中華民國第56屆中小學科學展覽會作品說明書

高級中等學校組 化學科

第三名

050208

奈米碳管複合粒子形成穩定皮克林乳液之研究 與應用

學校名稱:臺北市立第一女子高級中學

作者:

指導老師:

高一 程嘉瀅

江慧玉

高一 翁詩涵

關鍵詞: 奈米碳管、四氧化三鐵、界面活性劑

摘要

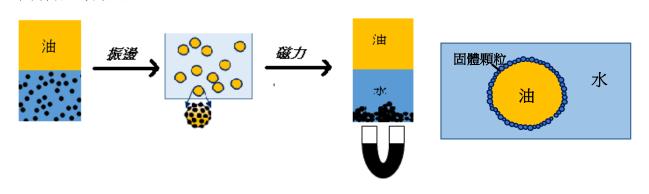
添加奈米碳管搖晃後發現,兩不相溶之溶劑其界面處會形成的微胞,且存留時間會較長。 我們利用Fe₃O₄顆粒及奈米鐵磁流體,與奈米碳管複合形成具磁性的固體顆粒,加入油品經 振盪後會形成由固體顆粒包覆的乳液系統,稱為皮克林乳液(pickering emulsion)。改變複合 粒子的比例,發現Fe₃O₄與奈米碳管系統包覆的微胞,因粒徑差異大故不具規律性;反之, 鐵磁流體與奈米碳管系統之微胞隨奈米碳管比例增加,粒徑越小、數量漸增、存留時間增加, 改質奈米碳管可以改變微胞包覆型態;綜合上述,奈米碳管是穩定皮克林乳液的關鍵。我們 利用複合固體顆粒的磁性,進行廢油回收,發現奈米鐵磁流體系統的回收率可達77%,具有 可觀的回收率表現。

壹、 研究動機

在選修課程中,我們利用乙炔熱裂解製得具疏水性的奈米碳,將它加入不互溶的兩溶劑中,我們發現在兩溶劑介面出現微胞顆粒的現象,「難道奈米碳具有界面活性劑的功效嗎?」因此我們進行初步的試探實驗,瞭解液體微胞的包覆現象。此外,在尋找資料過程中發現,利用固體顆粒包覆微胞,使之穩定化的溶液,稱為皮克林乳液(pickering emulsion),我們認為這個概念應該就是我們探討奈米碳微胞的機制,因此我們想結合磁性物質,尋找出奈米碳複合粒子穩定包覆液滴的皮克林乳液,進一步探討奈米碳複合顆粒所形成的穩定微胞在油垢去除方面的應用。

貳、 研究目的

- 一、瞭解奈米碳管、磁性粒子及複合顆粒在不同酯類中的微胞形成
- 二、探討不同比例混合之複合粒子,其形成微胞的穩定性以及粒徑大小
- 三、比較奈米碳管改質前後所形成之複合粒子,對於微胞包覆效果之差異
- 四、複合顆粒應用於市售廢棄油品,瞭解油滴微胞可被回收之效果


參、 研究設備及器材

項目	備註	
乙酸戊酯	實驗油品	Service of the servic
七水合硫酸亞鐵	奈米鐵磁流體	
六水合氯化鐵	奈米鐵磁流體	uwai
氨水	奈米鐵磁流體	
正辛酸	奈米鐵磁流體	1 2
四氧化三鐵(1)	磁性粉末	
濃硫酸	改質奈米碳管	
濃硝酸	改質奈米碳管	
實驗室廢棄機油(2)	成分 ULVOIL R-7	
多壁碳奈米管(3)	內徑 3~5nm 外徑 8~	
	15nm 長度 3~12μm	
沙拉油(4)	1 瓶	4 5
蒸餾水	實驗用	
移液器(5)	最大限度為 1000P	
超音波振盪器(6)	MINI DG-1	
電子秤(7)	最小刻度 0.001g	
光學顯微鏡(8	檢測用	
震盪器	祥泰 VD-12	7
Vortex 均質機	SI-G560	

肆、 研究過程及初步結果

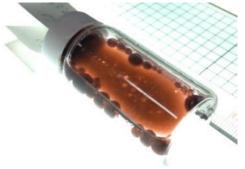
一、 實驗原理

皮克林乳液(Pickering emulsion)是由水相、油相與固體粒子所組成的乳化系統。有兩種方式可以使皮克林乳液更加的穩定,其中一種方法是固體粒子藉由改性來增加乳液的穩定性,另一種方法是利用固體粒子與界面活性劑協同來穩定乳液。本實驗室採用前者的方式,藉由奈米碳管與磁流體的複合,使乳液微胞的穩定性增加且具有磁性,能應用於油汙回收或藥物傳遞等方面。

二、 不同固體顆粒混合形成的油滴微胞

(一) 製備奈米鐵磁流體

- 將1.4克 FeCl₃·6H₂O、0.72克 FeS₄·7H₂O (莫耳數比2:1) 加入錐形瓶中,並加入40 mL 蒸餾水。以水浴法加熱錐形瓶至60℃,並使用磁石持續攪拌溶液。
- 2. 加入10毫升、4 M的氨水於上述錐形瓶中,使其反應產生奈米鐵磁顆粒。持續攪拌,每間隔5分鐘加入0.5 mL正辛酸,重複5次。
- 3. 取出錐形瓶中溶液,靜置於磁鐵上,待可被磁鐵吸附的物質沈於瓶底後,利用傾析 法取出上方溶液,剩下即為所需的奈米鐵磁流體。


(二) 純質固體顆粒包覆油滴的觀察

- 1. 分別取0.01克的多壁奈米碳管(標示為C)、四氧化三鐵(標示為H)以及奈米鐵磁流體 (標示為T),加入乙酸戊酯(標示為A)、沙拉油(標示為S)中。
- 2. 利用分液漏斗震盪器以震盪速率157.52 rpm、振幅4.0 cm,固定各樣品震盪情形。

3. 振盪60秒之後,觀察油滴液胞形成的現象,並記錄微胞的數量及粒徑大小。

(三) 複合顆粒(奈米碳管與磁性顆粒)包覆油滴微胞

- 1. 分別量取4.0 mL的沙拉油(標示為S)、乙酸戊酯(標示為A)置於空樣品瓶中。
- 2. 將多壁奈米碳管(標示為C)與四氧化三鐵(標示為H)依一定的重量比例【Wc/WH】混合;再將複合固體混合物加入上述兩種油品(S、A)中,沿著瓶壁加入12.0 mL的蒸餾

標號	A - C/H_1	A- C/H ₂	$A-C/H_3$	A- C/H ₄	A- C/H ₅
【Wc/Wn】 (混合重量比)	1/4	1/2	1/1	1/0.5	1/0.25
乙酸戊酯(A)	4.0 mL				
蒸餾水	12.0 mL				
標號	S-C/H ₁	S-C/H ₂	S-C/H ₃	S-C/H ₄	S-C/H ₅
【Wc/Wn】 (混合重量比)	1/4	1/2	1/1	1/0.5	1/0.25
沙拉油(S)	4.0 mL				
蒸餾水	12.0 mL				

水,如下表所示。

3. 利用多壁奈米碳管(C)與奈米鐵磁流體(標示為T)依一定的重量比例【Wc/WT】混合;接著將複合固體混合物加入上述兩種油品(S、A)中,再沿著瓶壁加入12.0 mL的蒸餾水,如下表所示。

標號	A-C/T ₁	$A-C/T_2$	A-C/T ₃	A-C/T ₄	A-C/T ₅
【Wc/W _T 】 (混合重量比)	1/4	1/2	1/1	1/0.5	1/0.25
乙酸戊酯(A)	4.0 mL				
蒸餾水			12.0 mL		
標號	S-C/T ₁	S-C/T ₂	S-C/T ₃	S-C/T ₄	S-C/T ₅
【Wc/WT】 (混合重量比)	1/4	1/2	1/1	1/0.5	1/0.25
沙拉油(S)	4.0 mL				
蒸餾水			12.0 mL		

- 4. 利用分液漏斗震盪器,以震盪速率157.52 rpm、振幅4.0 cm,固定上述10個實驗樣品, 經振盪60秒之後,立即拍攝瓶中油滴微胞的影像,並記錄其存留延續時間。
- 5. 運用電腦軟體統計,計算出微胞的平均粒徑大小及數量。

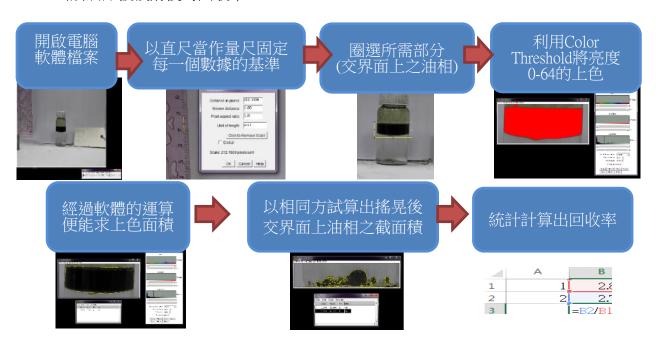
三、 改質奈米碳管對油滴的包覆

(一) 奈米碳管的表面改質

- 1. 分別配製濃度20 % $HNO_{3(aq)}$ 及20 % $H_2SO_{4(aq)}$,並利用移液管取此兩者酸溶液,依體積比1:3進行混合。
- 2. 取適量奈米碳管倒入錐形瓶中,再將上述混合酸溶液倒入瓶中以完全覆蓋奈米碳管。
- 3. 於溫度100℃下進行攪拌40分鐘。再使用蒸餾水沖提瓶中碳管直至呈中性為止;以丙酮清洗碳管表面後進行烘乾。
- (二) 複合顆粒(改質奈米碳管與奈米鐵磁流體)包覆油滴微胞
 - 1. 量取4.0 mL的沙拉油(標示為S), 置於空樣品瓶中。
 - 2. 將改質過的奈米碳管(標示為C")與奈米鐵磁流體(標示為T)依一定的重量比例 【W_{C"}/W_T】混合;再將固體混合物加入油品中,使用超音波振盪器進行震盪混合, 沿著瓶壁加入12.0 mL的蒸餾水,如下表所示。

標號	S-C"/T ₁	S-C"/T ₂	S-C"/T ₃	S-C"/T ₄	S-C"/T ₅
【W _{C"} /W _T 】 (混合重量比)	1/4	1/2	1/1	1/0.5	1/0.25
沙拉油(S)	4.0 mL				
蒸餾水	12.0 mL				

- 3. 利用分液漏斗震盪器(如右圖),以震盪速率157.52 rpm、振幅4.0 cm,固定上述5個實驗樣品,振盪60秒之後,立即拍攝瓶中油滴微胞的影像,並記錄其存留延續時間。
- 4. 運用電腦軟體統計,計算微胞的平均粒徑大小及數量。

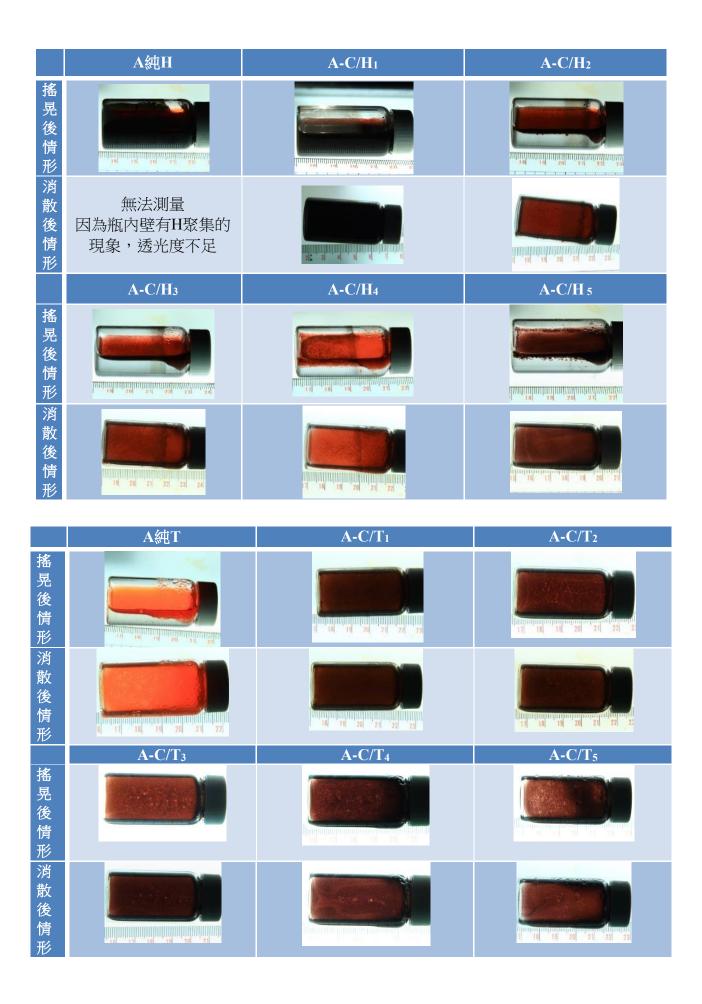

四、實驗室廢棄油品的回收效能測試

- (一) 不同比例混合的奈米碳管與磁性粒子
 - 1. 選擇市售沙拉油(標示為S)以及廢棄機油(標示為E)置於空樣品瓶中作為試驗油品。
 - 2. 精稱未改質的奈米碳管(標示為C)、 Fe_3O_4 顆粒(標示為H)及奈米鐵磁流體(標示為T),依兩成份不同的重量比【 $W_{C}/W_{\text{磁性粒子}}$ 】為1/4、1/2、1/1、1/0.5、1/0.25等比例進行混合

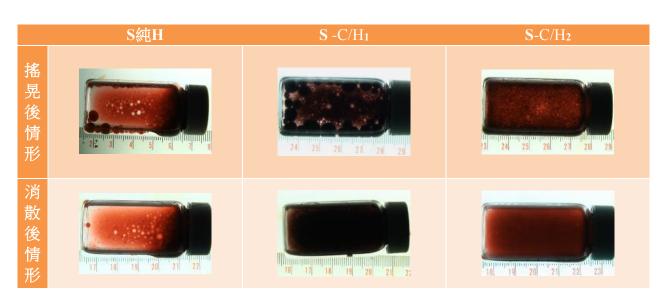
3. 將上述不同重量比例混合的固體顆粒【Wc/W磁性粒子】分別加入體積4.0 mL的兩種油品 (S、E)中,再沿著管壁加入12.0 mL的蒸餾水,搖晃並觀察油品與固體顆粒形成微胞的現象。

標號	S-H ₁	S-H ₂	S-H ₃	S -H4	S -H ₅
標號	S -T ₁	S -T ₂	S -T ₃	S -T4	S -T ₅
沙拉油(S)			4.0 mL		
【W _C /W _{磁性粒子} 】 (混合重量比)	1/4	1/2	1/1	1/0.5	1/0.25
蒸餾水			12.0 mL		
標號	E-H ₁	$E-H_2$	E-H ₃	E-H ₄	E-H ₅
標號	E-T ₁	E-T ₂	E-T ₃	E-T4	E-T ₅
機油(E)			4.0 mL		
【Wc/W _{磁性粒子} 】 (混合重量比)	1/4	1/2	1/1	1/0.5	1/0.25
蒸餾水		12.0 mL			

- 4. 將上列共10個實驗樣品利用分液漏斗震盪器,以157.52 rpm的震盪速率及4.0 cm振幅, 固定實驗樣品振盪60秒後,靜置待其穩定,觀察瓶中形成微胞的現象;再將實驗樣品 瓶置於強力磁鐵上,觀察液胞被磁力吸附的情形,拍照記錄下來。
- 5. 拍照結果利用Image J軟體進行計算,估算被吸附的油滴於瓶身側面之面積,進而計算 出該油品被吸附後的回收率。


伍、 研究結果

一、 純質固體顆粒包覆油滴的觀察


	奈米碳管(C)	四氧化三鐵(H)	奈米鐵磁流體(T)
乙酸戊酯(A)		19 20 21 27 2	23) 18 20 21 22
沙拉油(S)			17 18 10 20 21 22 23

二、 不同固體顆粒混合形成的油滴微胞

A系列	數量(個)	粒徑(公分)	存留時間(秒)
純H	*	*	*
A-C/H ₁	40	0.947	5
A-C/H ₂	123	0.453	41
A-C/H ₃	127	0.349	16
A-C/H ₄	621	0.981	17
A-C/H 5	366	0.613	58
純T	28	0.305	27
$A-C/T_1$	32	0.332	45
$A-C/T_2$	38	0.357	20
$A-C/T_3$	26	0.326	19
$A-C/T_4$	10	0.386	25
$A-C/T_5$	20	0.323	50
純C	24	0.395	92

S系列	數量(個)	粒徑(公分)	存留時間(秒)
純H	8	0.152	57
S-C/H ₁	43	0.438	39
$S-C/H_2$	293	0.165	199
S-C/H ₃	53	0.356	91
S-C/H ₄	385	0.156	627
S-C/H ₅	121	0.34	297
純T	25	0.481	132
$S-C/T_1$	7	0.461	29
S-C/T ₂	53	0.331	60
S-C/T ₃	192	0.169	230
S-C/T ₄	269	0.142	2940
S-C/T ₅	305	0.144	1740
純C	459	0.134	1005



三、 經改質之奈米碳管的包覆情形

(一)改質情形

 右圖為改質過後的奈米碳管之紅外 線吸收光譜,我們可以看到有羥基 及羰基兩官能基之特徵吸收。

(二)不同比例混合的經改質之奈米碳管與奈米磁流體

C"系列	數量(個)	粒徑(公分)	存留時間(秒)
S-C"/T ₁	*	*	*
S-C"/T ₂	0.316	37	109
S-C"/T ₃	0.320	22	34
S-C"/T4	0.201	300	139
S-C"/T ₅	0.309	19	11

	S -C"/T ₁			S-C"/T ₂
搖晃後情形				
搖晃後情形消散後情形	*			
	S-C/T ₃	S-C	C/T ₄	S-C"/T ₅
搖晃後情形				
消散後情形				

四、 廢油油汙回收效能測試

下列數據為奈米碳管與四氧化三鐵混合後,利用磁力吸引溶劑樣品,並計算其回收率。

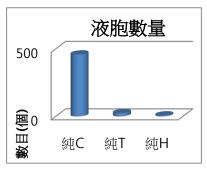
回收率%= 磁鐵吸附溶劑之面積 最初置入溶劑之總面積 ×100%

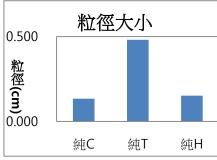
(一)不同比例混合的奈米碳管(C)與四氧化三鐵(H)

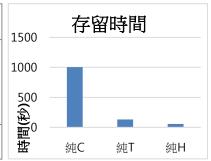
溶劑種類	【W _C /W _H 】重量比	回以	文率
S-H ₁	$[W_{\rm C}/W_{\rm H}] = 1/4$	0.5358	0.5566
		0.6529	0.6451
		0.602	0.6109
		0.5983	0.5758
	19	平均:0.597	2 (59.72%)
S- H ₂	$[W_{\rm C}/W_{\rm H}] = 1/2$	0.4445	0.534
		0.5133	0.5476
		0.5181	0.4896
		0.4552	0.5048
9.5		平均:0.500	9 (50.09%)
S- H ₃	$[W_{\rm C}/W_{\rm H}] = 1/1$	0.3929	0.4129
		0.4073	0.4291
		0.3769	0.3823
		0.3993	0.4118
		平均:0.400	4 (40.04%)
S- H ₄	$[W_{\rm C}/W_{\rm H}] = 1/0.5$	0.4203	0.4327
		0.3426	0.3833
		0.3596	0.4169
		0.4143	0.4203
			8 (39.88%)
S- H ₅	$[W_{\rm C}/W_{\rm H}] = 1/0.25$	0.4823	0.3752
		0.3932	0.4181
		0.4116	0.3564
		0.3769	0.3739
			5 (39.85%)

溶劑種類	【Wc/WH】重量比	回收率
E- H ₁	$[W_{\rm C}/W_{\rm H}] = 1/4$	0.6461
		0.6619
		0.6241
-		0.6418
		0.6698
		平均:0.6487(64.8%)
E- H ₂	$[W_{\rm C}/W_{\rm H}] = 1/2$	0.6026
		0.6329
		0.6511
		0.6233
		0.6478
		平均:0.6315 (63.1%)
E- H ₃	$[W_{C}/W_{H}] = 1/1$	0.3988
		0.4494
		0.4627
		0.4654
-		0.3974
		平均:0.4347 (43.4%)
E- H ₄	$[W_{\rm C}/W_{\rm H}] = 1/0.5$	0.3533
		0.4381
		0.4333
		0.3611
		0.3942
		平均:0.3960 (39.6%)
E-H ₅	$[W_{\rm C}/W_{\rm H}] = 1/0.25$	0.3010
		0.2828
		0.2882
		0.3332
- sheet		0.3240
		平均:0.3059 (30.5%)

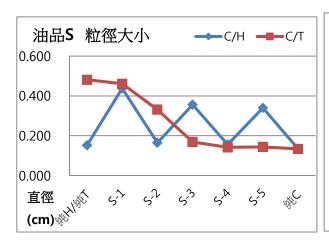
(二)不同比例混合的奈米碳管(C)與奈米磁流體(T)

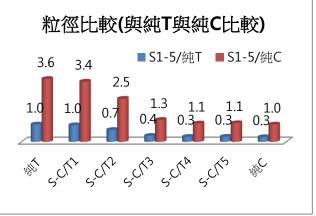

溶劑種類	【Wc/W T】重量比	回收率
S-T ₁	$[\mathbf{W}_{\mathbf{C}}/\mathbf{W}_{\mathbf{T}}] = 1/4$	0.7581
		0.7926
		0.7627
		0.7555
		0.7720
		平均:0.7682(76.8%)
S- T ₂	$[\mathbf{W}_{\mathbf{C}}/\mathbf{W}_{\mathbf{T}}] = 1/2$	0.7703
		0.7814
		0.7820
		0.7659
		0.7441
		平均:0.7687(76.8%)
S- T ₃	$[\mathbf{W}_{\mathbf{C}}/\mathbf{W}_{\mathbf{T}}] = 1/1$	0.6014
		0.6424
		0.5996
		0.6116
		0.6432
		平均:0.6196(61.9%)
S- T ₄	$[W_{\rm C}/W_{\rm T}] = 1/0.5$	0.5446
		0.5515
		0.5345
		0.5234
		0.5128
		平均:0.5333(53.3%)
S- T ₅	$[W_{\rm C}/W_{\rm T}] = 1/0.25$	0.4641
		0.4684
		0.5111
		0.4888
		0.5124
		平均:0.4890(48.9%)

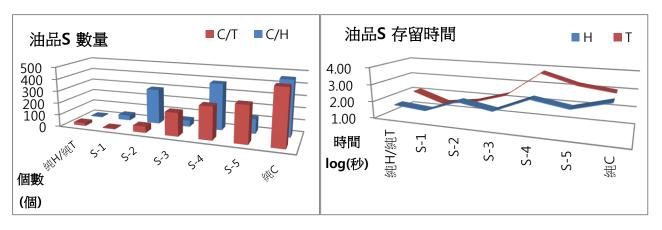

溶劑種類	【Wc/WT】重量比	回收率
E-T ₁	$[W_C/W_T] = 1/4$	0.7786
		0.7277
		0.6905
		0.6857
		0.7363
		平均:0.7237(72.3%)
E- T ₂	$[W_{\rm C}/W_{\rm T}] = 1/2$	0.7853
		0.7556
		0.7355
		0.7516
		0.7023
		平均:0.7461(74.6%)
E- T ₃	$[W_{\rm C}/W_{\rm T}] = 1/1$	0.6186
	2 6	0.6389
(100 kg)	SEE COL	0.6015
		0.5999
		0.6371
		平均:0.6192(61.9%)
E- T ₄	$[W_{\rm C}/W_{\rm T}] = 1/0.5$	0.5769
		0.5732
		0.5907
		0.5221
		0.5853
		平均:0.5697(56.9%)
E- T ₅	$[W_{\rm C}/W_{\rm T}] = 1/0.25$	0.5438
		0.4523
	0.4875	
		0.5380
-	A COL	0.4636
		平均:0.4970(49.7%)


*:表示無法量測

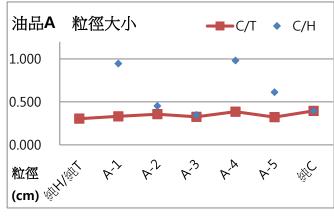
陸、 討論

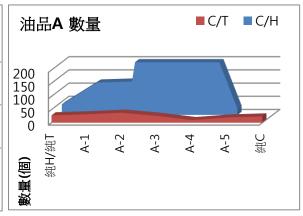

- 一、 不同固體顆粒包覆油滴微胞
- (一) 我們選擇具有磁性的四氧化三鐵(H)、奈米磁流體(T)與奈米碳管(C)混合,作為包覆液 胞的固體材料。為了比較複合粒子在不同油品中的包覆情形,我們選擇分子量差異較 大的乙酸戊酯(A)及沙拉油(S),進行包覆油滴穩定性的探討。
- (二) 實驗油品:沙拉油(S)
 - 1. 微胞的粒徑與數量:使用H與C混合,我們發現微胞的粒徑與數量皆沒有規律性;而 T與C混合實驗組,隨C比例愈多其微胞粒徑漸小、數量明顯漸增。





- (1)實驗發現四氧化三鐵的顆粒較大,包覆形成的油滴微胞粒徑大小不均,且振盪後 形成的微胞有些是油滴、有些是水滴,整體系統不穩定,液胞相互碰撞即破裂, 無法有效穩定,不但液胞數量少且存在時間短暫。
- (2)磁流體由微小的奈米Fe₃O₄所組成,製備加入的正辛酸增加其親油性,使包覆油滴的能力增強,因此T比例較高時,溶液形成的液胞顆粒較大,且存留時間較長, 能穩定液胞的存在。

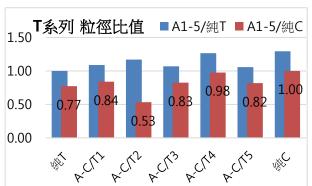

- (3)比較混合固體與純T、純C的液胞粒徑(如上右圖),混合固體顆粒所形成的微胞皆小於純T(比值<1),大於純C(比值>1),即混合固體的實驗效應可綜合磁流體與奈米碳管的特性,且微胞的存留時間較長,表示此兩固體的混合有兼具性。
- (4)在液胞數量上, 奈米磁流體系列的呈現較規則的趨勢, 隨著奈米碳管的比例漸增, 胞覆的液胞數量亦漸增, 且存留時間也越久。



- 2. 微胞的存留時間:由液胞存留時間得知,奈米碳管有助於油滴液胞的形成與存在。
- (1) 不論是巨觀的四氧化三鐵或是奈米磁流體,微胞的存留時間隨著奈米碳管的增加有 著漸延長的趨勢,此現象在T/C實驗組中較為顯著。
- (2) 隨著奈米碳管的比例漸增,其液胞的粒徑雖漸小,但是數量明顯增多,且存在時間 較長。這顯示奈米碳管與磁流體有較高複合性,且奈米碳管的存在能穩定液胞,形 成較為穩定的皮克林乳液系統。

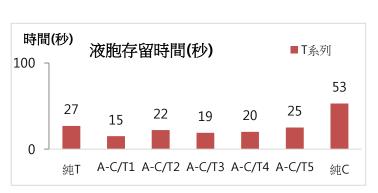
(三) 實驗油品:乙酸戊酯(A)

1. 微胞的粒徑與數量:H系列的液胞粒徑沒有規律性,T系列稍有隨C含量增多而有漸大的趨勢;然而在數量上卻呈相反的結果。

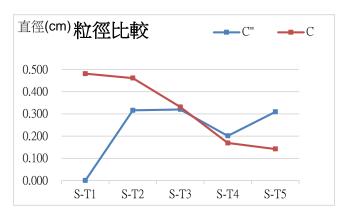


2. 純粹四氧化三鐵(H)無法觀測到液胞的形成,H會聚集成一片,在瓶壁及液面游移,如右圖。隨著奈米碳管的增加,其微胞才能存在;實驗結果顯示, 微胞油滴粒徑大小與存留時間皆無規律,數量較T系列多。

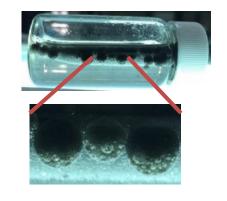
3. 在奈米磁流體(T)系列,我們發現液胞包覆的是水滴!由於液胞為水而非油滴,我們發現粒徑大小:純T<純C,且複合固體包覆的水相微胞皆較純T 為大(粒徑比皆>1)、較純NC者為小(粒徑比皆<1),此現象恰好



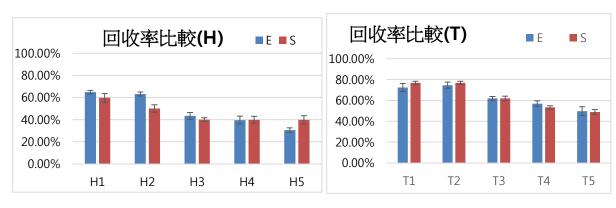
與沙拉油(S)系列的結果相反。


我們認為乙酸戊酯分子較沙拉油分子為小,且極性較高,疏水性的奈米碳管與磁流體對其包覆性並不佳,因此存留時間明顯較短(如右圖)

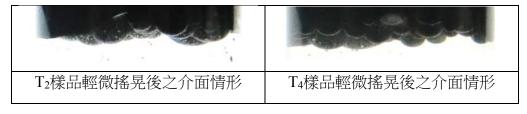
(四)實驗結果顯示:磁性奈米碳管複合粒子對於分子量較大的油品包覆的能力較佳,且奈米碳管含量愈多,油滴微胞的顆粒愈小、數量愈多、存留時間愈久。


二、經改質之奈米碳管的包覆情形

- (一)為確認奈米碳管在複合粒子中扮演的角色,我們藉由化學性改質方法,改變奈米碳管的包覆油滴的性質型態。
- (二)將奈米碳管表面接上羥基(-OH)及羧基(-COOH),改變其表面之極性作用力,藉以與改質前之奈米碳管相互比對,觀察兩者之間油滴液胞包覆情形之差異。


- (三)我們可以看到不論在液胞粒徑、數量或存留時間上,改質後的樣品都呈現較不規律的 情形,且在存留時間的項目中,改質過後的樣品普遍較改質前不穩定。
- (四)實驗過程中,我們發現改質過後的奈米碳管包覆的主要是水滴液胞,與改質前的奈米碳管系統不同;因此我們認為透過碳管表面改質或修飾奈米碳管的表面,可以進而控制複合粒子包覆液胞的包覆性質,增加選擇性。

三、 油汗回收效能測試


- (一)在步驟一的包覆實驗中,我們發現複合粒子對於分子量較大的沙拉油(S)具有較佳的包 覆效果,於是我們想進一步了解:在外加磁場施加下,複合固體對於油品的回收效能; 並且延伸至應用端,另外再納入實驗室可取得的廢棄機油(E)作為實驗油品。
- (二) 奈米碳管(標示為C)混合四氧化三鐵(標示為H)系統
 - 1. 實驗結果可以看出:使用四氧化三鐵(H)混合奈米碳管(C)的複合固體,用來回收廢 棄機油(E)的效能較沙拉油(S)為佳,且可明顯觀察到油滴液胞的生成。
 - 2. 不論是廢棄機油(E)或是沙拉油(S),隨著複合固體中磁性顆粒(H)比例減少,回收率 有漸減的趨勢。在磁性顆粒(H)比例較多的實驗組中(H₁、H₂),我們認為奈米碳管(C)

具有些許磁性,在較多的四氧化三鐵(H)存在下可被磁化,再加上其疏水特性,因此 能穩定包覆油滴,且在整體固體顆粒磁性增大的條件下更容易被外加磁場所吸引。

3. 在沙拉油(S)的各項實驗組中,油汙回收率約為40~60%,在廢棄機油(E)的各項實驗組中,油汙回收率約為30~65%;雖然固體顆粒的磁性是回收應用的條件,然而奈米碳管才是穩定油滴微胞最主要的關鍵,因此儘管具明顯磁性的H顆粒減少,其回收效能仍然存在,這顯然是奈米碳管相對比例存在增加所造成。

- (三) 奈米碳管(標示為C)混合奈米鐵磁流體(標示為T)系統
 - 1. 實驗結果可以看出:使用奈米鐵磁流體(T)混合奈米碳管(C)的複合固體,油品回收率約49~77%,效果明顯優於四氧化三鐵(H)混合奈米碳管(C)的系統,顯示此實驗設計的複合固體顆粒更適合用以包覆油滴進行回收應用!

被磁力吸引的油滴液胞粒徑會漸小。當奈米磁顆粒較多時,其超順磁性極容易受外

- 2. 在實驗觀察中,我們發現隨著奈米鐵磁流體的比例減少,
- 加磁場作用,將包覆的油滴瞬間一股腦兒地曳引向下,所以回收的油滴微胞較為巨大,但有小液胞脫離的現象;當磁流體較少且奈米碳管比例增加時,形成微胞的顆粒較小且形狀明顯,顯示奈米碳管包覆的作用使其更加穩定存在,呼應步驟一油滴

穩定性的探討結果。

3.

奈米磁顆粒比例 左圖:比例高(T₁) 右圖:比例低(T₅)

- (四) 我們認為同樣是奈米級材料的碳管及鐵磁流體,在混合時因粒徑大小較為一致,因此能 形成較為均勻的複合顆粒,對於油滴的包覆具有較佳的穩定性。
- (五) 在回收實驗中,我們發現吸附油滴的作用力主要仍取決於磁性顆粒,當磁性顆粒的比例 越多時,受到外力吸引的油滴量就越多;然而,我們發現形成油滴的穩定性是取決於奈 米碳管,其疏水、親油且可磁化的特性可將油滴完整包覆、穩定存在,成為較為穩定的 皮克林乳液(PEs)。

柒、 結 論

- 一、 經由實驗我們確定奈米碳管具有界面活性劑的特質,能穩定油滴液胞的存在。
- 二、 運用奈米碳管與磁性顆粒所形成的複合顆粒 , 對於分子量較大的油品其包覆性較佳 , 且奈米碳管的存在比例愈高 , 對於油滴的包覆程度愈佳、微胞數量愈多、存留時間 愈長 , 形成穩定性高的皮克林乳液系統。
- 三、將複合固體顆粒相較於純奈米碳管而言,其包覆能力及微胞穩定性都是較佳的,且 在複合固體顆粒比例【奈米碳管/奈米磁流體】為1/0.5 時,所包覆形成的油滴存留時 間最長,可達2小時以上。
- 四、 經改質奈米碳管表面後,我們發現此系統所包覆的液胞,其粒徑、數量及存留時間 皆呈現混亂、沒有規律性;然而,此系統卻可包覆較多水滴液胞,因此我們認為透 過改質碳管表面,可以控制複合粒子包覆微胞的形態。
- 五、 我們添加粒徑大小不同的磁顆粒與奈米碳管,形成複合磁性固體材料,並施加外加 磁場進行油汙的回收。實驗結果發現奈米磁流體與奈米碳管複合系統的回收效果可 達77%,適合應用於廢油油汙的回收及處理。
- 六、本實驗目前仍朝向奈米碳管與磁流體的表面化學修飾方向進行探討, 並計劃進一步利用掃描式電子顯微鏡(SEM)或穿隧式電子顯微鏡(TEM),瞭解 分析微胞表面的固體顆粒組成。若是能改變固體顆粒或修飾上其他官能基,將能進 行微胞包覆形態的控制,將此皮克林穩定乳液應用於更多層面。

捌、参考資料及其他

- 一、 【第 45 屆全國中小學科展作品】*留不住的水滴,*陳俊延、吳孟軒(2005)·
- 二、 【期刊文章】黄建盛(2006)·奈米碳管簡介·*科學焦點/科學新天地*,9,4-9
- 三、 【期刊文章】朱榮聰、丁永強(2006)·奈米氧化鐵粉末之製作 Production of Iron Oxid e Nano Powders · *遠東學報*,27,371-376。
- 四、【學位論文】Hong-Ming Lin,Kunpeng Jiang ,Shenghua Ma, Xiaojun Han ,Yinan Wang(2 015) · Decorateable hybrid film patches stabilized Pickering emulsions and their catalytic applications
- 五、 【學位論文】陳聿徳(2013) · *芘丁酸改質單壁奈米碳管用於乳癌感測* · 中國文化大學 : 化學工程與材料工程學系

【評語】050208

- 1. 研究方法和紀錄嚴謹詳細。
- 2. 複合顆粒(奈米碳管和磁性顆粒)中的兩種成份以何種方式組成(例如:分子間何種作用力或其他方式)應再做進一步的鑑定及分析,如此才有助於未來的應用。
- 3. 回收油的同時,奈米碳管和磁性顆粒的回收率為何?應詳細研究以利未來之應用。