原本的風扇,將風扇剪小塞進寶特瓶蓋,就變成能黏貼貝殼的平台。 但自製平台不平衡,後來用各種螺旋槳黏貝殼測試,找到軟風扇!扇葉容易去除,轉起來又平穩。 為了能在平台固定尖尖的貝殼,至手工藝品店購買了火山岩石環,讓貝殼尖端能插入洞中固定。

用熱熔槍在馬達軸黏 上彈珠測試,很牢固但 無法更換軸上的東西。

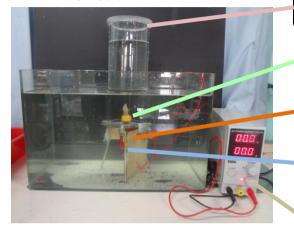
使用超輕土、樹脂土黏 貼貝殼與馬達軸,但長 期泡水後黏土會化掉。

使用熱塑水晶黏貼貝 殼與馬達軸,泡水不會 分開,但不容易固定。

將馬達風扇剪小,塞進 寶特瓶蓋,就自製出平 台,但平台不容易平衡

購買各種螺旋槳,用線 鋸鋸掉外面的扇葉。

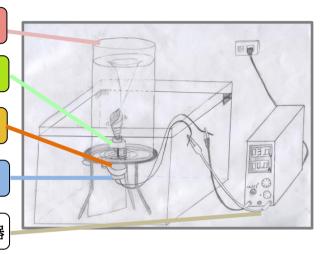
測試各種平台,最適合的是右邊的軟風扇。



至手工藝品店購買能卡住尖頭貝殼的圓環。

找到最適當的是火山岩圓環,能固定貝殼。

二、設計圖:


倒放裝水容器

貝殼固定平台

防水馬達

馬達固定鐵夾

直流電源供應器

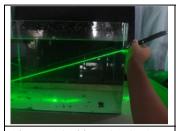
三、「漩渦檢測實驗」標準實驗流程:

- 1. 水族箱裝水至 21cm。將進行防水處理過的 12V 強扭力馬達包上泡棉,放入固定馬達鐵夾。
- 2. 將黏貼貝殼的軟風扇平台固定在馬達軸上,將馬達連接直流電電源供應器以維持穩定電壓。
- 3. 將直徑 10 cm、高 23cm 的壓克力圓筒裝滿水,倒放在水族箱內的三腳架上。
- 4. 將軟管插入倒放圓筒內,以嘴吹軟管,在圓筒內吹入空氣,直到圓筒上方有 4cm 高的空氣。
- 5. 按下直流電電源供應器開關,貝殼會開始旋轉,漸漸產生漩渦。
- 6. 測量漩渦直徑、下直徑、深度與出現時間,並以相機拍攝漩渦形狀。

將貝殼和軟風扇平台 固定在馬達軸上。

將壓克力圓筒倒放裝 滿水。

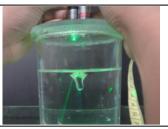
以軟管將空氣吹入圓 筒中,維持相同空氣量

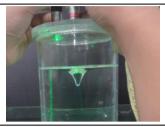

將鐵架放在圓筒下方, 打開電源讓貝殼旋轉。

四、漩渦「出現時間」測量方法:

按下直流電電源供應器開關,同時按下碼錶開關,當水面出現漩渦凹槽那一刻就按下碼錶, 記錄出現時間。**關掉直流電電源供應器,等待30秒,讓漩渦的水流完全消失,再進行下**次**測量**。相同步驟測量三次,計算平均。

五、漩渦「直徑」測量方法:


因為漩渦在倒放的圓筒內,因此無法以尺直接測量水面漩渦的直徑。我們需要能夠在空 中標示直線的工具!後來想到綠光雷射筆,當綠光雷射筆光線射入水中,會出現直線軌跡! 經過實驗發現,綠光雷射筆從照射漩渦時,會圓筒底部往下照漩渦時,會出現下列現象:


綠光雷射筆照射水族 箱,會出現直線軌跡。

照漩渦中心點,漩渦底 部會發出綠色光芒。

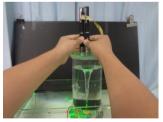
照漩渦內部,因為水面 不是平的,光線會折射 是平的,光線是直的。

照漩渦外水面, 因水面

我們利用兩支 100mw 綠光雷射筆結合布尺做出測量工具。第一支雷射筆照漩渦中心點,當漩 渦底部出現光點為圓心。第二支雷射筆移動到光線從折射變成第一次直線。間距為漩渦半徑。 六、漩渦「下直徑」測量方法:

漩渦大到深度連接貝殼時,底部會出現間距,我們稱為下直徑。漩渦大時深度都相同, **露用下直徑判斷漩渦好壞!**測量下直徑方式是將布尺平貼在水族箱上,將雷射筆貼緊捲尺, 照射漩渦底部,當光線沒捲進漩渦,則為一邊位置,再測另一邊位置,兩側距離則為下直徑。 七、漩渦「深度」測量方法:

我們利用魔鬼氈繞住圓筒,平視魔鬼氈,將它移動到漩渦最底部。以直尺測量水平面到魔鬼 氈的距離,就是漩渦深度。因為漩渦底部會上下移動,我們測量漩渦底部移動到最深的距離。


圖 3:將雷射筆固定在 圖 4:改做成能移動測 瓶子,但發現漩渦中心 點不一定是圓筒中間

量的方式,將布尺固定 在雷射筆上直接測量

圖 5:完成的雷射筆測 **圖 6**:以綠光雷射筆放 量工具,一支雷射筆黏 在圓筒底部從上方照 貼布尺,另一支可移動 射漩渦測直徑。

圖 7: 漩渦太大,底部 會出現間距,稱下直徑

圖 8: 以布尺平貼,以

圖 8: 用橡皮筋標示漩 圖 10: 改用魔鬼氈標

雷射筆平射測下直徑。7渦深度,但不好移動。 示深度,拆卸方便。

陸、研究過程及結果

第一部分、貝殼與其他物品製造漩渦的比較:

貝殼旋轉後可以產生漩渦,但**貝殼製造漩渦的效果是最好的嗎?**我們**比較各種螺旋槳製 造漩渦的效果,發現貝殼還是略勝一籌!**進一步研究**幾何立體模型**和貝殼的效果差異。

實驗一、螺旋樂與貝殼形成漩渦的比較:

- (一)、研究過程(實驗標準流程請詳見「伍、實驗裝置設計」):
 - 1. 我們猜測馬達裝上螺旋槳後旋轉也會產生漩渦,於是找了各種螺旋槳與貝殼做比較。
 - 2.將各種螺旋槳及兩顆可形成漩渦的貝殼輪流裝上圓形玩具小馬達,連接 3V 電池,放入漩 渦檢測裝置中,測量漩渦的有無、直徑、深度及漩渦出現時間,並畫出漩渦弧度。

(二)、螺旋槳種類與貝殼形成漩渦比較(電壓 3V)(詳見原始記錄):

檢測名稱	馬達上 沒裝東西	四葉 螺旋槳	軟風扇	齒輪	船槳	水車	軟風扇平台 (去掉扇葉)	粗紋峨螺	鼬耳螺
長相	9	*		()		*			
漩渦形成	沒有	有	有	有	沒有	沒有	有	有	有
直徑(cm)		5.0	4.2	1.5			0.4	1.6	2.0
深度(cm)		2.0	1.1	1.7	船槳有	水車有	0.8	14.0	7.3
出現時間(秒)	馬達軸	6.2	6.5	10.2	慢速轉	慢速轉	55.8	13.4	11.0
漩渦照片	有轉動 ,但無 法形成	2.	1		動,但可能因為太重	動,但 可能因 為太重			
漩渦弧度	漩渦				沒有形成漩渦	沒有形成漩渦			V

(三)、研究結果(漩渦效果好的定義:深度較深>直徑較長):

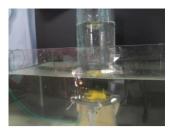

- 1. 貝殼形成漩渦的效果比各種螺旋槳還好!
- 2. 四葉螺旋槳與軟風扇形成漩渦的時間都比貝殼快很多,但軟風扇去掉扇葉後時間就變很慢, 顯示螺旋槳是靠扇葉撥動水,快速形成漩渦。但扇葉撥動水效果卻不如沒有扇葉的貝殼!
- 3. 船槳和水車沒有形成漩渦,推測是重量太重導致轉速不夠快。
- 4. 測試的貝殼以粗紋峨螺效果最佳,我們決定幾何立體模型實驗以粗紋峨螺進行比較。

圖 11:購買各種螺旋 槳,進行漩渦測試。

圖 12:馬達裝上軟風扇,測試轉動效果。

圖 13:使用四葉螺旋 槳,產生的漩渦很小。

圖 14:使用粗紋峨螺 能夠製造很大的漩渦。

實驗二、幾何立體模型與貝殼形成漩渦的比較:

- (一)、研究過程(實驗標準流程請詳見「伍、實驗裝置設計」):
 - 1.沒有扇葉的貝殼卻能形成更好的漩渦,我們猜測與貝殼的外型輪廓有關,於是以實驗一的粗紋峨螺的尺寸(長 2cm、寬 2cm、高 3cm),製作出相似比例的幾何立體模型比較。
- 2. 我們以手捏製幾何立體模型,但因為模型需要泡浸水裡旋轉,市面上的黏土泡水會分解。 我們最後找到「熱塑水晶」!泡熱水時可塑形,冷卻後像石頭一樣堅固,泡水不會分解!
- 3. 我們將幾何立體模型黏在軟風扇平台上,以強扭力馬達、3V 電壓進行漩渦檢測實驗。

(二)、幾何立體模型與貝殼形成漩渦比較(電壓 3V)(詳見原始記錄):

檢測名稱	粗紋 峨螺	長方體	正方體	球體	橢球	圓柱	圓錐	三角錐	雙圓錐	雙三 角錐	雙四 角錐
長相	No.										•
尺寸(cm)	長2 寬2 高3	長 2 寬 2 高 3	邊長2	直徑 2	直徑 2 高 3	直徑 2 高 3	直徑 2 高 3	底邊 2 高 3	直徑 2 高 3	底邊 2 高 3	底邊 2 高 3
直徑(cm)	1.6	3.4	3.0	3.0	2.0	3.2	3.6	4.4	1.4	4.4	4.2
深度(cm)	14.0	2.5	3.2	1.0	1.2	1.2	2.2	4.1	3.5	5.6	4.7
出現時間(s)	13.4	9.9	8.6	24.4	16.7	24.5	18.7	13.2	14.2	5.6	15.7
漩渦 照片			V			A		7			
漩渦 弧度		Y	Y				V	V	\	Y	V

(三)、研究結果: (漩渦效果好的定義:深度較深>直徑較長)

- 1. 貝殼製造漩渦比各種幾何立體模型都還大,表示除了外型輪廓還有其他影響因素!
- 2. 造型**有稜角和尖錐形狀**(雙四角錐、四角錐、三角錐)產生漩渦效果較佳,其中以**雙錐形 狀效果最好。外觀和圓弧有關的形狀**(球體、橢球、圓柱、圓錐)產生漩渦效果都很差。

圖 15: 熱塑水晶放入熱 水中就會變軟,能塑形

晶捏成幾何立體模型。 台,固定在馬達上。

圖 16:將軟化的熱塑水 **圖 17:**將長方體黏在平 **圖 18:**長方體製造漩 渦的效果不太好。

第二部分、最佳貝殼擺法:

貝殼究竟如何擺放才能造成最佳的旋轉漩渦?我們測試不同的擺放方式、順逆轉和開封 □,測試貝殼產生的差異!

實驗三、貝殼的放置位置、順逆轉與開封口比較:

(一)、研究過程(實驗標準流程請詳見「伍、實驗裝置設計」):

豹斑玉螺

1.我們找了兩種開口大小不同貝殼(峨螺、豹斑玉螺)(見右圖)進行 「放置位置、開封口、順逆轉」漩渦檢測實驗,**希望找到最佳貝殼擺法**。

- 2.放置方向依開口位置分成三種方式「開口在上、開口在下、横著放」。
- 3. 貝殼開口分成右旋和左旋,為了左、右旋貝殼能通用,我們不以順逆轉來定義這次實驗。 是以順著貝殼開口方向旋轉為「順開口轉」,背著開口方向旋轉為「逆開口轉」。
- 4.封口方式是將投影片剪成適當大小,以熱融膠黏貼在開口上,減少封口重量產生的影響。

(二)、貝殼放置位置、順逆轉與開封口形成漩渦比較(詳見原始記錄):

檢測類別			開口放置位置	显(電壓 3V)		
貝殼種類		峨螺			豹斑玉螺	
檢測內容	開口在上	開口在下	横著放	開口在上	開口在下	横著放
直徑(cm)	6.2	5.0	4.6	3.2	6.8	4.8
深度(cm)	7.3	2.7	1.7	8.8	2.8	2.8
漩渦照片			*			
漩渦弧度	\rightarrow	>		V	}	

檢測類別	順	逆轉(開□	在上)(3V	7)	開封口(開口在上)	(逆開口轉	(3V)
貝殼種類	峨			豹斑玉螺		螺	豹斑玉螺	
檢測內容	順開口轉	逆開口轉	順開口轉	逆開口轉	開口	封口	開口	封口
直徑(cm)	5.0	6.2	4.4	3.2	6.2	5.6	3.2	6.0
深度(cm)	4.3	7.3	2.2	8.8	7.3	5.0	8.8	4.7
漩渦照片								
漩渦弧度	>	\bigvee	Y	Y	\bigvee	Y		

(三)、研究結果(綜合兩種貝殼數據,都得到相同的結果):

- 1. 「開口放置位置」以開口在上最佳,開口在下其次,橫著放最差。「順逆轉」以逆開口轉 優於順開口轉。「開封口」為開口比封口佳。
- 2. 貝殼最佳放置方式應該「開口在上、逆開口轉、開口不封」。

圖 19:將峨螺橫著

放,黏貼在平台上。 口在下的漩渦效果。

應器,讓馬達穩定轉動 斑玉螺開口封起來。

圖 20: 測試約斑玉螺開 **圖 21:** 使用直流電源供 **圖 22:** 以投影片將約

第三部分、最適合製造漩渦的貝殼研究:

我們希望能夠找到最適合製造漩渦的貝殼,並歸納出貝殼容易製造漩渦的條件。於是我 們到貝殼專賣店購買各種形狀的貝殼,希望能找到最佳製造漩渦貝殼。

實驗四、各種貝殼形狀製造漩渦比較:

(一)、研究過程(實驗標準流程請詳見「伍、實驗裝置設計」):

- 1. 我們至貝殼專賣店依貝殼圖鑑挑選各類形狀貝殼代表。因為貝殼形狀不一,我們挑選寬 度盡量在 1.5~2.0 cm,減少實驗誤差。有些類型貝殼形狀怪異或價錢太高就沒有購買。
- 2. 我們針對每種貝殼**檢測開口在上、開口在下差異**(都用逆開口轉)。
- 將各種貝殼以火山岩環黏在軟風扇平台上,以強扭力馬達、3V 電壓進行漩渦檢測實驗。 3.

(二)、貝殼放置位置、順逆轉與開封口形成漩渦比較(電壓 3V)(詳見原始記錄):

	双灰且压点	1 //XXZTU.	7 (PI) 23 (PI)			· / (FI)	717DDD9417	4	
貝殼種類	陀蚊	累形 ▲		梨	形		螺絲	糸形	
貝殼名稱	細紋	鐘螺	峨	螺	金塔玉黍螺		褐斑筍螺		
價錢(元)	2	.0	5	5	1	5	40		
貝殼長相									
開口位置	在上	在下	在上	在下	在上	在下	在上	在下	
直徑(cm)	2.6	2.4	3.4	3.4	3.0	2.6	3.4	1.8	
深度(cm)	11.8	4.3	12.3	8.7	13.3	4.1	9.8	4.7	
出現時間(秒)	12.5	15.0	10.6	9.3	11.6	16.4	14.3	21.3	
漩渦照片		V						7	
漩渦弧度		V		V		V	Y	Y	

			A -						
貝殼種類		紡鉱	亜形 🔽			棍棒	奉形		
貝殼名稱	旋棒	弟螺	巴比倫捲管		黑長	香螺	斑芋螺		
價錢(元)	2	.0	1	0	1	5	1	0	
貝殼長相									
開口位置	在上	在下	在上	在下	在上	在下	在上	在下	
直徑(cm)	4.4	2.6	2.6	2.6	4.6	2.6	3.6	3.2	
深度(cm)	6.7	3.1	15.5	3.7	15.5	4.2	9.3	1.8	
出現時間(秒)	12.2	12.8	12.5	21.5	13.1	9.4	17.4	23.8	
漩渦照片		V							
漩渦弧度	Y	V		V		V		Y	

貝殼種類	琵琶	≣形 🕡	项P;	形	笠形 📤	心形 🌒	三角形
貝殼名稱	豹斑	玉螺	金環	寶螺	龜甲笠螺	雞心貝	蛤蜊
價錢(元)	4	5	無(家社	里帶來)	15	20	無
貝殼長相							
開口位置	在上	在下	在上	在下			
直徑(cm)	2.0	2.6	2.2	2.8	2.2	3.4	6.6
深度(cm)	15.5	7.4	9.6	9.5	2.7	4.1	3.1
出現時間(秒)	16.6	14.0	15.6	13.5	10.3	13.5	53.6
漩渦照片					4		
漩渦弧度		V			V	V	

(三)、研究結果(漩渦效果好的定義:下直徑較大>深度較深>直徑較長):

1. 製造漩渦比較好的貝殼形狀為「紡錘形、棍棒形、琵琶形和梨形」(如下圖)。

- 3. 有內部螺管結構的貝殼製造漩渦效果都是開口在上比開口在下好。
- 4. 我們挑選出三種較佳的貝殼 (黑長香螺、巴比倫捲管、豹斑玉螺) 進入總決賽。

圖 23:到貝殼專賣店 購買各種形狀的貝殼

圖 24:比對貝殼圖鑑, 確認要購買貝殼形狀。

圖 25:檢測旋梯螺製造 漩渦的效果。

圖 26:巴比倫捲管產 生的漩渦效果很好。

(四)、延伸實驗(最佳製造漩渦貝殼複賽)

根據實驗五結果,製造漩渦最佳貝殼形狀為「紡錘形、棍棒形、琵琶形和梨形」。我們決定再去購買這四類的貝殼(12種)進行測試!我們使用電壓 3V 測試漩渦,最後又挑

出三種較低	生的貝殼 (編	織蛹筆螺、玉	女象法螺、焦	斑峨螺)進入	.總決賽。	
貝殼種類	棍棒	奉形 🕈	琵琶	≣形 🕡	梨	形 🌲
貝殼名稱	翼法螺	玉女象法螺	浮雕蜑螺	棋盤鬘螺	焦斑娥螺	黄陸貝
貝殼長相	- FOR	1				6
價錢(元)	20	10	10	15	10	5
直徑(cm)	6.6	6.6	4.2	8.6	7.2	6.6
深度(cm)	7.0	12.0	9.0	8.5	12.0	6.0
出現時間(秒)	6.6	8.0	12.7	11.8	10.5	17.9
漩渦照片						
漩渦弧度						Y
貝殼種類			紡織	垂形 ▶		
貝殼名稱	黑嘴鳳凰螺	編織蛹筆螺	台灣捲管螺	黒蛹筆螺	小耳螺	筆螺
	A 4					

貝殼種類			紡錘	垂形 👂		
貝殼名稱	黑嘴鳳凰螺	編織蛹筆螺	台灣捲管螺	黑蛹筆螺	小耳螺	筆螺
貝殼長相						
價錢(元)	10	10	30	30	40	5
直徑(cm)	8.6	6.0	4.8	5.0	4.4	4.4
深度(cm)	11.2	14.5	3.0	6.0	4.7	5.5
出現時間(秒)	11.8	15.9	15.2	14.3	18.8	17.6
漩渦照片			V.			
漩渦弧度	\bigvee		Y	Y	Y	V

實驗五、最佳製造漩渦貝殼總決賽:

- (一)、研究過程(實驗標準流程請詳見「伍、實驗裝置設計」):
- 1. 根據實驗五,我們挑出了六種較佳貝殼進行「最佳製造漩渦貝殼總決賽」比較。
- 2. 因為六種貝殼的各自表現有好有壞,我們決定列出積分表,評選出各方面都優秀的貝殼!
- (二)、最佳製造漩渦貝殼積分表(積分計算方式:第一名3分、第二名2分、第三名1分)

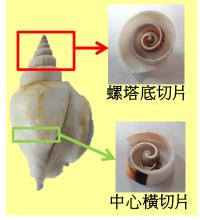
		A				
貝殼種類		紡錘形		棍棒形	梨形 🐧	琵琶形
貝殼名稱	編織蛹筆螺	黑長香螺	巴比倫捲管	玉女象法螺	焦斑峨螺	豹斑玉螺
貝殼長相				9		
價錢便宜	10元	15 元 🤼	10 元	10 元	10元	5元
3V 直徑較長	6.0cm	4.6cm	2.6cm	6.6cm 2	7.2cm	2.0cm
3V 深度較深	14.5cm 2	15.5cm 🦺	15.5cm	12.0cm 3	12.0cm 3	15.5cm
3V 出現時間較快	15.9秒	3.1 秒 📱	12.5 秒	8.0秒 🗿	10.5 秒 🗿	16.6秒
3V 漩渦照片						
3V 漩渦弧度						
6V 直徑較長	8.4cm 2	7.6cm	7.6cm	8.0cm	8.6cm	8.0cm
6V下直徑較長	1.3cm	1.2cm	1.0cm	1.5cm	0.2cm	0.8cm
6V 深度較深	15.5cm	15.5cm	15.5cm	15.5cm	15.5cm	15.5cm
6V 出現時間較快	6.0 秒	5.1秒 🙎	9.3 秒	4.4 秒	7.8 秒	9.3 秒
6V 漩渦照片						
6V 漩渦弧度						
總積分	13分	13分	8分	17 分 🦹	13分	10分

- (三)、研究結果(漩渦效果好的定義:下直徑較大>深度較深>直徑較長):
- 1. 經過三階段、25種貝殼評選,最後我們推薦最佳製造漩渦貝殼為「玉女象法螺」!
- 2. 玉女象法螺便官、6V 電壓時出現的漩渦深度、直徑和下直徑都最大、出現速度也最快。
- 3. 當只使用 3V 電壓時,我們推薦製造漩渦貝殼最好的是「黑長香螺」。
- 4. 進入總決賽的六顆貝殼都符合實驗五結論的較易製造漩渦條件:
 - (1)開口與貝殼整體比較起來,佔較大面積。(2)殼底較尖長,螺塔較鈍平。(3)當開口朝上 旋轉時,外型像上長下短的雙錐。(4)內部螺管為往上往內螺旋旋轉。

圖 27: 再次到貝殼店 購買四類較佳貝殼。

火山岩圓環及平台上。 貼在平台上進行實驗。 佳的「玉女象法螺」!

第四部分、貝殼切片比較:


我們發現**月殼專賣店出售切片的貝殼!**貝殼如果拿來替代螺旋槳製浩漩渦或攪拌,最麻 煩的就是**貝殼內部構造複雜且清洗不易!**如果貝殼切片和整顆貝殼製作漩渦效果差不多,那 便可用貝殼切片取代貝殼轉動,貝殼應用的可行性就變高很多!我們研究不同部位的切片、 不同種類貝殼切片,及 3D 列印貝殼模型製作切片效果。希望對貝殼切片有進一步的理解。

實驗六、貝殼不同部位切片與貝殼種類切片的比較:

(一)、研究過程(實驗標準流程請詳見「伍、實驗裝置設計):

 因為紅嬌鳳凰螺的外唇向外延伸且紅的很漂亮,所以貝殼店對紅嬌鳳凰螺進行不同部位 切片做販售。我們將這些切片擺成開口在上進行漩渦檢測實驗,比較與整顆貝殼差異。

2. 實驗後我們發現「中心縱切片」有很多優點,適合取代原貝殼!決定再到貝殼店購買各種種類的「原貝殼與中心縱切片」進行實驗比較(我們使用大小相同的原貝殼與切片)。 為了減少原貝殼因為重量比較重產生誤差,採用 6V 電壓進行實驗。

(二)、貝殼各部位切片、各種種類貝殼中心縱切片製造漩渦比較(詳見原始記錄):

檢測類別		Ź V	江嬌鳳凰螺	在各部位切	刀片的差異	(電壓 3V)		
部位名稱	原貝殼	殼底心	螺塔半	外唇	螺塔底	中心横	螺塔心	中心縱
	7/41/21/02	切片	切片	切片	切片	切片	切片	切片
部位長相		9	-			O.	1	
直徑(cm)	8.8	5.8	8.4	6.8	5.8	3.6	8.6	4.6
深度(cm)	3.8	4.5	6.3	5.5	1.6	1.3	15.5	8.3
出現時間(s)	8.5	12.7	11.8	10.9	19.6	10.7	14.6	6.0
漩渦照片								
漩渦弧度	\			>				

檢測類別	-	各種種類貝殼的	的原貝殼與中	心縱切片的差	異(電壓 6V)	
貝殼名稱	紅嬌鳳凰螺		棕星螺	棕星螺 切片		
部位長相				(Care)		
直徑(cm)	8.0	10.0	8.0	6.8	8.4	6.6
下直徑(cm)	2.2 1.5 1.0		0.9	1.2	1.6	
深度(cm)	15.5	15.5 15.5		15.5	15.5	15.5
出現時間(s)	3.4	3.6	4.0	4.6	5.2	5.0
漩渦照片						
漩渦弧度						

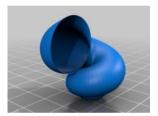
檢測類別	2	各種種類貝殼	的原貝殼與中	心縱切片的差	異(電壓 6V)	
貝殼名稱	蠑螺	蠑螺 切片	蛙螺	蛙螺 切片	錐螺	錐螺 切片
部位長相						
直徑(cm)	8.6	6.6	10.0	9.8	6.6	7.0
下直徑(cm)	2.2	0	1.5	0	1.2	0.7
深度(cm)	15.5	11.7	15.5	11.5	15.5	15.5
出現時間(s)	4.0	3.6	3.2	3.2	9.7	7.4
漩渦照片						
漩渦弧度						

(三)、研究結果(漩渦效果好的定義:下直徑較大>深度較深>直徑較長):

- 1. 紅嬌鳳凰螺的各部位切片製作漩渦效果最佳的前三名是「螺塔心切片、中心縱切片、螺塔 半切片」,在電壓 3V 時,效果還比原貝殼好!
- 2. 製造漩渦效果佳的貝殼切片都有相同特色:當旋轉時都會出現像完整貝殼的輪廓。其中以 螺塔心切片最像縮小版的貝殼,所以製造漩渦的效果極佳!
- 3. 切片時縱切比橫切好,螺塔底切片、中心橫切片旋轉時無法出現完整貝殼輪廓,效果很差!
- 4. 螺塔心切片和螺塔半切片都還是有貝殼複雜的內部構造,我們決定針對「中心縱切片」進 行接下來的研究,因為中心縱切片只有薄薄一片,有貝殼的效果,但構造簡單,清理方便。
- 5. 紅嬌鳳凰螺原貝殼在 3V 時, 因為重量較重, 所以效果沒有切片好。但在 6V 時原貝殼效 果比切片佳!所以撇除重量影響,原貝殼製造漩渦的效果還是比切片好!
- 6. 各種種類貝殼的原貝殼都比「中心縱切片」效果好,但中心縱切片大多都能呈現快接近原 貝殼的效果!因此中心縱切片可以取代原貝殼的效果!
- 7. 中心縱切片裡開口佔整體貝殼比例較大的貝殼(蠑螺、蛙螺),製造漩渦的效果比較差。

圖 31: 貝殼店有賣各 種貝殼的切片。

在火山岩圓環上。 18 中心縱切片。


圖 32: 將殼底心切片黏 圖 33: 各種不同貝殼的 圖 34: 測試貝殼與切 片的漩渦效果。

實驗七、3D 列印貝殼「中心縱切片」研究:

(一)、研究動機:

我們想更深入的進行貝殼變因實驗,但即使是同一種貝殼,大小還是有點差異,也無法任意縮放變形!而且使用太多貝殼會有生態保育的問題。因此我們想到學校有 3D 繪圖課程和 3D 印表機,可以自己印製 3D 列印的貝殼。雖然在學校學過 123D Design 的 3D 繪圖軟體,但貝殼構造太複雜,我們畫不出來!於是我們去 3D 列印模型網站(thinkgiving)搜尋貝殼模型。找到將近 1000 筆貝殼模型,但篩選過後貝殼種類符合、內部螺管繪製正確,且能夠成功列印出來的 3D 貝殼模型只有蠑螺和錐螺模型(圖 35、36)。

在實驗七,我們發現貝殼中心縱切片能取代原貝殼,那 3D 列印貝殼的中心縱切片也有相同效果嗎?我們決定使用找到的蠑螺和錐螺模型進行實驗測試。

圖 35:網路上找到的 蠑螺模型。

圖 36:網路上找到的 雜螺模型。

圖 37:上網尋找 3D 目殼模型。

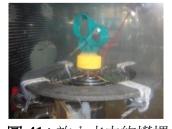
圖 38:使用學校的 3D 印表機列印貝殼。

(二)、研究過程(實驗標準流程請詳見「伍、實驗裝置設計」):

1. 我們以 123D Design 軟體將錐螺、蠑螺模型切出中心縱切片,以學校 3D 印表機列印相同 比例大小的原貝殼與中心縱切片。為了辨別兩者差異,以 3V、6V、9V 進行漩渦實驗。

(二)、3D列印貝殼原貝殼與中心縱切片比較(詳見原始記錄):

(二)、30 列列只放尿只放兴中心派仍斤比較(許兄尿知記述)。									
檢測貝殼	錐螺原貝	殼		錐螺中心約	從切片 6				
電壓	3V	6V	9V	3V	6V	9V			
直徑(cm)	3.0	5.4	6.0	6.0	5.8	9.0			
下直徑(cm)	0	1.0	0.6	0	0.3	1.0			
深度(cm)	9.5	15.5	15.5	4.0	15.5	15.5			
漩渦照片									
漩渦弧度			19	Y					


檢測貝殼	蠑螺原	貝殼		蠑螺中心縱切片			
電壓	3V	6V	9V	3V	6V	9V	
直徑(cm)	5.4	5.8	9.0	4.0	5.6	7.0	
下直徑(cm)	0	0.8	1.3	0	0	0	
深度(cm)	14.6	15.5	15.5	2.5	7.0	10.4	
漩渦照片						The state of the s	
漩渦弧度							

- (三)、研究結果(漩渦效果好的定義:下直徑較大>深度較深>直徑較長):
- 1. 3D 列印貝殼的中心縱切片也能製造漩渦!
- 2. 3D 列印錐螺的中心縱切片效果在不同電壓都只略遜於原貝殼,甚至在 9V 還略勝原貝殼。
- 3. 3D 列印蠑螺的中心縱切片效果在不同電壓都遠差於原貝殼。但根據實驗七真實蠑螺的中 心縱切片本來就低於原貝殼很多。因此驗證了 3D 列印和真實蠑螺製造漩渦的效果相似。
- 4. 錐螺和蠑螺在我們評斷貝殼種類裡算是製造漩渦效果差的貝殼,但因為 3D 貝殼模型只找 得到錐螺和蠑螺模型可以用,所以無法再深入研究。但如果未來 3D 貝殼模型能夠有更多 樣化種類的貝殼,中心縱切片還有更多研究發展空間!

圖 39:利用 3D 印表 機列印貝殼切片。

中心縱切片 3D 模型。 中心縱切片 3D 模型。

圖 40: 印製出來的錐螺 圖 41: 放入水中的蠑螺 圖 42:以 3D 中心縱切片 也能製造出大漩渦!

第四部分、貝殼製作漩渦原因探討:

根據實驗五,我們懷疑貝殼的開口大小和內部螺管會影響漩渦效果,但不可能找到開口 大小比例不同的同種貝殼。我們決定使用 3D 貝殼模型來進行實驗!我們列印蠑螺 3D 貝殼模型,進行開口與螺管的變因實驗。並購買鶚蟹守螺的中心縱切片,以投影片將切片的螺管洞分層封起來。測試只有切片狀況下,螺管洞封住的量會不會對製造漩渦產生影響。

實驗八、3D 列印貝殼開口大小與螺管高度比較:

- (一)、研究過程(實驗標準流程請詳見「伍、實驗裝置設計」):
- 1. 上網找到的蠑螺模型列印時無法站立導致列印失敗,我們以 123D Design 軟體繪製底座。
- 2. 我們想檢測開口大小對製造漩渦的影響,請老師協助將蠑螺模型的開口以等比例縮放, 製造出不同開口大小,但相同貝殼形狀的貝殼。我們將各種蠑螺模型黏在軟風扇平台上, 以強扭力馬達、3V 電壓進行漩渦檢測實驗。
- 3. 我們想檢測**螺管高度**對製造漩渦的影響,請老師協助**將蠑螺模型從上方依序削掉高度,** 讓貝殼高度越來越矮,裡面的螺管也會跟著變短,再進行漩渦檢測實驗。
- 4. 為了確認中心縱切片的螺管影響,我們針對鶚蟹守螺的中心縱切片,以投影片將中間螺管洞分層封起來,我們想瞭解當切片的螺管洞被封的越多,是否會影響製造漩渦。
 - (二)、3D 列印貝殼模型的開口大小、螺管高度形成漩渦比較(詳見原始記錄):

檢測類別	3D 3	可印蠑螺貝殼	開口大小(使用 3V 電壓)(折線圖見表	表1)
開口大小	0.25 倍 0.5 倍		0.75 倍 正常大小		1.25 倍	1.5 倍
3D 列印 模型長相		2	9			
直徑(cm)	6.6	7.6	9.0	9.4	9.6	9.6
深度(cm)	5.0	9.1	14.2	14.0	13.3	12.7
漩渦照片						
漩渦弧度						

檢測類別	3D 歹	川印蠑螺貝殼	螺管高度(個	吏用 3V 電壓))(折線圖見表	長2)
貝殼高度	3.5cm 正常貝殼	2.5 cm	2.0 cm	1.5 cm	1.0 cm	0.5 cm
3D 列印 模型長相		9	3	7	3	
直徑(cm)	5.4	9.0	6.8	4.2	3.0	1.4
深度(cm)	15.5	15.5	15.5	13.9	9.4	3.9
漩渦照片						
漩渦弧度						V

檢測類別	鶚蟹守螺 中心	縱切片的螺管洞封 [,]	住狀況(使用 3V 電	壓)(折線圖見表3)	
貝殼高度	原切片	原切片 封一層		封三層	
螺管洞封 住照片	Sign of the second seco				
直徑(cm)	4.8	7.2	4.6	4.6	
深度(cm)	4.5	3.8	3.0	3.2	
漩渦照片					
漩渦弧度					

表 1: 開口大小對漩渦深 度影響

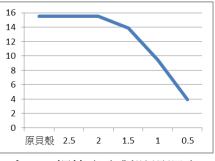


表 2:螺管高度對漩渦深度 影響

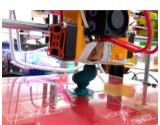


表 3: 切片螺管洞封住數量 對漩渦深度影響

- │(三)、研究結果(漩渦效果好的定義:下直徑較大>深度較深>直徑較長)
 - 1. 貝殼開口大小會影響製造漩渦效果,當開口越大,效果越好。但當開口過大,製造 游渦效果會降低。
 - 貝殼螺管高度會影響製造漩渦效果,當螺管高度越低,效果越差。 2.
 - 3. 貝殼中心縱切片的螺管洞會影響製造漩渦效果,當螺管洞被封住越多,效果越差。
 - 貝殼的內部螺管和開口確實會影響製造漩渦的效果。

圖 **43**:用 123D Design 軟體繪製貝殼的底座

表機列印貝殼模型

例的 3D 貝殼模型。

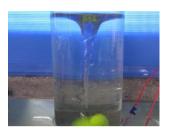


圖 44:以學校的 3D 印圖 45:不同開口大小比圖 46:開口越大,製造 漩渦的效果越好。

第五部分、貝殼製造漩渦應用:

(一)、外來種陸貝或 3D 列印模型取代螺旋槳

經過實驗證實貝殼製造漩渦效果比螺旋槳效果好,我們甚至還用貝殼中心縱切片進行打 **蛋、打麵團的攪拌工作!**但為了避免應用貝殼造成貝殼生態浩劫,我們嘗試了以下兩種方向: 1. 外來種陸貝:我們嘗試以造成生態危害的非洲大蝸牛、福壽螺進行製造漩渦,發現非洲大

- **蝸牛和福壽螺都能夠製造漩渦**,而且效果不錯!甚至將非洲大蝸牛、福壽螺製作成中心縱切 片都能夠產生漩渦。但可惜非洲大蝸牛、福壽螺的殼,硬度沒有非常硬,所以容易破損。
- 2. 3D 列印模型: 我們藉由實驗八的研究,證實以 3D 列印製造出的貝殼中心縱切片,也能夠 製造出效果很好的漩渦!因此不需要運用真正的貝殼切片,可以用機器大量製造貝殼的中心 縱切片,不會有消耗貝殼的生態保育問題,還可以任意的調整貝殼切片的大小和比例!

圖 47: 貝殼中心縱切片 **圖 48**: 測試非洲大蝸 能夠打蛋、打麵團!

牛,也能夠製造漩渦。 切片能夠產生大漩渦。

圖 49: 福壽螺的中心縱 圖 50: 3D 列印製造的 貝殼切片能量產也能 任意更改大小!

(三)、360度打氣機

我們發現在水族箱以電壓 9V 旋轉貝殼時,貝殼下方周圍出現大量氣泡(見圖 51)。我們想 到**把旋轉貝殼放在養魚水族箱中做 360 度打氣機**。漩渦會把魚捲入導致受傷,但只要在**馬達** 上方架設倒放圓筒,氣泡會慢慢從下方滲出(見圖 52),而且漩渦在圓筒內,也不會造成魚受 傷。我們最後製作出一個適當大小,可真實應用在水族箱的360度打氣機(見圖53~54)!

圖 51: 在水族箱 9V 旋 **圖 52**: 加倒放圓筒後, 轉貝殼會出現大量氣泡 氣泡會慢慢從下方滲出 小型 360 度打氣機。

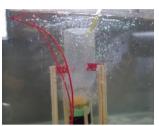


圖 53: 做出能夠實用的 圖 54:360 度打氣機能 產生氣泡,又不傷到魚

(二)、自製「貝殼旋轉冷靜瓶」

老師跟我們分享國外網站使用亮粉、水、膠水放入瓶子中,就可自製 **冷靜瓶**(如圖 51)。當小孩情緒激動時,搖動冷靜瓶,讓小孩觀看直到亮粉 全部沈到瓶底,可轉移小孩的注意力與平緩情緒。我們聽到這個點子,覺 得可以結合之前將馬達黏在蓋子的設計,設計出使用貝殼旋轉的冷靜瓶!

圖 55:網路上將亮粉 加入水中的冷靜瓶。

我們到瓶瓶罐罐店和五金賣場尋找適合製作的大瓶子,並到手工藝品店挑選想放入瓶子 中測試的小東西。我們將強扭力馬達以熱熔膠固定在瓶蓋內,在瓶蓋上鑽兩個洞,拉出馬達 電線。以矽利康塗過馬達孔洞與電線連接處,讓馬達能夠防水。馬達上裝上黏貼貝殼的軟風 扇平台,馬達連接 3V 電池,就完成了自製的「貝殼旋轉冷靜瓶」。

玩過之後,覺得「貝殼旋轉冷靜瓶」是很有趣的 DIY 活動! 因為操作的變化度很高!可 自由更改水量、貝殼種類、瓶內放置物品,甚至可以在瓶內裝置小籃框讓漂浮的絨球進洞進 **行小遊戲**!我們建議瓶子挑選瘦高型的瓶子,瓶內的物品流動效果較佳。瓶口必須夠大,手 伸進去瓶子才不會卡住。建議瓶內放置絨球、小保麗龍球、亮片、亮粉。

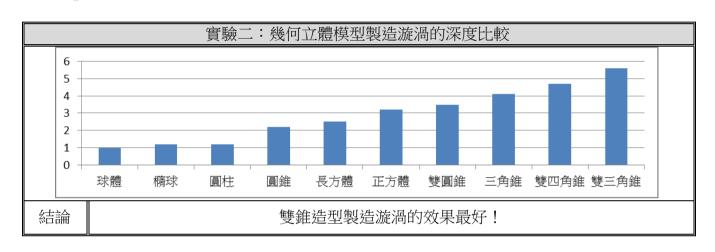
達黏在蓋子底部。

圖 56:將強扭力直流馬 **圖 57:**貝殼旋轉冷靜瓶 讓絨球在瓶中旋轉。

圖 58:加入亮粉,關掉 **圖 59:**加入小保麗龍

馬達後可當冷靜瓶使用 球會黏在漩渦上,形成 白色漩渦。

柒、討論

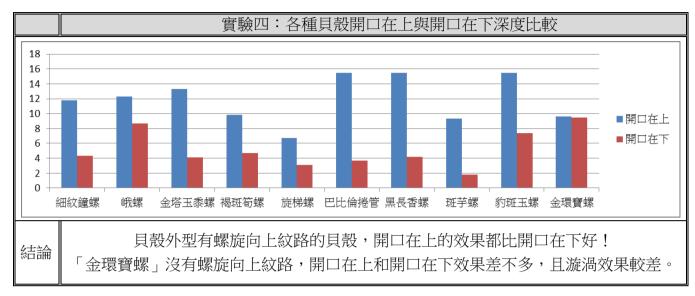

一、 貝殼容易製造漩渦的原因推論:

根據之前實驗,我們推論貝殼容易製造漩渦的原因有三點是1.貝殼為雙錐造型;

2. 貝殼外型有螺旋向上紋路; 3. 貝殼內部有螺旋向上的螺管。推論原因如下:

1. 造型為雙錐造型:

根據「實驗二:幾何立體模型與貝殼形成漩渦的比較」中得出結論:幾何模型中以「**雙錐」造型**製造漩渦效果最好(如下表)。

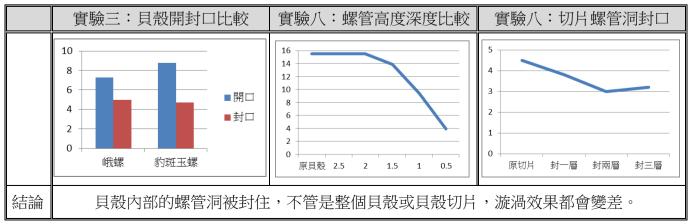

從「實驗四:各種貝殼形狀製造漩渦比較」評選中,選出製造漩渦比較好的貝殼形狀為 **紡錘形、棍棒形、琵琶形和梨形,我們發現這四類貝殼形狀都是雙錐造型!**而沒有雙錐外型 的貝殼(龜甲笠螺、雞心貝、蛤蜊)效果都極差。在「實驗五:最佳製造漩渦貝殼總決賽」 25 顆各種貝殼評選中,選出效果**最佳的六種貝殼外型都是雙錐造型!**(如下表)

	實驗四:各種貝殼形狀比較				實驗四:各種貝殼形狀比較實驗六:最佳製造漩渦貝殼總決賽					E C
物品名稱	紡錘形	棍棒形	琵琶形	梨形	編織蛹 筆螺	黑長 香螺	巴比倫 捲管	玉女象 法螺	焦斑 峨螺	豹斑 玉螺
長相		9	3	6				9		
結論		最佳的貝殼形狀都和雙錐相似!								

根據上述實驗歸納出,製造漩渦效果好的貝殼都有「雙錐」造型!因此我們推論貝殼適 合製造漩渦的第一個原因是「**貝殼為雙錐造型**」。

2. 外型有螺旋向上紋路:

根據「實驗三:貝殼放置位置、順逆轉與開封口比較」和「實驗四:各種貝殼形狀製造 漩渦比較」可得知,**貝殼開口在上比開口在下效果好。**



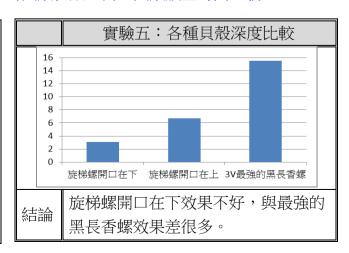
這些貝殼都有共同的特徵就是有螺旋向上的紋路!而實驗五的金環寶螺外表沒有螺旋向上紋路(金環寶螺正面 反面),當測試開口位置時,開口在上與開口在下測出來的漩渦效果差不多。因此外型為螺旋向上紋路對製造漩渦會造成影響。

「實驗三:貝殼的放置位置、順逆轉與開封口比較」發現貝殼**逆開口轉比順開口轉好。** 我們推論當貝殼開口在上放置,螺旋紋會逆開口朝下旋,當貝殼逆開口轉時,會帶動水流往下,就容易產生漩渦!因此歸納貝殼適合製造漩渦的第二個原因是「外型有螺旋向上紋路」!

3. 内部有螺旋向上的螺管:

根據「實驗三:貝殼放置位置、順逆轉與開封口比較」發現貝殼**開口比封口效果好**。在「實驗八:3D列印貝殼開口大小與螺管高度比較.」,我們確定貝殼內部**螺管的高度越低,效果越差!**甚至將切片的**螺管洞封越多,效果也越差**。因此**貝殼內部螺管**會影響製造漩渦!

在「實驗五:各種貝殼形狀製造漩渦比較」,沒**有螺管的龜甲笠螺、雞心貝、蛤蠣,效果都很差。**雖然龜甲笠螺外表是圓錐狀,但內部沒有螺管,所以效果不好。即使是外表看不出向上螺紋的金環寶螺,但切開內部,還是可見螺管有向上螺旋的趨勢(見下表)。根據「實驗八:3D列印貝殼開口大小與螺管高度比較.」,我們發現開口較大,製造漩渦的效果變好。我們推論開口大時內部螺管越容易對水流產生影響!


因此我們歸納貝殼適合製造漩渦的第三個原因是「內部有螺旋向上的螺管」!

二、 與科博館抄自然特展的貝殼比較:

我們研究貝殼旋轉的起因是因為科博館的抄自然特展。我們在網路上讀到一份新聞,內容提到科博館抄自然特展使用的貝殼是旋梯螺!而且還是用 3D 列印出來。科博館使用 3D 列印貝殼和我們的想法不謀而合,運用 3D 列印可以任意修正貝殼比例,而且不用購買貝殼,也不會影響貝殼生態。但科博館使用旋梯螺,在我們的種類研究中並不是效果很好的貝殼。而且經過我們研究展場旋轉貝殼的照片,我們發現科博館的旋梯螺是開口在下,這樣會讓旋梯螺的效果變差!因此我們建議不用旋梯螺,使用更佳的貝殼種類,而且貝殼放置時開口朝上。

物品	科博館的	旋梯螺	旋梯螺
名稱	旋梯螺照片	開口在下	開口在上
貝殼			
結論	依照科博館照片 上窄下長的旅		

捌、結論

- 一、影響貝殼製造漩渦的變因(漩渦效果好的定義:下直徑較大>深度較深>直徑較長):
 - 1. 貝殼製造漩渦比各種螺旋槳還要好。
 - 2. 幾何立體模型以雙錐製造漩渦效果最好。
 - 3. 造型有**稜角和角錐比圓弧、柱體**製造漩渦效果好。
 - 4. 貝殼開口較大,製造漩渦的效果較好。
 - 5. 3D 列印貝殼模型同樣能製造漩渦,因此可人工大量製造,不會有貝殼生態保育問題。

二、最佳化的製造漩渦貝殼研究:

- 1. 貝殼最佳放置方式為「開口在上、逆開口轉、開口不封」。
- 2. 製造漩渦效果較好的貝殼形狀為「紡錘形、棍棒形、琵琶形和梨形」。
- 3. 較易製造漩渦的貝殼條件為「開口與貝殼整體比較佔大面積、殼底較尖長,螺塔較鈍平、外型類似雙錐、內部螺管為往上螺旋旋轉」。
- 4. 我們推薦最佳製造漩渦貝殼為「玉女象法螺」! 3V 電壓推薦使用「黑長香螺」。
- 5. 科博館抄自然特展使用的貝殼是開口在下的旋梯螺,我們建議可以使用更佳的貝殼種類,而且貝殼放置時開口朝上。

三、貝殼容易製造漩渦的原因推論:

1. 我們推論貝殼容易製造漩渦的原因有三點:(1)為雙錐造型;(2)外型有螺旋向上紋路; (3)內部有螺旋向上的螺管。

四、貝殼切片的研究:

- 1. 紅嬌鳳凰螺切片製作漩渦效果最佳前三名是「螺塔心切片、中心縱切片、螺塔半切片」。
- 2. 製造漩渦效果佳的貝殼切片,當旋轉時都會出現像完整貝殼的輪廓。
- 3. 推薦最佳貝殼切片為「中心縱切片」! 因為漩渦效果佳、構造簡單、容易製造與清理。
- 4. 3D 列印貝殼模型的中心縱切片也能夠製造漩渦,因此可大量製造與應用!

五、製造漩渦貝殼的應用:

- 1. 貝殼中心縱切片可取代螺旋槳,進行製造漩渦、攪拌(可以打蛋、打麵團)的功能。
- 2. 外來種陸貝(非洲大蝸牛、福壽螺)的殼也能夠製造漩渦加以應用,減少外來種問題。
- 3. 貝殼製造漩渦,上方放置圓筒,可放在水族箱中當「360度打氣機」,為魚提供氧氣。
- 4. 將馬達與貝殼黏在瓶蓋上,可自製「**貝殼旋轉冷靜瓶**」,是變化度高的 DIY 活動。
- 5. 將馬達的孔洞與電線連接處塗上矽利康,就能自行製造出防水馬達。
- 6. 利用**綠光雷射筆可測量漩渦直徑。**從上方照射漩渦出現光點,即為圓心。照射漩渦內部,光線會折射。光點到第一次出現直線光束,即為漩渦半徑。

玖、心得

雖然今年已經是第二年做科展,但是依然強烈感受到科展的辛苦!進行科展的途中很累,但我們努力的完成這項艱難的工作來滿足我們的好奇心。

一開始討論將馬達放在水底,我們心中暗想「怎麼可能做得出來!」但經過三個月的研究,我們居然成功了!那時購買潛水艇玩具的馬力不夠,我們異想天開說要在一般馬達外面加防水措施,以前絕對立刻放棄!但我們成功想出以矽利康做出防水馬達,更希望後人可以用這個點子製作更多防水的機具。我們深刻體會到遇到困難,自己動手做,就沒什麼做不到!

今年我們挑的主題和「水」有關,代表實驗過程中有很多碰到水的機會。夏天時還好, 但冬天時雙手都凍到發僵,有種快結冰的感覺!印象最深刻的是我們寒假留校,遇到十年來 最大的寒流,才幫水族箱換完水,手就沒知覺了!還好老師設想周到,幫我們準備禦寒用具。 實驗過程中要一直測漩渦效果,不斷的反覆測真的有點無聊。但偶爾會有新奇的發現,這是 做科展的樂趣!在實驗完成時,心中的成就感更是不可言喻!

最後要感謝所有幫助我們完成科展的人,謝謝貝殼專賣店老闆幫我們辨別種類繁多的貝殼。 謝謝老師和家人的支持和陪伴。更謝謝一起分工合作的同學,沒有你們,實驗就無法完成了!

拾、參考資料及其他

(附件一) 參考資料

	參考資料內容	参考資料出處
1	貝殼形狀分類	彼得・當斯(1996)・ <i>貝殼圖鑑</i> ・臺北縣:貓頭鷹。
2	貝殼部位名稱	賴景陽 (2005)·台灣 <i>貝殼圖鑑</i> ·臺北市:貓頭鷹。
3	製造漩渦方式	陳依昕、郭維元、邱柏元、鄭日安(2003)· 水龍捲— 液體旋轉運動液面和漩渦變化的研究 · 中華民國第四十三屆中小學科學展覽會作品說明書 · 取自 http://activity.ntsec.gov.tw/activity/race-1/43/pdf/c/080103.pdf
4	製造漩渦方式	蔡宗育、左伊心、平震傑、黃家偉(2007)·水中的殺手——漩渦· <i>中華民國第四十七屆中小學科學展覽會作品說明書</i> ·取自 http://activity.ntsec.gov.tw/activity/race-1/47/elementary/081520.pdf
5	製造漩渦方式	李昱嫻、李欣玫、李有儀、江翊銘(2008)・水中舞者—轉槳所成之漩渦的探討・ <i>中華民國第四十八屆中小學科學展覽會作品說明書</i> ・取自http://activity.ntsec.gov.tw/activity/race-1/48/elementary/081520.pdf
6	 冷靜瓶的點子 	Bella (2015 年 8 月 31 日) • 外國媽媽教你輕鬆 DIY 一個可以讓好動的孩子 一秒冷靜下來的「魔法瓶」 • 取自 http://www.bomb01.com/article/14652
7	以 3D 列印旋梯螺 貝殼來製造漩渦	抄自然特展 幫鯊魚換牙(2015年1月1日)・ <i>人間福報</i> ・取自 http://www.merit-times.com.tw/NewsPage.aspx?unid=384039
8	蠑螺貝殼3D模型	http://www.thingiverse.com/thing:12784
9	錐螺貝殼 3D 模型	http://www.thingiverse.com/thing:13668

(附件二)馬達種類的選擇

(一)、研究過程:

為了精準的檢驗漩渦的效果,我們需要找出最適合進行漩渦檢測實驗的馬達。我們到電 子材料行購買不同種類的馬達。**測量各種馬達在不同電壓(3V~12V)的扭力和漩渦轉動效** 果,找出最適合的馬達。扭力測量方式是將馬達裝上軟風扇,往電子秤上壓,當壓到軟風扇 不會轉動時,記錄電子秤的數據。漩渦轉動效果則是裝上粗紋峨螺進行轉動。

(二)、比較表格:

馬達種類	價錢		扭力			漩渦轉	動效果		優缺點分析
	(元)	3V	6V	9V	3V	6V	9V	12V	爱吹融力彻
圓形玩具 小馬達 (DC 3v)	25	100	馬達無法轉動	馬達無法轉動		馬達無 法轉動	馬達無 法轉動	馬達無 法轉動	價錢便宜 漩渦效果佳 無法使用高於 3V電壓
焊接圓形 馬達 (DC 12V 40 mA)	60	120	270	580					不同電壓漩渦 效果不同 馬達軸較長 電線需焊接
方型馬達 (DC 12V)	40	800	1700	2000 (電子秤 上限)		馬達軸 太短, 平台直 接脫落	馬達軸 太短, 平台直 接脫落	馬達軸 太短, 平台直 接脫落	扭力很大 馬達軸太短, 平台容易脫落
強扭力 直流馬達 (DC 6V 65 mA)	60	390	930	1300					容易有大漩渦 馬達軸較長 馬達軸有刻痕 平台容易固定

(三)、研究結果(漩渦效果好的定義:下直徑較大>深度較深>直徑較長):

漩渦轉動效果和馬達軸安裝效果最佳是焊接圓形馬達,但焊接圓形馬達連接電線需要焊 接,且電線容易脫落。焊接電線很麻煩又耗時間,我們忍痛放棄焊接圓形馬達。決定當單純 使用電壓 3V 時,採用「圓形玩具小馬達」。需用到低到高電壓時,使用「強扭力直流馬達」。

圖 60: 到電子材料行 購買各種馬達。

各種馬達的扭力。

圖 61: 使用電子秤測量 圖 62: 焊接圓形馬達連 圖 63: 最後最常用的是 接電線需焊接,很麻煩「強扭力直流馬達」。

【評語】080110

貝殼製造漩渦的研究是有趣的想法,提出的應用概念也具創意。若能利用 3D 列印技術作更系統性的數據探討,對此現象的釐清將更有幫助。